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Annais of Economic and Social Measurement, 3/4, 1974 

EFFICIENT ESTIMATION OF NONLINEAR 

SIMULTANEOUS EQUATIONS WITH ADDITIVE DISTURBANCES 

BY DALE W. JORGENSON AND JEAN-JACQUES LAFFONT 

This paper develops a theory of CUAN estimation for systems of nonlinear simultaneous equations with 
additive disturbances. We first derive the Cramer-Rao lower bound for the variance of a CUAN estimator. 
The method of maximum likelihood can be used to generate an estimator that attains this bound. We show 
that minimum distance and instrumental variables estimators cannot generally attain the Cramer-Rao 
bound. 

1. INTRODUCTION 

The statistical theory of estimation for systems of linear simultaneous equations is 

based on the construction of consistent, uniformly asymptotically normal (CUAN) 

estimators.’ Within this class it is natural to select estimators that are, in addition, 

efficient ; we refer to such estimators as best consistent uniformly asymptotically 

normal (Best CUAN) estimators.” The purpose of this paper is to develop a theory 

of CUAN estimation for systems of nonlinear simultaneous equations with additive 

disturbances.* 

The theory of CUAN estimation for systems of linear simultaneous equations 

can be summarized as follows: estimators can be constructed that attain the 

Cramer-Rao lower bound for the variance of a CUAN estimator.* The ordinary 

least squares estimator for the reduced form is CUAN, but not generally Best 

CUAN. Best CUAN estimators can be constructed by the method of maximum 

likelihood, the minimum distance method, and the method of efficient instrumental 

variables.° 

Malinvaud has developed a theory of CUAN estimation for systems of 

nonlinear simultaneous equations with an explicit reduced form having additive 

disturbances.° For this class of nonlinear systems the ordinary least squares 

estimator for the reduced form is CUAN, but not generally Best CUAN ; Malinvaud 

shows that Best CUAN estimators can be constructed by the method of maximum 

likelihood and the minimum distance method. Hausman has shown that a Best 

CUAN estimator can be constructed for a closely related class of models by the 

method of efficient instrumental variables.’ 

Our first step in developing a theory of CUAN estimation for systems of 

nonlinear simultaneous equations with additive disturbances is to derive the 

! The statistical theory of CUAN estimation is discussed by Rao (1973), pp. 344-351. 
2 Best CUAN estimators are discussed by Rao (1973). pp. 350-351. 
3 This specification for simultaneous equations models is considered by Eisenpress and Greenstadt 

(1966). 
* A complete review of the theory of CUAN estimation for systems of linear simultaneous equations 

models is presented by Malinvaud (1970), pp. 348-366, and Rothenberg (1974). 
5 See Malinvaud (1970), pp. 675-678, for a discussion of maximum likelihood and minimum 

distance estimators, and Brundy and Jorgenson (1971) for a discussion of efficient instrumental variables 
estimators. 

© See Malinvaud (1970), pp. 348-366. 
7 See Hausman (1974). 
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Cramer-Rao lower bound to the variance of a CUAN estimator. The method of 

maximum likelihood can be used to generate a Best CUAN estimator. As for 

linea. systems, the burden associated with the conventional approach to compu- 

tation of the maximum likelihood estimator, based on the Newton-Raphson 

method or the method of scoring, is very substantial.® 

We can distinguish two alternative lines of attack on the problem of reducing 

the computational burden for Best CUAN estimation of systems of nonlinear 

simultaneous equations. First, the computation of the maximum likelihood 

estimator can be simplified. Rothenberg and Leenders have shown that the first 

step of the Newton-Raphson method is Best CUAN, provided that the initial 

parameter value is a consistent estimator.? Although Rothenberg and Leenders 

apply this result only to systems of linear simultaneous equations, the proposition 

holds for nonlinear systems as well. 

In this paper we concentrate on a second line of attack, namely, construction 

of estimators by methods, such as minimum distance or instrumental variables, 

that are easier to compute. Amemiya has proposed a minimum distance estimator 

for a single equation in a system of nonlinear simultaneous equations.'° We extend 

his method of estimation to systems of nonlinear simultaneous equations and 

his proof that the resulting estimator is CUAN. However, we show by means 

of an example that the minimum distance estimator is not generally Best CUAN. 

We also develop an instrumental variables estimator for a system of nonlinear 

simultaneous equations, extending the efficient instrumental variables estimator 

for linear systems developed by Brundy and Jorgenson.'' We show that the result- 

ing estimator is CUAN and, in fact, asymptotically equivalent to our minimum 

distance estimator. Again, the efficient instrumental variables estimator is not 

Best CUAN. 

We conclude that minimum distance and instrumental variables estimators 

can be constructed that are CUAN, but that these estimators are not generally 

Best CUAN. Further research on Best CUAN estimation for systems of nonlinear 

simultaneous equations should be iocused on simplifying the computation of the 

maximum likelihood estimator. '? 

2. THE MODEL 

We consider the following system of simultaneous equations: 

(1) Var = S:(211, B) + Uy, 

Yer = SplZp,, B) + up, t=1...T 

or in vector form: 

y, = f(z,, B) + uy, “OS PS: 

’ The Newton-Raphson method is described by Eisenpress and Greenstadt (1966). 
° See Rothenberg and Leenders (1964). 
10 See Amemiya (1974). Minimum distance estimators for a single equation in a system of simul- 

taneous equations are also discussed by Edgerton (1972), Kelejian (1972), and Zellner, Huang and Chau 
(1965). 

'! See Brundy and Jorgenson (1971, 1973). 
‘2 Important progress along these lines is reported by Berndt, Hall, Hall, and Hausman elsewhere 

in this issue. 

616 



y: ” Vite: «+> Vex; Z, _ [2105+ Zp) 

uy = [Uy,,---,Up)s  f(.)=(fil.),---. fo 

Vits-++> Vp, are the endogenous variables; for each i = 1,..., P, z,, is a Q,-vector 

of endogenous and (nonrandom) exogenous variables ; B is an R-Vector of unknown 

parameters; f, is a nonlinear function with continuous second derivatives (R, is 

the number of elements of f in f). u,,t = 1,..., T are random vectors such that 

Eu;,, = O0.i=1,...,P;t=1,..., T, Eu; =Q of full rank and Euw) = 0 ift #¢’. 

This form of the model c2.n be obtained from a model with different parameters 

B; in each equation. If there are constraints on these parameters, they are solved 

to obtain a minimal set of parameters 8. We assume.that the constraints can be 

solved uniquely at least in a neighborhood of the true value 6°. We assume further 

that the parameter is identifiable. '* 

The model is now rewritten differently to use the simplifying Kronecker 

notation. Let Y; = [y,,,.-., yi], i= 1,..., Pand Y=[Y,,..., Yp]’. Let Z be the 

stacked vector of variables appearing on the right of system (1). Let F(Z, 8) = 

(fi(Z11,B),---, F(Z 11, B)..--, SplZp;, B),.--, SplZpr. Bp)!’ 

Then (1) can be rewritten 

(2) Y = F(Z, B) + U with EUU' =X @!,. 

We choose a specific notation for the set of exogenous variables (independent of 

U) which are K* in number. 

Nag Kay :-.: Res 

X* = 

Xip Xoar --- Xxer | 

X will be in this Section a matrix of K variables constructed from X* with max; R; < 

K < K*. We refer to assumptions specified in Section 2 as Ay. 

3. CRAMER-RAO BOUND 

3.1. Introduction 

The comparison of different full information methods'* to estimate nonlinear 

econometric systems with additive disturbances requires an explicit form of the 

Cramer-Rao bound. In this Section, we derive the Cramer-Rao bound when the 

matrix of variances and covariances of errors is unknown, completely known, or 

known to be diagonal. 

'3 Identifiability for systems of nonlinear simultaneous equations is discussed by Fisher (1966), 
pp. 127-167. 

'* We restrict ourselves to cases without constraints across equations to allow comparisons with 
the Rothenberg—Leenders (1964) results in the linear case, but there is no substantive difficulty extending 
these derivations to more general cases. We use the notation of Eisenpress—Greenstadt (1966). 
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For this Section we rewrite the model more symmetrically : 

(3) IA 15-5. VpsXi5--- Xp 0) =u, a=l,...,P 

where: 

{x,}k = 1,...,.K* are predetermined variables 

{yp} p = 1,..., P are endogenous variables 

{0,} is a R,-vector of parameters « = 1,..., P. 

We assume that the Jacobian of the system is nevervanishing (it is clearly a 

strong assumption) and we assume the multinormal distribution for the errors so 

that we can derive the logarithm of the likelihood function. 

3.2. Unrestricted Q Matrix 

The logarithm of the likelihood function is: 

PT gy rs l 
(4) L* = ——-log2m + >logidet Q~*) + } log |det B,| — 5d Sieh 

2 t ipt 

where 

Fie = FV ate + «+ Vers X05 +++ 5 X ers Og] 

7 
B; yn. = |= 

“ (3 

and B, is the matrix of such derivatives. We concentrate the likelihood : 

oa “TF a F an 
(5) ane = 72x — 5d Su Sn = 0 

a ~ 1 
(6) Qy, = iy = FD Sr Sn- 

Substituting (6) in (4) we obtain the nonconstant part of the concentrated likelihood. 

- - 
(7) L= —5 log (det 2) + } log |det B). 

We want to obtain: 

2 es Hus 1 d* log L 

T?@ T 0060' (0° = (0,,...,0,,..., Op) 
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which will be the inverse of the Cramer-Rao bound for the parameters @.'5 

aL éL a, OL OB 16 ipt 
8) 30, 2, 00, * X ob, 00, 

éL an 17 eee ge ce ae 
0) ©, 3 

aL 
= Bi (10) oB,,. B} 

aL . eee . OB; 
en eee ip. 'P PF, ce 

(11) 00, 2 ae, + BOP, 

From (6) 

©, ha fir fpe\ 
(12) 60, — = Sn + Su’ 60, 

with the following simplifications (since f,, depends only on 6; and not on 6; with 

j # i): 

(13) >= aay a 

(14) aie 26, ifixa 

(15) a = 0 ifi #aandj #a 

-  * Bh, 

with the following simplifications: 

2 
OB,» ro é Sut 

(17) 
00, . 00,0y, 

OB _ a 
(18) 30. =0 if i #~ a 

a 

'S See Koopmans and Hood (1953). 
‘© We adopt the following convention. The diierentiation of a numerical function with respect to 

a column (row) vecior of parameters is a column (row) vector. 
‘7 We use the foisowing result. If A = [a,,] is a nonsingular matrix with inverse A~' = (a), then 

0 log |det Al/da,; = a”. 
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Then: 

pe of, 6. 
19 —_— = — Qiz a0. pa at 

(19) » paar Sin + LB 20.2y, 

We can now obtain the second derivatives :'® 

Ofu\ OQ Gi far ir O*fr 

(20) aa, oe ap -5 (54: 00,} 00% ra» 3 00, + Su59-367 60,00, 

67f,, OB? 0 let BP at 

ig 2 50,ey, a0, + uP a6 20,05, 

We use the general formula: 

Me “pipes OM 
21 = — “ie hm ‘ Pe ( ) 0, 2M 08, Mnp 

using (13), (14), (15) 

ane aQ-'), on 4 Ody 
Q2) 0 Sa Ste = 

00, 00, = 00, 

nt Opn 
ais’ the. ip bm in? ule Ba 2& 607, rae 6, —— 0 

0 nomeet 6 
a ti § DS | oe Fam TY fy | 

h t 

The first element of the right hand side of (20) is then: 

ay pantry Ze ym "peer brn 

oBP* 4 tee 2 Ti oe ie OBrmt ma 

m 06, 2 Br = fae 

Of ge ma 
LBM 00,0 Vm = 

The third element of the right hand side of (20) becomes 

ar, oF 25 bss pp at Bt 

at 2 Bi al 80,2y, 00,0Ym 

The second term of the right ai side of (20) becomes: 

(26) -a"y a Z if B # a 

18 We do not use “prime indices”, so that the sign ‘ must always be interpreted as a transposition. 
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or 

Aaa Ofna fn ia O fay : 
(27) -Q 230. 20, - ay Y fir’ 30.20, ifB =a 

We compute now 

i ey! 

" T 80,00, 

The first term of the right hand side of 1/T (20) is: 

0 ) ae 
ca) Demy fase| (TE Sug] + DOMMES fase) (FE fuse Sir 00, 

We assume that: 

l 0 
(29) poi Tau P, H,, (vector) 

From (28) we obtain: 

(30) Y 22" H Hing + Y QOMH Hig 

since the estimations Q” of Q are consistent. In matrix notation: 

20" [H,Hqgi]------L "OH Hyp | 

+ Y9"0"[H,, His) + YO"0?'H,, Hip 
(31) C, = ~. ih 

ee ' Y Q0""H pH’, 

+ ¥ O*O?? HH ,p 

Let 

l 67f, 1uof, Of, 
32 G, = li —- : — o. = i —_— I ee (32) a= Plim sd Susg ag, Fu = Plime 39 a9 

i=l,..., r. j=l,..., P; a=i,..., P. 

The second term of the right hand side of (20): 

ef, of, ‘i | 
| 00, 0 00, 0 YQ G;, Q | 

(33) plim=| (Q-'@n +| ) 

. 0 ‘De 0 ‘Dp 0 ¥ 2G; 
| 00 p 09> L ; a 

Q''F,,----O""F,, ¥ Q'G,, 0 ] 

= Poags + i . A = C, + Ci "Fee 0 y 2"G,,| 
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The third term of the right hand side of (20): 

* ef, 3.3] Ee 1 OF, °F, 
pr ha “)---s(rar fhe) ] 

{Er ap at) (D8 acs) 2 (D8 ap- a 

l °F, 
4 lim — 3 nt Ode, | 

; of, ae, Bp? Pt (3 BP? Pt } 

‘ aoeay,) \% aayay, 

If 

plim — oar OSs for j, p,a = 1 P _ t Js >  Bgawes 
60 ey, 

dir Jip > Ji 

(35) C;= ee ' NZ Joy) Pp 

The fourth term of the right hand side of (21): 

Of, 

LLB 00 ,00,,dy, 0g’ a 0 
(36) stn. 

T 0 “sy BPP é Oy 

ai ; 00 ,00',2y, 

Lliy 0 

(37) C, = ” 4 

0 >» Lp, 
P 

where 

ot Ee 
(38) L;, = plim = Bag a 50 20;ay, for j = 1,...,P; p=1,...,P. 

; 1 6?L 

| o"O"(H,,H,)------ YQ”O"(H, Hip) | 
im im 

~ 
+ ¥9°0'(H,,H;,;) 

ih a ~ 
+ Q"0°'(H;, Hp) 

ih = 

oe >» 2°Q""(HipH),p) 

+ ¥ O"O""(HipH;p) 
ih 4 
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i y2"G,, 0 
O'F,,----Q'*F,p ; Se 

+ Sopp + iP 
PP 0 ya Gip 

qi i 

Sai ---- SA = FERS pull 
Pp > Pp ‘ 

I iter Jy) pp 0 r 3 Lp, 
P P 

=-C,+C,+C,-C,-—C, 

For the special case of the reduced form considered by Malinvaud (1970) 

far 

00, 

is nonrandom as well as 

o? 

00,00. 

If all the derivatives are bounded in the sample space for all i,a = 1,..., P 

Of 
7 Sugg = 0 so that C, > 0 

a 
7D hag so that C, > 0. 

Since there is no endogenous variable on the right hand side 

ofa 9 a= | P; B=! P; = | P sothatC, =0 0,ty, se OO ee ; Ped... atC, = 

O* fax 
os = = 1l,...,P; at iT P that = 0. 50,00,0y, a Pp so that C, 

Finally: 

A 7, 0 
62 é , 1 |06,, b-\es 06, 

4 im — — = = plim — ‘ . (40) plim - = 55 = C2 = plim =. af [2° @N af 

0 NP 0 acid 
06> 00p 

Malinvaud (1970) shows that the maximum likelihood estimator reaches this 

Cramer-Rao bound. Similarly, the bound is attained by a minimum distance 

estimator weighted by a matrix S which converge to Q. When the model is linear 

in parameters 



C, is only a function of variables. 

1 @L 
im — — —— = -C, +C,+C (41) plim T d000" 1 2 3 

3.3. Restricted Q Matrix 

The logarithm of the likelihood is: 

(42) L= 
—NT T 

5 log (2x) + = 5 log (det Q-') + ¥ log |det B| — =>. SX 
ipt 

We first consider the case where Q is known so that we have only to differentiate 

with respect to 0. 

Vhs 
43) yf ris, ies al a= 1,...,P 

ipt 

0 
(44) 20, 2 log |det B,| = 2 x BP - ay, 

Ifa # B: 

67L Of., Of, 2f OB? 
aiiDeiaeihnis ite tanks ap Bay Jat “J Bt at t 

@) 50,00, 52 + O75 30, + 2 30.2y, 00, 

Sar Of O*f, OBP? = — ap Sat “Spt Be at t 

ra 00, 00, +22 00 Vp 005 

Ifa = p: 

(46) ot yee Sn 5 +55 ofa = > 

00,00, , 90, 08, *00,0Y, 7+ LLB '00,00,y, 

Qi d O* fa 

~4m D Su: 00,00, 

Using (24) and (26) we obtain the matrix form: 

; 1 éL 
lim — + 3000, ~ 2 + 2 — Oa 7G 

using our previous notation. Asymptotically, the gain represented by the knowledge 

of Q corresponds to —C,. 

624 



Next, we consider the case where Q is known to be diagonal. The nonconstant 

part of the concentrated likelihood function is then 

P 
L = 5 log |det B,| — i y log 2, 

| 
rad pe Safa 

C, and C, will remain as in the general case. We have to compute 

Es a 

0000’ . y log 22. 

oa w®., Oyaa 2 Of 
Z 7 ed, = 0 Gy, pL Sa 56. 

é A “4 50, (08 Sas = i: B F~ Oo 

6? ge 2 [5 Sun Su 

30,00, log, = Oly a0, * Eta 66. | 

2 Jat aa am yma 
Relea Soe] 

far © 

30, 36, + Daz a 

at fx 
4Qe ram 7 fase (> D So“ 39, 

Sus emi ut 
7D Sugg! hi 2a rE fag 0 

Cf = plim age : 

Q aarr an Fn oe : T° _ oe 
06, 

of; Sy ty | 

ey 60, 0 Q'! 0 QI o,, ~ 
Cc = plim — \ ba S ts he 

' 0 \ fp 0 oad 0 ‘ fp 
0p 00> 

Fu Ay11 t 

Cc} = plim + a 

grr 
0 OY fgg 



So that using our notation we obtain: 

20114, , > a Ai 0 

(46°) plim.— — —— = — . Sime 
)P T 0000 0 20? H pp 2"? H',p 

= 

POM Fy 0 QMG,, 0 

i 0 OPP F,» 0 Q??Gpp 

' 1 yl’ Pp yl’ Dig ip: Sip bp 
P ee P 

~ P P’ ~ 
yz J pp! Pp 
P L 

PLL 0 ] 

[0 E40 

3.4. Conclusion 

The general form of the Cramer-Rao bound can be decomposed in five parts: 

—-C,+C,+C,-C,-C, 

where C, would be the Cramer-Rao bound if there were no endogenous variables 

on the right, C,, C,, C, represent the modification due to the existence of endog- 

enous variables on the right when Q is known, and — C, represents the additional 

change due to the necessity of estimating Q. 

It is not difficult to specialize the results to the linear case considered by 

Rothenberg and Leenders. When there is no constraint on Q, it is possible in the 

linear case to obtain the Cramer-Rao bound from the bound if there were no 

endogenous variables on the right, by simply replacing the “endogenous variables” 

by the systematic part of the reduced form associated with them. In the nonlinear 

case, the derivation is much more complicated. 

4. MINIMUM DISTANCE 

We next consider a family of minimum distance estimators of the parameter 8 

in the system of nonlinear equations (2). We obtain the minimum distance esti- 

mator by minimizing 

J(B) = [Y — F(Z, B)S[Y — F(Z, B)} 

where 

S = (1 @ XQ @ X’X}" "(1 @ X’) 
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with X defined above, © a consistent estimator of order 0(T~ '/?) of Q. 

Al. The parameter space is compact and the matrix X’X is of full rank with 

probability one. 

Proposition 1. Under Ay, A,, a minimum distance estimator exists. 

A2. u,,t = 1,..., T are identical independently distributed random vectors. 

1 
A3. lim —X'X exists and is equal to the qenaageee matrix M. 

T7?-@ 

H, 
) 1 

A4. plim = 7 i = H; uniformly in £. Then plim = - X’ 7 - | =H of rank 

Hp 

R uniformly in £, with the notation: 

(3) -¥- 

Proposition 2. Under AO, A2 to A4 a minimum distance estimator is consistent. 

Proof. 

- fi 

- (zi1, B), eee ter) 

Of, 
Bien cog spec B)| 

cA 
ap’ 

(47) F(Z, p) — F(Z,B°)=| - |(B- 8°) with B between f and f°. 

Of 

ae? 

Note that F(Z, 8B) = Y — U. Multiplying each member of (47) by 

oO a 

T T 

gives: 

—1/2 ' e ’ —1/2 (48) (eee) FS* lu - FS) [-s* 
“ " < }riz, B) — Y) 

r ofr | 

op’ 

- Pexxy(re*)| : 
“ “ (B — B°) 

af 

2p 
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a I @ X’' . 
From A3, plim 7 = M and | = Ju =|: which goes to zero 

T-2 , 

1 
7x UP 

in probability when T > 00, by Chebychev’s theorem (A2-—A3). Let 

_ (2@XX\-'7(1@X) 
a,= F T plim «, = 0 

T+ © 

Let 

2, - (2OXX)\ 7 [1@x 

Riss ee * T 

By definition of B, J(B) < J(B°). Then, 0 < «a, < aa,. Since a, 40 «a, 50, 

therefore «,a, + 0 and a, + 0. 

The left hand side of (48) converges to 0 in ci Rigs when T — oo. Also 

rH] fly] 

op’ 7x op’ 

jr B°) — Y). 

Oe| | 1 ye 
Op’) LT op) 

which by A4 converges to the full rank matrix H when T > o0. Consequently, we 

see on (48) that 8 5 6. Q.E.D. 

G2 
A5 plim =. 7X ga = Gj uniformly in B, i=1,...,R j=1,...,R 

[x’U 
A6 i|3 N{0,Q2 @ M] 

/T 

Proposition 3. Under AO to A6. ./T(B — B°) (0, (HQ @ M)~'H)~"} 

Proof. 
OJ | 5 

= 58 + apap PUP - 

with # between f° and f. Then: 

1 é7J we ox 
(49) Vibe - b= -|7 or Tr abl 
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J(B) = [Y — F(Z, B)]' @ X][Q-! @ (XX) "I @ XY — FIZ, py] 
on 

6p 

(50) oe --2} : |ve xi e@X%x"J]V@ x1 — FZ.) 

Sf» 

OB | 

Ea cA 
op op’ 

e7H(B) | : 
iar 2). \UOXe' eux Ie xy] 

af’, ofp 

ap a 

of 

ap op’ 

a; = (Y — F(Z, BI @ X)[Q-' @(X’X) JU@XI| - 

ofp 
Apap) 

To obtain the asymptotic distribution of f we will first derive the asymptotic 

distribution of the pseudoestimator B obtained by replacing 2 by Q [J > J]. By 

assumption 2 = Q + A, with A, ~ 0(T~ '/”) so 

6-1 =0-!-0-'A,O-' 4+...=Q7!-—A, with A, ~ OT") 

OG = 1 — 5, with 6,,~ OT?) i=1 

For B, a; becomes: 

a ,? 

Ul @X - _ [X’X\~']|T  opop’ 
(51) Ul @ X) Q-! @|—— 

T T 1 o éf, 

T opiop’ 

As already shown, the first member of (51) converges in probability to zero as 

T — o, the second member to the matrix Q- ' @ M~' by A3, and the third mem- 

ber to the matrix 

Gj 

- | so that (49) 4 0 as T+ o. 

G? 
J 



Ro. FE Ore Pil 
3Plim + Spap | |[ae* | 

I of; of p 

IT op 

B which lies between f and f° converges to B° when T > 00 because of the consis- 

tency of §. Then:!9 

lim — B = plim Lye # 
Po T ar Pao T Opop'| 

= H'(Q@ M)"'H. 

Using A2, A3, A6, we can derive: 

eit a 
Var pim| 5 JF 

T-@ 

Finally from (49) Var plim JT (B - 

/T(B — Bo) > V[0.(H'(Q x M)~'H)~*). 

Let us now consider p: 

\ Diyor xx U, 
aJ ° op 2 

op Mea . 

Lo 

l 
— X’'U 

Oe 

From (50) 

Pl fy) : 
T Ops 

Bia. Ate & POPS 4 i 

"2 7T B |: ees a) Ss 

1Fry| | se 
LT Op J 

B°) = (H'(Q @ M)""H)~ 

xh 

7 oe 

1. Wf 

LT op: 

| = H'(Q@M)"". 

1 so that from A6 

app ; IP ’ -1 ’ 
Q opt X)7 *X'Up 

<< - ee 
OP FEXXY'X'Up 

‘a} , 
a Ds yyexy-1y” Us ~ 541 DANK) XU, + occccee. 

op op 

— ae ff; 
oe oes — Spp--—- X(X'X)~'X'U ap P PP* ap ) P 

*? Amemiya (1972), p. 10, Lemma 4: let f;(w, 0) be a measurable function on a measurable space Q 
and for each w in Q a continuous function for 6 in a compact set H. If f;(w, 0) converges to f(@) a.e. 
uniformly for all @ in H and if 6,(w) converges to 9, a.e., then f;(w, 8,(w)) converges to f(@,) a.e. 
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Let us consider an element a i 

ar 

a;= U'[Q-* @ X(X'X)" XX) 

O*fp 

L OB/OB" 

mah 1 J of] 

apap! Opap 
P » ? 
| O* ULX(X'X)" 1X" » ¥ QYULX (XX) X’ 
k=1 k=1 , 

O*fp_ O*fp 

LOp/Op" J Lapiapt 

The matrix X(X'X)~ 'X’ 67f,/dp/aB' is the projection of 67f,/0f/0B' on X, so that 

it is independent of u. Then U,X(X'X)~'X'(67f,/0p/0B') ~ 0(T"'?). A current 

element of 67J/dB0f' is then of the form 

ri . Of ; Cf, ° sa 
i — say Zix(x’x)- 1x’ 4 — O4.Q(T) — 64.Q(T'? (Q ap (X'X)"'X ap’ QY -O(T"'*) O(T*’*) 

i Di 'y)-1 , Fj -1/2 -1 Qi apXxw X'spll + OT )+ OT ')]. 

The matrix 67J/0B0f' can then be rewritten symbolically : 

. a of. 

A(I + 0(T~"?)) with A = a. Texoexy x! 

[AU + O(T-*/2)))-! = A“ — O(T~"7)A~! = A~* — O(T~*?). 

raf’ 

Op 

é mo 
7 = B + (T°) with B= —2| : |Q@@ X(X’X)"'X’-U; B ~ Q(T") 

OB. 

so that 

By — B = [A~* — OT ~*?)][B — OT) 

= A~'B— AT~') — 0(T~*) — OT *”). 

By Cramer’s theorem (1971, p. 254) BB. | 

B — Bo = B — Bo + (T~'). 
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Since JT (B — Bo) is normal, the asymptotic distribution of T'/2(8 — Bo) is the 

sameasthat of /T(B — Bo)because the difference of these two quantities ,/TO(T ~ ') 

has zero probability limit. Q.E.D. 

5. INSTRUMENTAL VARIABLES 

To generate a family of instrumental variables estimators of the parameter B 

in the system of nonlinear equations (2). we linearize the system around the true 

value, say B°: 

R, 

Vir — f,(Z,,, BY) = Y Sin (Bi; * iD + Uy, 
j=1 
Rp 

Yer — frlZp, Bp) - > Spin (Bp; a Bp) + Up, t=1,...,T 
j=1 

with Siin = Of / OB; ; (Zr B?). 
In general f,;, which depends on endogenous variables is correlated with 

errors. Consider the estimation of (52) by the instrumental variables method.?° 

We denote the set of instrumental variables 

where each submatrix W,; has R,; columns. (52) can be rewritten Y = F(B — f°) 
with 

Chita ees Sars 0 1 

Sir ++ firyr fy 0 
5 tp 

F= a _ 1 aw 2 

6 4 ae ee 0 ape? 

L Spir --- Sprpi | 

The instrumental variables estimator is then 

B — 6° =(W'F) "WY — Yo) = (W'F)'W'U 

so that: 

2 . Po a oll Bick 
Var \/T(8 — Bo) = plim —W’'F —(Q@DN)WiI=F'w) . 

r T |T 

If we choose: 

W = X(Q @ XX) 'X'Fwith X =1@X 

?° It is only a pseudomodel (since f° is not known), for which we construct a pseudoestimator. 
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we find 

plim FXO @ XX) KA LP RO @ X'X)"* XQ @ 1I)X(Q @ X'X)'X'F 

=j ao siai in 
TP XQ @ XX) 'X'F 

X(Q@NX =(1@X)\Q@VIU @ X)=Q@ XX 

] 
plim qu @ X)\(Q @ XX)" "(1 @ X)F)* 

It then appears that the minimum distance estimator is asymptotically equivalent 

to the pseudoestimator with a specific choice of instrumental variables. 

If now we can find the best set of instrumental variables W*, the best choice 

of X will be X* such that: 

(53) w* = X*°Q @ X*X*) 'X°FKF 

at least asymptotically so that F and Q can be replaced by consistent estimators. 

The search for a best set of instrumental variables will reveal the nature of the 

difficulty. 

In the linear case an efficient set of instrumental variables is: 

W, = OW, 

where Q' is a typical element of Q~! (with Q being a consisterit estimator of Q) and 

W, is a consistent estimator of the systematic part of variables in the j-th equation 

independent of the errors U. So, by analogy, we can attempt to construct consis- 

tent estimators of the systematic part of derivatives 0f;/0B; (2;,, B°) which are not 

correlated with the U. It is then clear that we want X to be variables independent 

of U but nevertheless as closed as possible to 0f,/0B;|,,,i = 1,..., P. Since there is 

no constraint on the number of X, as many powers of X as possible seem ideal. 

However, after some n the powers become probably useless, the n depending on 

the degree of nonlinearity of the derivatives. Moreover, this method leads to a 

huge matrix X’X which we have to invert, and leads to X which are collinear. Our 

suggestion is then the following one: 

1. Find a consistent estimator of # using a NL2SLS estimator for example 

with a minimum set of X (Max; R;), taken as a subset (eventually) of exog- 

enous variables. 

2. Simulate the model to obtain values of endogenous variables. 

3. Use the results of 1 and 2 to approximate the derivatives of f;,i = 1 

Malinvaud (1970b) restricts himself to the case where a reduced form is 

available and shows that a minimum distance estimator with S = Q~' or a 

consistent estimator of Q gives the best minimum distance estimator. Moreover, 
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if normality is assumed, it is asymptotically efficient. In his case the 

of, 

are not correlated with the U, so that if a consistent estimator B; of B? is available, 

it is not necessary to project them to eliminate the dependence on U. 

They are the best possible auxiliary variables since they obviously maximize 

asymptotically 

(Zie> B?) 

of; bi 
3B. oid Pt fhe & 26il, 

But: 

of; 

plim tr OB lan - ls, 

Malinvaud tells us that asymptotically it is not a the trouble since X = | does 

as well. 

6. EFFICIENCY 

6.1. Introduction 

We have developed an explicit form for the Cramer-Rao lower bound for the 

variance of a CUAN estimator of the parameter f in the system of nonlinear 

simultaneous equations (2). This bound is attained by the full information maxi- 

mum likelihood estimator. We have shown that the minimum distance and efficient 

instrumental variables estimators are asymptotically equivalent. We next consider 

the relative efficiency of the minimum distance estimator for a system of nonlinear 

simultaneous equations and for a single equation in such a system. 

6.2. Minimum Distance Versus Maximum Likelihood 

We show with an example that the minimum distance estimator of Section 4 

does not generally attain the Cramer-Rao bound. It is sufficient to prove that one 

element in the inverse of the matrix of variances and covariances of the minimum 

distance estimator is different from the corresponding element in the inverse of 

the corresponding matrix for the Cramer-Rao bound. We consider the system of 

nonlinear simultaneous equations : 

Vi + ay} + Bx, =u, a 

y2 + B2x2 = uz 

Qi: 0 . 
Eu'u = with QQ. = ] 

0 Q22) (Therefore Q'! = Q,, and N?? = Q,,) 

Element (1, 1) in the inverse of the Cramer-Rao bound: 

634 



a) From (46*) we have: 2Q''-Q''H,,H;, + 20''9?'H,,H3, 

Be Vie 0 
= lim — hi [= lim — Ui, = 

33 "00, Te , is ° 

Then: 

C,(1, 1) =0 

b) From (46*) we have: Q''F, , 

; Of, HK, : V2 a ee 
F,, = lim Da 36, = in|" i} stim =D Ye = lim =D (un — Baxa)” 

lim = T\~ "3, — 4) u3,B2X>, + 6) u3,B3x3, — 4¥ u2B2x>, 7 Dey 
; t t ; 

= 03 + 683233 + 6322. 

with 

of = lima uf, 3. = lim= rDxt 2H = lim = xa, 

C,(1, 1) = Q"" [o> + 663233 + 63X32) 

Clearly C, = 0 and C, = 0. 

c) From (46*) we have: J}, - J}, + Ji2-Jt: 

Here: 

a il . 201 V2 | Be 4 b hie) 

a. Sa) oe 1 JLB? B22] Lo 

O*f,, 0 
Ji, =lim= iabal = lim 7515] - 

0 Of 2y J? = 21 lt ve 2 “i 0 
12 = lim — 7 Dei 30, dy. 7h: i | 

Then: C,/1, 1) = 0. 

Finally, we obtain the element (1, 1) of the inverse of the Cramer-Rao matrix : 

Q''(o5 + 663532 + BSx4,) 

Element (1.1) of the inverse of the asymptotic matrix of variances and covariances 

of the minimum distance estimator is: 

ait y2’ Mee Meta te 

im 70" i a Re a 
T x) X5X, X2X2]| X2 

a ee 
321 = lim =D X21 0,,= lim = MX 

Let 

t 
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ae, ery 
2222 = lim =D. X2eX2 0,,= lim =D, U3eX2e 

The element (1, 1) is then: 

Qi 

son. (B3(2321222 + £322%11 — 2Z222%22122) 
22411 12 

+ 2B}(@2,222% 021 + O22%11:2222 — 21424 2E222 — O22E12%221) 

+ @3,2,. + O3,2,, — 202,022.) 

which differs from the corresponding element of the Cramer-Rao bound. 

6.3. Limited Information Versus Full Information 

We can also consider the relative asymptotic efficiency of the minimum dis- 

tance estimator for a system of nonlinear simultaneous equations proposed in 

Section 4 with the corresponding estimator for a single equation developed by 

Amemiya (1974). We consider only the case without restrictions across equations. 

A minimum distance estimator is obtained for each equation i = 1,..., P by 

minimizing 

Ly; — fz;, BY X(X'X)” * X'Ly, — Sz; B;)) 

for a given choice of X. To each choice of X corresponds also a minimum distance 

estimator as defined in Section 4. We will show that the corresponding estimator 

for a system of nonlinear simultaneous equations is always asymptotically better 

(or as good) as the estimator for a single equation. 

The asymptotic matrix of variances and covariances of the single equation 

estimator, given by Amemiya (1974), is: 

[Qi HiM~'H, 0 fF 

[ 0 ~< Q52H'pM ~'Hp 

F) af. = 
mr aars XXX) 1X uf 0 

OB; |p Bile 
= plim T ri of af 

T-@ , 

Me is St a ep ge te 
0 2s OBp\s, Op'p 

The asymptotic matrix of variances and covariances of the estimator for a system 

of equations, given above, is: 

Q''H(M-'H, '7H'M~'H, 
=" 

(H'(Q @ M)~'H)~! = |Q?7'H,M~'H, 0?7HM~"H, 
tec Q?'H'.M~'H, 
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of’ 7 
gi Dt X(X'X)" 1X’ Si maa 4s x(x'x)- 1x Le 

. op, Bo op’; Bo op, Bo OB» Bo 
= plim T P vo 3 

ar Fel yoxrxy-ty Lt] ___ grr VPl yiyryy-ty St 
OPP \6o OB |p, OBr| 5, OBr |p, 

It is then clear that if we replace Of;/0f'|,, by the familiar Z ;(the set of variables 

on the right hand side of the j-th structural equation), the formal analogy with the 

classical comparison of 3SLS and 2SLS is complete. Note that here X is not neces- 

sarily the set of all exogenous variables. Therefore, the usual proof for linear systems 

implies our result. 

We can also deduce that the two estimators coincide when Q is diagonal and 

when 

is invertible for i = 1,..., P. The invertibility condition means in particular that 

the matrix is square, i.e., that in each equation there are as many independent 

variables X as unknowns. We have seen that A4 requires 

Rank pli Li X>R an plim + 5p. > R;. 
Bo 

If the matrix X is restricted to exogenous variables, the condition we find is 

similar to the just identification in the linear case. However, in the nonlinear 

case we know that it is not a necessary condition of identification (Fisher, 1966).”' 

Since we do not have to restrict ourselves to exogenous variables and can use 

powers of the X or fitted values, the condition 

gsi of i| 
lim——| XR; 
eT le. 

is not really a constraint so long as the model is truly nonlinear. The condition 

Of; 
lm——| X=R 
es OB:| 5. 

imposes a limit on the number of elements of X to use so that the two estimators 

are equivalent. 

We derive directly the result for the two-equations case 

¥, =fil2,, By) + uy 

V2 = frlZ2, B2) + Ud. 

The single-equation estimator is obtained by minimizing 

(vy; — fAz;, By X(X'X)' X'(y, — fAz;, Bi) 

2! This condition has been obtained also in Edgerton (1972), as a necessary condition for-the 
workability of 2SLS methods suggested by Goldfeld and Quandt (1968). Note that it is not really a 
constraint for the method since as many powers of the X as necessary can be introduced to satisfy it. 
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and the asymptotic matrix of variances and covariances is 

if -1 of 
0, plim > Fr me's) x’ ae 

We are led to compare 

1 of a F 
K =Q,,| plim— xr x tr 

uf T OB, |, OB po 

and the upper left corner of the inverse of 

of 
=—=—| X 

: T op, Bo 0 Qi, Qi. 

= 1 of 22, 2 iti 1 of, 21 4222 

| 0  ap.l,% Bo 

af’, | pee of’ wes; 
Quest! x(X’xXy XS Qs" XXX) X'S 

7 Bilso Bails 2B |p 

vs iee af’ a: 
oR @ Obes gh * Qe4— =! MX’ xX) * x’ 
noe BO le 

plim 
T-@ Q2 F2 

The upper left corner we look for is then: 

of" af fs of, 
K, = {plimz (QU =| x(x’x) 'x’=4| - grat 1x2 

ti a OB: | 60 = halk OB |p. OB 1| 60 OB 2p, 

of’, 1 Ff, i 
745) xor'’x) tx’ 4 

«| Balen > ~ Bil, 

1 of, ’ -1 of; ie 
Q?!| 22) x(x'x AI 

' ts Roda ak 1M 

Kj* = plim afar Spe x(x'xy x L of x(x'xy tx 
TQ" OB, OB |. OB OB, | po 

i 6 ie (4, 7 
— —| X(X'X xX’ — X(X'X xX'— 
hi. = ele 

of , -1 oS; 

«kee aH J 

of, + 

Ba, 



because: 

arn? Q1 222; Qi, 

QF 2,0, :2,, -9,.0;,) F7,0,,- 0,07, 
0 

BAL sally 

Q,, 07,22. — Q,,Q7, 

A, Az], ou 
where’ | a | is a positive definite matrix: so is K,;so is K;'; and 

3 44 

K, =(B+ 0C)"! 6>0, 

B is definite positive and C is semidefinite positive, B~' — (B + 0C)~' is semi- 

definite positive. If C is definite positive and 6 > 0, the minimum distance esti- 

mator is strictly better than the corresponding single-equation estimator. 

If Q is diagonal the minimum distance estimator coincides with the single- 

equation estimator. It is also true if C = 0. 

of’ ~1y Si of of, 
Ces xxx xs) -S4 xxx xl 

op, Bo op’, Bo op, Bo op’, Bo 

Of’ Of. y 
x (22) xxx) x @ 

of of's 
x =| X(X'X) 'X’=—| . 

op, Bo op’, Bo 

If X'(Of,/0B',)\, is invertible—i.e., square and nonsingular—then C = 0. There are 

as many exogenous variables as unknowns in the second equation; this yields 

just identification in the linear case. 

6.4. Conclusion 

We conclude that except for the case of linearity in the variables, the minimum 

distance and efficient instrumental variables estimators are CUAN but not 

Best CUAN. On the other hand these estimators appear to be an interesting step 

in the estimation of nonlinear systems with constraints across equations, since 

they provide consistent estimators that incorporate all of the constraints. A 

consistent estimator can be used to initialize a one-step linearized maximum 

likelihood estimator. This estimator is asymptotically equivalent to the maximum 
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likelihood estimator, just as in the case of systems of linear simultaneous equations 

considered by Rothenberg and Leenders. 

Harvard University 

and University of Montreal 
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