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Annals of Economic and Social Measurement, 3/2, 1974 

DETECTING ERRORS IN ECONOMIC SURVEY DATA: 

MULTIVARIATE VS. UNIVARIATE PROCEDURES 

BY PHitiP MUSGROVE 

Errors are sought in a large body of household survey data by using prior knowledge of relations among 
variables, rather than assumptions about the distribution of the errors. Provided the errors are confined 
to the dependent variable of a linear regression model, the residuals from the regression can be used to 
identify probably-erroneous-observations. This test is compared. in efficiency and thoroughness, to a uni- 
variate test which detects only extremely high or low observations. 
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1. INTRODUCTION 

This paper considers how to detect errors in quantitative continuous variables 

of the kind obtained in survey data. “Errors” include the readily apparent extreme 

values together with misreported values which may lie near the center ofa variable’s 

distribution but still differ significantly from the true values. The procedures and 

results discussed derive from the experience of trying to correct errors in a large 

body of household budget data. 

Both the purpose of the inquiry and the assumptions employed in it differ 

from those associated with many errors-in-variables problems. These differences 

are briefly described, with reference to some of the literature, in the bibliographic 

note at the end. 

2. SOME CHARACTERISTICS OF TESTS FOR ERRORS 

Suppose there are T observations of each of n variables. We define a test 

as any procedure for selecting from this matrix 9 observations of one variable. 

(n is the number of variables used in the test, which may be much less than the 

number available in the data.) If n = 1, the test is univariate: if n > 1, the test is 
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multivariate. Let v be the number of errors present in the variable being tested, and 

let v(y) be the number of such errors detected in 7 observations. 

We define the efficiency of a test as @(y) = v(y)/n, and the thoroughness as 

t(y) = v(n)/v. A test is efficient if it finds only a few correct (non-erroneous) values, 

and it is thorough if it finds most of the erroneous values. If the hypothesis is that a 

particular value is erroneous, then an efficient test is unlikely to lead to a Type I 

error (rejecting a correct value), for which the probability is 1 — @(y), but it may 

easily lead to a Type II error (accepting an erroneous value). The reverse is true of 

thorough tests. 

The probability that a value chosen at random is erroneous is v/T, while the 

probability that one of the selected values is erroneous is (7). We define the relative 

efficiency of a test as the ratio of the two probabilities, or (4) = O(y)T/v = Tv(n)/vn. 

When, as is usual, v is unknown, @ can perhaps be estimated but t and y) cannot. 

As n increases from zero, @ is initially zero or one, and 6 + v/Tas n > T. In order 

for a test to be better than random selection, y > 1 is required for some range of n. 

If this occurs, it is not evident a priori where @ is maximal; and although 6 even- 

tually declines, the decline need not be monotonic. With increasing 4, t can be 

expected to rise monotonically. Balancing the effects on @ and t, and the relative 

importance of Type I and Type II errors, leads in principle to an appropriate 

choice of 7. 

3. THe DISTRIBUTION OF ERRORS 

Let x,,...,X; be the true values of a variable, and let x{’,..., x be the 

corresponding reported values. Let «, be a random variable with probability dis- 

tribution p(«), independent of x,. We assume that 

(1) xy” = f(a,)x, 

If x!” is written as x, + v,, the additive error v, is a random multiple of x,. One 

complication is that if x; is a component of x;, and x;, contains an error, so does 

X je, With 

(2) x? = (1 + [f(a,,) — 1) ie/X je) je 

so the error in x;, is correlated with x;, as well as with x;,. 

Now let s(x,,...,X7) be any statistic to be calculated from the sample. Let 

€, be the p-th moment of f(a), or 

(3) & = LS(a)p(a) 

where for simplicity we assume that « has a discrete distribution. If a statistic s is 

homogeneous of degree p in the values of x, then it follows that s calculated from 

x, and s calculated from x, are related in probability by € p: That is, since 

(4) E[xy"?] = EL f%(a,)xf} = EL f%(a,)]x? = €,x? 

it follows that 

(5) E{s(xf?, ..., xP)] = €,8(x1,.-.,X7). 

The exact value of s(x{?, . . . , x) depends of course on which values contain errors ; 
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expression (5) merely emphasizes the usefulness of knowing something about the 

error distribution. 

A particularly convenient form of f(a) is f(«,) = exp («,). Then 

(6) log xt” = a, + log x, 

and 

(7) E{s(log x{’,..., log x)] = wu, + s(log x,,..., log x7) 

when the statistic s is hom-p in log x. yu, is the p-th moment of the distribution 

of a, or 

(8) uw, => apa) 

If there are different types of errors (with « serving as an index of severity or 

frequency), a test may be efficient, or thorough, at finding some errors but not 

others. The number v is replaced by the vector w(a), where v(a,) = p(a,)T and 

¥ (a) = v. Similarly v(a, ), O(a, 4), t(a, 4) and (a, 4) are defined, where v(y) and 

@(y) can be found by summation over « but t(7) and y(7) cannot. The design of a 

test should take account of which class(es) of error it is most important to detect ; 

it may not matter if some errors go unnoticed. The functions O(a, 4) need not move 

together with increasing , for different values of «; nor need the t(a,). This 

complicates the choice of 7. 

If (3) refers to all the errors initialiy in the data, we can define the moments 

corresponding to the errors remaining after applying a test of thoroughness 

t(a, 4) as 

(9) Eat) = Do [1 — tla, m)) £°(ae)p(a) 

If f(x) is replaced by «°, expression (9) gives the moment y(t). The importance 

of an error « depends on the function f, the frequency p(x) and the particular values 

x, for which a, = a. 

4. SEVERAL VARIABLES AND PRIOR INFORMATION 

Suppose that our prior information about a set of n variables can be expressed 

as 

(10) bo — X4_ + OyXz, +... + OX y +E, =O 

where b, = 1 for normalization, and ¢, is an error term with zero mean and con- 

stant variance, independent of x,,,...,X,,. Substituting the reported values, 

some of which contain errors, 

(11) by — xf) + b,x} +... + bx0 +6,+0,=0 

where v, includes the effects of the errors in the variables, and may not be well- 

behaved. ¢, and v, cannot be observed separately; only the sum u, = é, + », is 

observable. Since ¢, and v, are uncorrelated, the larger is a value u,, the more likely 

it is to contain a non-zero error v,. The variance o? is unknown, so the best measure 

of “large” u, is the variance o? = a? + a?. Let k be a parameter describing the 
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stringency of the test: then an observation [x‘),.. ., x] is said to be extreme if 

u? > k?o?. 

5. MULTIVARIATE TESTS 

Suppose that x,,..., x, are observed without error (x, is the variable to be 

tested). Then 

(12) xf? = bo + b,x, +.,...¢ b,Xnt + Uu, 

This relation can be estimated without bias by ordinary least-squares regression 

if E(v,) = 0 and E(v?) is independent of x,,: that is, if the errors v have the same 

characteristics as the errors ¢. Otherwise by, b,,..., b, will be estimated with bias, 

as will the distribution of the errors u. The usual procedures for coping with hetero- 

scedasticity, such as dividing all the variables by x, or x?, are of no help since that 

would introduce errors on the right-hand side. It is also impossible to adjust for 

non-zero mean error if €, is unknown. 

Since the object of the test is not to estimate by, b,,..., b,, it may not appear 

to matter if they are biassed. It is important however that the regression provide a 

good fit to the sample. When the regression is not significant, the expected value 

for the dependent variable (x,) is just the sample mean. Large values of u? are then 

associated with large (or small) x,, that is, with values which are extreme without 

considering any other variables. In these circumstances the multivariate test 

collapses to a univariate test. Furthermore, biassed coefficients pull the regression 

line toward the erroneous values, which makes them harder to detect (by reducing 

their residuals) and makes some correct values appear erroneous. Therefore we 

consider three possible means of modifying a multivariate test so as to retain the 

relation (12) while reducing the bias likely to be introduced by OLS regression 

on the full sample. 

The simplest procedure is to estimate (12) from a censored sample, excluding 

those observations most likely to contain large errors v,. A large enough error in 

x) will not only make u, extreme, but will make x‘? extreme compared to the 

other values of x{?, independently of the values of x,,,...,X,,. The univariate 

extreme values should therefore perhaps be excluded. If the excluded values are 

in fact erroneous, this procedure will reduce a2, improve the estimates of by, b,, 

..., 5, and (for a given value of k) make the test more stringent. 

A second possibility is to use an estimating procedure which is relatively 

insensitive to large residuals, rather than least-squares estimation. The ideal 

regression method might estimate (12) by minimizing 

(13) Y, Ox") — &,,), where 2%, = by + bx, +... + bXm 

and the function Q would have the properties Q(0) = 0, Q(—x) = Q(x), Q(x) = 0, 

Q(x) => 0 and Q”(x) < 0. Beyond some distance from the regression line, a point 

should cease to have any (further) influence on the estimates; so Q”(x) < 0 is 

desirable. Computing algorithms do not exist except for Q(x) = |x|. It is not vital 

to have a zero mean residual, since E(v,) # 0 necessarily. 

The third possibility is to retain all the sample points and use OLS estimation 

for the ease of computation, but to group the data before estimating. If the observa- 
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tions are appropriately grouped, the regression can be protected from individual 

errors. 

A multivariate test may be justified to the extent that it (i) selects observations 

in the tail(s) of the distribution more efficiently than a univariate test, or (ii) finds 

erroneous values in the center of the distribution, which would escape a univariate 

test. The test need not be symmetric: a given 4 can be divided between too-high 

and too-low values of x{) by testing u, > k,o, and u, < —k,o,, for k, # k,. 

The object in using a multivariate test is to trade assumptions about error distribu- 

tions for assumptions about relations among variables, where the latter kind of 

information is more likely to be available. The relations to be tested can be based 

on, or even identical to, the relations to be examined after tise data have been 

cleaned ; using them at an earlier stage may tell something about their plausibility 

at the same time that errors are detected. Whether the additional cost of a multi- 

variate procedure is repaid in greater efficiency or thoroughness is a question for 

empirical examination. 

6. THE DATA ANALYZED 

In 1966-1972 household budget surveys were conducted in 18 major South 

American cities as part of the ECIEL Program coordinated by the Brookings 

Institution.’ The data collected are in many cases the most complete or the most 

accurate available ; nonetheless it was expected that they would include a variety 

of errors and would require careful cleaning before analysis. 

The samples, and the procedures for treating the data, have been extensively 

described elsewhere [16], [17]. We indicate a few characteristics of several samples 

for which the cleaning process is (essentially) complete and from which some 

conclusions can be drawn. Some results were previously reported for the first 

sample studied [12]. All the stratified samples are non-proportional. 

Country Cities No. Observations No. Intervals No. Strata 

Colombia + 2949 + 3 

Chile 1 3378 4 3 

Paraguay 1 568 2 (1) 

Peru 1 1357 4 4 

7. THE TESTS APPLIED 

These data were subjected to two extreme-value tests. The first is a univariate 

frequency distribution which selects all the observations outside a specified range. 

The usual test was to define the range as ¥ + 30,, with X (mean) and o, (standard 

deviation) estimated by first observing the entire distribution. The test has 

regularly been used only on the upper tail of the distribution: often xX — 30, < 0, 
while x > 0 is required. The second test is a regression model of the form (12). 

The dependent variable was in most cases a share of total expenditure on a 

‘ ECIEL is the Spanish acronym for Joint Studies on Latin American Economic Integration. 
14 institutions in ten countries collaborated in this study; four are national statistical offices and ten 
are universities or private research institutes. 
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particular category of goods and services, and to minimize bias in the estimation 

due to errors in x,,...,X,, all the latter were usually dummy variables. The usual 

criterion was k = 3, or u, > 3¢,,: as with the univariate test, very few too-low values 

were detected. 

8. SOME OUTCOMES 

Almost invariably there are a few very high values in the upper tail, with the 

highest observations exceeding X + 60, and with approximately one or two per- 

cent of the observations exceeding X + 30,. The univariate test finds these extreme 

values quickly and cheaply, but it does not select any values in the center of the 

distribution. The very high values are quite frequently erroneous, or—when the 

same observation appears for several variables—come from an unrepresentative 

household. Once these values are eliminated or corrected, the test becomes much 

less efficient. 3 

The regression test is considerably more expensive than the univariate proce- 

dure. The first questions of interest are (i) do the two tests select (essentially) the 

same observations, for equal , and (ii) if they do not, is the multivariate test more 

efficient. The answers appear to depend very much on exactly how the tests are 

performed. If the share-of-expenditure is tested both ways, the two tests tend to 

pick out the same values. For example, in nine of the ten variables tested for Chile, 

the univariate test (at slightly higher 7) found all the regression-test errors. Three 

multivariate tests for Peru yielded values always above X + 4¢,. Four such tests 

for Paraguay yielded six extreme values, of which four exceeded ¥ + 70, and 

two fell under X + 20,; four tests for Columbia detected only one value under 

¥ + 3o,. Three other tests found 212 of 391 values below X + 3e,. In all these 

cases, the residuals from the two tests are highly correlated. 

If instead the regression test is based on share-of-expenditure while the uni- 

variate test is based on actual expenditure, the results are very different. Of 102 

extreme values detected in 19 variables for Paraguay, only 45 had values above 

X + 30, 42 were below X + 20,, and nine were below x. 14 such tests for Peru 

yielded 152 extreme values, with 66 above X + 30,, 72 below xX + 3e,, and eight 

below x. It is evident thai the multivariate test can find extreme values which are 

hidden in the univariate distribution, and therefore that in general the analysis 

of any variable should take some account of the values of other variables. However, 

in the case of expenditure variables, a great deal is gained simply by taking ratios 

of total expenditure, after which the multivariate test adds relatively little. Also, 

it is not so valuable to select “‘extreme”’ values near the mean if most of the interior 

values are correct, and most of the errors lie several standard deviations away. 

In the Peruvian tests described, it was possible to correct 56 of the 152 values 

selected, and of these 39 exceeded X + 3c... The efficiency of the multivariate test 

averaged 0.33 overall, with 116 errors found in 354 values selected in 36 variables. 

In the Colombian sample the efficiency was 0.16, for 932 observations selected 

from 40 variables. In the Paraguayan sample almost no errors requiring cor- 

rection were found. The rather poor performance of the multivariate test may 

be partly due to the use of dummy variables te explain a ratio with a fairly 

low variance in the sample. Probably more important is the fact that often 
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the regressions were not significant (by an F-test) so that the test collapsed to a 

univariate inspection. 

These results are inconclusive, because differences between tests may be sub- 

merged by differences between types of variables tested or by an unsatisfactory 

specification of the regression. The true error distribution is unknown, so that t 

cannot be estimated ; for the same reason, the efficiency of both tests may be under- 

estimated. An experiment was therefore conducted by deliberately introducing 

errors in the data from one sample, and then comparing the univariate and multi- 

variate procedures for finding them. The errors are multiplicative, of the form 

f(a,) = exp (a). 

9. DESIGN OF THE EXPERIMENT 

Three distributions were used to generate errors in the Colombian sample. 

It was assumed that the artificial errors dominate, in number and severity, any 

errors remaining afier the cleaning of the data. Distribution I was applied to three 

expenditure variables, Distribution II to six other expenditures, and Distribution 

III to two of those six.” The errors were carried into the logarithms of the variables 

and the shares of total expenditure. Observations were selected randomly with 

respect to city, interval and stratum. Either ten percent or four percent of the data 

were disturbed ; this is believed greatly to exceed the true error frequency. The 

error probability distributions and their first and second moments are shown 

below : 

a -3 -2 =! 0 1 2 3 

1 pla) 0 0 0 0.9 0.1 0 0 
Il pla) 0.01 0.015 0.025 0.9 0.025 0.015 0.01 
III p(a) 0 0.0075 0.0125 0.96 0.0125 _ 0.0075 0 

wy H2 exp (a) 1 g 
I 0.1 0.1 1.17 1.64 
il 0 0.45 1.29 5.94 
Ill 0 0.085 1.14 1.46 

Both tests were then applied three times for each expenditure category : once to the 

actual value (EV), once to the logarithm (LEV) and once to the share in total 

expenditure (SEV). To improve the performance of the multivariate test, one 

continuous variable—total expenditure—was included among the independent 

variables. This exaggerates somewhat the efficiency of the test, since in practice 

such a variable might also contain errors. 

10. COMPARISONS OF RELATIVE EFFICIENCY 

The statistic y is used to compare the two tests. The results for the three 

variables affected by error-distribution I are as follows (for k = 3.0): results 

marked * are based on too few observations to be significant. 

? The expenditures studied were: meat and fish, medical care, and household equipment and 
supplies (I); cereals, vegetables, clothing, personal care, education, and housing (II); and education 
and housing (III). 
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univariate multivariate 

” ? n y 
1 55 8.1 65 8.6 

EV 2 46 2.6 26 2.7 
3 44 2.7 33 3.6 

1 24 8.8 50 8.0 
SEV 2 57 3.2 35 2.6 

3 27 6.7 50 6.6 

1 27 1.5 36 0.6 
LEV 2 a 3.3 2 10.0 

3 51 1.0 > 8.0 

Tests using logarithms are_.almost useless for detecting asymmetric errors 

such as these. The tests of EV and SEV show, first, that y varies considerably 

among variables ; and second, that there is—at these values of y and v—no signifi- 

cant difference between the two tests. For such large multiplicative errors, an 

erroneous value is very likely to be extreme in the univariate distribution. We may 

suppose that with either increasing y or decreasing v, the multivariate test would 

improve its performance relative to the univariate test. Only further experiments, 

however, could show at what parameter values this would occur, and whether the 

gain would justify the additional cost. 

A test based on Distribution I has the disadvantage that the results depend 

on the relation of f(«) to the range of x. Distribution II was introduced to minimize 

this problem and to see how well each test could pick out errors of one kind in the 

presence of errors of greater or lesser severity. If x, < x,, f(a,) > f(a,), and 

x” < x, a test should be more likely to select observation t than observetion 1’. 

A univariate test fails this criterion: the question then becomes whether a multi- 

variate test can satisfy it. 

The results of the comparison for the six affected variables are shown below, 

giving y and y, for a = —3, —2, —1, 1,2, 3. The other measure shown is the mean 

severity of the errors detected, defined as 

(14) a* = log (}), ¥. exp |al/D', 7.) = 0 

This measure increases (but is <3.0) when errors are found at a = +3, and de- 
creases as the errors detected are less severe (have lower values of a). It does not 

matter on which side of zero a lies. The statistic is of interest only when there 

are different kinds of errors in the distribution: «* is uniformly 1.0 for error- 

distribution I. 

The multivariate test appears to perform overall at least as well as the uni- 

variate test. Both tests concentrate on « > 0 when the absolute expenditure or the 

share is analyzed ; the univariate test is more likely to find errors with « < 0. The 

regression test finds errors much more symmetrically when logarithms are ~ 

examined. The regressions generally have R? between 0.2 and 0.5, with several 

coefficients significant : so the two tests really are different, although because of 

the large values of f(«) they find many observations in common. There does not 

seem to be any connection between the goodness of fit of a regression and whether 

it out-performed the univariate test. The differences in «* and y, between the two 
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procedures are so small that it is not clear the greater cost and complexity of the 

multivariate test are justified. 

In three respects, this comparison is unfair to the multivariate test. First, the 

experiment was limited, particularly by having 4 < v in all cases. Second, the 

regressions are ordinary least-squares, and therefore suffer from the biasses des- 

cribed in section 5 above; also, all the observations were used, without grouping. 

Third, both tests were applied to the identical data, which included some extreme 

values easily detected by the univariate test. To the extent that the multivariate 

test “wasted its time”’ in finding those errors, it was less able—for a given value 

of k, or of y—to detect errors buried in the center of the distribution. The regression 

method would probably be much more efficient, relative to the univariate inspec- 

tion, if the univariate extreme values were first removed. 

Error-distribution III was introduced to reduce the total number of errors 

and their maximum severity, so as to reduce the importance of the first and third 

problems just described. Errors of « = +3 were eliminated, and p(x) was halved 

for a = —2, —1, 1, 2. Four percent errors remained in the data. The stringency was 

also varied, to see the effect of changing 1: values of k of 2.5 and 3.5 were used. This 

distribution was applied to variables 5 and 6 only: the results are shown below. 

y, Univariate Test y, Multivariate Test 
n —2 -1 1 2 a* n —2 -1l 1 2 a* 

k= 25 
EV 5 78 5.1 8.6 1.73 57 7.0 16.5 1.79 

6 38 63 17.6 1.82 22 10.8 304 1.82 
SEV 5 67 59. 120 1.16 37 108 218 1.77 

6 50 8.0 188 1.79 48 5.0 28.0 1.90 
LEV 5 36 7.5 2.00 30 9.0 53°. 223 1.90 

6 46 3.5 5.8 1.73 7h; ~ ae 18.9 2.00 

k=35 
EV 5 48 6.6 1.00 ; 27 88 99 1.64 

6 19 8.4 28.3 1.85 12 66 446 1.91 
SEV 5 33 9.6 16.2 1.73 23 WS “Bl 1.73 

6 17 47 236 1.289 19 424 2.00 
LEV 5 2 1 

6 0 21 6.4 19.2 2.00 

Under these circumstances, the multivariate test performs better relative to 

the univariate test. For k = 2.5, it yields lower y and higher y and a* in almost 

every case. The increased efficiency is not at the expense of thoroughness; y can 

be lower while still detecting a large share of the errors in the data. At k = 3.5, n is 

about halved for the expenditure and share variables, but drops almost to zero for 

most of the logarithms. In general, the superiority of the multivariate test is more 

' pronounced than at the lower stringency. It is much more efficient than the uni- 

variate test at finding the large errors (« = 2). It appears that the regression proce- 

dure is superior when there are errors of different degrees of severity in the data; 

when the most severe errors present are still not so large as always to lead to uni- 

variate extreme values; and when the total number of errors is not too large. 

In these conditions, the multivariate test is markedly more efficient at detecting 

the more severe errors, and—when examining a small number of observations— 
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more efficient overall. When these conditions do not hold, some prior examination 

of the univariate extreme values appears to be desirable. Improved versions or 

ways of using a multivariate test should increase these advantages by reducing 

the estimation biases and allowing the test to hunt for errors in the center of the 

distribution of the variable examined. 

11. BIBLIOGRAPHIC NOTE 

The information collected in household budget surveys may be thought of as 

generated by a sequence of steps, each of which allows the introduction of errors. 

Initially there are response errors, due to incomprehension, deceit or forgetfulness. 

Subsequently the data may be incorrectly coded or keypunched. Errors can also 

arise if values must be converted to different physical or monetary units or periods 

of reference. Some true values, containing none of these errors, may also be so 

unrepresentative that they might better be considered erroneous. All these difficul- 

ties increase when several slightly different samples are to be compared, so that 

more stages are required to harmonize them. 

In principle, most of the errors created after a household is interviewed can be 

prevented by sufficient care in designing questionnaires, training interviewers 

and verifying the field work and subsequent data manipulation. In practice, such 

care is not always taken. There are then two broadly-defined possibilities for 

analyzing the data (excluding the course of taking no account of the errors): 

(1) Estimation of particular relations by models which expressly characterize 

the errors but do not identify them or remove them from the data ; or 

(2) Selection of certain values which are thought iikely to be erroneous and 

which are then eliminated or replaced by information derived from the sample. 

The latter procedure also requires that some assumptions be made about 

the errors so as to identify values which are likely to be in error. We assume that 

systematic errors can be corrected at an early stage in the analysis, so that the 

remaining errors affect a small share of the observations. Errors in qualitative 

variables can often be detected with the aid of strong prior information. Only 

certain (coded) values of a variable may be allowed, or only certain logical relations 

with other variables. For quantitative variables, however, the only prior restriction 

may be nonnegativity, and an error may lead to an extreme value which will bias 

any calculation based on that variable. 

Procedure (1) is the domain of the errors-in-variables model (EVM) [13, 

chapter 10]. Provided one can estimate the covariance matrix of their errors, any 

combination of variables can be used for linear regression analysis. Since the model 

assumes zero means for all the errors, analyses based on mean values, such as 

tabulations, are unbiased. The errors are also assumed to have constant variances 

and to be independent of the true values of the variables. These assumptions may 

apply to conceptual variables such as permanent income [9], but they do not 

plausibly characterize the errors obtained in survey data. Such errors do not 

appear generally to have zero means [7], [8] and even when they are symmetric 

and have small means they may be correlated with the variable in which they 

occur or with related variables [1]. The assumptions seem not to hold exactly 

even for data much less subject to error than those in household surveys [15]. 
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Because both dependent and independent variables contain errors, it is not 

possible in this model to estimate individual errors without the additional restric- 

tions that the covariance matrix be diagonal and that each true variable be an 

exact function of some exogenous, error-free variables [10]. Even if ail the restric- 

tions can be accepted, any nonlinear transformation of the data will change the 

error structure. If the object is not only to estimate certain relations but to leave 

the data ready for other analyses, this procedure is not of much help. 

The problem becomes much simpler if only the dependent variable is assumed 

to contain errors. Then it may be possible to estimate individual errors; and even 

if this is not done, both the true relation and some parameter(s) of the error 

distribution may be estimated without bias. The assumptions of independence, 

zero mean and constant variance may be dropped. An example is Elashoff’s 

model [6], in which the dependent variable includes errors which are quadratic 

functions of the independent variable. (The regression line could be used to impute 

true values, if desired.) Chen and Dixon [2] consider the dependent variable to 

include a normal error in either location or scale. For a certain range of proba- 

bilities of error, it is shown that either trimming or Winsorizing the set of 

values of the dependent variable associated with each value of the independent 

variable, gives better estimates of the regression coefficients than are obtained 

by ignoring the errors. The improvement disappears as the probability of error 

rises. 

Such adjustments are already an example of method (2). Many procedures 

proposed for data editing are of this form: certain values are either eliminated or 

changed, without verifying the existence or size of an error. Often they are designed 

to improve the estimation of some statistic(s) by eliminating or reducing the 

influence of the errors. An example is McCarthy’s [14] suggestion for discarding 

“inliars” to improve the dichotomous classification of a variable; another is 

Searls’ [18] proposal to reduce the effect of large true values on the estimate of the 

mean. A number of contributions such as [5] discuss parameter estimation for 

particular distributions—most often the normal—when some values are erroneous 

or missing. The distribution of the errors is still often assumed to be normal. A 

general procedure for dealing with outliers or with a long-tailed error distribution 

is presented by Tukey [19, pp. 21-32]. 

Further analysis, and the identification of individual errors, often is feasible 

if (i) the data have passed through several stages, and it is possible to check a 

doubtful value against an initial entry, or (ii) the verification of errors can draw on 

information in the sample or exogenous to it, which was not used to select the 

observations for analysis. Both conditions are likely to hold for consumer survey 

data ; (i), because data that have been coded, converted and keypunched can be 

compared to questionnaire entries, for correction of errors introduced at these 

stages, and (ii), because the number of variables is likely to be much too large to 

use them all in the selection procedure. 

Much of the literature on the detection of errors (for example [3], [4], [11]) is 

characterized by the following set of assumptions: 

1. Only one variable is considered. 

2. Errors in the variable are most likely to give rise to outliers, so the test 

should determine whether the highest (or lowest) values are erroneous. 
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3. The errors are normally distributed and independent of the true values of 

the variable. 

4. The sample is small (often <20) and only one or a few outliers are to be 

tested. 

5. The true distribution of the variable is known (often normal) and the 

chief problem may be to estimate its parameters in the presence of errors. 

Clearly not all these assumptions apply to all the procedures available, but some 

subset of them nearly always appears. 

In this inquiry, we abandon assumptions 4 and 5. Assumption 1 is (largely) 

retained. Assumptions 2 and 3 are special cases of more general hypotheses put 

forward about the errors being sought. The model developed is somewhat similar 

to the balancing of costs-of-inspection and losses-from-errors discussed by van der 

Waerden for problems of quality control [20). 

The Brookings Institution 
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