The Macroeconomic Consequences of Early Childhood Development Policies

Diego Daruich
University of Southern California (Marshall)

December 2020

Motivation

Early childhood investments increase education and income

- Effects can be large (e.g., Garcia, Heckman, Leaf, and Prados, 2020)

Motivation

Early childhood investments increase education and income

- Effects can be large (e.g., Garcia, Heckman, Leaf, and Prados, 2020)
- Based on small-scale and short-run programs

Motivation

Early childhood investments increase education and income

- Effects can be large (e.g., Garcia, Heckman, Leaf, and Prados, 2020)
- Based on small-scale and short-run programs

Consequences of large-scale and long-run policy depend on

- GE effects on capital and labor markets
- Deadweight loss of raising taxes
- Intergenerational dynamics

Today

What is the impact of a permanent and universal early childhood government investment policy?

Particularly on: income, inequality, intergenerational mobility, and welfare
Use an overlapping generations (OLG) model

- with distortionary taxes
- in general equilibrium

Today

What is the impact of a permanent and universal early childhood government investment policy?

Particularly on: income, inequality, intergenerational mobility, and welfare
Use an OLG model with distortionary taxes and in general equilibrium

- Potential role for government investments because of:
- Imperfect capital and insurance markets
- Inability to write contracts with children

Outline

1. Model: GE Life-cycle Aiyagari + Endogenous Intergenerational Links

- Wage depends on skills

2. Estimation:

- Skill production function based on Cunha, Heckman, Schennach (2010)
- Key moments on parental investments and transfers from PSID

3. Validation

- Model replicates small-scale short-run RCT evidence (Garcia, Heckman, Leaf, and Prados, 2020)

4. Policy: large-scale government investments in early childhood

- Long-run effects
- Transition (with alternative ways to finance it)
- Alternative policy in paper: parenting education

Preview of Results

Large long-run effects

- Average income grows by 7%
- \downarrow Inequality, \uparrow Int. mobility \approx half of gap between US and Canada
- Welfare gains of 9%

Welfare: Consumption equivalence for a newborn under veil of ignorance

Preview of Results

Large long-run effects

- Average income grows by 7%
- \downarrow Inequality, \uparrow Int. mobility \approx half of gap between US and Canada
- Welfare gains of 9%

Welfare: Consumption equivalence for a newborn under veil of ignorance

Short-run small-scale policy would underestimate gains by one-half

- Large-scale tax increase reduces gains
- But long-run intergenerational dynamics more than compensate for the losses

Preview of Results

Large long-run effects

- Average income grows by 7%
- لInequality, \uparrow Int. mobility \approx half of gap between US and Canada
- Welfare gains of 9%

Welfare: Consumption equivalence for a newborn under veil of ignorance

Short-run small-scale policy would underestimate gains by one-half

- Large-scale tax increase reduces gains
- But long-run intergenerational dynamics more than compensate for the losses

Investing in a child today will make him a better parent tomorrow

- Transition: Large increase in gains after first generation has its own children

Preview of Results

Large long-run effects

- Average income grows by 7%
- لInequality, \uparrow Int. mobility \approx half of gap between US and Canada
- Welfare gains of 9%

Welfare: Consumption equivalence for a newborn under veil of ignorance

Short-run small-scale policy would underestimate gains by one-half

- Large-scale tax increase reduces gains
- But long-run intergenerational dynamics more than compensate for the losses

Investing in a child today will make him a better parent tomorrow

- Transition: Large increase in gains after first generation has its own children

Who does not benefit from the reform?

- Older individuals at the time the policy is introduced
- But this depends on how the transition is financed

Related Literature

Inequality and social mobility

- GE Quantitative Life-cycle Aiyagari: De Nardi (2004); Conesa and Krueger (2006); Bakis, Kaymak, and Poschke (2015); Abbott, Gallipoli, Meghir, Violante (2019)...
- Contribution: Endogenous early childhood development

Early childhood development

- Empirical: Carneiro and Heckman (2002, 2003); Todd and Wolpin (2003); Cunha, Heckman, and Schennach (2010); Dahl and Lochner (2012), Agostinelli and Wiswall (2016)...
- Structural: Cunha (2013); Del Boca, Flinn, and Wiswall (2014); Abbott (2016); Caucutt and Lochner (2017)...
- Contribution: Large-scale policy evaluation framework (labor and savings choices, general equilibrium, multiple generations)

Both: Lee and Seshadri (2019), Yum (2019)

- Contribution: alternative policies and transition (crucial to observe intergenerational dynamics)

Outline

Model

Estimation: USA 2000

Policy

Model: Timeline

0	16	20	28	44	68
Birth	Independent	Child born	Transfer to child Child is independent	Retire	Death

Model: Timeline

Model: Timeline

Model: Timeline

Model: Timeline

Working Period

\section*{| 0 | 16 | 20 | 28 | 32 |
| :---: | :---: | :---: | :---: | :---: |
| Birth | Independent | 68 | | |}

$$
\begin{aligned}
V_{j}(a, \theta, e, \eta \quad) & =\max _{c, a^{\prime}, h} u(c, h)+\beta \mathbb{E}\left[V_{j+1}\left(a^{\prime}, \theta, e, \eta^{\prime}\right)\right] \\
& c+a^{\prime} \quad=y+a(1+r)-T(y, a, c) \\
& y=w_{e} E_{e, j}(\theta, \eta) h, \quad a^{\prime} \geq \underline{a}_{e, j}, \quad 0 \leq h \leq 1, \quad \eta^{\prime} \sim \Gamma_{e, j}(\eta)
\end{aligned}
$$

where
a : assets $\quad \theta$: agent's skills
e : education
η : wage shock

Early Childhood Investments

\section*{| 0 | 16 | 20 | 28 | 32 |
| :---: | :---: | :---: | :---: | :---: |
| Birth | Independent | $\begin{array}{c}\text { Child Born }+ \\ \text { Investment }\end{array}$ | Retirement | |}

$$
\begin{aligned}
V_{j}\left(a, \boldsymbol{\theta}, e, \eta, \boldsymbol{\theta}_{k}\right) & =\max _{c, a^{\prime}, h} u(c, h)+\beta \mathbb{E}\left[V_{j+1}\left(a^{\prime}, \boldsymbol{\theta}, \boldsymbol{e}, \eta^{\prime}, \boldsymbol{\theta}_{k}^{\prime}\right)\right] \\
c & +a^{\prime} \quad=y+a(1+r)-T(y, a, c) \\
y & =w_{e} E_{e, j}(\boldsymbol{\theta}, \eta) h, \quad a^{\prime} \geq \underline{a}_{e, j}, \quad 0 \leq h \leq 1, \quad \eta^{\prime} \sim \Gamma_{e, j}(\eta)
\end{aligned}
$$

where

a : assets	$\boldsymbol{\theta}:$ agent's skills
e : education	$\boldsymbol{\theta}_{\boldsymbol{k}}:$ child's skills

η : wage shock

Early Childhood Investments

0	$16 \quad 20$	28	32
Birth	Independent	Child Born + Investment	Retirement

$$
\begin{aligned}
V_{j}\left(a, \theta, e, \eta, \boldsymbol{\theta}_{k}\right) & =\max _{c, a^{\prime}, h, t, m} u(c, h, t)+\beta \mathbb{E}\left[V_{j+1}\left(a^{\prime}, \boldsymbol{\theta}, e, \eta^{\prime}, \boldsymbol{\theta}_{k}^{\prime}\right)\right] \\
& c+a^{\prime}+m=y+a(1+r)-T(y, a, c) \\
y & =w_{e} E_{e, j}(\boldsymbol{\theta}, \eta) h, \quad a^{\prime} \geq \underline{a}_{e, j}, \quad 0 \leq h+t \leq 1, \quad \eta^{\prime} \sim \Gamma_{e, j}(\eta)
\end{aligned}
$$

where

a : assets	$\boldsymbol{\theta}:$: agent's skills	$t:$ time with child
\boldsymbol{e} : education	$\boldsymbol{\theta}_{\boldsymbol{k}}:$ child's skills	$m:$ money towards child
η : wage shock		

In the paper: include child consumption c_{k} in utility, $\delta u\left(c_{k}, 0\right)$

Early Childhood Investments

0	$16 \quad 20$	28	32
Birth	Independent	Child Born + Investment	Retirement

$$
V_{j}\left(a, \boldsymbol{\theta}, e, \eta, \boldsymbol{\theta}_{k}\right)=\max _{c, a^{\prime}, h, t, m} u(c, h, t)+\beta \mathbb{E}\left[V_{j+1}\left(a^{\prime}, \boldsymbol{\theta}, \boldsymbol{e}, \eta^{\prime}, \boldsymbol{\theta}_{k}^{\prime}\right)\right]
$$

$$
\begin{aligned}
& c+a^{\prime}+m=y+a(1+r)-T(y, a, c) \\
& y=w_{e} E_{e, j}(\theta, \eta) h, \quad a^{\prime} \geq \underline{a}_{e, j}, \quad 0 \leq h+t \leq 1, \quad \eta^{\prime} \sim \Gamma_{e, j}(\eta)
\end{aligned}
$$

$$
\underbrace{\boldsymbol{\theta}_{k}^{\prime}}_{\begin{array}{c}
\text { Next period } \\
\text { child's skills }
\end{array}}=[\alpha_{1 j} \underbrace{\boldsymbol{\theta}_{k}^{\rho_{j}}}_{\begin{array}{c}
\text { Current } \\
\text { child's skills }
\end{array}}+\alpha_{2 j} \underbrace{\boldsymbol{\theta}^{\rho_{j}}}_{\begin{array}{c}
\text { Parent's } \\
\text { skills }
\end{array}}+\alpha_{3 j} \underbrace{\rho_{j}}_{\begin{array}{c}
\text { Parental } \\
\text { investments }
\end{array}}]^{1 / \rho_{j}} \exp (\boldsymbol{v}), \boldsymbol{v} \sim N\left(0, \sigma_{j, v}\right)
$$

Early Childhood Investments

0	$16 \quad 20$	$28 \quad 32$	68
Birth	Independent	Child Born + Investment	Retirement

$$
\begin{aligned}
V_{j}\left(a, \boldsymbol{\theta}, e, \eta, \boldsymbol{\theta}_{k}\right) & =\max _{c, a^{\prime}, h, t, m} u(c, h, t)+\beta \mathbb{E}\left[V_{j+1}\left(a^{\prime}, \boldsymbol{\theta}, \boldsymbol{e}, \eta^{\prime}, \boldsymbol{\theta}_{k}^{\prime}\right)\right] \\
& c+a^{\prime}+m=y+a(1+r)-T(y, a, c) \\
y & =w_{e} E_{e, j}(\boldsymbol{\theta}, \eta) h, \quad a^{\prime} \geq \underline{a}_{e, j}, \quad 0 \leq h+t \leq 1, \quad \eta^{\prime} \sim \Gamma_{e, j}(\eta)
\end{aligned}
$$

$$
\underbrace{\boldsymbol{\theta}_{k}^{\prime}}_{\begin{array}{c}
\text { Next period } \\
\text { child's skills }
\end{array}}=[\alpha_{1 j} \underbrace{\boldsymbol{\theta}_{k}^{\rho_{j}}}_{\begin{array}{c}
\text { Current } \\
\text { child's skills }
\end{array}}+\alpha_{2 j} \underbrace{\boldsymbol{\theta}^{\rho_{j}}}_{\begin{array}{c}
\text { Parent's } \\
\text { skills }
\end{array}}+\alpha_{3 j} \underbrace{\rho_{j}}_{\begin{array}{c}
\text { Parental } \\
\text { investments }
\end{array}}]^{1 / \rho_{j}} \exp (\boldsymbol{v}), \boldsymbol{v} \sim N\left(0, \sigma_{j, v}\right)
$$

$$
I=\bar{A}[\alpha_{m} \underbrace{(m+g)^{\gamma}}_{\text {Money }}+\left(1-\alpha_{m}\right) \underbrace{t^{\gamma}}_{\text {Time }}]^{1 / \gamma} \quad t, m \geq 0
$$

Parent-to-Child Transfer

0	$16 \quad 20$	44	68
Birth	Independent	Transfer to Child	Retirement

- Just before child becomes independent, choose transfer â

$$
V_{\text {Transfer }}\left(a, \boldsymbol{\theta}, \boldsymbol{e}, \eta, \boldsymbol{\theta}_{k}\right)=\max _{\hat{a}} \underbrace{V_{44}(a-\hat{a}, \boldsymbol{\theta}, \boldsymbol{e}, \eta)}_{\text {Parents' Continuation }}+\delta \underbrace{\delta \mathbb{E}\left[V_{16}\left(\hat{a}, \boldsymbol{\theta}_{k}, \phi_{k}\right)\right]}_{\text {Child's Utility }}
$$

$$
\hat{a} \geq 0, \quad \varepsilon_{k} \sim N\left(\bar{\varepsilon}_{e}, \sigma_{\varepsilon}\right)
$$

Draw of school taste shock, depends on parent's education

Role for Government Investments

Why may government investments g increase welfare?
Welfare: Consumption equivalence for a newborn under veil of ignorance

1. Parent can't borrow against child's income created by investing

I. Lack of compensation mechanism
II. Life-cycle borrowing constraints \Rightarrow Timing of compensation matters

Role for Government Investments

Why may government investments g increase welfare?
Welfare: Consumption equivalence for a newborn under veil of ignorance

1. Parent can't borrow against child's income created by investing
I. Lack of compensation mechanism
II. Life-cycle borrowing constraints \Rightarrow Timing of compensation matters
2. Life-cycle borrowing constraints

- Parent may not be able to use her own future income

3. Lack of insurance

- Investing in child is risky, so more incentives to consume and invest in safe asset

Model: Timeline

Aggregate Production Function

Cobb-Douglas with constant returns to scale:

$$
Y=A K^{\alpha} H^{1-\alpha}
$$

where H is the CES aggregator

$$
H=\left[s H_{0}^{\Omega}+(1-s) H_{1}^{\Omega}\right]^{\frac{1}{\Omega}}
$$

Outline

Model

Estimation: USA 2000

Policy

Child's Skill Production Function

Based on Cunha, Heckman and Schennach (ECTA, 2010)

- Investment's productivity depends on child/parent's skills
- Parameters can vary with child's age

Child's Skill Production Function

Based on Cunha, Heckman and Schennach (ECTA, 2010)
$\underbrace{\boldsymbol{\theta}_{k}^{\prime}}_{\begin{array}{c}\text { Next period } \\ \text { child's skills }\end{array}}=[\alpha_{1 j} \underbrace{\boldsymbol{\theta}_{k}^{\rho_{j}}}_{\begin{array}{c}\text { Current } \\ \text { child's skills }\end{array}}+\alpha_{2 j} \underbrace{\boldsymbol{\theta}^{\rho_{j}}}_{\begin{array}{c}\text { Parent's } \\ \text { skills }\end{array}}+\alpha_{3 j} \underbrace{\rho_{j}}_{\begin{array}{c}\text { Parental } \\ \text { investments }\end{array}}]^{1 / \rho_{j}} \exp (\boldsymbol{v}), \quad \boldsymbol{v} \sim N\left(0, \sigma_{j, v}\right)$

- Investment's productivity depends on child/parent's skills
- Parameters can vary with child's age

Parameter values

- Baseline estimation from CHS (2010)
- Estimated on a representative sample
- Skills are more malleable when children are young
- Estimation concerns (e.g., Agostinelli and Wiswall, 2016)
- Test robustness of results when we move away from CHS estimation

Child's Skill Production Function

Based on Cunha, Heckman and Schennach (ECTA, 2010)

- Investment's productivity depends on child/parent's skills
- Parameters can vary with child's age

Model requires specifying and estimating investment function /

$$
I=\bar{A}\left[\alpha_{m}(m+g)^{\gamma}+\left(1-\alpha_{m}\right) t^{\gamma}\right]^{1 / \gamma}
$$

Estimation: Simulated Method of Moments

Estimated to match household level data
Important moments for early childhood development

- Parental investments
- Hours: Use PSID Child Development Supplement (CDS)
- Expenses: CDS misses child care and school fees. Use CEX
- Parental transfers
- Informative about altruism
- Estimate from PSID Rosters and Transfers Supplement

Estimation: Parameters

Parameter	Value	Std. Error	Description	Moment	Data	Model
Preferences						
μ	176.8	(9.12)	Mean labor disutility	Avg. hours worked	65.2	65.9
δ	0.475	(0.011)	Altruism	Parent-to-child transfer as	0.75	0.73
				share of avg. annual income		

School Taste:						
α	5.38	(1.61)	Avg. taste for college	College share	33	30
$\alpha_{\theta_{\mathrm{c}}}$	-0.55	(0.35)	College taste and cog. skills relation	College: cog skills slope	0.23	0.23
$\alpha_{\theta_{\text {nc }}}$	-1.15	(0.36)	College taste and non-cog. skills relation	College: non-cog skills slope	0.16	0.15
σ_{ε}	2.51	(0.46)	SD of college taste shock	College: residual variance	0.20	0.18
$\bar{\varepsilon}$	-1.55	(0.63)	Draw of school taste: mean by parent's education	Intergenerational persistence of education	0.70	0.75
Skill Formation Productivity:						
ξ	0.12	(0.03)	Parental time disutility of time with children	Avg. hours with children	18.0	17.2
\bar{A}	32.4	(1.30)	Returns to investments	Average log(skill)	0.0	0.0
α_{m}	0.91	(0.02)	Money productivity	Ratio of money to hours	218	183
γ	-0.20	(0.45)	Money-time substitutability	Money-time correlation	0.93	0.88

Interest rate $\iota\left(\times 10^{2}\right)$	4.9	(1.22)	Borrow-save wedge	Share of borrowers	4.5	4.2
Government $\omega(\times 10)$	2.05	(0.04)	Lump-sum transfer	Income variance ratio: Disposable to pre-gov	0.69	0.70

Estimation: Parameters

Parameter	Value	Std. Error	Description	Moment	Data	Model
Preferences						
μ	176.8	(9.12)	Mean labor disutility	Avg. hours worked	65.2	65.9
δ	0.475	(0.011)	Altruism	Parent-to-child transfer as share of avg. annual income	0.75	0.73
School Taste:						
α	5.38	(1.61)	Avg. taste for college	College share	33	30
$\alpha_{\theta_{c}}$	-0.55	(0.35)	College taste and cog. skills relation	College: cog skills slope	0.23	0.23
$\alpha_{\theta_{\text {nc }}}$	-1.15	(0.36)	College taste and non-cog. skills relation	College: non-cog skills slope	0.16	0.15
σ_{ε}	2.51	(0.46)	SD of college taste shock	College: residual variance	0.20	0.18
$\bar{\varepsilon}$	-1.55	(0.63)	Draw of school taste: mean by parent's education	Intergenerational persistence of education	0.70	0.75
Skill Formation Productivity:						
ξ	0.12	(0.03)	Parental time disutility of time with children	Avg. hours with children	18.0	17.2
\bar{A}	32.4	(1.30)	Returns to investments	Average log(skill)	0.0	0.0
α_{m}	0.91	(0.02)	Money productivity	Ratio of money to hours	218	183
γ	-0.20	(0.45)	Money-time substitutability	Money-time correlation	0.93	0.88
Interest rate						4.2
Government $\omega(\times 10)$	2.05	(0.04)	Lump-sum transfer	Income variance ratio: Disposable to pre-gov	0.69	0.70
		- Moments' Info	\rightarrow Non-targeted Moments \downarrow	ck to Robustness Back to	Robustn	S SR-PE

Estimation: Parameters

Parameter	Value	Std. Error	Description	Moment	Data	Model
Preferences						
μ	176.8	(9.12)	Mean labor disutility	Avg. hours worked	65.2	65.9
δ	0.475	(0.011)	Altruism	Parent-to-child transfer as	0.75	0.73
				share of avg. annual income		

School Taste:						
α	5.38	(1.61)	Avg. taste for college	College share	33	30
$\alpha_{\theta_{c}}$	-0.55	(0.35)	College taste and cog. skills relation	College: cog skills slope	0.23	0.23
$\alpha_{\theta_{n c}}$	-1.15	(0.36)	College taste and non-cog. skills relation	College: non-cog skills slope	0.16	0.15
σ_{ε}	2.51	(0.46)	SD of college taste shock	College: residual variance	0.20	0.18
$\bar{\varepsilon}$	-1.55	(0.63)	Draw of school taste:			
			mean by parent's education	Intergenerational persistence	0.70	0.75

Skill Formation Productivity:						
ξ	0.12	(0.03)	Parental time disutility of time with children	Avg. hours with children	18.0	17.2
\bar{A}	32.4	(1.30)	Returns to investments	Average log(skill)	0.0	0.0
α_{m}	0.91	(0.02)	Money productivity	Ratio of money to hours	218	183
γ	-0.20	(0.45)	Money-time substitutability	Money-time correlation	0.93	0.88

Interest rate $\iota\left(\times 10^{2}\right)$	4.9	(1.22)	Borrow-save wedge	Share of borrowers	4.5	4.2
Government $\omega(\times 10)$	2.05	(0.04)	Lump-sum transfer	Income variance ratio: Disposable to pre-gov	0.69	0.70

Outline

Model

Estimation: USA 2000

Policy

Early Childhood Investments

Government investments in early childhood

- Government invests money g directly:

$$
I=\bar{A}\left[\alpha_{m}(m+g)^{\gamma}+\left(1-\alpha_{m}\right) t^{\gamma}\right]^{1 / \gamma}
$$

Validation: Experimental Evidence

Use RCT to validate the estimated model

- Garcia, Heckman, Leaf, and Prados (2020):
- Two US early childhood programs (ABC, CARE) in 1970s
- Cost $\approx \$ 13.5 \mathrm{k}$ per year for 5 years, i.e., total $\$ 67.5 \mathrm{k}$ per child
- Followed up into adulthood and observe education/income

Validation: Experimental Evidence

Use RCT to validate the estimated model

- Garcia, Heckman, Leaf, and Prados (2020):
- Two US early childhood programs (ABC, CARE) in 1970s
- Cost $\approx \$ 13.5 \mathrm{k}$ per year for 5 years, i.e., total $\$ 67.5 \mathrm{k}$ per child
- Followed up into adulthood and observe education/income
- Apply similar policy in model:
- Small scale: prices and taxes are not affected
- Target: disadvantaged children of low-educated and low-income parents
- One-generation: policy is not received by following generations

Validation: Experimental Evidence

Use RCT to validate the estimated model

- Garcia, Heckman, Leaf, and Prados (2020):
- Two US early childhood programs (ABC, CARE) in 1970s
- Cost $\approx \$ 13.5 \mathrm{k}$ per year for 5 years, i.e., total $\$ 67.5 \mathrm{k}$ per child
- Followed up into adulthood and observe education/income

(b) Income (Age 30)

(c) Return per Dollar

Large Scale and Permanent Policy

Evaluate universal version of policy

- General Equilibrium: Wages (and interest rate) adjust
- Budget Balance: Labor income tax adjusts

Outcomes of interest

- Average income, inequality, and intergenerational mobility
- Consumption equivalence under veil of ignorance How much extra \% consumption would an agent have to get in order to be indifferent between being born in initial SS and alternative?

Outline

1. Long-run effects
(i) Alternative levels of g, (ii) Importance of long run, GE, budget-balance...
2. Transition (with alternative ways to finance it)

Long Run Effects of Early Childhood Investments

Labor Tax

Mobility

Welfare

Income

Inequality

Intergenerational mobility: ChildRank $_{i}=\alpha+\beta$ ParentRank $_{i}+\epsilon_{i}$

Results Decomposition

Alternative Exercises							
Long	General	Budget	Consumption	Change from Baseline (\%) Average Run	Labor Equilibrium	Inequality	Mobility
No	No	No					
Equivalence	Income	Returns					
Yes	No	No					
Yes	Yes	No					
Yes	Yes	Yes	9.4	7.2	8.4	-7.9	19.9

Results Decomposition

Alternative Exercises									
Long	General	Budget	Consumption	Change from Baseline (\%)					
Average	Labor	Inequality	Mobility						
Run	Equilibrium	Balanced	Equivalence	Income	Returns				

Short-run small-scale policy would underestimate gains by one-half

Results Decomposition

Alternative Exercises															
Long	General	Budget	Consumption	Change from Baseline (\%) Average	Labor Run Equilibrium	Balanced	Equivalence		Income	Returns					
:---:	:---:	:---:	:---:	:---:	:---:	:---:									
No	No	No	3.9	8.0	8.4	5.3									
Yes	No	No	9.1	11.7	13.4	5.6									

Short-run small-scale policy would underestimate gains by one-half

- Long-run intergenerational dynamics generate over $1 / 2$ of welfare gains

Results Decomposition

Alternative Exercises							
Long	General	Budget					
Run	Equilibrium	Consumption	Change from Baseline (\%)				
Average	Labor	Inequality	Mobility				
No	No	No	3.9	8.0	8.4	5.3	12.6
Yes	No	No	9.1	11.7	13.4	5.6	25.4
Yes	Yes	No	10.2	7.2	8.6	-7.7	20.2
Yes	Yes	Yes	$\mathbf{9 . 4}$	$\mathbf{7 . 2}$	8.4	$\mathbf{- 7 . 9}$	$\mathbf{1 9 . 9}$

Short-run small-scale policy would underestimate gains by one-half

- Long-run intergenerational dynamics generate over $1 / 2$ of welfare gains

Large-scale GE effects explain most of inequality reduction

- Increase wage of HS-grads relative to college-grads
- Increase gains by $1 / 10$ th

Results Decomposition

Alternative Exercises							
Long	General	Budget					
Run	Equilibrium	Consumption	Change from Baseline (\%)				
Average	Labor	Inequality	Mobility				
No	No	No	3.9	8.0	8.4	5.3	12.6
Yes	No	No	9.1	11.7	13.4	5.6	25.4
Yes	Yes	No	10.2	7.2	8.6	-7.7	20.2
Yes	Yes	Yes	$\mathbf{9 . 4}$	$\mathbf{7 . 2}$	8.4	$\mathbf{- 7 . 9}$	$\mathbf{1 9 . 9}$

Short-run small-scale policy would underestimate gains by one-half

- Long-run intergenerational dynamics generate over $1 / 2$ of welfare gains
- Large-scale higher taxes reduce gains by $1 / 10$ th

Large-scale GE effects explain most of inequality reduction

- Increase wage of HS-grads relative to college-grads
- Increase gains by $1 / 10$ th

Transition Dynamics

Many alternatives on how to transition to new steady state

 First:- Immediate introduction of investments g and labor-income tax
- Balance budget every period using lump-sum tax

Transition Dynamics

Intergenerational mobility: ChildRank $_{i}=\alpha+\beta$ ParentRank $_{i}+\epsilon_{i}$

Transition Dynamics

Tax

Welfare

Intergenerational mobility: ChildRank $_{i}=\alpha+\beta$ ParentRank $_{i}+\epsilon_{i}$

Transition Dynamics

Intergenerational mobility: ChildRank $_{i}=\alpha+\beta$ ParentRank $_{i}+\epsilon_{i}$

Who Loses? Older Agents at Time of Introduction

Alternative Transitions

Two ways to reduce cost paid by older agents and earlier cohorts

- Government borrowing \Rightarrow Transfer costs to future cohorts
- Slow introduction of investments \Rightarrow Reduce earlier costs

Combination makes gains more homogenous across cohorts

Transition: Only Intervened Pay + Slow Intro

Results Robustness: Estimated Parameters Importance

Move each parameter one std. dev. above and below

- Calculate steady-state and introduce same policy as before

		Cons. Equiv. Change from Baseline Long-Run GE
δ	Altruism	Down Up Total
μ	Labor Disutility	
α	Avg. distaste for College	
$\alpha_{\theta_{c}}$	College taste-Cog Skills relation	
$\alpha_{\theta_{n c}}$	College taste-NonCog Skills relation	
$\bar{\varepsilon}$	Mean college taste shock	
σ_{ε}	SD of college taste shock	
\bar{A}	Returns to investments	
α_{m}	Money productivity	
γ	Money-Time substitutability	
ξ	Parental time disutility	
ι	Borrow-save wedge	
ω	Lump-sum transfer	

Results Robustness: Estimated Parameters Importance

Move each parameter one std. dev. above and below

- Calculate steady-state and introduce same policy as before

		Cons. 		
	Equiv. Change from Baseline			
Long-Run GE				

Results Robustness: Estimated Parameters Importance

Move each parameter one std. dev. above and below

- Calculate steady-state and introduce same policy as before

Results Robustness: Estimated Parameters Importance

Move each parameter one std. dev. above and below

- Calculate steady-state and introduce same policy as before

		Cons. Equiv. Change from Baseline Long-Run GE		
		Down	Up	Total
δ	Altruism	0.34	-0.19	0.53
μ	Labor Disutility	0.13	-0.06	0.07
α	Avg. distaste for College	-0.66	0.81	1.47
$\alpha_{\theta_{c}}$	College taste-Cog Skills relation	0.00	-0.56	0.56
$\alpha_{\theta_{n c}}$	College taste-NonCog Skills relation	-0.13	-0.14	0.01
$\bar{\varepsilon}$	Mean college taste shock	-0.21	-0.20	0.02
σ_{ε}	SD of college taste shock	0.70	-0.78	1.48
\bar{A}	Returns to investments	-0.11	-0.23	0.11
α_{m}	Money productivity	-0.38	-0.02	0.36
γ	Money-Time substitutability	-0.21	-0.20	0.01
ξ	Parental time disutility	-0.19	-0.21	0.02
ι	Borrow-save wedge	-0.07	-0.19	0.12
ω	Lump-sum transfer	-0.09	-0.27	0.17

Results Robustness: CHS Parameters Importance

Move each parameter one std. dev. above and below

- Re-estimate, obtain steady-state, and introduce same policy as before

		Cons. Equiv. Change from Baseline Long-Run GE	
α_{1}	Child's Skills Importance	Down Up	
α_{2}	Parents' Skills Importance		
α_{3}	Investments Importance		
ρ	Substitutability		
σ_{v}	Std. Dev. of Shock		
$\operatorname{Var}\left(\theta_{k_{0}}\right)$	Var of Initial Skills		
$\operatorname{Corr}\left(\theta, \theta_{k_{0}}\right)$	IGE Corr of Initial Skills		

Baseline 9.4

Results Robustness: CHS Parameters Importance

Move each parameter one std. dev. above and below

- Re-estimate, obtain steady-state, and introduce same policy as before

		Cons. Equiv. Change from Baseline Long-Run GE		
	Child's Skills Importance	Down	Up	Total
α_{1}	Parents' Skills Importance	0.94	-2.70	4.34
α_{2}	Investments Importance	-1.48	2.46	
α_{3}	Substitutability	-1.26	-0.89	0.92
ρ	Std. Dev. of Shock	0.96	2.21	
σ_{v}	Var of Initial Skills	-0.66	-0.66	0.73
$\operatorname{Var}\left(\theta_{k_{0}}\right)$	-0.67	0.01		
$\operatorname{Corr}\left(\theta, \theta_{k_{0}}\right)$	IGE Corr of Initial Skills	-0.69	-0.44	0.25
Baseline				

Results Robustness: CHS Parameters Importance

Move each parameter one std. dev. above and below

- Re-estimate, obtain steady-state, and introduce same policy as before

		Cons. Equiv. Change from Baseline Long-Run GE			
	Child's Skills Importance	1.64	-2.70	4.34	
α_{1}	Parents' Skills Importance	0.98	-1.48	2.46	
α_{2}	Investments Importance	0.03	-0.89	0.92	
α_{3}	Substitutability	-1.26	0.96	2.21	
ρ	Std. Dev. of Shock	0.07	-0.66	0.73	
σ_{v}	Var of Initial Skills	-0.66	-0.67	0.01	
$\operatorname{Var}\left(\theta_{k_{0}}\right)$	-0.69	-0.44	0.25		
$\operatorname{Corr}\left(\theta, \theta_{k_{0}}\right)$	IGE Corr of Initial Skills				
		9.4			

Results Robustness: CHS Parameters Importance

Move each parameter one std. dev. above and below

- Re-estimate, obtain steady-state, and introduce same policy as before

		Cons. Equiv. Change from Baseline Long-Run GE			
	Child's Skills Importance	Down	Up	Total	
α_{1}	Parents' Skills Importance	0.94	-2.70	4.34	
α_{2}	Investments Importance	0.03	-0.48	2.46	
α_{3}	Substitutability	-1.26	0.96	0.92	
ρ	Std. Dev. of Shock	0.07	-0.66	0.21	
σ_{v}	Var of Initial Skills	-0.66	-0.67	0.01	
$\operatorname{Var}\left(\theta_{k_{0}}\right)$	-0.69	-0.44	0.25		
$\operatorname{Corr}\left(\theta, \theta_{k_{0}}\right)$	IGE Corr of Initial Skills				
		9.4			

Alternative Policy: Parenting Education Program

Parenting education program

- Extend model to allow parents to acquire minimum parenting skills
- Use experimental evidence to estimate costs and gains of programs

Two alternative implementations

1. Paid by Government

- Welfare benefits of 8%
- Reduces inequality by 5% and increases mobility by 15%

2. Paid by Households

- Welfare benefits of 7%
- Reduces inequality by 5% and increases mobility by 13%

As with ECD investments: long-run large-scale gains are larger than short-run small-scale ones

Conclusion

Consequences of large-scale early childhood policies depend on

- (i) GE effects; (ii) cost of raising taxes; (iii) intergenerational dynamics

Model

- Introduce endogenous parental investments into a GE OLG incomplete markets model with distortionary taxes

Government early childhood investments increase welfare by 9\%

- Small-scale short-run programs underestimate gains
- Large-scale higher taxes reduce gains by $1 / 10$ th
- Large-scale GE reduces inequality and increases gains by 1/10th
- Long-run intergenerational dynamics generate over $1 / 2$ of welfare gains
- Effects on inequality and mobility
- Large enough to close gap with Canada by 50%

Some suggestions

Computation and data skills are very valuable

- Software: your choice
- Guides: Judd's or Miranda-Fackler's books, Violante's notes
- Practice is key so start early

For heterogeneous-agents models

- Endogeneous grid method-look at Pijoan-Mas notes
- Simulation using kronecker products
- But these methods evolve quickly...
- Maybe approximation methods based on machine learning?

Take advantage of HPC

- Provides lots of computational power
- May need advisor/professor's sponsorship

APPENDIX

Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment's Information

Additional Results

Early Childhood Development Programs around the world

Programs inspired by ABC/CARE around the world:

- Infant Health and Development Program (Spiker et al, 1997)
- John's Hopkins Cerebral Palsy Study (Schneider and McDonald, 2007)
- Classroom Literacy Interventions and Outcomes (Sparling, 2010)
- Massachusetts Family Child Care Study (Collins, 2010)
- Many more in US, Manitoba, Australia (Garcia, Heckman, Leaf, and Prados, 2020)

Evidence on Early Childhood Programs

It is important to observe adult follow-ups (Garcia et al, 2020)

- Rather than using early measures to project adult outcomes

Most US evidence is from three programs:

- Large increases in education and income, and social gains
- Perry Preschool Program (ages 3-5)

Schweinhart et al (2005) and Heckman et al (2010)

- Carolina Abecedarian Project (ABC) and Carolina Approach to Responsive Education (CARE)
Ramey et al (2002) and Garcia et al (2020)

Head Start

- It is the largest program, between ages 4 (or 3) and 5
- Experimental evidence predicted smaller gains than non-experimental
- Larger gains if program substitution is accounted for (Kline and Walters, 2016)

Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment's Information

Additional Results

Model: More Details

Preliminaries: Skills and Wages

Labor income of individual of age j, education e, and skills θ is product of:

1. Wage of your education group: w_{e}.
2. Labor efficiency units: $E_{i, e, j}=\epsilon_{e, j} \psi_{i, e, j}$.
3. Hours worked: h.

Labor efficiency units evolve stochastically as sum of three components:

$$
\log \left(E_{i, e, j}\right)=\log \left(\epsilon_{e, j}\right)+\lambda_{e} \log \left(\theta_{i c}\right)+\eta_{i, e, j}
$$

where

- λ_{e} is education-specific return to skills.
- $\epsilon_{e, j}$ is education-specific age profile.
- $\psi_{i, e, j}$ is stochastic component with persistent $\operatorname{cdf} \Gamma_{j, e}$.

Preliminaries: Market Structure

During working years

- Can borrow: limits by education group.
- Interest rate $r^{b}=r+\iota$ where r is the returns to saving and ι is the wedge between borrowing and lending capital.

Preliminaries: Market Structure

During working years

- Can borrow: limits by education group.
- Interest rate $r^{b}=r+\iota$ where r is the returns to saving and ι is the wedge between borrowing and lending capital.

College Loans

- Pay subsidized interest rate r^{c} :

Preliminaries: Market Structure

During working years

- Can borrow: limits by education group.
- Interest rate $r^{b}=r+\iota$ where r is the returns to saving and ι is the wedge between borrowing and lending capital.

College Loans

- Pay subsidized interest rate r^{c} :

Today: Presentation of model abstracts from different interest rates.

College Choice

0	$16 \quad 20$
Birth	Independent College or work

Work ($e=0$)

$$
\begin{aligned}
V_{j}^{w}(a, \theta, e, \eta) & =\max _{c, a^{\prime}, h} u(c, h)+\beta \mathbb{E}\left[V_{j+1}^{w}\left(a^{\prime}, \theta, e, \eta^{\prime}\right)\right], \\
& c+a^{\prime}=y+a(1+r)-T(y, a, c), \\
& y=w_{e} E_{e, j}(\theta, \eta) h, \quad a^{\prime} \geq \underline{a}_{e, j^{\prime}} \quad 0 \leq h \leq 1, \quad \eta^{\prime} \sim \Gamma_{e, j}(\eta) .
\end{aligned}
$$

College Choice

0	$\quad 16 \quad 20$
Birth	Independent College or work

Work ($e=0$)

$$
\begin{aligned}
V_{j}^{w}(a, \theta, e, \eta) & =\max _{c, a^{\prime}, h} u(c, h)+\beta \mathbb{E}\left[V_{j+1}^{w}\left(a^{\prime}, \theta, e, \eta^{\prime}\right)\right], \\
& c+a^{\prime}=y+a(1+r)-T(y, a, c), \\
y & =w_{e} E_{e, j}(\theta, \eta) h, \quad a^{\prime} \geq \underline{a}_{e, j^{\prime}}, \quad 0 \leq h \leq 1, \quad \eta^{\prime} \sim \Gamma_{e, j}(\eta) .
\end{aligned}
$$

College ($e=1$)

$$
\begin{aligned}
V_{j}^{s}(a, \theta, e) & =\max _{c, a^{\prime}, h} u(c, h+\bar{h})+\beta \mathbb{E}_{\eta \mid e} V_{j+1}^{w}\left(a^{\prime}, \boldsymbol{\theta}, e, \eta\right) \\
& c+a^{\prime}+p^{s}=y+a(1+r)-T(y, a, c) \\
y & =w_{0} E_{e, j}(\theta) h, \quad a^{\prime} \geq \underline{a}_{e, j}, \quad 0 \leq h \leq 1-\bar{h}
\end{aligned}
$$

College Choice

0	$\quad 16 \quad 20$
Birth	Independent College or work

Work (e=0)

$$
\begin{aligned}
V_{j}^{w}(a, \theta, e, \eta) & =\max _{c, a^{\prime}, h} u(c, h)+\beta \mathbb{E}\left[V_{j+1}^{w}\left(a^{\prime}, \theta, e, \eta^{\prime}\right)\right] \\
& c+a^{\prime}=y+a(1+r)-T(y, a, c) \\
y & =w_{e} E_{e, j}(\theta, \eta) h, \quad a^{\prime} \geq \underline{a}_{e, j} \quad 0 \leq h \leq 1, \quad \eta^{\prime} \sim \Gamma_{e, j}(\eta)
\end{aligned}
$$

College ($e=1$)

$$
\begin{aligned}
V_{j}^{s}(a, \theta, e) & =\max _{c, a^{\prime}, h} u(c, h+\bar{h})+\beta \mathbb{E}_{\eta \mid e} V_{j+1}^{w}\left(a^{\prime}, \boldsymbol{\theta}, e, \eta\right) \\
& c+a^{\prime}+p^{s}=y+a(1+r)-T(y, a, c) \\
y & =w_{0} E_{e, j}(\theta) h, \quad a^{\prime} \geq \underline{a}_{e, j}, \quad 0 \leq h \leq 1-\bar{h}
\end{aligned}
$$

Work or college:

$$
V_{j}^{s w}(a, \boldsymbol{\theta}, \phi)=\max \left\{\mathbb{E}_{\eta \mid e=0} V_{j}^{w}(s, \boldsymbol{\theta}, 0, \eta), V_{j}^{s}(s, \boldsymbol{\theta}, 1, \varepsilon)-\kappa(\varepsilon, \theta)\right\}
$$

Retirement

0	$16 \quad 2028$	68	80
Birth	Independent Fertility	Retire	Death
		Retirement	

Social Security: Received every period, relative to education e and permanent skill θ.

$$
\begin{aligned}
& V_{j}(a, \theta, e)=\max _{c, a^{\prime}} u(c, 0)+\beta V_{j+1}^{w}\left(a^{\prime}, \theta, e\right) \\
& \quad c+a^{\prime}=\pi(\theta, e)+a(1+r)-T(0, a, c) \\
& a^{\prime} \geq 0
\end{aligned}
$$

Stationary Equilibrium

- Distributions:
- Cross-sectional distribution of any cohort of age j is invariant over time periods.
- Distribution of initial states is determined by older generations.
- Household optimize: Household make choices of education, consumption, labor, parental time and expenditures, transfers such that maximize utility.
- Firms maximize profits.
- Prices clear markets.

Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment's Information

Additional Results

Estimation: Simulated Method of Moments

1. Standard parameters from literature.

- e.g., discounting; intertemporal elasticity of substitution; Frisch elasticity...

2. Externally calibrated.

- e.g., income process; borrowing limits...

3. Simulated Method of Moments.

- Key moments to match novel elements of model (e.g., parental investments).
- Estimated to match household level data.

Parametrization: Preferences

Utility function is:

$$
u(c, h)=\frac{c^{1-\gamma_{c}}}{1-\gamma_{c}}-\mu \frac{h^{1+\gamma_{h}}}{1+\gamma_{h}}
$$

Parametrization: Preferences

Utility function is:

$$
u(c, h)=\frac{c^{1-\gamma_{c}}}{1-\gamma_{c}}-\mu \frac{h^{1+\gamma_{h}}}{1+\gamma_{h}}
$$

Disutility of investing time t on children's skills:

$$
v(t)=\xi t
$$

- From literature: $\gamma_{c}=2, \gamma_{h}=3$.
- To estimate: μ and ξ.

Parental investments

	All	Parents Together 2 Children
Sample Means		
Weekly Hours	18.0	20.6
	(0.3071)	(0.6721)
Yearly Expenditures	1,966	1,553
	(35.53)	(57.31)
Regression Coefficients		
Hours on College	$3.734^{* * *}$	$2.473^{* *}$
	(0.518)	(1.179)
Log(Hours) on Log(Income)	$0.123^{* * *}$	0.0481
	(0.0234)	(0.0760)
Expenditures on College	$732.4^{* * *}$	$665.7^{* * *}$
	(67.80)	(106.75)
Log(Expenditures) on Log(Income)	$0.391^{* * *}$	$0.634^{* * *}$
	(0.0285)	(0.0624)

Expenditures: child-care expenditures in CEX. Weekly Hours: based on time reading and playing in PSID-CDS.

Government Taxes

- Tax function has form: $T(y, a, c)=\tau_{y} y+\tau_{k} a r 1_{a \geq 0}+\tau_{c} c-\omega$.
- Tax rates from McDaniel (2014): $\tau_{y}=0.22, \tau_{c}=0.07$, and $\tau_{k}=0.27$.
- Estimate lump-sum transfer ω such that ratio of the variances of disposable and pre-government log-income is 0.69 (PSID).

Cunha, Heckman and Schennach (2010)

	Cognitive Skills		Non-Cognitive Skills	
	1st Stage	2nd Stage	1st Stage	2nd Stage
Current Cognitive Skills	0.479	0.831	0.000	0.000
Current Non-Cognitive Skills	0.070	0.001	0.585	0.816
Investments	0.161	0.044	0.065	0.051
Parent's Cognitive Skills	0.031	0.073	0.017	0.000
Parent's Non-Cognitive Skills	0.258	0.051	0.333	0.133
Complementarity parameter	0.313	-1.243	-0.610	-0.551
Variance of Shocks	0.176	0.087	0.222	0.101

Cunha, Heckman and Schennach (2010) — Only Cognitive

	Cognitive Skills	
	1st Stage	2nd Stage
Current Cognitive Skills	0.303	0.448
Investments	0.319	0.098
Parent's Cognitive Skills	0.378	0.454
Complementarity parameter	-0.180	-0.781
Variance of Shocks	0.193	0.050

	Cognitive Skills		Non-Cognitive Skills 1st Stage	
2nd Stage				
1st Stage	2nd Stage	1strent Cognitive Skills	0.479	0.831
0.000	0.000			
Current Non-Cognitive Skills	0.070	0.001	0.585	0.816
Investments	0.161	0.044	0.065	0.051
Parent's Cognitive Skills	0.031	0.073	0.017	0.000
Parent's Non-Cognitive Skills	0.258	0.051	0.333	0.133
Complementarity parameter	0.313	-1.243	-0.610	-0.551
Variance of Shocks	0.176	0.087	0.222	0.101

Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment's Information

Additional Results

Child Development Data: PSID + CDS

- Panel Study of Income Dynamics (PSID):
- Longitudinal household survey.
- Information on education, income, marriage, children,... and expenditures on children: toys, vacations, school supplies, clothes, food and medical.
- Sampling: Core sample of approximately 5k families, in 1968. Over time it includes those born in these families.

Child Development Data: PSID + CDS

- Panel Study of Income Dynamics (PSID):
- Longitudinal household survey.
- Information on education, income, marriage, children,... and expenditures on children: toys, vacations, school supplies, clothes, food and medical.
- Sampling: Core sample of approximately 5 k families, in 1968. Over time it includes those born in these families.
- Child Development Supplement (CDS):
- Multiple Assessments of Child Skills:
(1) Multiple tests: Letter-Word, Applied Problem Solving (and more).
(2) Multiple ages: 2002, 2007.
- Time Diary: Detailed description of child's activities (weekday and weekend). Information on active and passive participation of parents.

Active time with parents

- Using time diaries I calculate "active" time with parents.
- "Active:" parent is performing activity with kid.

Assumption: If two parents are active, double the hours.

Parental investments

	All	Parents Together 2 Children
Sample Means		
Weekly Hours	18.0	20.6
	(0.3071)	(0.6721)
Yearly Expenditures	1,966	1,553
	(35.53)	(57.31)
Regression Coefficients		
Hours on College	$3.734^{* * *}$	$2.473^{* *}$
	(0.518)	(1.179)
Log(Hours) on Log(Income)	$0.123^{* * *}$	0.0481
	(0.0234)	(0.0760)
Expenditures on College	$732.4^{* * *}$	$665.7^{* * *}$
	(67.80)	(106.75)
Log(Expenditures) on Log(Income)	$0.391^{* * *}$	$0.634^{* * *}$
	(0.0285)	(0.0624)

Expenditures: child-care expenditures in CEX. Weekly Hours: based on time reading and playing in PSID-CDS.

Estimation: Labor income risk

Labor income of individual of age j, education e, and skills θ is product of:

1. Wage of your education group: w_{e}.
2. Labor efficiency units: $E_{i, e, j}=\epsilon_{e, j} \psi_{i, e, j}$.
3. Hours worked: h.

Labor efficiency units evolve stochastically as sum of three components:

$$
\log \left(E_{i, e, j}\right)=\log \left(\epsilon_{e, j}\right)+\lambda_{e} \log \left(\theta_{i c}\right)+\eta_{i, e, j}
$$

where

- λ_{e} is education-specific return to skills.
- $\epsilon_{e, j}$ is education-specific age profile.
- $\psi_{i, e, j}$ is stochastic component with persistent $\operatorname{cdf} \Gamma_{j, e}$.

Estimation: Return to Skill

	(1) High School	(2) College
$\log (\mathrm{AFQT})$	$\left(0.471^{* * *}\right.$	$1.008^{* * *}$
Observations	7,015	(0.0768)
R-squared	0.045	3,378
\# of households	988	0.082
Source: NLSY. Robust standard errors in parentheses. ${ }^{*}$, **, *** de-		
note statistical significance at the 10, 5, and 1 percent, respectively.		
log(AFQT) refers to the natural logarithm of the AFQT89 raw score. The		
regression includes year fixed effects. Methodology is explained in the		
main text.		

Note: The standard deviation of log-AFQT in the data is approximately 0.21 .

Age Profile

VARIABLES	(1) HS Grad	(2) College
Age	$0.0312^{* * *}$	$0.0557^{* * *}$
	(0.00387)	(0.00577)
Age 2	$-0.000271^{* * *}$	$-0.000530^{* * *}$
	$(4.65 \mathrm{e}-05)$	$(6.89 \mathrm{e}-05)$
Constant	$2.084^{* * *}$	$1.927^{* * *}$
	(0.0779)	(0.118)
Observations	9,130	6,015
R-squared	0.051	0.093
\# of households	1357	864

Income Shocks Process

$$
\eta_{i, e, j}=\rho_{e} \eta_{i, e, j-1}+z_{i, e, j}, \quad z_{i, e, j} \stackrel{i i d}{\sim} N\left(0, \sigma_{e, z}\right), \eta_{0}^{e} \quad \sim N\left(0, \sigma_{\eta_{0}}^{e}\right)
$$

	(1) High School	(2) College
ρ_{e}	0.924	0.966
$\sigma_{e, z}$	0.029	0.046
$\sigma_{e, \eta_{0}}$	0.050	0.047
Source: NLSY. A period is 4 years long.		
Methodology is explained in the main text.		

Other elements of estimation

- Aggregate Production Function.
- Borrowing limits.
- Price of college.
- Retirement benefits.
- Labor Income Process.

Aggregate Production Function

- Cobb-Douglas Form with constant returns to scale:

$$
Y=K^{\alpha} H^{1-\alpha}
$$

where H is the nested CES aggregator

$$
H=\left[s L_{1}^{\Omega}+(1-s) L_{2}^{\Omega}\right]^{\frac{1}{\Omega}}
$$

- Set $\alpha=1 / 3$.
- Estimate using FOCs as in Katz and Murphy (1992) or Heckman et al (1998):
- $s=0.53$.
- $\frac{1}{1-\Omega}=1.75$.

Borrowing limits

Individuals can (unsecured) borrow during working years:

- Interest rate $r^{b}=r+\iota$ where r is the returns to saving and ι is the wedge between borrowing and lending capital.
- Borrowing limits estimated from self-reported limits by education in SCF: $\$ 20 \mathrm{k}$ and $\$ 34 \mathrm{k}$ for HS graduates and college graduates.

Borrowing limits

Individuals can (unsecured) borrow during working years:

- Interest rate $r^{b}=r+\iota$ where r is the returns to saving and ι is the wedge between borrowing and lending capital.
- Borrowing limits estimated from self-reported limits by education in SCF: \$20k and $\$ 34 \mathrm{k}$ for HS graduates and college graduates.

Borrowing is allowed for college at subsidized interest rate r^{c} :

- Pay interest rate $r^{c}=r+\iota^{c}$ where ι^{c} was estimated to be 1% annually in federal student loans (Mix of no interest rate loans and 2.6\% loans). Note $\iota^{c}<l$.
- Borrowing limit estimated to be \$23k.

Price of College

College:

- Based on Delta Cost Project, yearly cost of college $\approx \$ 6,588$.
- This only considers tuition costs paid by individuals, i.e. it removes grants and scholarships.

Government: Retirement Benefits

- Replacement benefits are based on current US Social Security (OASDI).
- Use education and FE in model to estimate average lifetime income, on which the system is based.

Replacement rate

- h is the last level of human capital before retirement. The average life time income is summarized by $\widehat{y}(h, e)$.
- Progressive formula based on SSA

$$
\pi(h)= \begin{cases}0.9 \widehat{y}(h, e) & \text { if } \widehat{y}(h, e) \leq 0.3 \bar{y} \\ 0.9(0.3 \bar{y})+0.32(\widehat{y}(h, e)-0.3 \bar{y}) & \text { if } 0.3 \bar{y} \leq \widehat{y}(h, e) \leq 2 \bar{y} \\ 0.9(0.3 \bar{y})+0.32(2-0.3) \bar{y}+0.15(\widehat{y}(h, e)-2 \bar{y}) & \text { if } 2 \bar{y} \leq \widehat{y}(h, e) \leq 4.1 \bar{y} \\ 0.9(0.3 \bar{y})+0.32(2-0.3) \bar{y}+0.15(4.1-2) \bar{y} & \text { if } 4.1 \bar{y} \leq \widehat{y}(h, e)\end{cases}
$$

where $\widehat{y}(h, e)=\left[\begin{array}{lll}0.98 & 1.17 & 0.98\end{array}\right] \times h$ and \bar{y} is approximately $\$ 70,000$.

Estimation: Age

Parameter	Value	Description
Jb	16	Independent - start with 12 years of education
Je	20	Max educ - average years of schooling 13.42
Jc	28	Fertility
Jk	36	Transfer to children
Jt	40	Transfers to parents
Jr	68	Retire
Jd	80	Death

Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment's Information

Additional Results

Estimation: 2-Steps Methodology

Step 1: Target moments

- Estimate target moments using whole sample
- Using bootstrap, obtain moments M_{n} for $n=1, \ldots, N$

Step 2: Global estimation

- Draw parameters from "large" uniform iid hypercube (sobol sequence)
- Trade-offs:
- Obtain combination of parameters that best fits whole-sample moments
- For moments $M_{n}(n=1, \ldots, N)$, obtain an estimated parameters P_{n}
- Calculate standard deviations or confidence intervals of P_{n}
- But very costly to do if number of parameters is large

Preferences

Transfers to children

Preferences

Hours worked

Hours with child

Disutility of time w/child ${ }^{104}(\xi)$

School Taste

Share of college grads (\%)

College: noncog skills slope

School taste-noncog skill relation $\left(\alpha_{n c}\right)$

College: cog skills slope

School taste-cog skill relation (α_{c})
College: residual variance

Skill Formation Productivity

High-Low skilled ratio

Prod. of Investments (\bar{A})
Money-time correlation

Money-time substitutability (γ)

Ratio money-time

Money multiplier (α_{m})
IGE persistence of education

Mean school taste shock ($\bar{\varepsilon}$)

Tax Progressivity

Redistribution of income

Financial Services

Share of borrowers

Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment's Information

Additional Results

Validation: Not Targeted Moments

Moment	Data	Model	
Regression of parental investments to parents' characteristics (PSID-CDS and CEX)			
All			
	Homogeneous		
Hours on college ed. parent	Families	Families	
Expenditures on college ed. parent	3.7	2.5	4.5
Log hours on log parent income	732	666	752
Log expenditures on log parent income	0.12	0.05	0.07
	0.39	0.63	0.87

Intergenerational Mobility (Chetty et al, 2016 and PSID-CDS)		
Rank-Rank coefficient	$0.26-0.29$	0.29
Regression of college to log-parent income	0.24	0.18

Inequality (PSID)		
Gini	0.32	0.27
Top-Bottom	3.7	3.1

Savings (Inklaar and Timmer, 2013)		
Capital-Output Ratio (annualized)	≈ 3	

Return to College (PSID and Heckman et al, 2006)
Income Ratio: College - HS Graduate 1.61.7
Yearly return $\approx 10 \%$ 12\%

Welfare

Consumption equivalence under veil of ignorance

Let utility under policy P with extra \% consumption λ be:

$$
\tilde{V}_{J_{i}}^{P}(a, \theta, \phi, \lambda)=\mathbb{E}^{P}\left\{\sum_{j=J_{i}}^{j=J_{d}} \beta^{\left(i-J_{i}\right)} u\left(c_{j}^{P}(1+\lambda), h_{j}^{P}\right)+\beta^{J_{c}} b \tilde{V}_{J_{i}}^{P}\left(\varphi, \theta_{k}, \phi, \lambda\right)\right\}
$$

So average utility is:

$$
\bar{V}^{P}(\lambda)=\int_{a, \theta, \phi} \tilde{V}_{J_{i}}^{P}(a, \theta, \phi, \lambda) \mu_{P}(a, \theta, \phi)
$$

Then, welfare gain from going from policy $P=0$ to $P=p$ is given by λ^{p} where:

$$
\bar{V}^{0}\left(\lambda^{p}\right)=\bar{V}^{p}(0)
$$

By definition, welfare gains come from 2 sources

- Changes in values of becoming independent in each state, i.e., $\tilde{V}_{J_{i}}^{P}(a, \theta, \phi, 0)$
- Changes in probabilities of each state, i.e., $\mu_{P}(a, \theta, \phi)$

Decomposition

By definition, welfare gains come from 2 sources

- Changes in values of becoming independent in each state, i.e., $V(a, \theta, \varphi)$
- Changes in probabilities of each state, i.e., $\mu(a, \theta, \varphi)$

Most welfare gains are driven by change in distribution μ

- Fixing μ : Gains are 2.5\%
- Fixing V : Gains are 7.3%

Transition Dynamics

Early Childhood Investments

Transition: Only Intervened Pay

Transition: Only Intervened Pay

Transition: Only Intervened Pay + Slow Intro

Transition: Only Intervened Pay + Slow Intro

Transition: Only Intervened Pay + Slow Intro

With Early Childhood Production Function

With Early Childhood Production Function

Assume early childhood good's only input is college labor

- Price of early childhood is now wage of college graduate

With Early Childhood Production Function

Assume early childhood good's only input is college labor

- Price of early childhood is now wage of college graduate

Short-run vs Long-run

1. Short run: scarcity of college graduates increases costs
2. Long run: increased supply of college reduces costs

With Early Childhood Production Function

Parenting Education

Parenting Education

Endogenous parental investments allows for new policy:

- Parenting Education: teach techniques and games to solve discipline problems, foster confidence and capability,...
- Estimated cost of program: $\$ 11,400$ per family Deaials

Parenting Education in the Model

Recall production function is:

$$
\underbrace{\boldsymbol{\theta}_{k}^{\prime}}_{\begin{array}{c}
\text { Next period } \\
\text { child's skills }
\end{array}}=[\alpha_{1 j} \underbrace{\boldsymbol{\theta}_{k}^{\rho_{j}}}_{\begin{array}{c}
\text { Current } \\
\text { child's skills }
\end{array}}+\alpha_{2 j} \underbrace{\boldsymbol{\theta}^{\rho_{j}}}_{\begin{array}{c}
\text { Parent's } \\
\text { skills }
\end{array}}+\alpha_{3 j} \underbrace{\rho^{\rho_{j}}}_{\begin{array}{c}
\text { Parental } \\
\text { investments }
\end{array}}]^{1 / \rho_{j}} \exp (\boldsymbol{v})
$$

Parenting Education in the Model

Recall production function is:

$$
\underbrace{\boldsymbol{\theta}_{k}^{\prime}}_{\begin{array}{c}
\text { Next period } \\
\text { child's skills }
\end{array}}=[\alpha_{1 j} \underbrace{\boldsymbol{\theta}_{k}^{\rho_{j}}}_{\begin{array}{c}
\text { Current } \\
\text { child's skills }
\end{array}}+\alpha_{2 j} \underbrace{\boldsymbol{\theta}^{\rho_{j}}}_{\begin{array}{c}
\text { Parent's } \\
\text { skills }
\end{array}}+\alpha_{3 j} \underbrace{\rho^{\rho_{j}}}_{\begin{array}{c}
\text { Parental } \\
\text { investments }
\end{array}}]^{1 / \rho_{j}} \exp (\boldsymbol{v})
$$

With parenting education:

Benchmarking productivity of parenting education

Gertler et al (2013) study effect of parenting education in Jamaica

- RCT on growth-stunted and poor children, ages 0-2, in 1986
- Children around age $\mathbf{2 2} \Rightarrow$ income grew by $\mathbf{1 2 \%}$ (at least)

Benchmarking productivity of parenting education

Gertler et al (2013) study effect of parenting education in Jamaica

- RCT on growth-stunted and poor children, ages 0-2, in 1986
- Children around age $\mathbf{2 2} \Rightarrow$ income grew by $\mathbf{1 2 \%}$ (at least)

Mimic RCT in model

- Small scale and one-time policy
- Focus on children with low initial draws of skills

And of low-income, low-skilled, low-educated parents

Look for increase in productivity that increases income by 12\%

Benchmarking productivity of parenting education

Gertler et al (2013) study effect of parenting education in Jamaica

- RCT on growth-stunted and poor children, ages 0-2, in 1986
- Children around age $\mathbf{2 2} \Rightarrow$ income grew by $\mathbf{1 2 \%}$ (at least)

Mimic RCT in model

- Small scale and one-time policy
- Focus on children with low initial draws of skills

And of low-income, low-skilled, low-educated parents
Look for increase in productivity that increases income by 12\%

$\theta_{P E}$ Std. Dev. of θ	Change from Baseline (\%) Income Bottom
-1.6 SD	0.00
-1.0 SD	2.13
-0.4 SD	5.22
0.0 SD	7.22
+0.4 SD	9.48
+0.8 SD	11.48
+1.0 SD	12.31
+1.2 SD	13.10

Benchmarking productivity of parenting education

Gertler et al (2013) study effect of parenting education in Jamaica

- RCT on growth-stunted and poor children, ages 0-2, in 1986
- Children around age $\mathbf{2 2} \Rightarrow$ income grew by $\mathbf{1 2 \%}$ (at least)

Mimic RCT in model

- Small scale and one-time policy
- Focus on children with low initial draws of skills

And of low-income, low-skilled, low-educated parents
Look for increase in productivity that increases income by 12\%

$\theta_{\text {PE }}$ Std. Dev. of θ	Change from Baseline (\%) Income Bottom
-2.6 SD	0.00
-2.0 SD	2.13
-1.4 SD	5.22
-1.0 SD	7.22
-0.6 SD	9.48
-0.2 SD	11.48
Benchmark $=0$	12.31
+0.2 SD	13.10

Parenting Education: Long Run, GE

$\theta_{\text {PE }}$	Change from Baseline (\%)						
relative to benchmark	Cons. Equiv.	Avg. Income	Inequality	Mobility	College	Tax Revenue	Tax Rate
-1.4 SD	2.87	2.29	-3.12	9.29	2.61	2.60	-0.28
-1.0 SD	3.79	2.85	-4.29	11.03	3.32	2.93	-0.44
-0.6 SD	5.48	4.36	-4.79	13.85	5.00	3.39	-0.76
-0.2 SD	6.95	5.39	-4.98	15.32	6.30	3.64	-1.05
Benchmark	7.65	5.68	-5.14	15.47	6.40	3.95	-1.16
0.2 SD	8.19	6.05	-5.35	16.70	6.87	4.06	-1.26

Parenting Education: Long Run, GE

$\theta_{\text {PE }}$	Change from Baseline (\%)						
relative to benchmark	Cons. Equiv.	Avg. Income	Inequality	Mobility	College	Tax Revenue	Tax Rate
-1.4 SD	2.87	2.29	-3.12	9.29	2.61	2.60	-0.28
-1.0 SD	3.79	2.85	-4.29	11.03	3.32	2.93	-0.44
-0.6 SD	5.48	4.36	-4.79	13.85	5.00	3.39	-0.76
-0.2 SD	6.95	5.39	-4.98	15.32	6.30	3.64	-1.05
Benchmark	7.65	5.68	-5.14	15.47	6.40	3.95	-1.16
0.2 SD	8.19	6.05	-5.35	16.70	6.87	4.06	-1.26

- Even if parenting education is $\mathbf{1 . 4}$ standard deviation less effective it still has positive welfare effect in the long run

Parenting Education: Long Run, GE

$\theta_{\text {PE }}$	Change from Baseline (\%)						
relative to benchmark	Cons. Equiv.	Avg. Income	Inequality	Mobility	College	Tax Revenue	Tax Rate
-1.4 SD	2.87	2.29	-3.12	9.29	2.61	2.60	-0.28
-1.0 SD	3.79	2.85	-4.29	11.03	3.32	2.93	-0.44
-0.6 SD	5.48	4.36	-4.79	13.85	5.00	3.39	-0.76
-0.2 SD	6.95	5.39	-4.98	15.32	6.30	3.64	-1.05
Benchmark	7.65	5.68	-5.14	15.47	6.40	3.95	-1.16
0.2 SD	8.19	6.05	-5.35	16.70	6.87	4.06	-1.26

- Even if parenting education is $\mathbf{1 . 4}$ standard deviation less effective it still has positive welfare effect in the long run
- Large effect on Intergeneration mobility and inequality

Parenting Education Market: Long Run, GE

Now program can be purchased by families

	Change from Baseline (\%)										
	Cons.	Avg.	Inequality	Mobility	College	Tax	Tax	Take-Up	Take-Up Equiv. Income		
Revenue	Rake-Up										
Row	Medium	High									
-1.4 SD	1.61	1.66	-2.08	5.63	1.47	0.45	-0.35	82.54	0.00	0.00	
-1.0 SD	3.15	2.75	-2.72	6.54	2.49	0.78	-0.68	93.93	0.00	0.00	
-0.6 SD	4.87	3.87	-4.20	10.42	4.23	1.47	-0.98	100.00	0.00	0.00	
-0.2 SD	6.28	4.82	-5.29	11.90	5.58	1.72	-1.28	100.00	19.80	0.00	
Benchmark	$\mathbf{7 . 0 2}$	5.43	$\mathbf{- 4 . 8 5}$	$\mathbf{1 3 . 4 0}$	$\mathbf{6 . 4 5}$	$\mathbf{1 . 8 2}$	$\mathbf{- 1 . 4 4}$	$\mathbf{1 0 0 . 0 0}$	$\mathbf{3 3 . 4 1}$	$\mathbf{0 . 0 0}$	
0.2 SD	7.64	5.95	-5.16	13.17	6.91	2.10	-1.54	100.00	50.17	0.00	

- Market provided program provides slightly smaller gains.

Resources Available

Cost of parenting education program is hard to estimate

Resources Available

Cost of parenting education program is hard to estimate

- Estimate from Colombia (Attanasio et al, 2016) \Rightarrow US\$450-750 per child.
- Program employed mostly women with high-school degree education. Assuming requires college graduate in US, would suggest costs per child of \$3,400-5,700 in the US.
- Choose upper bound: $2 \times \$ 5,700$ per family (2 children).

Parenting Education: Short Run, PE

$\theta_{P E}$ relative to benchmark	Cons. Equiv. Encome	Avg. Inequality	Mobility	College	Tax Revenue	Tax Rate	
-1.4 SD	1.38	3.02	2.59	7.09	8.46	3.91	0.00
-1.0 SD	1.86	4.17	3.79	9.77	11.33	5.33	0.00
-0.6 SD	2.84	6.18	5.88	12.91	16.39	8.20	0.00
-0.2 SD	3.69	7.92	7.54	15.99	20.70	10.69	0.00
Benchmark	4.06	8.66	8.21	$\mathbf{1 6 . 9 8}$	$\mathbf{2 2 . 5 7}$	$\mathbf{1 1 . 7 8}$	$\mathbf{0 . 0 0}$
0.2 SD	4.40	9.34	8.79	17.83	24.28	12.78	0.00

Robustness and Parameters Importance

Results Robustness: Estimated Parameters Importance

Move each parameter one std. dev. above and below

- Calculate steady-state and introduce same policy as before

	Cons. Equiv. Change from Baseline					
Short-Run PE					\quad	Long-Run GE
:---:	:---:	:---:	:---:			

Results Robustness: CHS Parameters Importance

Move each parameter one std. dev. above and below

- Re-estimate, obtain steady-state, and introduce same policy as before

	Change from Baseline					
	Cons. Equiv. SR-PE	Cons. Equiv. LR-GE				
	Down	Up	Total	Down	Up	Total
α_{1}	0.51	-0.56	1.07	1.64	-2.70	4.34
α_{2}	0.48	-0.44	0.92	0.98	-1.48	2.46
α_{3}	0.11	-0.20	0.31	0.03	-0.89	0.92
ρ	-0.32	0.39	0.71	-1.26	0.96	2.21
σ_{v}	0.18	-0.08	0.26	0.07	-0.66	0.73
$\operatorname{Var}\left(\theta_{k_{0}}\right)$	-0.06	-0.07	0.01	-0.66	-0.67	0.01
$\operatorname{Corr}\left(\theta, \theta_{k_{0}}\right)$	-0.06	-0.07	0.00	-0.69	-0.44	0.25
Baseline	$\mathbf{3 . 9}$					$\mathbf{9 . 4}$

