The Macroeconomic Consequences of Early Childhood Development Policies

Diego Daruich University of Southern California (Marshall)

December 2020

Early childhood investments increase education and income

• Effects can be large (e.g., Garcia, Heckman, Leaf, and Prados, 2020)

Early childhood investments increase education and income

- Effects can be large (e.g., Garcia, Heckman, Leaf, and Prados, 2020)
- Based on small-scale and short-run programs

Early childhood investments increase education and income

- Effects can be large (e.g., Garcia, Heckman, Leaf, and Prados, 2020)
- · Based on small-scale and short-run programs

Consequences of large-scale and long-run policy depend on

- GE effects on capital and labor markets
- Deadweight loss of raising taxes
- Intergenerational dynamics

What is the impact of a *permanent* and *universal* early childhood government investment policy?

Particularly on: income, inequality, intergenerational mobility, and welfare

Use an overlapping generations (OLG) model

- with distortionary taxes
- in general equilibrium

What is the impact of a *permanent* and *universal* early childhood government investment policy?

Particularly on: income, inequality, intergenerational mobility, and welfare

Use an OLG model with distortionary taxes and in general equilibrium

GE Life-cycle Aiyagari + Endogenous Intergenerational Links

- Wage depends on skills

Parental investments of time and money to build child's skills

- Potential role for government investments because of:
 - · Imperfect capital and insurance markets
 - Inability to write contracts with children

Outline

1. Model: GE Life-cycle Aiyagari + Endogenous Intergenerational Links

- Wage depends on skills

- Parental investments of time and money to build child's skills

2. Estimation:

- Skill production function based on Cunha, Heckman, Schennach (2010)
- Key moments on parental investments and transfers from PSID

3. Validation

• Model replicates small-scale short-run RCT evidence (Garcia, Heckman, Leaf, and Prados, 2020)

4. Policy: large-scale government investments in early childhood

- Long-run effects
- Transition (with alternative ways to finance it)
- Alternative policy in paper: parenting education

Large long-run effects

- Average income grows by 7%
- \downarrow Inequality, \uparrow Int. mobility \approx half of gap between US and Canada
- Welfare gains of 9%

Welfare: Consumption equivalence for a newborn under veil of ignorance

Large long-run effects

- Average income grows by 7%
- \downarrow Inequality, \uparrow Int. mobility \approx half of gap between US and Canada
- Welfare gains of 9%

Welfare: Consumption equivalence for a newborn under veil of ignorance

Short-run small-scale policy would underestimate gains by one-half

- Large-scale tax increase reduces gains
- But long-run intergenerational dynamics more than compensate for the losses

Large long-run effects

- Average income grows by 7%
- \downarrow Inequality, \uparrow Int. mobility \approx half of gap between US and Canada
- Welfare gains of 9%

Welfare: Consumption equivalence for a newborn under veil of ignorance

Short-run small-scale policy would underestimate gains by one-half

- Large-scale tax increase reduces gains
- But long-run intergenerational dynamics more than compensate for the losses

Investing in a child today will make him a better parent tomorrow

• Transition: Large increase in gains after first generation has its own children

Large long-run effects

- Average income grows by 7%
- \downarrow Inequality, \uparrow Int. mobility \approx half of gap between US and Canada
- Welfare gains of 9%

Welfare: Consumption equivalence for a newborn under veil of ignorance

Short-run small-scale policy would underestimate gains by one-half

- Large-scale tax increase reduces gains
- But long-run intergenerational dynamics more than compensate for the losses

Investing in a child today will make him a better parent tomorrow

• Transition: Large increase in gains after first generation has its own children

Who does not benefit from the reform?

- Older individuals at the time the policy is introduced
- But this depends on how the transition is financed

Related Literature

Inequality and social mobility

- **GE Quantitative Life-cycle Aiyagari:** De Nardi (2004); Conesa and Krueger (2006); Bakis, Kaymak, and Poschke (2015); Abbott, Gallipoli, Meghir, Violante (2019)...
- Contribution: Endogenous early childhood development

Early childhood development

- Empirical: Carneiro and Heckman (2002, 2003); Todd and Wolpin (2003); Cunha, Heckman, and Schennach (2010); Dahl and Lochner (2012), Agostinelli and Wiswall (2016)...
- Structural: Cunha (2013); Del Boca, Flinn, and Wiswall (2014); Abbott (2016); Caucutt and Lochner (2017)...
- **Contribution**: Large-scale policy evaluation framework (labor and savings choices, general equilibrium, multiple generations)

Both: Lee and Seshadri (2019), Yum (2019)

• **Contribution**: alternative policies and transition (crucial to observe intergenerational dynamics)

Model

Estimation: USA 2000

Policy

Working Period

0	16 20	28 32	68
Birth	Independent	Child Born + Investment	Retirement

$$V_{j}\left(a, \boldsymbol{\theta}, \boldsymbol{e}, \eta \in \mathbb{N}\right) = \max_{c, a', h} u(c, h \in \mathbb{N} + \beta \mathbb{E}\left[V_{j+1}\left(a', \boldsymbol{\theta}, \boldsymbol{e}, \eta' \in \mathbb{N}\right)\right]$$

$$\begin{aligned} c + a' &= y + a (1 + r) - T (y, a, c) \\ y &= w_e E_{e,j} \left(\frac{\theta}{\eta}, \eta \right) h \quad , \quad a' \geq \underline{a}_{e,j} \quad , \quad 0 \leq h \text{ of } \leq 1, \quad \eta' \sim \Gamma_{e,j}(\eta) \end{aligned}$$

where

- a : assets θ : agent's skills
- e : education

 η : wage shock

0	16 20	28 32	68
Birth	Independent	Child Born + Investment	Retirement

 $V_{j}(a, \theta, e, \eta, \theta_{k}) = \max_{c, a', h} u(c, h) + \beta \mathbb{E} \left[V_{j+1} \left(a', \theta, e, \eta', \theta_{k}' \right) \right]$

$$\begin{aligned} c + a' &= y + a \left(1 + r \right) - T \left(y, a, c \right) \\ y &= w_e E_{e,j} \left(\theta, \eta \right) h \quad , \quad a' \geq \underline{a}_{e,j} \quad , \quad 0 \leq h \quad | \leq 1, \quad \eta' \sim \Gamma_{e,j}(\eta) \end{aligned}$$

where

- *a* : assets θ : agent's skills
- e: education θ_k : child's skills manager to use the shift

 η : wage shock

 $V_{j}(a, \theta, e, \eta, \theta_{k}) = \max_{c, a', h, t, m} u(c, h, t) + \beta \mathbb{E} \left[V_{j+1} \left(a', \theta, e, \eta', \theta'_{k} \right) \right]$

$$\begin{aligned} c + a' + m &= y + a \left(1 + r\right) - T\left(y, a, c\right) \\ y &= w_e E_{e,j}\left(\theta, \eta\right) h \ , \quad a' \geq \underline{a}_{e,j} \ , \quad 0 \leq h + t \leq 1, \quad \eta' \sim \Gamma_{e,j}(\eta) \end{aligned}$$

where

a : assets θ : agent's skillst : time with childe : education θ_k : child's skillsm : money towards child η : wage shock

In the paper: include child consumption c_k in utility, $\delta u(c_k, 0)$

 $V_{j}(a, \theta, e, \eta, \theta_{k}) = \max_{c, a', h, t, m} u(c, h, t) + \beta \mathbb{E} \left[V_{j+1} \left(a', \theta, e, \eta', \theta_{k}' \right) \right]$

$$\begin{aligned} c + a' + m &= y + a \, (1 + r) - T \, (y, a, c) \\ y &= w_e E_{e,j} \left(\theta, \eta \right) h \ , \quad a' \geq \underline{a}_{e,j} \ , \quad 0 \leq h + t \leq 1, \quad \eta' \sim \Gamma_{e,j}(\eta) \end{aligned}$$

 $V_{j}(a, \theta, e, \eta, \theta_{k}) = \max_{c, a', h, t, m} u(c, h, t) + \beta \mathbb{E} \left[V_{j+1} \left(a', \theta, e, \eta', \theta'_{k} \right) \right]$

$$\begin{aligned} c + a' + m &= y + a (1 + r) - T (y, a, c) \\ y &= w_e E_{e,j} (\theta, \eta) h , \quad a' \geq \underline{a}_{e,j} , \quad 0 \leq h + t \leq 1, \quad \eta' \sim \Gamma_{e,j}(\eta) \end{aligned}$$

Parent-to-Child Transfer

0	16 20	44	68	
Birth	Independent	Transfer to Child	Retirement	

• Just before child becomes independent, choose transfer â

$$V_{\text{Transfer}}(a, \theta, e, \eta, \theta_k) = \max_{\hat{a}} \underbrace{V_{44}(a - \hat{a}, \theta, e, \eta)}_{\text{Transfer}} + \delta \underbrace{\mathbb{E}\left[V_{16}\left(\hat{a}, \theta_k, \phi_k\right)\right]}_{\text{Transfer}}$$

Parents' Continuation

Child's Utility

$$\hat{a} \geq 0, \qquad \varepsilon_k \sim N(\overline{\varepsilon}_e, \sigma_\varepsilon)$$

Draw of school taste shock, depends on parent's education

Why may government investments g increase welfare?

Welfare: Consumption equivalence for a newborn under veil of ignorance

- 1. Parent can't borrow against child's income created by investing
 - I. Lack of compensation mechanism
 - II. Life-cycle borrowing constraints \Rightarrow Timing of compensation matters

Why may government investments g increase welfare?

Welfare: Consumption equivalence for a newborn under veil of ignorance

- 1. Parent can't borrow against child's income created by investing
 - I. Lack of compensation mechanism
 - II. Life-cycle borrowing constraints \Rightarrow Timing of compensation matters

2. Life-cycle borrowing constraints

· Parent may not be able to use her own future income

3. Lack of insurance

 Investing in child is risky, so more incentives to consume and invest in safe asset

Cobb-Douglas with constant returns to scale:

$$Y = AK^{\alpha}H^{1-\alpha}$$

where *H* is the CES aggregator

$$H = \left[sH_0^{\Omega} + (1-s) H_1^{\Omega} \right]^{\frac{1}{\Omega}}$$

Model

Estimation: USA 2000

Policy

Child's Skill Production Function

Based on Cunha, Heckman and Schennach (ECTA, 2010)

- Investment's productivity depends on child/parent's skills
- · Parameters can vary with child's age

Child's Skill Production Function

Based on Cunha, Heckman and Schennach (ECTA, 2010)

- · Investment's productivity depends on child/parent's skills
- · Parameters can vary with child's age

Parameter values

- Baseline estimation from CHS (2010)
 - Estimated on a representative sample
 - Skills are more malleable when children are young
- Estimation concerns (e.g., Agostinelli and Wiswall, 2016)
 - Test robustness of results when we move away from CHS estimation

Child's Skill Production Function

Based on Cunha, Heckman and Schennach (ECTA, 2010)

- Investment's productivity depends on child/parent's skills
- Parameters can vary with child's age

Model requires specifying and estimating investment function /

$$I = \bar{A} \left[\alpha_m \left(m + g \right)^{\gamma} + (1 - \alpha_m) t^{\gamma} \right]^{1/\gamma}$$

Estimated to match household level data

Important moments for early childhood development

- Parental investments
 - Hours: Use PSID Child Development Supplement (CDS)
 - Expenses: CDS misses child care and school fees. Use CEX

• Parental transfers

- Informative about altruism
- Estimate from PSID Rosters and Transfers Supplement

Estimation: Parameters

Parameter	Value	Std. Error	Description	Moment	Data	Model
Preferences						
μ	176.8	(9.12)	Mean labor disutility	Avg. hours worked	65.2	65.9
δ	0.475	(0.011)	Altruism	Parent-to-child transfer as	0.75	0.73
				share of avg. annual income		
				-		
School Taste:						
α	5.38	(1.61)	Avg. taste for college	College share	33	30
$\alpha_{\theta_{q}}$	-0.55	(0.35)	College taste and cog. skills relation	College: cog skills slope	0.23	0.23
$\alpha_{\theta_{m}}$	-1.15	(0.36)	College taste and non-cog. skills relation	College: non-cog skills slope	0.16	0.15
σ_{ε}	2.51	(0.46)	SD of college taste shock	College: residual variance	0.20	0.18
Ē	-1.55	(0.63)	Draw of school taste:	Intergenerational persistence	0.70	0.75
			mean by parent's education	of education		
Skill Formatio	on Produc	ctivity:				
ξ	0.12	(0.03)	Parental time disutility	Avg. hours with children	18.0	17.2
			of time with children			
Ā	32.4	(1.30)	Returns to investments	Average log(skill)	0.0	0.0
α _m	0.91	(0.02)	Money productivity	Ratio of money to hours	218	183
γ	-0.20	(0.45)	Money-time substitutability	Money-time correlation	0.93	0.88
Interest rate						
ι (×10 ²)	4.9	(1.22)	Borrow-save wedge	Share of borrowers	4.5	4.2
Government						
ω (×10)	2.05	(0.04)	Lump-sum transfer	Income variance ratio:	0.69	0.70
. /				Disposable to pre-gov		

Estimation: Parameters

Parameter	Value	Std. Error	Description	Moment	Data	Model
Preferences						
μ	176.8	(9.12)	Mean labor disutility	Avg. hours worked	65.2	65.9
δ	0.475	(0.011)	Altruism	Parent-to-child transfer as	0.75	0.73
				share of avg. annual income		
School Taste:						
α	5.38	(1.61)	Avg. taste for college	College share	33	30
α_{θ_c}	-0.55	(0.35)	College taste and cog. skills relation	College: cog skills slope	0.23	0.23
α_{θ_m}	-1.15	(0.36)	College taste and non-cog. skills relation	College: non-cog skills slope	0.16	0.15
σ_{ε}	2.51	(0.46)	SD of college taste shock	College: residual variance	0.20	0.18
Ē	-1.55	(0.63)	Draw of school taste:	Intergenerational persistence	0.70	0.75
			mean by parent's education	of education		
Skill Formatio	on Produc	ctivity:				
ξ	0.12	(0.03)	Parental time disutility	Avg. hours with children	18.0	17.2
			of time with children			
Ā	32.4	(1.30)	Returns to investments	Average log(skill)	0.0	0.0
α _m	0.91	(0.02)	Money productivity	Ratio of money to hours	218	183
γ	-0.20	(0.45)	Money-time substitutability	Money-time correlation	0.93	0.88
Interest rate						
ι (×10 ²)	4.9	(1.22)	Borrow-save wedge	Share of borrowers	4.5	4.2
· · · ·			5			
Government						
ω (×10)	2.05	(0.04)	Lump-sum transfer	Income variance ratio:	0.69	0.70
		()		Disposable to pre-gov	21.50	

Estimation: Parameters

Value	Std. Error	Description	Moment	Data	Model
176.8	(9.12)	Mean labor disutility	Avg. hours worked	65.2	65.9
0.475	(0.011)	Altruism	Parent-to-child transfer as	0.75	0.73
			share of avg. annual income		
5.38	(1.61)	Avg. taste for college	College share	33	30
-0.55	(0.35)	College taste and cog. skills relation	College: cog skills slope	0.23	0.23
-1.15	(0.36)	College taste and non-cog. skills relation	College: non-cog skills slope	0.16	0.15
2.51	(0.46)	SD of college taste shock	College: residual variance	0.20	0.18
-1.55	(0.63)	Draw of school taste:	Intergenerational persistence	0.70	0.75
		mean by parent's education	of education		
n Produc	ctivity:				
0.12	(0.03)	Parental time disutility	Avg. hours with children	18.0	17.2
		of time with children			
32.4	(1.30)	Returns to investments	Average log(skill)	0.0	0.0
0.91	(0.02)	Money productivity	Ratio of money to hours	218	183
-0.20	(0.45)	Money-time substitutability	Money-time correlation	0.93	0.88
4.9	(1.22)	Borrow-save wedge	Share of borrowers	4.5	4.2
2.05	(0.04)	Lump-sum transfer	Income variance ratio:	0.69	0.70
	. ,		Disposable to pre-gov		
	Value 176.8 0.475 5.38 -0.55 -1.15 2.51 -1.55 m Produc 0.12 32.4 0.91 -0.20 4.9 2.05	Value Std. Error 176.8 (9.12) 0.475 (0.011) 5.38 (1.61) -0.55 (0.35) -1.15 (0.36) 2.51 (0.46) -1.55 (0.03) 32.4 (1.30) 0.91 (0.02) -0.20 (0.45) 4.9 (1.22)	ValueStd. ErrorDescription176.8 0.475(9.12) (0.011)Mean labor disutility Altruism5.38 -0.55(1.61) (0.35)Avg. taste for college taste and cog. skills relation College taste and cog. skills relation 2.515.18 2.51(0.46) (0.63)SD of college taste shock Draw of school taste: mean by parent's education n Productivity: 0.120.03) (0.03)Parental time disutility of time with children 32.432.4 0.91 (0.02)(0.45)Money-time substitutability4.9(1.22)Borrow-save wedge2.05(0.04)Lump-sum transfer	ValueStd. ErrorDescriptionMoment176.8 0.475(9.12) (0.011)Mean labor disutility AltruismAvg. hours worked Parent-to-child transfer as share of avg. annual income5.38 -0.55(1.61) (0.35)Avg. taste for college college taste and cog. skills relation College: cog skills slope College: non-cog skills slope College: non-cog skills slope College: residual variance Intergenerational persistence of education5.12 2.51 0.63)(0.63)Draw of school taste: mean by parent's educationCollege: residual variance College: residual variance Intergenerational persistence of education5.24 0.12 0.12 0.12(0.03) 0.03 0.03Parental time disutility of time with children of time with children 0.14Avg. hours with children Average log(skill) Ratio of money to hours4.9 2.05(1.22)Borrow-save wedgeShare of borrowers2.05(0.04)Lump-sum transferIncome variance ratio: Disposable to pre-gov	ValueStd. ErrorDescriptionMomentData176.8(9.12)Mean labor disutilityAvg. hours worked65.20.475(0.011)AltruismAvg. hours worked65.20.475(0.011)Avg. taste for collegeCollege share0.755.38(1.61)Avg. taste for collegeCollege share33-0.55(0.35)College taste and cog. skills relationCollege: non-cog skills slope0.232.51(0.46)SD of college taste and non-cog. skills relationCollege: non-cog skills slope0.162.51(0.63)Draw of school taste: mean by parent's educationAvg. hours with children18.00.12(0.03)Parental time disutility of time with childrenAverage log(skill)0.032.4(1.30)Returns to investments Money-time substitutabilityAverage log(skill)0.00.91(0.02)Money-time substitutabilityMoney-time correlation0.934.9(1.22)Borrow-save wedgeShare of borrowers4.52.05(0.04)Lump-sum transferIncome variance ratio: Disposable to pre-gov0.69
Model

Estimation: USA 2000

Policy

Government investments in early childhood

• Government invests money g directly:

$$I = \bar{A} \left[\alpha_m \left(m + g \right)^{\gamma} + (1 - \alpha_m) t^{\gamma} \right]^{1/\gamma}$$

Use RCT to validate the estimated model

- Garcia, Heckman, Leaf, and Prados (2020):
 - Two US early childhood programs (ABC, CARE) in 1970s
 - Cost \approx \$13.5k per year for 5 years, i.e., total \$67.5k per child
 - · Followed up into adulthood and observe education/income

Use RCT to validate the estimated model

- Garcia, Heckman, Leaf, and Prados (2020):
 - Two US early childhood programs (ABC, CARE) in 1970s
 - Cost \approx \$13.5k per year for 5 years, i.e., total \$67.5k per child
 - · Followed up into adulthood and observe education/income

• Apply similar policy in model:

- Small scale: prices and taxes are not affected
- Target: disadvantaged children of low-educated and low-income parents
- One-generation: policy is not received by following generations

Use RCT to validate the estimated model

- Garcia, Heckman, Leaf, and Prados (2020):
 - Two US early childhood programs (ABC, CARE) in 1970s
 - Cost \approx \$13.5k per year for 5 years, i.e., total \$67.5k per child
 - · Followed up into adulthood and observe education/income

Evaluate universal version of policy

- General Equilibrium: Wages (and interest rate) adjust
- Budget Balance: Labor income tax adjusts

Outcomes of interest

- Average income, inequality, and intergenerational mobility
- Consumption equivalence under veil of ignorance

How much extra % consumption would an agent have to get in order to be indifferent between being born in initial SS and alternative?

Outline

1. Long-run effects

(i) Alternative levels of g, (ii) Importance of long run, GE, budget-balance...

2. Transition (with alternative ways to finance it)

Long Run Effects of Early Childhood Investments

Alternative Exercises				Change fr	om Baselin	ie (%)	
Long Run	General Equilibrium	Budget Balanced	Consumption Equivalence	Average Income	Labor Returns	Inequality	Mobility
			10 0 0 00				
No	No	No					
Yes	No	No					
Yes	Yes	No					
Yes	Yes	Yes	9.4	7.2	8.4	-7.9	19.9

Alternative Exercises Change from Bas			om Baselin	ie (%)			
Long	General	Budget	Consumption	Average	Labor	Inequality	Mobility
Run	Equilibrium	Balanced	Equivalence	Income	Returns		
No	No	No	3.9	8.0	8.4	5.3	12.6
Yes	No	No					
Yes	Yes	No					
Yes	Yes	Yes	9.4	7.2	8.4	-7.9	19.9

Short-run small-scale policy would underestimate gains by one-half

Alternative Exercises Change from Baseline			ie (%)				
Long	General	Budget	Consumption	Average	Labor	Inequality	Mobility
Run	Equilibrium	Balanced	Equivalence	Income	Returns		
No	No	No	3.9	8.0	8.4	5.3	12.6
Yes	No	No	9.1	11.7	13.4	5.6	25.4
Yes	Yes	No					
Yes	Yes	Yes	9.4	7.2	8.4	-7.9	19.9

Short-run small-scale policy would underestimate gains by one-half

• Long-run intergenerational dynamics generate over 1/2 of welfare gains

Alternative Exercises				Change fr	om Baselin	ie (%)	
Long	General	Budget	Consumption	Average	Labor	Inequality	Mobility
Run	Equilibrium	Balanced	Equivalence	Income	Returns		
No	No	No	3.9	8.0	8.4	5.3	12.6
Yes	No	No	9.1	11.7	13.4	5.6	25.4
Yes	Yes	No	10.2	7.2	8.6	-7.7	20.2
Yes	Yes	Yes	9.4	7.2	8.4	-7.9	19.9

Short-run small-scale policy would underestimate gains by one-half

• Long-run intergenerational dynamics generate over 1/2 of welfare gains

Large-scale GE effects explain most of inequality reduction

- Increase wage of HS-grads relative to college-grads
- Increase gains by 1/10th

Alternative Exercises Cl			Change fr	Change from Baseline (%)			
Long	General	Budget	Consumption	Average	Labor	Inequality	Mobility
Run	Equilibrium	Balanced	Equivalence	Income	Returns		
No	No	No	3.9	8.0	8.4	5.3	12.6
Yes	No	No	9.1	11.7	13.4	5.6	25.4
Yes	Yes	No	10.2	7.2	8.6	-7.7	20.2
Yes	Yes	Yes	9.4	7.2	8.4	-7.9	19.9

Short-run small-scale policy would underestimate gains by one-half

- Long-run intergenerational dynamics generate over 1/2 of welfare gains
- Large-scale higher taxes reduce gains by 1/10th

Large-scale GE effects explain most of inequality reduction

- Increase wage of HS-grads relative to college-grads
- Increase gains by 1/10th

Many alternatives on how to transition to new steady state

First:

- Immediate introduction of investments *g* and labor-income tax
- Balance budget every period using lump-sum tax

Transition Dynamics

Transition Dynamics

Transition Dynamics

Who Loses? Older Agents at Time of Introduction

Two ways to reduce cost paid by older agents and earlier cohorts

- Government borrowing ⇒ Transfer costs to future cohorts
- Slow introduction of investments ⇒ Reduce earlier costs

Combination makes gains more homogenous across cohorts

Transition: Only Intervened Pay + Slow Intro

Move each parameter one std. dev. above and below

Calculate steady-state and introduce same policy as before

		Cons. Equiv. Change from Baseline Long-Run GE				
		Down	Up	Total		
δ	Altruism					
μ	Labor Disutility					
α	Avg. distaste for College					
α_{θ_c}	College taste-Cog Skills relation					
$\alpha_{\theta_{nc}}$	College taste-NonCog Skills relation					
$\overline{\mathcal{E}}$	Mean college taste shock					
σ_{ε}	SD of college taste shock					
Ā	Returns to investments					
α_m	Money productivity					
γ	Money-Time substitutability					
ξ	Parental time disutility					
ι	Borrow-save wedge					
ω	Lump-sum transfer					

Move each parameter one std. dev. above and below

Calculate steady-state and introduce same policy as before

		Cons. Equiv. Change from Baseline			
			Long-Run	GE	
		Down	Up	Total	
δ	Altruism	0.34	-0.19	0.53	
μ	Labor Disutility	0.13	-0.06	0.07	
α	Avg. distaste for College	-0.66	0.81	1.47	
α_{θ_c}	College taste-Cog Skills relation	0.00	-0.56	0.56	
$\alpha_{\theta_{nc}}$	College taste-NonCog Skills relation	-0.13	-0.14	0.01	
$\overline{\mathcal{E}}$	Mean college taste shock	-0.21	-0.20	0.02	
σ_{ε}	SD of college taste shock	0.70	-0.78	1.48	
Ā	Returns to investments	-0.11	-0.23	0.11	
αm	Money productivity	-0.38	-0.02	0.36	
γ	Money-Time substitutability	-0.21	-0.20	0.01	
ξ	Parental time disutility	-0.19	-0.21	0.02	
ι	Borrow-save wedge	-0.07	-0.19	0.12	
ω	Lump-sum transfer	-0.09	-0.27	0.17	

Move each parameter one std. dev. above and below

Calculate steady-state and introduce same policy as before

		Cons. Equiv. Change from Baseline			
			Long-Run (GE	
		Down	Up	Total	
δ	Altruism	0.34	-0.19	0.53	
μ	Labor Disutility	0.13	-0.06	0.07	
α	Avg. distaste for College	-0.66	0.81	1.47	
α_{θ_c}	College taste-Cog Skills relation	0.00	-0.56	0.56	
$\alpha_{\theta_{nc}}$	College taste-NonCog Skills relation	-0.13	-0.14	0.01	
$\overline{\mathcal{E}}$	Mean college taste shock	-0.21	-0.20	0.02	
σ_{ε}	SD of college taste shock	0.70	-0.78	1.48	
Ā	Returns to investments	-0.11	-0.23	0.11	
αm	Money productivity	-0.38	-0.02	0.36	
γ	Money-Time substitutability	-0.21	-0.20	0.01	
ξ	Parental time disutility	-0.19	-0.21	0.02	
L	Borrow-save wedge	-0.07	-0.19	0.12	
ω	Lump-sum transfer	-0.09	-0.27	0.17	

Move each parameter one std. dev. above and below

Calculate steady-state and introduce same policy as before

		Cons. Equiv. Change from Baseline				
			Long-Run GE			
-		Down	Up	Total		
δ	Altruism	0.34	-0.19	0.53		
μ	Labor Disutility	0.13	-0.06	0.07		
α	Avg. distaste for College	-0.66	0.81	1.47		
α_{θ_c}	College taste-Cog Skills relation	0.00	-0.56	0.56		
$\alpha_{\theta_{nc}}$	College taste-NonCog Skills relation	-0.13	-0.14	0.01		
$\overline{\mathcal{E}}$	Mean college taste shock	-0.21	-0.20	0.02		
σ_{ε}	SD of college taste shock	0.70	-0.78	1.48		
Ā	Returns to investments	-0.11	-0.23	0.11		
αm	Money productivity	-0.38	-0.02	0.36		
γ	Money-Time substitutability	-0.21	-0.20	0.01		
ξ	Parental time disutility	-0.19	-0.21	0.02		
ι	Borrow-save wedge	-0.07	-0.19	0.12		
ω	Lump-sum transfer	-0.09	-0.27	0.17		

• Re-estimate, obtain steady-state, and introduce same policy as before

		Cons. Equiv. Change from Baseline Long-Run GE			
		Down	Up	Total	
α1	Child's Skills Importance				
α2	Parents' Skills Importance				
<i>a</i> ₃	Investments Importance				
ρ	Substitutability				
σ_{ν}	Std. Dev. of Shock				
$Var(\theta_{k_0})$	Var of Initial Skills				
$Corr(\theta, \theta_{k_0})$	IGE Corr of Initial Skills				

· Re-estimate, obtain steady-state, and introduce same policy as before

		Cons. Equiv. Change from Baseline Long-Run GE				
		Down Up Total				
<i>α</i> ₁	Child's Skills Importance	1.64	-2.70	4.34		
α2	Parents' Skills Importance	0.98	-1.48	2.46		
α_3	Investments Importance	0.03	-0.89	0.92		
ρ	Substitutability	-1.26	0.96	2.21		
σ_{ν}	Std. Dev. of Shock	0.07	-0.66	0.73		
$Var(\theta_{k_0})$	Var of Initial Skills	-0.66	-0.67	0.01		
$Corr(\theta, \theta_{k_0})$	IGE Corr of Initial Skills	-0.69	-0.44	0.25		

· Re-estimate, obtain steady-state, and introduce same policy as before

		Cons. Equiv. Change from Baseline Long-Run GE				
		Down Up Total				
α_1	Child's Skills Importance	1.64	-2.70	4.34		
α ₂	Parents' Skills Importance	0.98	-1.48	2.46		
α_3	Investments Importance	0.03	-0.89	0.92		
ρ	Substitutability	-1.26	0.96	2.21		
σ_{ν}	Std. Dev. of Shock	0.07	-0.66	0.73		
$Var(\theta_{k_0})$	Var of Initial Skills	-0.66	-0.67	0.01		
$Corr(\theta, \theta_{k_0})$	IGE Corr of Initial Skills	-0.69	-0.44	0.25		

• Re-estimate, obtain steady-state, and introduce same policy as before

		Cons. Equiv. Change from Baseline Long-Run GE		
		Down	Up	Total
α1	Child's Skills Importance	1.64	-2.70	4.34
α2	Parents' Skills Importance	0.98	-1.48	2.46
α3	Investments Importance	0.03	-0.89	0.92
ρ	Substitutability	-1.26	0.96	2.21
σ_{ν}	Std. Dev. of Shock	0.07	-0.66	0.73
$Var(\theta_{k_0})$	Var of Initial Skills	-0.66	-0.67	0.01
$Corr(\theta, \theta_{k_0})$	IGE Corr of Initial Skills	-0.69	-0.44	0.25

Parenting education program

- Extend model to allow parents to acquire minimum parenting skills
- Use experimental evidence to estimate costs and gains of programs

Two alternative implementations

- 1. Paid by Government
 - Welfare benefits of 8%
 - Reduces inequality by 5% and increases mobility by 15%

2. Paid by Households

- Welfare benefits of 7%
- Reduces inequality by 5% and increases mobility by 13%

As with ECD investments: long-run large-scale gains are larger than short-run small-scale ones

Consequences of large-scale early childhood policies depend on

• (i) GE effects; (ii) cost of raising taxes; (iii) intergenerational dynamics

Model

• Introduce **endogenous parental investments** into a GE OLG incomplete markets model with distortionary taxes

Government early childhood investments increase welfare by 9%

- Small-scale short-run programs underestimate gains
 - Large-scale higher taxes reduce gains by 1/10th
 - Large-scale GE reduces inequality and increases gains by 1/10th
 - Long-run intergenerational dynamics generate over 1/2 of welfare gains

• Effects on inequality and mobility

• Large enough to close gap with Canada by 50%

Some suggestions

Computation and data skills are very valuable

- Software: your choice
- Guides: Judd's or Miranda-Fackler's books, Violante's notes
- Practice is key so start early

For heterogeneous-agents models

- Endogeneous grid method-look at Pijoan-Mas notes
- Simulation using kronecker products
- But these methods evolve quickly ...
 - Maybe approximation methods based on machine learning?

Take advantage of HPC

- Provides lots of computational power
- May need advisor/professor's sponsorship

APPENDIX

Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment's Information

Additional Results

Programs inspired by ABC/CARE around the world:

- Infant Health and Development Program (Spiker et al, 1997)
- John's Hopkins Cerebral Palsy Study (Schneider and McDonald, 2007)
- Classroom Literacy Interventions and Outcomes (Sparling, 2010)
- Massachusetts Family Child Care Study (Collins, 2010)
- Many more in US, Manitoba, Australia (Garcia, Heckman, Leaf, and Prados, 2020)

Evidence on Early Childhood Programs

It is important to observe adult follow-ups (Garcia et al, 2020)

Rather than using early measures to project adult outcomes

Most US evidence is from three programs:

- · Large increases in education and income, and social gains
- Perry Preschool Program (ages 3–5) Schweinhart et al (2005) and Heckman et al (2010)
- Carolina Abecedarian Project (ABC) and Carolina Approach to Responsive Education (CARE) Ramey et al (2002) and Garcia et al (2020)

Head Start

- It is the largest program, between ages 4 (or 3) and 5
- Experimental evidence predicted smaller gains than non-experimental
- Larger gains if program substitution is accounted for (Kline and Walters, 2016)

Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment's Information

Additional Results

Model: More Details
Preliminaries: Skills and Wages

Labor income of individual of age *j*, education *e*, and skills θ is product of:

- 1. Wage of your education group: w_e .
- 2. Labor efficiency units: $E_{i,e,j} = \epsilon_{e,j} \psi_{i,e,j}$.
- 3. Hours worked: h.

Labor efficiency units evolve stochastically as sum of three components:

$$log(E_{i,e,j}) = log(\epsilon_{e,j}) + \lambda_e log(\theta_{ic}) + \eta_{i,e,j}$$

where

- λ_e is education-specific return to skills.
- $\epsilon_{e,j}$ is education-specific age profile.
- $\psi_{i,e,j}$ is stochastic component with persistent cdf $\Gamma_{j,e}$.

During working years

- Can borrow: limits by education group.
- Interest rate r^b = r + ι where r is the returns to saving and ι is the wedge between borrowing and lending capital.

During working years

- Can borrow: limits by education group.
- Interest rate r^b = r + ι where r is the returns to saving and ι is the wedge between borrowing and lending capital.

College Loans

• Pay subsidized interest rate r^c:

During working years

- Can borrow: limits by education group.
- Interest rate r^b = r + ι where r is the returns to saving and ι is the wedge between borrowing and lending capital.

College Loans

• Pay subsidized interest rate r^c:

Today: Presentation of model abstracts from different interest rates.

College Choice

Birth Independent	
College or work	

Work (e = 0) $V_j^w(a, \theta, e, \eta) = \max_{c, a', h} u(c, h) + \beta \mathbb{E} \left[V_{j+1}^w(a', \theta, e, \eta') \right],$ c + a' = y + a(1 + r) - T(y, a, c), $y = w_e E_{e,j}(\theta, \eta) h, \quad a' \ge \underline{a}_{e,j}, \quad 0 \le h \le 1, \quad \eta' \sim \Gamma_{e,j}(\eta).$

College Choice

0	16 20	
Birth	Independent College or work	

Work (e = 0) $V_{j}^{w}(a,\theta,e,\eta) = \max_{c,a',h} u(c,h) + \beta \mathbb{E}\left[V_{j+1}^{w}(a',\theta,e,\eta')\right],$ c + a' = v + a(1 + r) - T(v, a, c) $y = w_e E_{e,i}(\theta, \eta) h, \quad a' \ge \underline{a}_{e,i}, \quad 0 \le h \le 1, \quad \eta' \sim \Gamma_{e,i}(\eta).$ College (e = 1) $V_{j}^{s}\left(a,\theta,e\right) = \max_{c,a',h} u\left(c,h+\bar{h}\right) + \beta \mathbb{E}_{\eta \mid e} V_{j+1}^{w}\left(a',\theta,e,\eta\right)$ $c + a' + p^{s} = v + a(1 + r) - T(v, a, c)$ $y = w_0 E_{e,i}(\theta) h, \quad a' \ge \underline{a}_{e,i}, \quad 0 \le h \le 1 - \overline{h}$

College Choice

0	16 20	
Birth	Independent College or work	

Work (e = 0) $V_{j}^{w}(a, \theta, e, \eta) = \max_{c, a', h} u(c, h) + \beta \mathbb{E} \left[V_{j+1}^{w}(a', \theta, e, \eta') \right],$ c + a' = y + a(1 + r) - T(y, a, c), $y = w_{e}E_{e,j}(\theta, \eta) h, \quad a' \ge \underline{a}_{e,j}, \quad 0 \le h \le 1, \quad \eta' \sim \Gamma_{e,j}(\eta).$ College (e = 1) $V_{j}^{s}(a, \theta, e) = \max_{c, a', h} u(c, h + \overline{h}) + \beta \mathbb{E}_{\eta|e}V_{j+1}^{w}(a', \theta, e, \eta)$ $c + a' + p^{s} = v + a(1 + r) - T(v, a, c)$

$$y = w_0 E_{e,j}(\theta) h, \quad a' \ge \underline{a}_{e,j'}, \quad 0 \le h \le 1 - \overline{h}$$

Work or college:

$$V_{j}^{sw}(a,\theta,\phi) = \max\left\{\mathbb{E}_{\eta|e=0}V_{j}^{w}(s,\theta,0,\eta), V_{j}^{s}(s,\theta,1,\varepsilon) - \kappa(\varepsilon,\theta)\right\}$$

Retirement

0	16 20	28	68	80
Birth	Independent	Fertility	Retire D	eath
			Retirement	

Social Security: Received every period, relative to education e and permanent skill θ .

$$V_{j}(a, \theta, e) = \max_{c, a'} u(c, 0) + \beta V_{j+1}^{w}(a', \theta, e),$$

$$c + a' = \pi(\theta, e) + a(1 + r) - T(0, a, c),$$

$$a' \ge 0$$

• Distributions:

- Cross-sectional distribution of any cohort of age *j* is invariant over time periods.
- Distribution of initial states is determined by older generations.
- Household optimize: Household make choices of education, consumption, labor, parental time and expenditures, transfers such that maximize utility.
- Firms maximize profits.
- Prices clear markets.

Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment's Information

Additional Results

Estimation: Simulated Method of Moments

- 1. Standard parameters from literature.
 - e.g., discounting; intertemporal elasticity of substitution; Frisch elasticity...
- 2. Externally calibrated.
 - e.g., income process; borrowing limits... Details
- 3. Simulated Method of Moments.
 - Key moments to match novel elements of model (e.g., parental investments).

Parametrization: Preferences

Utility function is:

$$u(c,h) = \frac{c^{1-\gamma_c}}{1-\gamma_c} - \mu \frac{h^{1+\gamma_h}}{1+\gamma_h}$$

Parametrization: Preferences

Utility function is:

$$u(c,h) = \frac{c^{1-\gamma_c}}{1-\gamma_c} - \mu \frac{h^{1+\gamma_h}}{1+\gamma_h}$$

Disutility of investing time t on children's skills:

 $v(t) = \xi t$

- From literature: $\gamma_c = 2$, $\gamma_h = 3$.
- To estimate: μ and ξ .

Parental investments

	All	Parents Together
		2 Children
Sample Means		
Weekly Hours	18.0	20.6
	(0.3071)	(0.6721)
Yearly Expenditures	1,966	1,553
	(35.53)	(57.31)
Regression Coefficients		
Hours on College	3.734***	2.473**
	(0.518)	(1.179)
Log(Hours) on Log(Income)	0.123***	0.0481
	(0.0234)	(0.0760)
Expenditures on College	732.4***	665.7***
_	(67.80)	(106.75)
Log(Expenditures) on Log(Income)	0.391***	0.634***
	(0.0285)	(0.0624)

Expenditures: child-care expenditures in CEX. Weekly Hours: based on time reading and playing in PSID-CDS.

- **Tax function** has form: $T(y, a, c) = \tau_y y + \tau_k a r \mathbf{1}_{a \ge 0} + \tau_c c \omega$.
- **Tax rates** from McDaniel (2014): $\tau_y = 0.22$, $\tau_c = 0.07$, and $\tau_k = 0.27$.
- Estimate lump-sum transfer ω such that ratio of the variances of disposable and pre-government log-income is 0.69 (PSID).

Cunha, Heckman and Schennach (2010)

	Cognitive Skills		Non-Cogr	nitive Skills
	1st Stage	2nd Stage	1st Stage	2nd Stage
Current Cognitive Skills	0.479	0.831	0.000	0.000
Current Non-Cognitive Skills	0.070	0.001	0.585	0.816
Investments	0.161	0.044	0.065	0.051
Parent's Cognitive Skills	0.031	0.073	0.017	0.000
Parent's Non-Cognitive Skills	0.258	0.051	0.333	0.133
Complementarity parameter	0.313	-1.243	-0.610	-0.551
Variance of Shocks	0.176	0.087	0.222	0.101

Cunha, Heckman and Schennach (2010) — Only Cognitive

	Cognitive Skills		
	1st Stage	2nd Stage	
Current Cognitive Skills	0.303	0.448	
Investments	0.319	0.098	
Parent's Cognitive Skills	0.378	0.454	
Complementarity parameter	-0.180	-0.781	
Variance of Shocks	0.193	0.050	

	Cognitive Skills		Non-Cogn	itive Skills
	1st Stage	2nd Stage	1st Stage	2nd Stage
Current Cognitive Skills	0.479	0.831	0.000	0.000
Current Non-Cognitive Skills	0.070	0.001	0.585	0.816
Investments	0.161	0.044	0.065	0.051
Parent's Cognitive Skills	0.031	0.073	0.017	0.000
Parent's Non-Cognitive Skills	0.258	0.051	0.333	0.133
Complementarity parameter	0.313	-1.243	-0.610	-0.551
Variance of Shocks	0.176	0.087	0.222	0.101

Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment's Information

Additional Results

Child Development Data: PSID + CDS

- Panel Study of Income Dynamics (PSID):
 - Longitudinal household survey.
 - Information on education, income, marriage, children,... and expenditures on children: toys, vacations, school supplies, clothes, food and medical.
 - Sampling: Core sample of approximately 5k families, in 1968. Over time it includes those born in these families.

Child Development Data: PSID + CDS

• Panel Study of Income Dynamics (PSID):

- · Longitudinal household survey.
- Information on education, income, marriage, children,... and expenditures on children: toys, vacations, school supplies, clothes, food and medical.
- Sampling: Core sample of approximately 5k families, in 1968. Over time it includes those born in these families.

• Child Development Supplement (CDS):

• Multiple Assessments of Child Skills:

Multiple tests: Letter-Word, Applied Problem Solving (and more).
 Multiple ages: 2002, 2007.

 Time Diary: Detailed description of child's activities (weekday and weekend). Information on active and passive participation of parents.

- Using time diaries I calculate "active" time with parents.
- "Active:" parent is performing activity with kid. Assumption: If two parents are active, double the hours.

Parental investments

	All	Parents Together
		2 Children
Sample Means		
Weekly Hours	18.0	20.6
	(0.3071)	(0.6721)
Yearly Expenditures	1,966	1,553
	(35.53)	(57.31)
Regression Coefficients		
Hours on College	3.734***	2.473**
	(0.518)	(1.179)
Log(Hours) on Log(Income)	0.123***	0.0481
	(0.0234)	(0.0760)
Expenditures on College	732.4***	665.7***
	(67.80)	(106.75)
Log(Expenditures) on Log(Income)	0.391***	0.634***
	(0.0285)	(0.0624)

Expenditures: child-care expenditures in CEX.

Weekly Hours: based on time reading and playing in PSID-CDS.

Estimation: Labor income risk

Labor income of individual of age *j*, education *e*, and skills θ is product of:

- 1. Wage of your education group: w_e .
- 2. Labor efficiency units: $E_{i,e,j} = \epsilon_{e,j} \psi_{i,e,j}$.
- 3. Hours worked: h.

Labor efficiency units evolve stochastically as sum of three components:

$$log(E_{i,e,j}) = log(\epsilon_{e,j}) + \lambda_e log(\theta_{ic}) + \eta_{i,e,j}$$

where

- λ_e is education-specific return to skills.
- $\epsilon_{e,j}$ is education-specific age profile.
- $\psi_{i,e,j}$ is stochastic component with persistent cdf $\Gamma_{j,e}$. Details

	(1)	(2)
	High School	College
log(AFQT)	0.471***	1.008***
	(0.0335)	(0.0768)
Observations	7,015	3,378
R-squared	0.045	0.082
# of households	988	487

Source: NLSY. Robust standard errors in parentheses. *, **, *** denote statistical significance at the 10, 5, and 1 percent, respectively. log(AFQT) refers to the natural logarithm of the AFQT89 raw score. The regression includes year fixed effects. Methodology is explained in the main text.

Note: The standard deviation of log-AFQT in the data is approximately 0.21.

Age Profile

	(1)	(2)
VARIABLES	HS Grad	College
Age	0.0312***	0.0557***
	(0.00387)	(0.00577)
Age ²	-0.000271***	-0.000530***
	(4.65e-05)	(6.89e-05)
Constant	2.084***	1.927***
	(0.0779)	(0.118)
Observations	9,130	6,015
R-squared	0.051	0.093
# of households	1357	864

$$\eta_{i,e,j} = \rho_e \eta_{i,e,j-1} + z_{i,e,j}, \quad z_{i,e,j} \stackrel{iid}{\sim} N(0,\sigma_{e,z}), \eta_0^e \qquad \sim N(0,\sigma_{\eta_0}^e)$$

	(1)	(2)
	High School	College
$ ho_{e}$	0.924	0.966
σ _{e,z}	0.029	0.046
σ_{e,η_0}	0.050	0.047

Source: NLSY. A period is 4 years long. Methodology is explained in the main text.

Other elements of estimation

- Aggregate Production Function.
- Borrowing limits.
- Price of college.
- Retirement benefits.
- Labor Income Process.

• Cobb-Douglas Form with constant returns to scale:

$$\mathsf{Y}=\mathsf{K}^{\alpha}\mathsf{H}^{1-\alpha}$$

where H is the nested CES aggregator

$$H = \left[sL_1^{\Omega} + (1-s) L_2^{\Omega} \right]^{\frac{1}{\Omega}}$$

- Set *α* = 1/3.
- Estimate using FOCs as in Katz and Murphy (1992) or Heckman et al (1998):
 - s = 0.53.
 - $\frac{1}{1-\Omega} = 1.75.$

Borrowing limits

Individuals can (unsecured) borrow during working years:

- Interest rate r^b = r + ι where r is the returns to saving and ι is the wedge between borrowing and lending capital.
- Borrowing limits estimated from self-reported limits by education in SCF: \$20k and \$34k for HS graduates and college graduates.

Borrowing limits

Individuals can (unsecured) borrow during working years:

- Interest rate r^b = r + ι where r is the returns to saving and ι is the wedge between borrowing and lending capital.
- Borrowing limits estimated from self-reported limits by education in SCF: \$20k and \$34k for HS graduates and college graduates.

Borrowing is allowed for **college** at **subsidized interest rate** *r*^{*c*}:

- Pay interest rate $r^c = r + \iota^c$ where ι^c was estimated to be 1% annually in federal student loans (Mix of no interest rate loans and 2.6% loans). Note $\iota^c < \iota$.
- Borrowing limit estimated to be \$23k.

Price of College

College:

- Based on Delta Cost Project, yearly cost of college \approx \$6,588.
- This only considers tuition costs paid by individuals, i.e. it removes grants and scholarships.

Government: Retirement Benefits

- Replacement benefits are based on current US Social Security (OASDI).
- Use education and FE in model to estimate average lifetime income, on which the system is based.

Replacement rate

- *h* is the last level of human capital before retirement. The average life time income is summarized by ŷ(*h*, *e*).
- Progressive formula based on SSA

$$\pi(h) = \begin{cases} 0.9\widehat{y}(h,e) & \text{if } \widehat{y}(h,e) \le 0.3\overline{y} \\ 0.9(0.3\overline{y}) + 0.32(\widehat{y}(h,e) - 0.3\overline{y}) & \text{if } 0.3\overline{y} \le \widehat{y}(h,e) \le 2\overline{y} \\ 0.9(0.3\overline{y}) + 0.32(2-0.3)\overline{y} + 0.15(\widehat{y}(h,e) - 2\overline{y}) & \text{if } 2\overline{y} \le \widehat{y}(h,e) \le 4.1\overline{y} \\ 0.9(0.3\overline{y}) + 0.32(2-0.3)\overline{y} + 0.15(4.1-2)\overline{y} & \text{if } 4.1\overline{y} \le \widehat{y}(h,e) \end{cases}$$

where $\hat{y}(h, e) = [0.98 \ 1.17 \ 0.98] \times h$ and \bar{y} is approximately \$70,000.

Parameter	Value	Description
Jb	16	Independent - start with 12 years of education
Je	20	Max educ - average years of schooling 13.42
Jc	28	Fertility
Jk	36	Transfer to children
Jt	40	Transfers to parents
Jr	68	Retire
Jd	80	Death

Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment's Information

Additional Results

Step 1: Target moments

- · Estimate target moments using whole sample
- Using bootstrap, obtain moments M_n for n = 1, ..., N

Step 2: Global estimation

- Draw parameters from "large" uniform iid hypercube (sobol sequence)
- Trade-offs:
 - Obtain combination of parameters that best fits whole-sample moments
 - For moments M_n (n = 1, ..., N), obtain an estimated parameters P_n
 - Calculate standard deviations or confidence intervals of P_n
 - But very costly to do if number of parameters is large
Preferences

Transfers to children

Back to Methodology Back to Parameters

School Taste

Share of college grads (%)

College: noncog skills slope

College: cog skills slope

School taste-cog skill relation (α_c)

College: residual variance

Skill Formation Productivity

Money-time correlation

Ratio money-time

IGE persistence of education

Tax Progressivity

Redistribution of income

Financial Services

Share of borrowers

Outline

Early Childhood Programs

Model: More Details

Estimation: More Details

Data

Moment's Information

Additional Results

Validation: Not Targeted Moments

Moment		Data	Model					
Regression of parental investments to parents' characteristics (PSID-CDS and CEX)								
	All	Homogeneous						
	Families	Families						
Hours on college ed. parent	3.7	2.5	4.5					
Expenditures on college ed. parent	732	666	752					
Log hours on log parent income	0.12	0.05	0.07					
Log expenditures on log parent income	0.39	0.63	0.87					
Intergenerational Mobility (Chetty et al, 2016 and	PSID-CDS)							
Rank-Rank coefficient	0	.26–0.29	0.29					
Regression of college to log-parent income		0.24	0.18					
Inequality (PSID)								
Gini		0.32	0.27					
Top-Bottom		3.7	3.1					
Savings (Inklaar and Timmer, 2013)								
Capital-Output Ratio (annualized)		≈ 3	2.8					
Return to College (PSID and Heckman et al, 2006	6)							
Income Ratio: College – HS Graduate		1.6	1.7					
Yearly return		$\approx 10\%$	12%					
		Pools to potim						

Back to RCT

Welfare

Consumption equivalence under veil of ignorance

Let utility under policy *P* with extra % consumption λ be:

$$\tilde{V}_{J_i}^{P}\left(a,\theta,\phi,\lambda\right) = \mathbb{E}^{P}\left\{\sum_{j=J_i}^{j=J_d} \beta^{(j-J_i)} u(c_j^{P}(1+\lambda),h_j^{P}) + \beta^{J_c} b \,\tilde{V}_{J_i}^{P}\left(\varphi,\theta_k,\phi,\lambda\right)\right\}$$

So average utility is:

$$\bar{V}^{P}\left(\lambda\right) = \int_{a,\theta,\phi} \tilde{V}_{J_{i}}^{P}\left(a,\theta,\phi,\lambda\right) \mu_{P}\left(a,\theta,\phi\right)$$

Then, welfare gain from going from policy P = 0 to P = p is given by λ^p where:

$$\bar{V}^{0}\left(\lambda^{p}\right)=\bar{V}^{p}\left(0\right)$$

By definition, welfare gains come from 2 sources

- Changes in values of becoming independent in each state, i.e., $\tilde{V}_{J_i}^P(a,\theta,\phi,0)$
- Changes in probabilities of each state, i.e., $\mu_P(a, \theta, \phi)$

By definition, welfare gains come from 2 sources

- Changes in values of becoming independent in each state, i.e., $V(a, \theta, \varphi)$
- Changes in probabilities of each state, i.e., $\mu(a, \theta, \varphi)$

Most welfare gains are driven by change in distribution μ

- Fixing μ : Gains are 2.5%
- Fixing V: Gains are 7.3%

Transition Dynamics

Back

Early Childhood Investments

Transition: Only Intervened Pay

Transition: Only Intervened Pay

Back

Transition: Only Intervened Pay + Slow Intro

Transition: Only Intervened Pay + Slow Intro

Transition: Only Intervened Pay + Slow Intro

With Early Childhood Production Function

Assume early childhood good's only input is college labor

• Price of early childhood is now wage of college graduate

Assume early childhood good's only input is college labor

Price of early childhood is now wage of college graduate

Short-run vs Long-run

- 1. Short run: scarcity of college graduates increases costs
- 2. Long run: increased supply of college reduces costs

With Early Childhood Production Function

Back to Transition

Parenting Education

Endogenous parental investments allows for new policy:

- **Parenting Education**: teach techniques and games to solve discipline problems, foster confidence and capability,...
- Estimated cost of program: \$11,400 per family Details

Recall production function is:

Recall production function is:

With parenting education:

Gertler et al (2013) study effect of parenting education in Jamaica

- RCT on growth-stunted and poor children, ages 0-2, in 1986
- Children around age $22 \Rightarrow$ income grew by 12% (at least)

Gertler et al (2013) study effect of parenting education in Jamaica

- RCT on growth-stunted and poor children, ages 0-2, in 1986
- Children around age $22 \Rightarrow$ income grew by 12% (at least)

Mimic RCT in model

- Small scale and one-time policy
- Focus on children with low initial draws of skills And of low-income, low-skilled, low-educated parents

Look for increase in productivity that increases income by 12%

Gertler et al (2013) study effect of parenting education in Jamaica

- RCT on growth-stunted and poor children, ages 0-2, in 1986
- Children around age 22 ⇒ income grew by 12% (at least)

Mimic RCT in model

- Small scale and one-time policy
- Focus on children with low initial draws of skills And of low-income, low-skilled, low-educated parents

Look for increase in productivity that increases income by 12%

θ_{PE}	Change from Baseline (%)
Std. Dev. of $\boldsymbol{\theta}$	Income Bottom
-1.6 SD	0.00
-1.0 SD	2.13
-0.4 SD	5.22
0.0 SD	7.22
+0.4 SD	9.48
+0.8 SD	11.48
+1.0 SD	12.31
+1.2 SD	13.10

Gertler et al (2013) study effect of parenting education in Jamaica

- RCT on growth-stunted and poor children, ages 0-2, in 1986
- Children around age 22 ⇒ income grew by 12% (at least)

Mimic RCT in model

- Small scale and one-time policy
- Focus on children with low initial draws of skills And of low-income, low-skilled, low-educated parents

Look for increase in productivity that increases income by 12%

θ_{PE}	Change from Baseline (%)
Std. Dev. of $\boldsymbol{\theta}$	Income Bottom
-2.6 SD	0.00
-2.0 SD	2.13
-1.4 SD	5.22
-1.0 SD	7.22
-0.6 SD	9.48
-0.2 SD	11.48
Benchmark = 0	12.31
+0.2 SD	13.10

Parenting Education: Long Run, GE

θ_{PE}		Change from Baseline (%)								
relative t	o	Cons. Avg. Inequality Mobility College					Тах	Тах		
benchma	rk	Equiv.	Income				Revenue	Rate		
-1.4 SD		2.87	2.29	-3.12	9.29	2.61	2.60	-0.28		
-1.0 SD		3.79	2.85	-4.29	11.03	3.32	2.93	-0.44		
-0.6 SD		5.48	4.36	-4.79	13.85	5.00	3.39	-0.76		
-0.2 SD		6.95	5.39	-4.98	15.32	6.30	3.64	-1.05		
Benchm	nark	7.65	5.68	-5.14	15.47	6.40	3.95	-1.16		
0.2 SD		8.19	6.05	-5.35	16.70	6.87	4.06	-1.26		

Parenting Education: Long Run, GE

θ_{PE}	Change from Baseline (%)								
relative to	Cons.	cons. Avg. Inequality Mobility College					Tax		
benchmark	Equiv.	Income				Revenue	Rate		
-1.4 SD	2.87	2.29	-3.12	9.29	2.61	2.60	-0.28		
-1.0 SD	3.79	2.85	-4.29	11.03	3.32	2.93	-0.44		
-0.6 SD	5.48	4.36	-4.79	13.85	5.00	3.39	-0.76		
-0.2 SD	6.95	5.39	-4.98	15.32	6.30	3.64	-1.05		
Benchmark	7.65	5.68	-5.14	15.47	6.40	3.95	-1.16		
0.2 SD	8.19	6.05	-5.35	16.70	6.87	4.06	-1.26		

• Even if parenting education is **1.4 standard deviation less effective** it still has positive welfare effect in the long run

Parenting Education: Long Run, GE

θ_{PE}	Change from Baseline (%)								
relative to	Cons.	Cons. Avg. Inequality Mobility College					Tax		
benchmark	Equiv.	Income				Revenue	Rate		
-1.4 SD	2.87	2.29	-3.12	9.29	2.61	2.60	-0.28		
-1.0 SD	3.79	2.85	-4.29	11.03	3.32	2.93	-0.44		
-0.6 SD	5.48	4.36	-4.79	13.85	5.00	3.39	-0.76		
-0.2 SD	6.95	5.39	-4.98	15.32	6.30	3.64	-1.05		
Benchmark	7.65	5.68	-5.14	15.47	6.40	3.95	-1.16		
0.2 SD	8.19	6.05	-5.35	16.70	6.87	4.06	-1.26		

- Even if parenting education is **1.4 standard deviation less effective** it still has positive welfare effect in the long run
- Large effect on Intergeneration mobility and inequality

Parenting Education Market: Long Run, GE

Now program can be purchased by families

	Change from Baseline (%)									
	Cons.	Avg.	Inequality	Mobility	College	Tax	Tax	Take-Up	Take-Up	Take-Up
	Equiv.	Income				Revenue	Rate	Low	Medium	High
-1.4 SD	1.61	1.66	-2.08	5.63	1.47	0.45	-0.35	82.54	0.00	0.00
-1.0 SD	3.15	2.75	-2.72	6.54	2.49	0.78	-0.68	93.93	0.00	0.00
-0.6 SD	4.87	3.87	-4.20	10.42	4.23	1.47	-0.98	100.00	0.00	0.00
-0.2 SD	6.28	4.82	-5.29	11.90	5.58	1.72	-1.28	100.00	19.80	0.00
Benchmark	7.02	5.43	-4.85	13.40	6.45	1.82	-1.44	100.00	33.41	0.00
0.2 SD	7.64	5.95	-5.16	13.17	6.91	2.10	-1.54	100.00	50.17	0.00

• Market provided program provides slightly smaller gains.

Cost of parenting education program is hard to estimate

Cost of parenting education program is hard to estimate

- Estimate from Colombia (Attanasio et al, 2016) \Rightarrow US\$450-750 per child.
- Program employed mostly women with high-school degree education. Assuming requires college graduate in US, would suggest costs per child of \$3,400-5,700 in the US.
- **Choose upper bound**: $2 \times $5,700$ per family (2 children).

θ_{PE}	Change from Baseline (%)								
relative to	Cons.	Avg.	Inequality	Mobility	College	Tax	Тах		
benchmark	Equiv.	Income				Revenue	Rate		
-1.4 SD	1.38	3.02	2.59	7.09	8.46	3.91	0.00		
-1.0 SD	1.86	4.17	3.79	9.77	11.33	5.33	0.00		
-0.6 SD	2.84	6.18	5.88	12.91	16.39	8.20	0.00		
-0.2 SD	3.69	7.92	7.54	15.99	20.70	10.69	0.00		
Benchmark	4.06	8.66	8.21	16.98	22.57	11.78	0.00		
0.2 SD	4.40	9.34	8.79	17.83	24.28	12.78	0.00		
Robustness and Parameters Importance

Results Robustness: Estimated Parameters Importance

Move each parameter one std. dev. above and below

Calculate steady-state and introduce same policy as before

	Cons. Equiv. Change from Baseline									
	Short-Run PE			Long-Run	Long-Run GE					
	Down	Up	Total	Down Up	Total					
δ	0.06	-0.02	0.09	0.34 -0.19	0.53					
μ	-0.01	0.00	0.01	-0.13 -0.06	0.07					
α	0.06	-0.22	0.28	-0.66 0.81	1.47					
α_{θ_c}	0.09	-0.12	0.21	0.00 -0.56	0.56					
$\alpha_{\theta_{nc}}$	0.01	-0.02	0.03	-0.13 -0.14	0.01					
$\overline{\mathcal{E}}$	-0.01	-0.02	0.01	-0.21 -0.20	0.02					
σ_{ε}	-0.16	0.03	0.19	0.70 -0.78	1.48					
Ā	0.01	-0.02	0.02	-0.11 -0.23	0.11					
α _m	-0.05	0.04	0.10	-0.38 -0.02	0.36					
γ	-0.00	-0.04	0.03	-0.21 -0.20	0.01					
ξ	-0.00	-0.00	0.00	-0.19 -0.21	0.02					
ι	-0.00	0.00	0.00	-0.07 -0.19	0.12					
ω	0.02	-0.02	0.04	-0.09 -0.27	0.17					
Baseline		3.9		9.4						

Move each parameter one std. dev. above and below

• Re-estimate, obtain steady-state, and introduce same policy as before

	Change from Baseline								
	Cons. Equiv. SR-PE				Cons. Equiv. LR-GE				
	Down	Up	Total		Down	Up	Total		
α_1	0.51	-0.56	1.07		1.64	-2.70	4.34		
α2	0.48	-0.44	0.92		0.98	-1.48	2.46		
α_3	0.11	-0.20	0.31		0.03	-0.89	0.92		
ρ	-0.32	0.39	0.71		-1.26	0.96	2.21		
σ_{ν}	0.18	-0.08	0.26		0.07	-0.66	0.73		
$Var(\theta_{k_0})$	-0.06	-0.07	0.01		-0.66	-0.67	0.01		
$Corr(\theta, \theta_{k_0})$	-0.06	-0.07	0.00		-0.69	-0.44	0.25		
Baseline		3.9				9.4			