Wealth Inequality and Intergenerational Links

By Mariacristina De Nardi
Review of Economic Studies, 2004

U.S. wealth and earnings distributions

Percentage held by the top	1%	5%	20%	40%	80%	Percent with zero or negative
Wealth	28	49	75	89	99	$6-15$
Gross Earnings	6	19	48	72	98	7.7

Swedish wealth and earnings distributions

Percentage held by the top	1%	5%	20%	40%	80%	Percent with zero or negative
Wealth	17	37	75	99	100	30
Gross Earnings	4	15	42	68	98	7.6

Some more facts

- Earnings and wealth are unequally distributed and concentrated.
- Wealth is much more concentrated than earnings.
- Some of this inequality is due to life-cycle.
- In the aggregate, a large fraction of wealth is transmitted across generations rather than accumulated out of life-cycle savings.
- Rich people (with high lifetime income) keep lots of assets as they age.

Questions

- Are intergenerational links quantitatively important to explain household saving behavior and wealth concentration?
- If yes, which ones? Do voluntary or involuntary bequests matter?
- Is the same saving model valid for other countries?
- Consider Sweden: country in which there is less inequality and the government redistributes more than in the U.S.?

Related Literature

Dynasty models

- Krusell and Smith (1997).
- Castañeda, Díaz-Giménez and Ríos-Rull (1998)
- Quadrini (1997).

OLG models

- Huggett (1996).
- Gokhale et al. (1998)
- Heer (1999)

Elements of the model

- OLG;
- lifetime and income uncertainty;
- parents are altruistic;
- children partially inherit parents' productivity.

Why?

- Age structure generates inequality;
- Motives to save: precautionary, life cycle, bequests. poor people: life-cycle component of savings; rich: inheritance.
- Also differences due to different family backgrounds.

Key elements of the model

Simplified model of the household: 1 parent and children.

- continuum of agents born each period (5 years)
- live up to 90 years of age. Prob. of dying depends on age
- 20 year old people consume, work and pay taxes
- 25 year old people procreate
- exogenous number of children, total population grows at a constant rate over time
- inherit once in a lifetime, at a random date
- exogenous income process
- after retirement the agent does not work and receives social security benefits

Preferences

- Period utility from consumption:

$$
u\left(c_{t}\right)=\frac{c_{t}^{1-\sigma}}{1-\sigma}
$$

- Bequest motive: "Warm glow altruism" $\phi(b)$

Technology

- Observe parental productivity when one's parent is 40 and use it to infer expected bequest distribution.
- Workers experience productivity shocks $y_{t}(s)$.
- After age 20 it evolves stochastically according to Q_{y}.
- Initial level at 20 is inherited from parent's productivity (at 40) according to $Q_{y h}$.
- Exogenous age-efficiency profile, ϵ_{t}, during working years.
- One asset: capital.
- The household faces a borrowing constraint.

Government

The government taxes:

- Labor, capital income and estates

To finance:

- Exogenous public expenditure;
- Social security transfers to the retired agents. Retirees each period receive a lump sum transfer from the government.

Prices

- US: a "closed economy", Cobb-Douglas production function.
- Sweden: an "open economy", the net interest rate is given by the U.S. one.

The Agent's Recursive Problem

State variables:

- age t;
- assets from last period a_{t};
- current productivity y_{t};
- $y p_{t}$: parent's prod. at 40 until child inherits and zero thereafter.
$y p_{t}>0 \Rightarrow$ make inference on bequests;
$y p_{t}=0 \Rightarrow$ distinguish orphans.

Life cycle structure

Four subperiods in the agent's life:

- from 20 to 30 years of age;
- from 35 to 55 years old;
- 60 years old;
- from 65 to 85 ;
(i) 20 to 30 years old: person works, survives for certain until next period and does not expect to inherit soon $\left(\Rightarrow y p^{\prime}=y p\right)$.

$$
\begin{equation*}
V(t, a, y, y p)=\max _{c, a^{\prime}}\left\{u(c)+\beta E_{t} V\left(t+1, a^{\prime}, y^{\prime}, y p\right)\right\} \tag{1}
\end{equation*}
$$

subject to:

$$
\begin{gather*}
c \leq\left[1+r\left(1-\tau_{a}\right)\right] a+\left(1-\tau_{l}\right) \epsilon_{t} y \tag{2}\\
a^{\prime}=\left[1+r\left(1-\tau_{a}\right)\right] a-c+\left(1-\tau_{l}\right) \epsilon_{t} y \tag{3}
\end{gather*}
$$

(ii) 35 to 55 : worker survives into next period, parent may die and leave a bequest.

$$
\begin{equation*}
V(t, a, y, y p)=\max _{c, a^{\prime}}\left\{u(c)+\beta E_{t} V\left(t+1, a^{\prime}, y^{\prime}, y p^{\prime}\right)\right\} \tag{4}
\end{equation*}
$$

subject to (2) and:

$$
\begin{align*}
a^{\prime}=\left[1+r\left(1-\tau_{a}\right)\right] a-c & +\left(1-\tau_{l}\right) \epsilon_{t} y \tag{5}\\
& +b^{\prime} l_{y p>0} l_{y p^{\prime}=0}
\end{align*}
$$

$I_{y p>0}$ indicator fn: 1 if $y p>0$.

$$
y p^{\prime}=\left\{\begin{array}{cl}
y p & \text { with probability } \alpha_{t+5} \tag{6}\\
0 & \text { with probability }\left(1-\alpha_{t+5}\right)
\end{array}\right.
$$

$\mu_{b}(t, y p)$: cond. distr. of b^{\prime}, bequest net of taxes a person expects if parent dies.
(iii) age 60: next period the agent retires. He faces a positive prob. of dying. $b\left(a^{\prime}\right) \equiv a^{\prime}-\tau_{b} \cdot \max \left(0, a^{\prime}-e x_{b}\right)$.

$$
\begin{gather*}
V(t, a, y, y p)=\max _{c, a^{\prime}}\left\{u(c)+\alpha_{t} \beta E_{t} V\left(t+1, a^{\prime}\right)\right. \tag{7}\\
\left.+\left(1-\alpha_{t}\right) \phi\left(b\left(a^{\prime}\right)\right)\right\} \\
\phi(b)=\phi_{1}\left(1+\frac{b}{\phi_{2}}\right)^{1-\sigma} \tag{8}
\end{gather*}
$$

subject to (2, 5 and 6).
(iv) age 65 to 85: the agent is retired and does not expect to inherit.

$$
\begin{array}{r}
V(t, a)=\max _{c, a^{\prime}}\left\{u(c)+\alpha_{t} \beta V\left(t+1, a^{\prime}\right)\right. \\
\left.+\left(1-\alpha_{t}\right) \phi\left(b\left(a^{\prime}\right)\right)\right\} \tag{9}
\end{array}
$$

subject to (5) and:

$$
\begin{gather*}
c \leq\left[1+r\left(1-\tau_{a}\right)\right] a+p \tag{10}\\
a^{\prime}=\left[1+r\left(1-\tau_{a}\right)\right] a-c+p \tag{11}
\end{gather*}
$$

p : pension payment from the government. $V(T+1, a)=\phi(b(a))$.

Transition Function

- Use agents' policy fns and exogenous Markov processes to
- get a transition function that maps the time s distribution of the state variables in the population, $m(\cdot ; s)$, into the distribution for next period $m(\cdot ; s+1)$.
- Focus on stationary equilibria (constant transition function M^{*} and its invariant distribution m^{*}).

A stationary equilibrium (part I) is:

- an interest rate r,
- allocations $c(x), a(x)$,
- government policy, $\left(\tau_{a}, \tau_{I}, \tau_{b}, e x_{b}, p\right)$,
- family of prob. distr. for bequests $\mu_{b}(x ; \cdot)$,
- const. distr. of people over x : $m^{*}(x)$, such that, given r, and government policy:

A stationary equilibrium (part II) is:

- $c(x)$ and $a(x)$ solve individual max. problem given bequest distr.
- the gvt b.c. balances at each period

$$
\begin{array}{r}
g=\int\left[\tau_{a} r a+\tau_{I} \epsilon_{t} y l_{t<t_{r}}-p I_{t \geq t_{r}}\right. \tag{12}\\
\left.+\tau_{b}\left(1-\alpha_{t-1}\right) \cdot \max \left(0, a^{\prime}-e x_{b}\right)\right] d m^{*}(x)
\end{array}
$$

- m^{*} is an invariant distribution for this economy
- U.S.: $\frac{(r+\delta) K}{(r+\delta) K+w L}=\alpha$. Normalizations: $w=1, L$ is fraction of working age people. Sweden:small open economy, so r is taken as exogenous.
- family of expected beq. distr. $\mu_{b}\left(\cdot ; t, y_{p}\right)$ is consistent with the bequests left by parents

The Algorithm

- Solve backward the agents' value functions, starting from T : next period the agent is dead for sure hence derives utility only from bequests
- compute the invariant distribution
- iterate on the government budget
- iterate on bequests

The model economy for the U.S.

Parameter	Value	US Economy, Source(s)
α_{t}	$*$	Bell Wade Goss (1992)
ϵ_{t}	$*$	Hansen (1993)
σ	1.5	Attanasio et al (1995)
n	1.2%	Econ. Rep. Pres. (1998)
g	19% of GDP	Econ. Rep. Pres. (1998)
τ_{a}	20%	Kotlikoff et AI. (1997)
r	6%	see text
p	40% avg inc.	Kotlikoff et al (1997)
Q_{y}	+	Huggett (1996), Lillard et al. (1978)
$Q_{y h}$	+	Zimmerman (1992)

Parameter	Value	US Economy, Source (s)
τ_{b}	10%	see text
$e x_{b}$	$40 *$ median earn.	see text
β	$.95-.97$	capital-output ratio
ϕ_{1}	-9.5	interg. transfers share
ϕ_{2}	11.6	match 1 moment of bequest distr.

The model economy for Sweden

Sweden has:

- less income inequality
\Rightarrow less idiosyncratic earnings uncertainty
- more generous social security system
- higher average tax rates on earnings, capital income and estates.

Parameter	Value	Sweden, Chosen to Match
α_{t}	$*$	Stat. Yearbook Sweden (1997)
ϵ_{t}	$*$	as U.S.
β	$.95-.97$	as U.S.
σ	1.5	as U.S.
ϕ_{1}	-9.5	as U.S.
n	$.8 \%$	OECD Ec. Surveys, Sweden (1998)
g	25% GDP	OECD Ec. Surveys, Sweden (1998)
τ_{a}	30%	OECD Ec. Surveys, Sweden (1998)
r	6.86%	see text
p	50% avg inc.	OECD Ec. Surveys, Sweden (1998)
Q_{y}	+	see text
$Q_{y h}$	+	Zimmerman (1992)

Parameter	Value	Sweden, Chosen to Match
τ_{b}	15%	see text
$e x_{b}$	$10 *$ avg earn.	see text
ϕ_{2}	3.3	"altruism", see text

Experiments

Add sequentially key elements to model economies:

- Age structure and income uncertainty OLG, no intergenerational links. Accidental bequests:
- redistributed equally to people alive
- given to the deceased's children
- Add bequest motive: OLG + bequest motive
- Add productivity link:

OLG + bequest motive + productivity inheritance

Beq/Wealth Ratio	Wealth Gini	Percentage wealth in the top					$\begin{aligned} & \hline \% \leq 0 \\ & \text { Wealth } \end{aligned}$
		1\%	5\%	20\%	40\%	60\%	
U.S. data							
60	. 78	29	53	80	93	98	5.8-15.0
No intergenerational links, equal bequests to all							
. 67	. 67	7	27	69	90	98	17
No intergenerational links, unequal bequests to children							
. 38	. 68	7	27	69	91	99	17
One link: productivity inheritance							
. 38	. 69	8	29	70	92	99	17
One link: parent's bequest motive							
. 55	. 74	14	37	76	95	100	19
Both links: parent's bequest motive and productivity inheritance							
. 60	. 76	18	42	79	95	100	19

U.S. wealth .1, .3, .5, .7, .9, . 95 quantiles, by age

No links, equal bequests to all.

U.S. wealth .1, .3, .5, .7, .9, . 95 quantiles, by age.

Bequest motive only.

Cumulative distribution of estates

Solid=model, dash-dot=AHEAD data.

Expected bequest distribution at 40, model

Figure: U.S.

Figure: Sweden

Saving rate conditional on inheritance expectation

U.S. calibration. Bequest motive only.

Wealth duantiles: .1. 25, .5, .75, 85, .95. US calib.

Figure: Conditional on not having inherited.

Figure: Conditional on having inherited.

Beq/Wealth Ratio	Wealth Gini	Percentage wealth in the top					$\% \leq 0$ Wealth
		1\%	5\%	20\%	40\%	60\%	
Swedish data $>.51$. 73	17	37	75	99	100	30
No intergenerational links, equal bequests to all							
. 73	. 64	5	23	64	89	100	24
No intergenerational links, unequal bequests to children							
. 38	. 67	6	25	67	91	100	26
One link: bequest motive							
. 76	. 71	8	29	73	95	100	30
Both links: bequest motive and productivity inheritance							
. 77	. 73	9	31	75	95	100	30

Conclusions

- Accidental bequests do not help explain wealth concentration. Voluntary bequests do.
- Transmission of productivity across generations increases some more the concentration.
- Bequest motive \rightarrow life-cycle accumulation profile more consistent with the U.S. data.
- U.S.-Sweden comparison \rightarrow intergenerational links important also in economies where redistribution programs are more prominent and there is less inequality. Disincentives to save.

