Entrepreneurship, Frictions, and Wealth

Marco Cagetti and Mariacristina De Nardi JPE 2006

Previous work:

- Potential and existing entrepreneurs face borrowing constraints.
- Entrepreneurship is key to understand wealth inequality.

Entrepreneurs and borrowing constraints

- Entrepreneurial choice depends on own assets and received bequests
- Entrepreneur's portfolio undiversified
- Collateral

Entrepreneurs and wealth inequality

- Wealth more concentrated than labor earnings and income
- Small fraction of entrepreneurs hold large share of total wealth (they also have higher saving rates)

Related Literature

- Entrepreneurial choice Gentry and Hubbard, Evans and Jovanovic, Quadrini
- Wealth accumulation

Diaz-Gimenez et at., Quadrini and Rios-Rull, Castañeda et al., De Nardi

- Optimal contracts Albuquerque and Hopenhayn, Monge

What we do:

- Construct a quantitative model consistent with observed data.
- Evaluate model along dimensions not matched by construction.
- Study effects of borrowing constraints on aggregates and wealth inequality.

Preview of results

- Model accounts very well for wealth distributions of entrepreneurs and workers
- Generates entry into entrepreneurship consistent with Hurst and Lusardi's estimates
- Model generates entrepreneurial returns consistent with those in SCF data
- More stringent borrowing constraints \Rightarrow less inequality but also less investment
- Voluntary bequests important for wealth concentration

The model

Demographics

households: overlapping generations (possibly) with altruism.
Two stages of life: young and old, stochastic aging
$1-\pi_{y}=\mathrm{pr}$ of aging
$1-\pi_{o}=\mathrm{pr}$ of dying

Demographics: OLG with stochastic aging

1 model period $=1$ year
Trick to keep computations manageable with short time periods

Dynasty
2

Household's preferences

Period utility: CRRA in consumption

$$
\frac{c^{1-\sigma}}{1-\sigma}
$$

Discount the future at rate β.
Potentially altruistic toward own descendants (η).

Technology

- Entrepreneurial sector:
$(1-\delta) k+\theta k^{\nu} \quad 0<\nu<1$
- Non-entrepreneurial sector:

Cobb-Douglas tech employs all workers and the rest of the capital

Time line of decisions

- Young

Assets
Abilities

$t \longmapsto t+1$

- Old retiree $\quad-\quad$ Old retiree

Households

- Observe (y, θ)
- Choose (w,e) for the period
- Workers earn y
- Entrepreneurs invest k

Credit market constraints

- Imperfectly enforceable contracts:
can borrow $(k-a)$, be worker, keep $f k$, creditors seize $(1-f) k$ value (investing and repaying) \geq value (keeping $f k$) and being worker
- e can borrow at \bar{r}, invest k, worker can save at \bar{r}

Young's problem

$$
V(a, y, \theta)=\max \left\{V_{e}(a, y, \theta), V_{w}(a, y, \theta)\right\}
$$

Young entrepreneur's problem

$$
\begin{gathered}
V_{e}(a, y, \theta)=\max _{c, k, a^{\prime}}\left\{u(c)+\beta \pi_{y} E V\left(a^{\prime}, y^{\prime}, \theta^{\prime}\right)+\beta\left(1-\pi_{y}\right) E W\left(a^{\prime}, \theta^{\prime}\right)\right\} \\
a^{\prime}=(1-\delta) k+\theta k^{\nu}-(1+\bar{r})(k-a)-c, \quad a \geq 0, \quad k \geq 0 \\
V_{e}(a, y, \theta) \geq V_{w}(f \cdot k, y, \theta)
\end{gathered}
$$

Young worker's problem

$$
\begin{gathered}
V_{w}(a, y, \theta)=\max _{c, a^{\prime}}\left\{u(c)+\beta \pi_{y} E V\left(a^{\prime}, y^{\prime}, \theta^{\prime}\right)+\beta\left(1-\pi_{y}\right) W_{r}\left(a^{\prime}\right)\right\} \\
a^{\prime}=(1+\bar{r}) a+w_{g} y-c, \quad a^{\prime} \geq 0
\end{gathered}
$$

Old entrepreneur's problem

$$
\begin{gathered}
W(a, \theta)=\max \left\{W_{e}(a, \theta), W_{r}(a)\right\} \\
W_{e}(a, \theta)=\max _{c, k, a^{\prime}}\left\{u(c)+\beta \pi_{o} E W\left(a^{\prime}, \theta^{\prime}\right)+\eta \beta\left(1-\pi_{o}\right) E V\left(a^{\prime}, y^{\prime}, \theta^{\prime}\right)\right\} \\
a^{\prime}=(1-\delta) k+\theta k^{\nu}-(1+\bar{r})(k-a)-c, \quad a \geq 0, \quad k \geq 0 \\
W_{e}(a, \theta) \geq W_{r}(f \cdot k)
\end{gathered}
$$

Old retiree's problem

$$
\begin{gathered}
W_{r}(a)=\max _{c, a^{\prime}}\left\{u(c)+\beta \pi_{o} E W_{r}\left(a^{\prime}\right)+\eta \beta\left(1-\pi_{o}\right) E V\left(a^{\prime}, y^{\prime}, \theta^{\prime}\right)\right\} \\
a^{\prime}=(1+\bar{r}) a+p-c, \quad a^{\prime} \geq 0
\end{gathered}
$$

Equilibrium

Prices, decision rules and distribution m over x such that

- Decision rules solve hh's problem
- Capital and labor mkts clear
- Prices equal marginal products
- m is invariant distribution

Calibration

Fixed Parameter	Value
σ	1.5
δ	.06
α	.33
A	1
π_{y}	.98
π_{0}	.91
P_{y}	+
p	40% average yearly income
η	1.0

Calibrated Parameter	Value
β	.865
θ	$[0,0.51]$
P_{θ}	see text
ν	.88
f	75%

Chosen to match match

- Capital to GDP ratio
- Fraction of entrepreneurs in population
- Fraction of entrepreneurs becoming workers each period
- Fraction of workers becoming entrepreneurs each period
- Median net worth of entr./median net worth. workers
- Fraction of people with zero wealth

SCF questions:

1. "Do you work for someone else, are you self-employed, or what?"
2. "Do you (and your family living here) own or share ownership in any privately-held businesses, farms, professional practices or partnerships?"
3. "Do you (or anyone in your family living here) have an active management role in any of these businesses?"

	\% in pop.	Share tot. wealth
Bz. owners or SE	16.7	52.9
All bz. owners	13.3	48.8
Active bz. owners	11.5	41.6
All SE	11.1	39.0
SE bz. owners	7.6	33.0

	median	mean
Whole population	47	189
Business owners or SE	172	599
All business owners	205	695
Bus owners but not active mgmt	293	768
Business owners not SE	179	470
All self-employed	169	665
SE (active) business owners	265	829
SE and not business owners	36	224

Top \%	1	5	10	20
Whole population \% total net worth held	30	54	67	81
Bz. owners or SE \% hhs in given perc.	81	68	54	39
All Bz. owners \% hhs in given perc.	76	62	49	36
Active Bz. owners \% hhs in given perc.	65	51	42	30
SE \% hhs in given perc.	62	47	38	26
SE and Bz. owners \% hhs in given perc.	54	39	32	22

Top \%	1	5	10	20
Whole population \% total net worth held	30	54	67	81
Active Bz. owners \% hhs in given perc.	65	51	42	30
SE \% hhs in given perc.	62	47	38	26
SE and Bz. owners \% hhs in given perc.	54	39	32	22

Evaluate model along:

- Overall wealth distribution
- Entrepreneurs' wealth distribution
- Hurst and Lusardi's key regression results
- Private equity returns

		Perc. wealth in the top				
K/Y	Wealth Gini	Perc. entr.	1%	5%	20%	40%
U.S. data 3.0 .78	7.6%	30	54	81	94	

Baseline with entrepreneurs
3.0
$7.5 \% \quad 3160$
83
94

Distribution of wealth, model without entrepreneurs. Dash-dot: data; Solid: model.

Distribution of wealth, model with entrepreneurs

Population

Entrepreneurs

Dash-dot line: data; Solid line: baseline model.

Saving rate for highest-ability workers. Solid: high entr. ability; dash-dot: no entr. ability

Firm size distribution, baseline model with entrepreneurs.

Probability of entering entrepreneurship as function of own wealth (as Hurst and Lusardi).

Benchmark

Small fraction of "non-entrepreneurial self-employed"

Median rate of return (income divided by business net worth).

SCF data, capital income only: 3\%
SCF data, total income: 40\%
Model, total income: 47\%
Model, total income, 10% underreporting: 40%
Model, total income, 20% underreporting: 35%.

Percentage wealth in the top

Capitaloutput ratio	Percentage wealth in the top					
	Gini	entr.	1\%	5\%	20\%	40\%
U.S. data						
3.0	. 78	7.6\%	30	54	81	94
Baseline with entrepreneurs						
3.0	. 80	7.5\%	31	60	83	94

More stringent borrowing constraints: $f=0.85$
2.7
.72
6.9\%
$24 \quad 49$
75
91

No altruism: $\eta=0$, only involuntary bequests $\begin{array}{lllllll}2.5 & 72 & 7.6 \% & 21 & 45 & 73 & 90\end{array}$
$\eta=0$, recalibrated β $\begin{array}{lllllll}3.0 & .80 & 7.9 \% & 28 & 57 & 81 & 94\end{array}$

Maximum investment. Solid line: baseline; dash-dot line: more restrictive $B C$.

Summary of results

- Model accounts very well for wealth distributions of entrepreneurs and workers
- Model generates entry into entrepreneurship consistent with Hurst and Lusardi's estimates
- Model generates entrepreneurial returns consistent with those in SCF data
- More stringent borrowing constraints \Rightarrow less inequality but also less investment
- Voluntary bequests important for wealth concentration

Algorithm

1. Construct grid for state variables
2. Fix tax rate, wage, and interest rate
3. Fix $\hat{k}(\cdots)=k_{\text {max }}$
4. Solve value functions by value function iteration
5. Check endogenous b.c.
6. If not satisfied, update $\hat{k}(\cdots)$
7. Iterate until $\hat{k}(\cdots)$ satisfies end. b.c.
8. Compute transition matrix
9. Compute invariant distribution by iterating on it
10. Compute total savings and total capital invested by the entrepreneurial sector implied by invariant distribution and hence capital in the non-corporate sector. Same for labor.
11. Compute implied wages and interest rate
12. iterate until capital markets clear

U.S. wealth and earnings distributions

Percentage held by the top	1%	5%	20%	40%	80%
Wealth	30	54	81	94	100
Gross earnings	6	19	48	72	98

