Non-linear household earnings dynamics, self-insurance and welfare

Mariacristina De Nardi¹ Giulio Fella² Gonzalo Paz-Pardo³

¹Unniversity of Minnesota, FRB Minneapolis, CEPR, and NBER

²Queen Mary University of London, CFM and IFS

³European Central Bank

October 19, 2020

Motivation

Nature of income inequality/risk: critical for many questions in economics. E.g.:

- Consumption and wealth distribution
- Ability to self-insure/welfare
- \implies Scope for social insurance and redistribution
- Better datasets and new methods are challenging long held views about labour income risk
- $\blacktriangleright \implies$ What are the implications for:
 - Consumption and wealth inequality
 - Self-insurance
 - Welfare

"Canonical" model of earnings dynamics

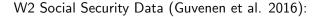
Detrended labor earnings follow a (log-) linear process. E.g.

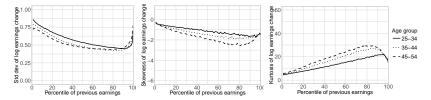
$$\log Y_{it} = f(t) + \delta_i + \eta_{it} + \varepsilon_{it}$$
$$\eta_{it} = \rho \eta_{i,t-1} + v_{it}$$

with δ_i , η_{i1} , v_{it} , ε_{it} normally distributed.

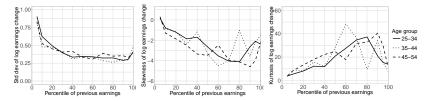
- Three main features:
 - Age-independence of conditional 2nd and higher moments
 - Normality: Shocks are symmetrically distributed + no fat tails
 - Linearity: conditional 2nd and higher moments independent of $\eta_{i,t-1}$

Individual, pre-tax earnings do not fit the canonical model



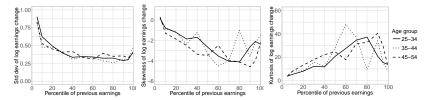


Similarly in the PSID:

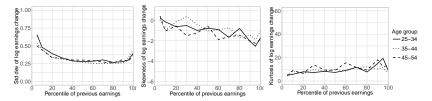


...nor do HH, disposable earnings

Rich features of individual, pre-tax earnings



are also present in disposable, HH earnings



This paper

- Estimate a flexible process à la Arellano, Blundell and Bonhomme (2017) for household post-tax labor earnings using the PSID.
- Use a structural life-cycle model to compare the implications of the flexible process against canonical permanent + transitory process.

Findings

Allowing for a flexible earnings dynamics:

- Significantly improves the fit of the growth of consumption dispersion over age
- Implies a pass-through of "permanent" earnings shocks in line with the estimates in Blundell, Pistaferri and Preston (2008)
- ... but does not improve the fit of the wealth distribution
- Lower welfare gains from removing earnings risk

Two strands of literature

Quantitative models of consumption and wealth inequality

(Huggett, 1996; De Nardi, 2004; Storesletten, Telmer and Yaron, 2006; ...)

Richer specifications of earnings dynamics

(Geweke and Keane, 2000; Meghir and Pistaferri, 2004; Browning, Ejrnaes and Alvarez, 2010; Altonji, Smith and Vidangos, 2013; Blundell, Graber and Mogstad, 2015; Arellano, Blundell and Bonhomme, 2017; Guvenen, Karahan, Ozkan and Song, 2016...)

- PSID core sample, 1968-1992, joint earnings for all HH (25-60)
- Disposable earnings obtained by regression as in Guvenen and Smith (2014)
- Equivalization by regression on number of family members
- Residual disposable earnings net of time and age fixed-effects

A flexible but parsimonious model

Arellano, Blundell and Bonhomme (2017)

Let $Q_z(q|\cdot)$ denote the conditional quantile function for z

$$y_{it} = \eta_{it} + \varepsilon_{it}, \quad t = 1, \dots, T$$

$$\eta_{it} = Q_{\eta}(v_{it}|\eta_{i,t-1}, t)$$

$$\varepsilon_{it} = Q_{\varepsilon}(u_{it}|t)$$

$$\eta_{i1} = Q_{\eta_1}(v_{i1})$$

$$u_{it}, v_{i1}, (v_{it}|\eta_{i,t-1}, \eta_{i,t-2}, \dots) \sim U(0, 1)$$

Persistence

$$\rho_t(q,\eta_{i,t-1}) = \frac{\partial Q_\eta(q|\eta_{i,t-1},t)}{\partial \eta_{i,t-1}}, \quad \rho_t(q) = \mathbb{E}_\eta \left[\frac{\partial Q_\eta(q|\eta_{i,t-1},t)}{\partial \eta_{i,t-1}} \right]$$

The flexible model: summary Extra features

The flexible model considered allows for

- Age dependence of conditional 2nd and higher moments
- Non-normality of shocks
- ▶ Non-linearity in $\eta_{i,t-1}$ and its innovation

A flexible but parsimonious model

Parameterization

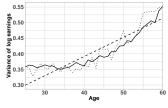
Let ψ^k , k = 0, 1, ... denote a family of bivariate, polynomial fns.

$$Q_{\eta}(q|\eta_{i,t-1}, age_{it}) = \sum_{k=0}^{K} \alpha_{k}^{\eta}(q)\psi^{k}(\eta_{i,t-1}, age_{it})$$
$$Q_{\varepsilon}(q|age_{it}) = \sum_{k=0}^{K} \alpha_{k}^{\varepsilon}(q)\psi^{k}(age_{it})$$
$$Q_{\eta_{1}}(q|age_{i1}) = \sum_{k=0}^{K} \alpha_{k}^{\eta_{1}}(q)\psi^{k}(age_{i1})$$

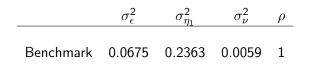
Canonical benchmark

 Estimated by fitting variances and autocovariances of earnings over the life-cycle

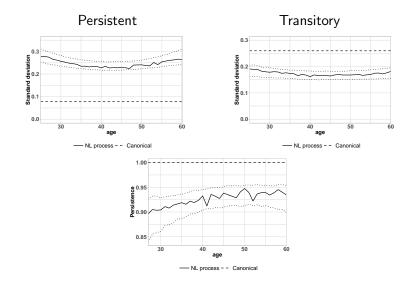
$$y_{it} = \eta_{it} + \varepsilon_{it}$$
$$\eta_{it} = \rho \eta_{i,t-1} + v_{it}$$



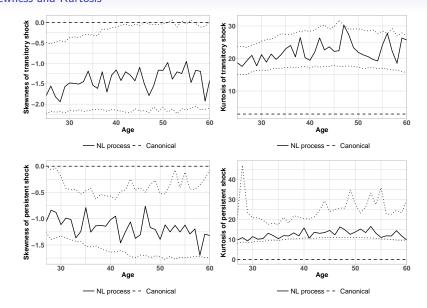
----- NL process - - Canonical ····· Data



Features of NL vs canonical earnings processes

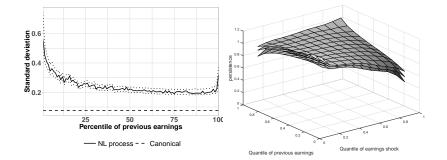


Features of NL vs canonical earnings processes Skewness and Kurtosis



Features of NL vs canonical earnings processes

Nonlinearity



Study consumption and wealth

- So, these earnings dynamics are much richer. Does it matter for:
 - Evolution of consumption inequality over the life cycle?
 - Saving behavior and wealth inequality?
 - Households ability to self-insure and welfare
- Use these earnings process in a quantitative life-cycle model
- Decompose the contribution of different features of the earnings process

Model implications

OLG model, key features

- Ex-ante identical agents. Idiosyncratic earnings shocks
- Working life age 25-60, then retirement until death
- Age-dependent probability of dying. Die for sure at age 86
- Infinitely-lived government, old age Social Security
- Single risk-free asset

Preferences and technology

Period utility

$$u(c_t)=\frac{c_t^{1-\sigma}}{1-\sigma}.$$

- \blacktriangleright Discount factor β
- Agents supply labor inelastically
- Earnings follow, alternatively, the two empirical processes described

Markets and government

- Incomplete assets markets: Agents can invest in a risk-free asset and can only borrow up to exogenous limit <u>a</u>
- ► No annuity markets ⇒ Flow of accidental bequests lost to the economy
- Government
 - Provides old-age pensions
 - r net of tax
 - Earnings process estimated on disposable income

Workers

$$V(t, z, \eta) = \max_{c, a'} \left\{ u(c) + \beta s_t E_t V(t+1, z', \eta') \right\}$$

s.t. $a' = z - c, \quad a' \ge \underline{a}$
 $z = (1+r)a + \eta + \epsilon$

Retirees

$$W(t, z, p) = \max_{c, a'} \left\{ u(c) + \beta s_t E_t W(t+1, z', p) \right\}$$

s.t. $a' = z - c, \quad a' \ge \underline{a}$
 $z = (1+r)a + p$

• No utility from bequests W(T, z, p) = 0

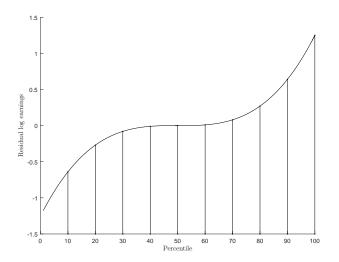
Calibration

- CRRA coefficient $\sigma = 2$
- Risk-free rate r = 0.04
- Survival probabilities are taken from Bell, Wade and Goss (1992)
- β calibrated to match W/Y = 3.1 in each of the economies
 - Benchmark: β = 0.957
 - NL process: β = 0.939
- <u>a</u> = 0.12 (SCF average credit card limit)
- Pension benefit: non-linear function of last period gross earnings (Kaplan and Violante 2010)
- Discretization of NL earnings process by simulation

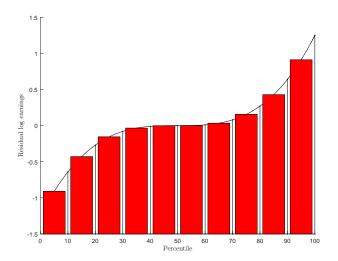
Discretization of NL earnings process Grid points



Discretization of NL earnings process Grid points



Discretization of NL earnings process Grid points



Discretization of NL earnings process

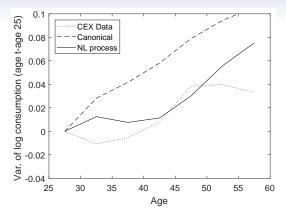
The elements π_{mn}^t of the transition matrix Π^t between age tand t + 1 are the proportion of individuals in bin m at age tthat are in bin n at age t + 1.

$$\begin{pmatrix} \bar{z}_{t}^{1} \\ \bar{z}_{t}^{2} \\ \vdots \\ \vdots \\ z_{t}^{N} \end{pmatrix} \qquad \begin{pmatrix} \pi_{11}^{t} & \pi_{12}^{t} & \cdots & \pi_{1N}^{t} \\ \pi_{21}^{t} & \pi_{22}^{t} & \cdots & \pi_{2N}^{t} \\ \vdots & \vdots & \vdots & \vdots \\ \pi_{N1}^{t} & \pi_{N2}^{t} & \cdots & \pi_{NN}^{t} \end{pmatrix}$$

$$\mathbf{z}_{t} \qquad \qquad \mathbf{\Pi}^{t}$$

Consumption implications

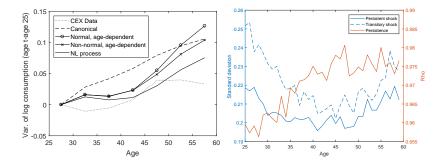
Variance of log consumption, data and models



- Benchmark generates too large increase by age
- NL process generates substantially lower growth and captures (until age 47) non-monotonicity
- Very hard to match without HIP (Guvenen 2007; Huggett, Ventura and Yaron 2011)

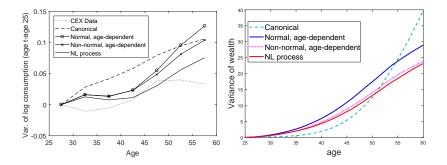
Opening the black box

Age-dependent second moments

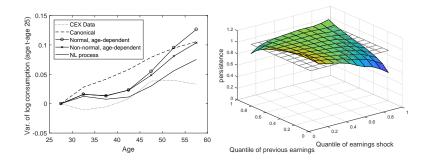


Opening the black box

Age-dependent moments + non-normality



Opening the black box Full NL



BPP insurance coefficients

 Blundell, Pistaferri and Preston (2008): Fraction of earning shock not reflected in consumption response

$$\phi^{\mathsf{x}} = 1 - \frac{\mathsf{cov}(\Delta c_{it}, z_{it}^{\mathsf{x}})}{\mathsf{var}(z_{it}^{\mathsf{x}})}$$

with z_{it}^{x} shock to x_{it} .

- Model true coefficients: earnings shocks are observed
- In the data, BPP identification (assuming "canonical" process):

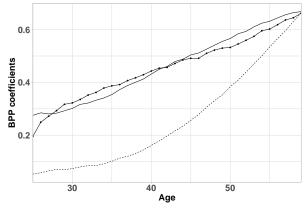
$$\phi^{\eta} = 1 - \frac{\operatorname{cov}(\Delta c_{it}, y_{i,t+1} - y_{i,t-2})}{\operatorname{cov}(\Delta y_{it}, y_{i,t+1} - y_{i,t-2})}, \ \phi^{\epsilon} = 1 - \frac{\operatorname{cov}(\Delta c_{it}, \Delta y_{i,t+1})}{\operatorname{cov}(\Delta y_{i,t}, \Delta y_{i,t+1})}$$

BPP insurance coefficients

Process/Coefficients	ψ^{p}_{BPP}	ψ^{tr}_{BPP}	ψ^{p}	ψ^{tr}	
	Da	Pata: BPP (2008)			
Canonical (S.E. in parenthesis)	0.36	0.95	—	_	
	(0.09)	(0.04)			
	Model				
Canonical	0.13	0.89	0.31	0.92	
Nonlinear process	0.43	0.82	0.46	0.91	
Normal, age-dependent	0.42	0.83	0.46	0.88	
Non-normal, age-dependent	0.42	0.83	0.46	0.88	

Table: Insurance coefficients

ϕ^η by age



- NL process ··· Canonical - Normal, age-dependent

Wealth Inequality

Wealth-	Percentage wealth in the top						
income	Wealth						
ratio	Gini	1%	5%	20%	40%	60%	80%
U.S. data (SCF 1989)							
3.1	.79	30	54	81	94	99	100
Benchmark							
3.1	.64	9	29	65	88	97	100.1
NL Process							
3.1	.61	7	25	61	85	96	99.9

- NL process does not help to improve the fit of the wealth distribution
- Not even with a process based on W2 administrative data (De Nardi, Fella, and Paz-Pardo, 2016)

Welfare costs of earnings risk

Process	Welfare cost			
Benchmark	28.3			
NL process	26.2			

- Lower persistence \rightarrow lower relevance of initial realization
- ▶ With NL process, more equal distribution of lifetime income
- Easier to insure with precautionary savings

Conclusions

- Disposable, HH Earnings have much richer dynamics that traditionally assumed
- In a life-cycle model these richer dynamics
 - imply an age profile of consumption dispersion substantially closer to that in the data
 - and a more realistic pass-through of persistent earnings shocks to consumption
 - ... but do not improve the fit of the wealth distribution

	σ_{ϵ}^2	$\sigma_{\eta_1}^2$	σ_{ν}^2	ρ
Benchmark (year effects)	0.0675	0.2363	0.0059	1
Cohort effects (Kaplan)	0.0655	0.2394	0.0057	1
STY04 (coh. effects)	0.063	0.2105	0.0166	0.9989

▶ back