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What this paper does:

• Estimates dynamic model of schooling, work, and occupational 

choice

• Starting point: Human capital investment

• Analyzes effect of unobserved heterogeneity on:

– Welfare

– Inequality

• It matters!

• Policy experiment: Tuition subsidy



• Why do people choose the jobs they do?

– Similar people have vastly different career paths

• Intuition: feedback loop between human capital (skills) 

investment and occupational choice

– People choose skills to invest in

– Investment decisions determine career options

– Occupational choice determines outcomes (wages)

– Process repeats over life-cycle

• Keane and Wolpin formalize this intuition

Why Keane and Wolpin?



Model — A Basic Human Capital Model

• Reward per period at age a:

𝑅 𝑎 = ෍

𝑚=1

5

𝑅𝑚 𝑎 𝑑𝑚(𝑎)

• 𝑅𝑚 𝑎 : reward associated with 𝑚𝑡ℎ alternative

• Include all benefits and costs

• 𝑑𝑚(𝑎) = 1 if 𝑚 is chosen (0 otherwise)



Model — A Basic Human Capital Model

Working alternatives (m = 1, 2 or 3)

• 𝑅𝑚 𝑎 = 𝑤𝑚 𝑎

– 𝑤𝑚 𝑎 : Wage

– 𝑤𝑚 𝑎 = 𝑟𝑚 × 𝑒𝑚 𝑎 , 

▪ 𝑟𝑚: occupation-specific market rental price

▪ 𝑒𝑚 𝑎 : occupation-specific skill units 
– 𝑒𝑚 16 : skill “endowment” at age 16

• 𝑔 𝑎 : years of schooling completed

• 𝑥𝑚 𝑎 : years of work experience in occupation 𝑚

• 𝜖𝑚 𝑎 : skill technology shock



Model — A Basic Human Capital Model

Working alternatives (m = 1, 2 or 3)

• Skill-production function:

𝑒𝑚 𝑎 = exp 𝑒𝑚 16 + 𝑒𝑚1𝑔 𝑎 + 𝑒𝑚2𝑥𝑚 𝑎 − 𝑒𝑚3𝑥𝑚
2 𝑎 + 𝜖𝑚 𝑎

𝑚 = 1, 2, 3; 𝑎 = 16,… , 𝐴

• Quadratic form - Mincer (1958)

• Higher endowment implies more skill units “produced” per year of 

schooling or experience



Model — A Basic Human Capital Model

Non-working alternatives (m = 4 or 5)

• 𝑅4 𝑎 : rewards to schooling

– Direct costs (tuition) 

– Indirect costs (effort)

• Adding effort - 𝑅(𝑎) interpreted as utility. 

– Given additive form, effort denoted in dollars 

• “Learning” and home production skills immutable after age 16

– Contrast to market skills

• 𝑅5 𝑎 : rewards to home production (leisure)



Model — A Basic Human Capital Model

Structure of Rewards:

𝑅𝑚 𝑎 = 𝑤𝑚 𝑎
= 𝑟𝑚 exp[𝑒𝑚 16 + 𝑒𝑚1𝑔 𝑎 + 𝑒𝑚2𝑥𝑚 𝑎 − 𝑒𝑚3𝑥𝑚

2 + 𝜖𝑚(𝑎)]

𝑅4 𝑎 = 𝑒4 16 − 𝑡𝑐1 × 𝐼 𝑔 𝑎 ≥ 12 − 𝑡𝑐2 × 𝐼 𝑔 𝑎 ≥ 16 + 𝜖4(𝑎)

𝑅5 𝑎 = 𝑒5 16 + 𝜖5(𝑎)

• Shocks jointly normal, serially uncorrelated: 𝑁(0, Ω)



Model — A Basic Human Capital Model

Notation:

• Endowment vector: 𝒆 16 = {𝑒1 16 , 𝑒2 16 , 𝑒3 16 , 𝑒4 16 , 𝑒5(16)}

• Worker experience vector: 𝒙 𝑎 = {𝑥1 𝑎 , 𝑥2 𝑎 , 𝑥3(𝑎)}

• Denote: 𝑺 𝑎 = {𝒆 16 , 𝑔 𝑎 , 𝒙 𝑎 , 𝝐(𝑎)}

• At age a, the individual maximizes:

𝑉 𝑺 𝑎 , 𝑎 = max
𝑑𝑚(𝑎)

𝐸 σ𝜏=𝑎
𝐴 𝛿𝑡 −𝑎 σ𝑚=1

5 𝑅𝑚 𝑎 𝑑𝑚 𝑎 𝑺 𝑎 ]



Model — A Basic Human Capital Model

• All relevant prices and functions known

• Future shocks unknown

• Solution: (𝑑𝑚(𝑎)) for 𝑎 = 16,… , 𝐴

• Value function:

𝑉 𝑺 𝑎 , 𝑎 = max
m∈𝑀

{Vm 𝐒 a , a }

Where:

𝑉𝑚 𝑺 𝑎 , 𝑎 = 𝑅𝑚 𝑺 𝑎 , 𝑎 + 𝛿𝐸 𝑉 𝑺 𝑎 + 1 , 𝑎 + 1 𝑺 𝑎 , 𝑑𝑚 𝑎 = 1], 𝑎 < 𝐴
𝑉𝑚 𝑺 𝐴 , 𝐴 = 𝑅𝑚(𝑺 𝐴 , 𝐴)



Model — A Basic Human Capital Model

Individual’s decision process:

1. At age 16, given 𝒆(16) and 𝑔(16), draw five shocks from joint 𝝐(16)
distribution.

2. Calculate current period rewards.

3. Choose alternative yielding highest value.

4. Update state space.

5. Repeat.

• No closed-form solution; estimated numerically.

• Deterministic for individual

• Probabilistic for researcher (Shocks not observable) 



Model — A Basic Human Capital Model

For individual, n = 1, …, N, data are set of choices and rewards:

{𝑑𝑛𝑚 𝑎 , 𝑤𝑛𝑚 𝑎 𝑑𝑛𝑚 𝑎 :𝑚 = 1, … , 3}, and 

{𝑑𝑛𝑚 𝑎 :𝑚 = 4, 5} for all ages in a given range 16, ത𝑎

• 𝑐 𝑎 : choice-reward combination at age 𝑎

• ഥ𝑺 𝑎 = {𝒆 16 , 𝑔 𝑎 , 𝒙(𝑎)}: predetermined components of the state space



Model — A Basic Human Capital Model

Serial independence of shocks:

Pr 𝑐 16 ,… , 𝑐 ത𝑎 𝑔 16 , 𝒆(16)] = ෑ

𝑎=16

ത𝑎

Pr[𝑐(𝑎)|ത𝑺 𝑎 ]

• Sample likelihood: product of these probabilities over N individuals

• Estimation iterative using simulated MLE

• K types of individuals - different 𝒆𝑘(16) (k unobserved)

• 𝜋𝑘 - proportion of the population of type 𝑘, 𝑘 ∈ {1,… , 𝐾}



Model — A Basic Human Capital Model

• Issue: Unlikely initial schooling (at age 16) exogenous.

• Fix: Assume initial schooling exogenous conditional on age 16 

endowment

• Likelihood contribution for the 𝑛𝑡ℎ individual:

Pr 𝑐𝑛 16 , … , 𝑐𝑛 ത𝑎 𝑔𝑛(16)] = ෍

𝑘=1

𝐾

ෑ

𝑎=16

ത𝑎

𝜋𝑘|𝑔𝑛(16) Pr 𝑐𝑛 𝑎 𝑔𝑛 16 , 𝑡𝑦𝑝𝑒 = 𝑘]

• Type proportions are:

– Estimable parameters

– Conditioned on schooling



Data

• National Longitudinal Survey of Youth (1979)

– White males, age 16 or less on 10/1/1977 (n = 1,373)

– Academic school year (1977-1988)

• Labor market state assigned in hierarchal, mutually exclusive fashion

1. School attendance

2. Work

▪ 2/3 of weeks, 20 hours per week

3. Occupational classification

4. Real wages (FTE)

5. Home



• Implications of human capital model:

1. School attendance declines with age

2. Employment increases with age

3. Occupational choices exhibit persistence

4. Occupation-specific wages increase with age

Data
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Data



Transition Matrix: White Males Aged 16-26

Choice(t)

Choice (t+1)

School Home White-Collar Blue-Collar Military

School 69.9% 12.4% 6.5% 9.9% 1.3%

Home 9.8% 47.2% 8.1% 31.3% 3.7%

White-Collar 5.7% 6.3% 67.4% 19.9% 0.7%

Blue-Collar 3.4% 12.4% 9.9% 73.4% 0.9%

Military 1.4% 5.5% 3.1% 9.6% 80.5%

Keane and Wolpin 1997, Table 2

Data
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Data
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Data

• NLSY oversamples poor whites and military

• Weekly frequency

– Coding scheme is “somewhat arbitrary”

– If both in school and employed, only one choice recorded

• Occupation coding is very coarse

• Aggregation implies returns to white-collar (blue-collar) skills identical 

across white-collar (blue-collar) jobs



Model — A Basic Human Capital Model

• Can the basic human capital model fit the data?

• Model begins at age 16; ends at finite age A

• At each age a, the individual chooses between:

1) White-collar work

2) Blue-collar work

3) Military

4) Schooling

5) Home production (leisure)



Estimation — A Basic Human Capital Model

• K = 4

• A = 65

• Type proportions conditioned on two values of initial schooling —

– g(16) = {grade 7, 8 or 9} or {grade 10 or 11}

• Linear cross-experience terms in skill production function

– Military experience enters both civilian functions

– Blue-collar experience enters white-collar function

– White-collar experience enters blue-collar function



Estimation — A Basic Human Capital Model

• Basic model: parameter values within “reasonable ranges”

• Additional year of school increases skill function by:

– 9.7% - white-collar

– 1.9% - blue-collar

– 4.4% - military

• Cost of college

– Undergraduate: $3,000 

– Graduate: $26,000

• Discount factor: 0.78

• Within-sample fit poor



Model — An Extended Model

A. Work Alternatives

• Skill technology functions, 𝑒𝑚(𝑎)

– Skill depreciation effect

– First-year experience effect

– Age effect

– High-School and College Graduation Effect

• Mobility and Job Search Costs

– Job-finding cost (if switching occupations)

– Additional cost if no experience in occupation 



Model — An Extended Model

A. Work Alternatives

• Nonpecuniary Rewards plus Indirect Compensation

– Nonwage aspects of employment

B. School Attendance

• Consumption value of school attendance

• Allowed to depend systematically on age

• Cost of re-entry into high-school or post-secondary education

C. Remaining at Home

• Payoff allowed to differ by age



Model — An Extended Model

D. Common Returns

– Psychic value of high-school degree, college diploma

• Cost of leaving the military early (less than two years of service)



Estimation — An Extended Model

Main Empirical Findings:

1. Additional year of schooling increases skill by:

▪ 7% - white-collar

▪ 2.4% - blue-collar

▪ 5.8% – military

2. No diploma effects on wages

3. White-collar experience increases skill by:

▪ 21.5% - 1st year

▪ [2.7 – 0.8(𝑥1)] % - 2nd year and above



Estimation — An Extended Model

Main Empirical Findings:

4. Blue-collar experience increases skill by:

▪ 24.7% - 1st year

▪ [4.6 – 0.16(𝑥2)]% - 2nd year and above

5. Cross-experience terms:

▪ Blue-collar skill; White-collar exp. – 1.9%

▪ White-collar skill; Blue-collar exp. – 2.3%

6. White-collar skills depreciate faster

▪ White-collar: 30.5% reduction following a year absence

▪ Blue-collar: 9.6%



Estimation — An Extended Model

• Job finding cost 

• White-collar

• $3,951 – No experience

• $1,181 – Experience 

• Blue-collar

• $2,141 – No experience

• $1,647 – Experience

• Net tuition cost of college: $4,168 (relative to high-school)

• Graduate school: $11,198

• Utility of home production roughly constant with age

• Discount factor: 0.936



Note: Standard errors are downward biased



Estimation — An Extended Model

Explanation of Models:

• Data: NLSY panel

• Dynamic Programming (Basic Model): Basic human capital model

• Dynamic Programming: Augmented human capital model

• Static Solution: Same as dynamic programming, but discount factor 

zero

• Approximate Solution: Probit model only using choice data (no wage 

data)



Estimation — An Extended Model



Estimation — An Extended Model



Estimation — An Extended Model



Estimation — An Extended Model

Within-sample fit:

• Three new specifications fit approximately equally well 

– Use 𝜒2 goodness of fit test

• Extended model: 

– 8 more parameters than approx. model

– Must also fit wage data

– Restricted in how well it can fit choices



Estimation — An Extended Model

Out-of-Sample Fit:

• Issue: Short history of data 

• Fix: Use CPS March Supplement data to follow NLSY cohort 

through age 33

• Authors claim dynamic prog. and approx. models fit data well



Estimation — An Extended Model

Keane and Wolpin 1997, Table 10
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Discussion: Unobserved Skill Heterogeneity

Using simulated data:

• Age 24, conditional on initial (age 16) schooling:

– Type 1: college grad; more white-collar experience

– Type 2: high school grad; blue-collar experience

– Type 3: Only type in military, but also civilian experience

– Type 4: Most likely at home or in school

• Specialization even more apparent by age 40



Discussion: Unobserved Skill Heterogeneity
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Discussion: Unobserved Skill Heterogeneity
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• Using estimated parameters, calculate expected discounted PV of utility 

stream

• Variation in welfare from initial schooling differences small

• Variation from skill endowment heterogeneity significant

• Type 1

– High initial schooling $28 K larger payoff than with low initial schooling

– Type 1 EPDV of utility $185 K larger than Type 2

• Type 2 EPDV > Type 3 EPDV

– Difference in blue-collar skill endowments

• School best choice at age 16; Work best choice at 26

Discussion: Unobserved Skill Heterogeneity



Discussion: Unobserved Skill Heterogeneity



• Between-type variance accounts for 90 percent of total variance

– Unobserved heterogeneity is important!

– Need to open “black box”

• Issue: Cannot observe actual type

• Fix: Use Bayes rule to find probability distribution (conditional on 

choice, wages, initial schooling)

• Find correlates of type among family characteristics

Discussion: Unobserved Skill Heterogeneity



Discussion: Unobserved Skill Heterogeneity
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Discussion: Unobserved Skill Heterogeneity
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• Lower maternal education → lower lifetime utility

• Living with both parents at age 14 → higher lifetime utility

• More siblings → lower lifetime utility

– One sibling is ideal

• Lifetime utility increasing in parent incomes

• BUT! Only explain 10 percent of welfare variance

– Poor proxies

– Track parental investments (Nix and Daruich)

Discussion: Unobserved Skill Heterogeneity



Policy Experiment:

• Introduce $2,000 per year direct college tuition subsidy

– 50 percent cost reduction

• Increases college graduation rate (31.3 percent vs. 24.2 percent)

– Graduation rates double for Type 2 and 3

• Increases high-school graduation rate (74.8 percent vs. 78.3 

percent)

– Agents are forward looking

Discussion: Impact of Tuition Subsidy



• Private gains are small

• Policy is regressive

– Benefits Type 1 the most

• Attend college regardless

– Under equal per-capita cost sharing, other types worse off

• If types observable, subsidy could be targeted

– Only marginally lowers inequality

• Family background could serve as imperfect proxy.

Discussion: Impact of Tuition Subsidy



Strengths and Weaknesses of the Paper

• Takes selection issues seriously in estimating returns to 

education and wages

– Uses assumption each individual makes best choice (in expected payoff 

terms) given alternatives 

• Takes heterogeneity seriously



Strengths and Weaknesses of the Paper

Clearly shows its age.  Many simplifying assumptions made to simplify 

computation:

• Small sample of white males

• Category cutoffs are arbitrary; no robustness checks mentioned

• Occupations broad

• Mutually exclusive categories and low data frequency assumptions very 

strong

• Independence and normality of shocks questionable

• K = 4 arbitrary

• CPS March Supplement data not directly comparable to NLSY

– Population of NLSY not representative



Elements of the Paper that are Unclear

• No diploma effect on wages.  

– Very surprising result

– Dramatic differences in undergraduate and graduate tuition 

rates ($4,168 versus $11,198)

– Effect even stronger in the basic human capital model

– Does this ensure enough people quit school after their degree 

(to match the data)?

– Effect on degree completion coefficients?



Elements of the Paper that are Unclear

Lack of accurate standard errors makes model difficult to evaluate:

• All variables seem reasonable, but cannot test statistical 

significance 

– No reason given for including them

– Seemed to use whatever was available in the NLSY

• Large number of variables; relatively small sample size

– Overfitting

• Forecasting is suspect



How the paper could be improved/expanded

• Many issues could be fixed with modern computers

• We have more data:

– Check forecasts

– Is administrative data better suited?

– Could increase the frequency of the data (monthly)



Backup Slides



Parameter Estimates – Basic Model



Parameter Estimates – Basic Model



Parameter Estimates – Wages



Model — An Extended Model

Extended Model Specification (𝑘 = 1, 2, 3, 4), Reward Functions:

𝑅𝑚𝑘

= 𝑤𝑚𝑘 𝑎 − 𝑐𝑚𝑙 × 𝐼 𝑑𝑚 𝑎 − 1 = 0 − 𝑐𝑚2 × 𝐼 𝑥𝑚 𝑎 = 0 + 𝛼𝑚 + 𝛽1 × 𝐼 𝑔 𝑎 ≥ 12
+ 𝛽2 × 𝐼 𝑔 𝑎 ≥ 16 + 𝛽3𝐼 𝑥3 𝑎 = 1 ,𝑚 = 1, 2

𝑅3𝑘 𝑎 = exp 𝛼3 𝑎 𝑤3 𝑎 − 𝑐32 × 𝐼 𝑥3 𝑎 = 0 + 𝛽1 × 𝐼 𝑔 𝑎 ≥ 12 + 𝛽2 × 𝐼[𝑔 𝑎
≥ 16]

𝑅4𝑘 𝑎
= 𝑒4𝑘 16 − 𝑡𝑐1 × 𝐼 12 ≤ 𝑔 𝑎 − 𝑡𝑐2 × 𝐼 𝑔 𝑎 ≥ 16 − 𝑟𝑐1
× 𝐼 𝑑4 𝑎 − 1 = 0, 𝑔 𝑎 ≤ 11 − 𝑟𝑐2 × 𝐼 𝑑4 𝑎 − 1 = 0, 𝑔 𝑎 ≥ 12 + 𝛽1
× 𝐼 𝑔 𝑎 ≥ 12 + 𝛽2 × 𝐼 𝑔 𝑎 ≥ 16 + 𝛽3 × 𝐼 𝑥3 𝑎 = 1 + 𝛾41 × 𝑎 + 𝛾42
× 𝐼 16 ≤ 𝑎 ≤ 17 + 𝜖4(𝑎)

𝑅5𝑘 𝑎 = 𝑒5𝑘 16 + 𝛽1 × 𝐼 𝑔 𝑎 ≥ 12 + 𝛽2 × 𝐼 𝑔 𝑎 ≥ 16 + 𝛽3 × 𝐼 𝑥3 𝑎 = 1 +
𝛾51 × 𝐼 18 ≤ 𝑎 ≤ 20 + 𝛾52 × 𝐼 𝑎 ≥ 21 + 𝜖5 𝑎



Model — An Extended Model

Extended Model Specification (𝑘 = 1, 2, 3, 4), Skill Technology Function:

𝑒𝑚𝑘 𝑎

= exp൛

ൟ

𝑒𝑚𝑘 16 + 𝑒𝑚11𝑔 𝑎 + 𝑒𝑚12 × 𝐼 𝑔 𝑎 ≥ 12 + 𝑒𝑚13 × 𝐼 𝑔 𝑎 ≥ 16 + 𝑒𝑚2𝑥𝑚 𝑎

− 𝑒𝑚3𝑥𝑚
2 𝑎 + 𝑒𝑚4 × 𝐼 𝑥𝑚 > 0 + 𝑒𝑚5 𝑎 + 𝑒𝑚6 × 𝐼 𝑎 < 18 + 𝑒𝑚7𝑑𝑚 𝑎 − 1

+ 𝑒𝑚8𝑥𝑚′≠𝑚 𝑎 + 𝑒𝑚9𝑥3 𝑎 × exp 𝜖𝑚 𝑎 ,𝑚,𝑚′ = 1, 2; 𝑎 = 16,… , 65

𝑒3 𝑎
= exp[𝑒3 16 + 𝑒31𝑔 𝑎 + 𝑒32𝑥3 𝑎 − 𝑒33𝑥3

2 𝑎 + 𝑒34 × 𝐼 𝑥3 > 0 + 𝑒35 𝑎 + 𝑒36 × 𝐼(𝑎
< 18)]



Discussion: Unobserved Skill Heterogeneity



Discussion: Unobserved Skill Heterogeneity



Discussion: Impact of Tuition Subsidy


