Earnings and consumption dynamics: a nonlinear panel data framework

Arellano, Blundell, Bonhomme *Econometrica* (2017)

by Nicolò Russo

Introduction •00000	Quantile methods 00	Model 0000 0000	Identification 000000	Estimation 000 000	Results 000 00 00 0000	Life-cycle model	Conclusions 00
------------------------	------------------------	------------------------------	--------------------------	--------------------------	------------------------------------	------------------	-------------------

This paper

- Develops a nonlinear framework to study:
 - Nature of earnings persistence
 - Impact of earnings shocks on consumption
- Provides:
 - New method of studying earnings persistence and shocks
 - New way of estimating the earnings process
 - New evidence on impact of earnings shocks on consumption

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
00000	00	0000	000000	000	000 00 00 0000	00000	00

Why we should study the earnings process

- This paper takes earnings as exogenous, like BPP (2008)
- Why studying the earnings process:
 - 1. Size and persistence of income shocks influence consumption decisions
 - 2. Persistence of earnings affects inequality and drives much of the variation in consumption Variance of consumption
 - 3. Designing optimal social insurance and taxation

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
00000	00	0000	000000	000	000 00 00 0000	00000	00

The literature so far

• Focus on linear models

- Permanent/transitory (BPP); AR(1) (HSV)
- Main characteristics of linear models:
 - 1. All shocks are associated to same persistence
 - 2. Identification using covariance techniques
 - 3. Nonlinear transmission of shocks ruled out

• Approaches to consumption

- 1. Take stand on the consumption smoothing mechanisms and take a fully specified model to the data \Rightarrow Gourinchas and Parker (2002), Kaplan and Violante (2014)
- 2. Estimate the degree of "partial insurance", without specifying the insurance mechanisms \Rightarrow BPP (2008)

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 00 0000	00000	00

Why getting over linear models

- Empirical evidence in favor of richer earnings dynamics
- Consumption function in BPP (2008) comes from linear approximation of the Euler equation
 - Linear approximations not always accurate
 - Precautionary saving, asset accumulation with borrowing constraints, and nonlinear persistence ruled out

Empirical Results

Working families from the PSID (1999-2009):

- 1. Impact of earnings shocks varies across households' earnings histories
- 2. Nonlinear persistence of earnings, where:
 - "Unusual" positive shocks for low earnings households
 - "Unusual" negative shocks for high earnings households are associated with lower persistence
- 3. Asymmetries in consumption responses to earnings shocks that hit households at different points of the income distribution
- 4. Similar empirical patterns in Norwegian administrative data

Roadmap for today

1. Introduction

- 2. Quantile Methods
- 3. Model
- 4. Identification
- 5. Estimation
- 6. Results
- 7. Life-cycle model
- 8. Conclusions

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	•0	0000	000000	000	000 00 00 0000	00000	00

A crash course on the quantile function

Given a probability p, the quantile function for a random variable Y Q_p(Y) gives the values y such that:

▶ Example

Intuition

$$Q_p(Y) = \inf\{y \in \mathbb{R} : p \le F(y)\}, \quad \text{ for } p \in (0,1)$$

- cdf $F(\cdot)$ continuous and monotonically increasing: $Q = F^{-1}$
- Conditional quantile function at a quantile *p* for a random variable *Y* given *X* is:

$$Q_p(Y|X) = \inf\{y \in \mathbb{R} : p \le F(y|x)\}$$

Quantile regression

- Models quantiles in the distribution of Y given X
 - e.g. estimate how the 1st and 3rd quartiles in the distribution of Y|X change with X
- Object of interest: conditional quantiles, not mean
- Described by:

$$y_i = x_i'\beta_q + \varepsilon_i$$

where different choices of ${\it q}$ yield different estimated β

- Yields one vector of coefficients for every quantile analyzed
- Interpretation depends on which quantile coefficients refer to

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000 0000	000000	000	000 00 00 0000	00000	00

Earnings process

"Detrended" log pre-tax labor earnings:

$$y_{i,t} = \eta_{i,t} + \varepsilon_{i,t}, \quad i = 1, \dots, N, \quad t = 1, \dots, T$$

where:

•
$$\eta_{it}$$
:= persistent component:

$$\eta_{it} = Q_t(\eta_{i,t-1}, u_{i,t}), \quad (u_{i,t}|\eta_{i,t-1}, \dots) \sim U(0,1), \quad t = 2, \dots, T$$

where:

- $Q_t(\eta_{i,t-1}, \tau) := \tau$ -th quantile of $\eta_{i,t} | \eta_{i,t-1} \ \forall \ \tau \in (0,1)$
- *ε_{it}* = transitory component:
 - Zero mean, serially uncorrelated, independent of η
- Special case: canonical model of earnings dynamics

$$y_{i,t} = \eta_{i,t} + \varepsilon_{i,t}, \quad \eta_{i,t} = \eta_{i,t-1} + v_{i,t}$$

Nonlinear persistence

- Quantile model allows for nonlinear dynamics of earnings
- We are interested in nonlinear persistence
- Measures of persistence of the η component:

$$\rho_t(\eta_{i,t-1},\tau) = \frac{\partial Q_t(\eta_{i,t-1},\tau)}{\partial \eta}, \quad \rho_t(\tau) = \mathbb{E}\left[\frac{\partial Q_t(\eta_{i,t-1},\tau)}{\partial \eta}\right]$$

- Canonical model: $\rho_t(\eta_{i,t-1}, \tau) = 1$ always
- Quantile model: depends on magnitude and direction of $u_{i,t}$

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 00 0000	00000	00

Persistence of earnings in the canonical earnings model

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 00 0000	00000	00

Evidence of nonlinear persistence of earnings

(a) PSID data

(b) Norwegian administrative data

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000 0000	000000	000	000 00 00 0000	00000	00

Consumption rule in a simple life-cycle model

• Households choose consumption and savings subject to:

$$A_{i,t} = (1+r)A_{i,t-1} + Y_{i,t-1} - C_{i,t-1}$$

• Family log-earnings are given by:

$$\log Y_{i,t} = \kappa_t + \eta_{i,t} + \varepsilon_{i,t}$$

- No advance information, no aggregate uncertainty, agents know all distributions.
- Bellman equation in each period:

$$V_t(A_{i,t},\eta_{i,t},\varepsilon_{i,t}) = \max u(C_{i,t}) + \beta \mathbb{E}_t[V_{t+1}(A_{i,t+1},\eta_{i,t+1},\varepsilon_{i,t+1})]$$

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 00 0000	00000	00

Consumption rule in a simple life-cycle model

• Consumption policy rule:

$$C_{i,t} = G_t(A_{i,t}, \eta_{i,t}, \varepsilon_{i,t})$$

for some age-dependent function G_t

- Possible approaches:
 - 1. Build a fully structural model and calibrate or estimate it via $MSM \Rightarrow$ Gourinchas and Parker (2002)
 - 2. Linearize the Euler equation and then use standard covariance based methods \Rightarrow BPP (2008)
 - Directly estimate the nonlinear consumption rule ⇒ This paper!

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 00 0000	00000	00

Empirical consumption rule

• Log-consumption net of age dummies:

$$c_{i,t} = g_t(a_{i,t}, \eta_{i,t}, \varepsilon_{i,t}, \nu_{i,t})$$

 $\nu_{i,t}$:= unobserved arguments of the consumption function.

• Assets:

$$a_{i,t} = h_t(a_{i,t-1}, c_{i,t-1}, y_{i,t-1}, \eta_{i,t-1}, v_{i,t})$$

 $v_{i,t} :=$ i.i.d. and independent of the other arguments of h

Derivative effects

• Average consumption for given assets and earnings components:

$$\mathbb{E}[c_{i,t}|a_{i,t}=a,\eta_{i,t}=\eta,\varepsilon_{i,t}=\varepsilon]=\mathbb{E}[g_t(a,\eta,\varepsilon,\nu_{i,t})]$$

• Average derivative of consumption with respect to η :

$$\phi_t(\mathbf{a},\eta,\varepsilon) = \mathbb{E}\left[\frac{\partial g_t(\mathbf{a},\eta,\varepsilon,\nu_{i,t})}{\partial \eta}\right]$$

• Average derivative effect:

$$\bar{\phi}_t(a) = \mathbb{E}[\phi_t(a,\eta,\varepsilon)]$$

 1 - \$\overline{\phi}\$t(a):= degree of consumption insurance to shocks to persistent earnings component

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	00000	000	000 00 00 0000	00000	00

Identification overview and references

- We have nonlinear models with latent state variables.
- A series of papers has established conditions under which nonlinear models with latent variables are nonparametrically identified under conditional independence restrictions:
 - 1. Hu and Schennach (2008)
 - 2. D'Hautfoeuille (2011)
 - 3. Hu and Shum (2012)
 - 4. Wilhelm (2015)
 - 5. Arellano and Bonhomme (2016)
 - 6. Hu (2019)
- This section covers the gist of the identification strategy, but more details are provided in the paper and in the Supplemental Material available online.

Earnings process

- Assume that the data contain T consecutive periods.
- The goal is to identify the joint distributions of (η_{i,1},...,η_{i,T}) and (ε_{i,1},...,ε_{i,T}) given data from (y_{i,1},...,y_{i,T})
- These are identified under conditions which follow directly from Hu and Schennach (2008) and Wilhelm (2015).
- These conditions rely on the distributions of $(y_{i,t}|y_{i,t-1})$ and $(\eta_{i,t}|y_{i,t-1})$ being **complete**.
 - The distribution of $(y_{i,t}|y_{i,t-1})$ is complete if the only function h satisfying $\mathbb{E}[h(y_{i,t}|y_{i,t-1})] = 0$ is h = 0.
- Completeness is a common assumption in nonparametric instrumental variables problems.

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	00000	000 000	000 00 00 0000	00000	00

Consumption rule without unobserved heterogeneity

• For a generic variable z, let $z_i^t = (z_{i1}, \ldots, z_{it})$. Then make the following assumption:

ASSUMPTION 1: For all $t \ge 1$:

- 1. $u_{i,t+s}$ and $\varepsilon_{i,t+s}$, for all $s \ge 0$, are independent of a_i^t , η_i^{t-1} , and y_i^{t-1} . ε_{i1} is independent of a_{i1} and η_{i1} .
- 2. $a_{i,t+1}$ is independent of $(a_i^{t-1}, c_i^{t-1}, y_i^{t-1}, \eta_t^{t-1})$ conditional on $(a_{it}, c_{it}, y_{it}, \eta_{it})$.
- The taste shifter ν_{it} is independent of η_{i1}, (u_{is}, ε_{is}) for all s, ν_{is} for all s ≠ t, and a^t_i.
- The identification argument proceeds in a sequential way:
 - 1. Start with the first period.
 - 2. Proceed to the second period using the assets.
 - 3. Using the second period consumption move to subsequent periods and use induction.

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 00 0000	00000	00

Consumption rule - First period

- Let y_i = (y_{i1},..., y_{iT}) denote the whole history of earnings for agent i and f denote a density function.
- Using Assumption 1.1 we have that

$$f(a_1|y) = \mathbb{E}[f(a_1|\eta_{i1})|y_i = y]$$
(1)

- Given that distribution of (η_{i1}|y_i) is complete, f(a₁|η₁) is identified from (1).
- Using the consumption rule and Assumption 1.3 we have that:

$$f(c_1|a_1, y) = \mathbb{E}[f(c_1|a_{i1}, \eta_{i1}, y_{i1})|a_{i1} = a_1, y_i = y] \quad (2)$$

- Given that the distribution of $(\eta_{i1}|a_{i1}, y_i)$ is complete, $f(c_1|a_1, \eta_1, y_1)$ and $f(c_1, \eta_1|a_1, y)$ are identified from (2).
- Identification of the consumption function for t = 1 follows.

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 00 0000	00000	00

Consumption rule - Second period

• Using Assumption 1.1 and 1.3, we have that:

$$f(a_2|a_1,c_1,y) = \int f(a_2|a_1,c_1,\eta_1,y_1) f(\eta_1|a_1,c_1,y) d\eta_1 \quad (3)$$

- Given that the distribution of $(\eta_{i1}|c_{i1}, a_{i1}, y_i)$ is complete, $f(a_2|a_1, c_1, \eta_1, y_1)$ is identified from (3).
- Using Bayes' rule and Assumption 1.1 and 1.3 we have that:

$$f(\eta_2|a_1,a_2,c_1,y) = \int \frac{f(y|\eta_1,\eta_2,y_1)f(\eta_1,\eta_2|a_1,a_2,c_1,y_1)}{f(y|a_1,a_2,c_1,y)} d\eta_1$$

 As the density f(η₁|a₁, a₂, c₁, y) is identified from above, and, by Assumption 1, we have that:

$$f(\eta_1, \eta_2 | a_1, a_2, c_1, y_1) = f(\eta_1 | a_1, a_2, c_1, y_1) f(\eta_2 | \eta_1)$$

it follows that $f(\eta_2|a_1, a_2, c_1, y)$ is identified.

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	00000	000	000	00000	00

Consumption rule - Subsequent periods

• Consider second period's consumption. Using Assumption1.3 we have that:

$$f(c_2|a_1, a_2, c_1, y) = \int f(c_2|a_2, \eta_2, y_2) f(\eta_2|a_1, a_2, c_1, y) d\eta_2$$
(4)

- Given that the distribution of $(\eta_{i2}|a_{i1}, a_{i2}, c_{i1}, y_i)$ is complete, $f(c_2|a_2, \eta_2, y_2)$ is identified from (4).
- By induction, using in addition Assumption 1 from the third period onward, the joint density of η 's, consumption, assets, and earnings is identified, provided, for all $t \ge 1$, the distributions of $(\eta_{it}|c_i^t, a_i^t, y_i)$ and $(\eta_{it}|c_i^{t-1}, a_i^t, y_i)$ are complete in $(c_i^{t-1}, a_i^{t-1}, y_i^{t-1}, y_{i,t+1}, \dots, y_{iT})$.

Introduction 000000	Quantile methods 00	Model 0000 0000	Identification 000000	Estimation •oo •oo	Results 000 00 00	Life-cycle model 00000	Conclusions 00	
					0000			

Overview of estimation

- Estimate jointly quantile regressions of:
 - 1. Markovian transitions Q
 - 2. Transitory component ε
 - 3. Initial persistent component η_1
- Use these to estimate:
 - 1. Consumption c
 - 2. First period assets a1
 - 3. Evolution of assets

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 00 0000	00000	00

Empirical specification - Earnings

• Quantile function of ε_{it} (for t = 1, ..., T) given age_{it} :

$$Q_{\varepsilon}(\textit{age}_{it}, \tau) = \sum_{k=0}^{K} a_k^{\varepsilon}(\tau) \varphi_k(\textit{age}_{it})$$

where:

- φ_k for $k = 0, 1, \ldots =$ polynomial
- In practice, they will use Hermite polynomials
- *a_k*(ε):= scalars that will be estimated

• Hermite polynomials

• In practice:

$$Q_{\varepsilon}(age_{it},\tau) = a_1(\tau) + a_2(\tau)age_{it} + a_3(\tau)(age_{it}^2 - 1) + a_4(\tau)(age_{it}^3 - 3age_{it}) + \dots$$

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 00 0000	00000	00

Empirical specification - Earnings

• Quantile function of η_{i1} given age_{i1} :

$$Q_{\eta_1}(\mathit{age}_{i1}, au) = \sum_{k=0}^{K} a_k^{\eta_1}(au) arphi_k(\mathit{age}_{i1})$$

• Markovian transitions of persistent component:

$$Q_t(\eta_{i,t-1},\tau) = Q(\eta_{i,t-1}, \mathsf{age}_{it},\tau) = \sum_{k=0}^{K} \mathsf{a}_k^Q(\tau)\varphi_k(\eta_{i,t-1}, \mathsf{age}_{it})$$

• In practice:

$$Q_t(\eta_{i,t-1},\tau) = a_1(\tau) + a_2(\tau)\eta_{i,t-1} + a_3(\tau)age_{it} + a_4(\tau)\eta_{i,t-1}age_{it} + a_5(\tau)(\eta_{i,t-1}^2 - 1)age_{it} + a_6(\tau)\eta_{i,t-1}(age_{it}^2 - 1) + \dots$$

Introduction 000000	Quantile methods 00	Model 0000 0000	Identification	Estimation ○○○ ●○○	Results 000 00 00	Life-cycle model 00000	Conclusions 00
					0000		

Empirical specification - Consumption rule

• Empirical specification for consumption:

$$c_{i,t} = g_t(a_{i,t}, \eta_{i,t}, \varepsilon_{i,t}, \nu_{i,t})$$

• Conditional distribution of consumption given assets and earnings components:

$$egin{aligned} g_t(a_{it},\eta_{it},arepsilon_{it}, au) &= g(a_{it},\eta_{it},arepsilon_{it},\mathsf{age}_{it}, au) \ &= \sum_{k=1}^{K} b_k^g ilde{arphi}_k(a_{it},\eta_{it},arepsilon_{it},\mathsf{age}_{it}) + b_0^g(au) \end{aligned}$$

where:

- b_k^g and $b_0^g(au)$ are scalars to be estimated
- $\tilde{\varphi}_k$ is a product of Hermite polynomials

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000	00000	00

Empirical specification - Assets evolution

• Distribution of initial assets a_{i1} conditional on η_{i1} and age_{i1} :

$$Q_{a}(\eta_{i1}, age_{i1}, au) = \sum_{k=0}^{K} b_{k}^{a}(au) ilde{arphi}_{k}(\eta_{i1}, age_{i1})$$

• Evolution of assets:

$$a_{i,t} = h_t(a_{i,t-1}, c_{i,t-1}, y_{i,t-1}, \eta_{i,t-1}, v_{i,t})$$

Assets evolution is specified as:

$$\begin{split} h_t(a_{i,t-1},c_{i,t-1},y_{i,t-1},\eta_{i,t-1},\tau) &= h(a_{i,t-1},c_{i,t-1},y_{i,t-1},\eta_{i,t-1},\mathsf{age}_{it},\tau) \\ &= \sum_{k=1}^K b_k^h \tilde{\varphi}_k(a_{i,t-1},c_{i,t-1},y_{i,t-1},\eta_{i,t-1},\mathsf{age}_{it}) + \\ &\quad b_0^k(\tau) \end{split}$$

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 00 0000	00000	00

Overview of the estimation algorithm

- Adaptation of the techniques developed in Arellano and Bonhomme (2016) to a setting with time-varying latent variables
- Sequential algorithm:
 - 1. Recover estimates of the earnings parameters $a_k^Q, a_k^{\varepsilon}, a_k^{\eta_1}$.
 - 2. Given the estimates of a_k^Q , a_k^ε , $a_k^{\eta_1}$, recover the consumption and asset parameters b_0^g , b_0^h , b_k^a and b_1^g , ..., b_K^g and b_1^h , ..., b_K^h .
- Parameters not estimated jointly, because $a_k^Q, a_k^\varepsilon, a_k^{\eta_1}$ are identified from the earnings process alone
- Closely related to the "Stochastic EM" algorithm (see Celeux and Diebolt (1993)), but based on quantile regression rather than on maximum likelihood

Introduction 000000	Quantile methods 00	Model 0000 0000	Identification 000000	Estimation 000 000	Results •00 •0 •0 •0	Life-cycle model 00000	Conclusions 00
------------------------	------------------------	-----------------------	--------------------------	--------------------------	---	---------------------------	-------------------

- PSID for 1999-2009
- Y_{it} total pre-tax household labor earnings. y_{it} residual of a regression of log Y_{it} on demographics
- C_{it} consumption of nondurables and services. c_{it} residual of a regression of log C_{it} on same demographics
- A_{it} sum of financial and non-financial assets, net of mortgages and debt. a_{it} as residual of regression of log A_{it} on same demographics
- Sample selection from Blundell, Pistaferri, and Saporta-Eksten (2016)

Introduction 000000	Quantile methods 00	Model 0000 0000	Identification 000000	Estimation 000 000	Results	Life-cycle model	Conclusions 00
					0000		

Persistence of earnings

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	00 00 00 0000	00000	00

Persistence of η - Simulated Data

• Other figures

Introduction Quantile methods 000000 00	Model 0000 0000	Identification 000000	Estimation 000 000	Results 000 00 00 00 00 00 00 00 00 00 00 00 0	Life-cycle model	Conclusions 00
--	-----------------------	--------------------------	--------------------------	---	------------------	-------------------

Norwegian population register data

- In order to corroborate their findings using a different and larger data set, they use Norwegian administrative data.
- They consider a balanced sample of 2873 households in the 2000-2005 period.
 - Male, non-immigrant, residents between the age 30 and 60 and their spouses.
 - Continuously married males, with household disposable income above the threshold of substantial gainful activity (\$14,000 in 2014).
- Part of Blundell, Graber, Mogstad (2015)

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 0000	00000	00

Norwegian population register data results

Introduction Qua	antile methods	Nodel I	dentification	Estimation	Results	Life-cycle model	Conclusion
000000 00	C	0000	00000	000	000 00 00	00000	00

Consumption response to η - Simulated Data

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 00	00000	00

Consumption response to assets - Simulated Data

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000	00000	00
		0000		000	00		
					0000		

Impact of persistent earnings shocks on earnings -Canonical model

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000	00000	00
					0000		

Impact of persistent earnings shocks on earnings -Nonlinear model

 Earnings responses change, based on the rank of the household in the income distribution and the magnitude of the earnings shock.

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000	00000	00
		0000		000	00		

Impact of persistent earnings shocks on consumption -Canonical model

Different timing of shocks

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 00	00000	00
					0000		

Impact of persistent earnings shocks on consumption -Nonlinear model

 Consumption responses change, based on the rank of the household in the income distribution and the magnitude of the earnings shock.

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 0000	0000	00

Simulating a life-cycle model

- Want to study the possible implications of the nonlinearity in the earnings process.
- Simulate consumption and assets using the life-cycle model of Kaplan and Violante (2010).
- Compare the canonical linear model with a simple nonlinear earnings model, with "unusual" earnings shocks.

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 0000	0000	00

Some details of the simulation

- Each household enters the labor market at age 25, works until 60, and dies with certainty at 95.
- After retirement, households receive Social Security transfers Y_i^{ss} , which are functions of the entire realizations of labor income.
- Utility is CRRA.
- Single risk-free, one period bond, with constant return is 1 + r.
- Period-by-period budget constraint.
- Natural borrowing limit (households cannot die in debt)

The earnings process

• During working years, after-tax earnings are described by:

 $\log Y_{it} = \kappa_t + y_{it}$ $y_{it} = \eta_{it} + \varepsilon_{it}$

where:

- κ is a deterministic experience profile.
- η is the persistent component of earnings, ε is the transitory one.
- The process for the persistent component of earnings is:

$$\eta_{it} = \rho_t(\eta_{i,t-1}, \mathsf{v}_{it})\eta_{i,t-1} + \mathsf{v}_{it}$$

where two specifications are compared:

- $\rho_t = 1$ and v_{it} is normally distributed in the canonical earnings process.
- ρ_t is nonlinear and follows the rich process estimated from the PSID.

Introduction	Quantile methods	Model	Identification	Estimation	Results	Life-cycle model	Conclusions
000000	00	0000	000000	000	000 00 0000	00000	00

Consumption and assets

Solid lines are for the canonical earnings model, dashed lines for the nonlinear one.

Introduct 000000	ion Quantile metho 00	ods Model 0000 0000	Identification	Estimation 000 000	Results 000 00 00	Life-cycle model 0000●	Conclusions 00
					0000		

Consumption response to earnings

Conclusions

- Develops a nonlinear framework for modeling persistence
- Reveals asymmetric persistence patterns, with "unusual" shocks associated with a drop in persistence
- Provides conditions for the nonparametric identification and develops a simulation-based quantile regression method for estimation
- Nonlinear persistence is an important feature of earnings processes
- Consumption responses vary with the position of the household in the income distribution, age, and assets

Introduction Quantile methods Model 000000 00 0000 0000	Identification 000000	Estimation 000 000	Results 000 00 00 0000	Life-cycle model 00000	Conclusions O●
---	--------------------------	--------------------------	------------------------------------	---------------------------	-------------------

Extensions

- Combine this framework with more structural approaches.
- Extend the analysis to consider the effects of business cycles.
 - Gonzalo Paz-Pardo's JMP (2019)
- Extend the analysis to incorporate family labor supply à la Blundell, Pistaferri, and Saporta-Eksten (2016)
- Extend the analysis to older households

Appendix •000000000

Appendix

▲ Back

BPP (2008) - Variance of log-consumption

Derivation of a quantile function

▲ Back

The cdf of *Exponential*(λ) is:

$$F(x; \lambda) = egin{cases} 1 - e^{-\lambda x} & x \geq 0 \ 0 & x < 0 \end{cases}$$

To find the quantile function we need to find the value of x such that $Pr(X \le x) = p$. That is:

$$1 - e^{-\lambda x} = p \Rightarrow -\lambda x = \log(1 - p) \Rightarrow x = -\frac{\log(1 - p)}{\lambda}$$

which means that the quantile function is:

$$Q(p;\lambda) = -rac{\log(1-p)}{\lambda}$$

This means that in order to find the value of X for which, say, $Pr(X \le x) = 0.5$, you feed p = 0.5 to the quantile function.

Appendix 0000000000

Intuition for quantile function

Appendix 0000000000

Orthogonal polynomials

▲ Back

- Hermite polynomials are an orthogonal polynomial sequence.
 - An orthogonal polynomial sequence is such that any two different polynomials in the sequence are orthogonal to each other under some inner product.
- The polynomials p₀(x) = 1, p₁(x) = x, p₂(x) = 3x² 1 constitute a sequence of orthogonal polynomials under the inner product:

$$\langle g,h\rangle = \int_{-1}^{1} g(x)h(x)dx$$

This is because

$$\langle p_0, p_1 \rangle = \int_{-1}^1 1x = \frac{x^2}{2} \Big|_{-1}^1 = 0, \quad \langle p_0, p_2 \rangle = \int_{-1}^1 1 \cdot (3x^2 - 1) dx = x^3 - x \Big|_{-1}^1 = 0,$$

$$\langle p_1, p_2 \rangle = \int_{-1}^1 x \cdot (3x^2 - 1) dx = \frac{3}{4} x^4 - \frac{1}{2} x^2 \Big|_{-1}^1 = 0$$

Appendix 0000000000

Hermite polynomials

▲ Back

• The first four probabilists' Hermite polynomials are:

 $He_0(x) = 1$ $He_1(x) = x$ $He_2(x) = x^2 - 1$ $He_3(x) = x^3 - 3x$

- Hermite polynomials are orthogonal with respect to a weight function w(x).
- In particular, the probabilist Hermite polynomials are orthogonal with respect to the standard normal probability density function, that is:

$$\int_{-\infty}^{\infty} He_m(x) He_n(x) e^{-\frac{x^2}{2}} = \sqrt{2\pi} n! \delta_{nm}$$

where δ is the Kronecker delta, $\delta_{nm} = 0$ if $n \neq m$ and 1 otherwise.

Densities of earnings components

Conditional skewness of earnings components

◀ Back

(b) Persistent component η_{it}

Confidence bands

▲ Back

IRF's with different timing of shocks

▲ Back

