The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	000 0000000	0000 00	0000	00000 0000 0000 000	

Wealth inequality, family background, and estate taxation

Mariacristina De Nardi¹ Fang Yang²

¹UCL, Federal Reserve Bank of Chicago, IFS, and NBER

²Louisiana State University

June 8, 2015

Estate Taxation

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	000 0000000	0000	0000	00000 0000 0000 00	

The estate tax is very controversial

 "The estate tax is immoral and counter-productive... My office has received hundreds of letters and emails from individuals... These people are not rich, but they have worked hard and saved to create an inheritance for their children..." Ron Paul, district of Texas.

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	000 0000000	0000	0000	00000 0000 0000 00	

The estate tax is very controversial

- "The estate tax is immoral and counter-productive... My office has received hundreds of letters and emails from individuals... These people are not rich, but they have worked hard and saved to create an inheritance for their children..." Ron Paul, district of Texas.
- "I have continuously supported reforming the estate tax, but a complete repeal is fiscally irresponsible, and serves to benefit only mega multi-millionaires while harming our economy..." Bart Stupak, district of Michigan.

▲ロト ▲御 ト ▲ ヨ ト ▲ ヨ ト つのの

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	000 0000000	0000	0000	00000 0000 0000 00	

We study estate taxation reform in a model in which

- There is realistic wealth inequality. Why?
 - The estate tax hits the rich. ⇒ We need a model that generates a small number of very rich people.

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー わんの

We study estate taxation reform in a model in which

- There is realistic wealth inequality. Why?
 - The estate tax hits the rich. ⇒ We need a model that generates a small number of very rich people.
- Parental background influences one's lot in life. Why?
 - Individual level: parental background and initial conditions are empirically important (Keane and Wolpin (1997), Heatcote, Storesletten, Violante (2005), Huggett, Ventura and Yaron (2011), Solon...)

We study estate taxation reform in a model in which

- There is realistic wealth inequality. Why?
 - The estate tax hits the rich. ⇒ We need a model that generates a small number of very rich people.
- Parental background influences one's lot in life. Why?
 - Individual level: parental background and initial conditions are empirically important (Keane and Wolpin (1997), Heatcote, Storesletten, Violante (2005), Huggett, Ventura and Yaron (2011), Solon...)
 - Aggregate level: large amount of wealth (both wealth and human capital) transmitted across generations (Kotlikoff and Summers (1981) vs. Modigliani (1988), Gale and Scholz (1994)).

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	000 0000000	0000	0000	00000 0000 0000 000	

The economics of the model

• Bequest motives + inheritance of ability across generations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	000 0000000	0000 00	0000	00000 0000 0000 00	

The economics of the model

- Bequest motives + inheritance of ability across generations.
- How does parental background matter in our framework?
 - It affects one's initial earnings (persistent) and hence lifetime earnings.
 - It affects the bequest that the person is going to receive, hence lifetime resources.

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	000 0000000	0000 00	0000	00000 0000 0000 00	

The economics of the model

- Bequest motives + inheritance of ability across generations.
- How does parental background matter in our framework?
 - It affects one's initial earnings (persistent) and hence lifetime earnings.
 - It affects the bequest that the person is going to receive, hence lifetime resources.
- An earnings process that allows for high earnings risk for top earners. (Guvenen et al. (2014) and (2015), DeBacker et al. (2015), Panousi et al. (2015)).

・ロット (雪) (日) (日) (日)

e question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0	00	000 0000000	0000	0000	00000 0000 0000	
					00	

Strategy and goals

- Develop a model that matches well:
 - Distribution of wealth.
 - Distribution of of bequests.

Th

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Model 000 000000 Calibrat 0000 000 Model outcome

Policy experiment 00000 0000 0000

Conclusions

Strategy and goals

- Develop a model that matches well:
 - Distribution of wealth.
 - Distribution of of bequests.
- Analyze effects of estate taxation on
 - Aggregate capital accumulation.
 - Wealth inequality.
 - Parental background as a source of inequality.
 - Welfare ex-ante and conditional on one's initial earnings.

Model 000 Calibratio

Model outcome

Policy experiments

Conclusions

Strategy and goals

- Develop a model that matches well:
 - Distribution of wealth.
 - Distribution of of bequests.
- Analyze effects of estate taxation on
 - Aggregate capital accumulation.
 - Wealth inequality.
 - Parental background as a source of inequality.
 - Welfare ex-ante and conditional on one's initial earnings.
- Study robustness of results to modeling the bequest motive.
 - Qualitative literature stresses importance of specific bequest motive in affecting results.
 - It is still unclear how we should best model bequest motives.

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	•0	000 0000000	0000	0000	00000 0000 0000 00	

Literature, wealth inequality

- Mechanisms that keep the saving rate of the rich high and thus generate wealth inequality.
 - Intergenerational links (bequest motives and trasmission of human capital). De Nardi (2004), De Nardi and Yang (2014), and Nishiyama (2002).
 - High earnings risk for the top earners. Castañeda et al. (2003).
 - Heterogenous patience. Krusell and Smith (1998).
 - Entrepreneurship, borrowing constraints, and risky returns. Quadrini (1999), Cagetti and De Nardi (2006).

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	0	000 0000000	0000 00	0000	00000 0000 0000 00	

Literature, wealth inequality and estate taxation

- Entrepreneurship + altruism: Cagetti and De Nardi (2009).
- High earnings risk for the top earners + altruism: Castañeda et al. (2003).

 \Rightarrow Abolishing estate taxation: relatively small aggregate and distributional effects.

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー わんの

The questionLiterature000000	Model ●00 ○○○○○○○	Calibration 0000 00	Model outcomes	Policy experiments 00000 0000 0000 0000 00	Conclusions
------------------------------	-------------------------	---------------------------	----------------	---	-------------

Model key elements

- OLG general equilibrium model.
- Intergenerational transfer of bequests and human capital.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

The question Literature Model Calibration Model outcomes Policy experim 0000 00 0000<	ents Conclusions
--	------------------

Model key elements

- OLG general equilibrium model.
- Intergenerational transfer of bequests and human capital.
- Exogenous earnings profile (with earnings shocks).
- Government taxes, expenditure, and social security system.
- No aggregate shocks nor changes over time (stationary equilibrium). Focus on the 1990s period.

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	0000000	0000	0000	00000 0000 0000 00	

Representative firm

- Neoclassical production function: $F(K; L) = K^{\alpha} L^{1-\alpha}$.
- Physical capital depreciates at rate δ .
- Factor prices equal marginal products.

イロト (同) (三) (三) (0)

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	000 0000000	0000	0000	00000 0000 0000 00	

Government

- Tax rate on labor income: τ_l .
- Tax rate on capital income: τ_a .
- Tax rate on bequest: τ_b on estate above exemption level: x_b .
- Government spending: g.

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	000 0000000	0000	0000	00000 0000 0000 00	

Government

- Tax rate on labor income: τ_l .
- Tax rate on capital income: τ_a .
- Tax rate on bequest: τ_b on estate above exemption level: x_b .
- Government spending: g.
- Pay-as-you-go system; tax rate of τ_s and pension linked to income history P(ỹ).

イロト (同) (三) (三) (0)

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	000 0000000	0000 00	0000	00000 0000 0000 000	

Demographics

- Constant population growth: n.
- 1 period = 5 years.

Estate Taxation

The question	Literature 00	Model ○○○ ○●○○○○○○	Calibration 0000 00	Model outcomes	Policy experiments 00000 0000 0000 000	Conclusions
					00	

Household preferences

- Discount factor: β .
- Period utility from consumption: $\frac{c_t^{1-\sigma}}{1-\sigma}$.
- utility from bequest:

$$\phi(b'_k)=\phi_1igg[(b'_k+\phi_2)^{1-\sigma}-1igg].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

The question	Literature 00	Model ○○○ ○●○○○○○	Calibration 0000 00	Model outcomes	Policy experiments 00000 0000 0000	Conclusions
					00	

Household preferences

- Discount factor: β .
- Period utility from consumption: $\frac{c_t^{1-\sigma}}{1-\sigma}$.
- utility from bequest:

$$\phi(b'_k)=\phi_1igg[(b'_k+\phi_2)^{1-\sigma}-1igg].$$

- Gross bequest model: set $b'_k = b'_g$.
- Net bequest model: set $b'_k = b'_g = b'_g \tau_b * \max(b'_g x_b, 0).$

De Nardi and Yang

(日)、(型)、(E)、(E)、(E)、(C)、(C)

 The question
 Literature
 Model
 Calibration
 Model outcomes
 Policy experiments
 Conclusions

 000
 00
 000
 000
 000
 0000
 0000
 0000
 0000

 000
 00
 00
 000
 0000
 0000
 0000
 0000
 0000

 000
 00
 00
 0000
 0000
 0000
 0000
 0000

 000
 00
 00
 0000
 0000
 0000
 0000

Household earnings process

- Deterministic age-efficiency profile: ϵ_t .
- Shocks: z_t^i , AR(1) process, as Castañeda et al. (2003).
 - Three levels from PSID.
 - Fourth level: high earnings, high volatility state.

PSID captures dynamics well for most of population but misses really high earners, who also face high earnings volatility.

 \Rightarrow Model for levels of z_t^i

• Total productivity: $y_t^i = e^{z_t^i + \epsilon_t}$

 The question
 Literature
 Model
 Calibration
 Model outcomes
 Policy experiments
 Conclusions

 000
 00
 000
 000
 0000
 0000
 0000
 0000

 000
 00
 00
 0000
 0000
 0000
 0000

 000
 00
 00
 0000
 0000
 0000

 000
 00
 0000
 0000
 0000

 000
 00
 0000
 0000
 0000

Household earnings process

- Deterministic age-efficiency profile: ϵ_t .
- Shocks: z_t^i , AR(1) process, as Castañeda et al. (2003).
 - Three levels from PSID.
 - Fourth level: high earnings, high volatility state.

PSID captures dynamics well for most of population but misses really high earners, who also face high earnings volatility.

 \Rightarrow Model for levels of z_t^i

- Total productivity: $y_t^i = e^{z_t^i + \epsilon_t}$
- Labor productivity inheritance process: $z_1^j = \rho_h z_8^i + \nu^j, \ \nu^j \sim N(0, \sigma_h^2)$

De Nardi and Yang

The question 0000	Literature 00	Model ○○○ ○○○●○○○	Calibration 0000 00	Model outcomes	Policy experiments 00000 0000 0000	Conclusions
					0000	

Household's recursive problems

- Household's State Variables
 - *t* : Age.
 - *a* : Net worth from previous period.
 - z : Current earnings shock.
 - \tilde{y} : Annual accumulated earnings, up to a social security cap, \tilde{y}_c , used to compute Social Security payments.

▲ロト ▲冊 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ●

The question 0000	Literature 00	Model ○○○ ○○○●○○○	Calibration 0000 00	Model outcomes	Policy experiments 00000 0000 0000	Conclusions
					00	

Household's recursive problems

- Household's State Variables
 - *t* : Age.
 - *a* : Net worth from previous period.
 - z : Current earnings shock.
 - \tilde{y} : Annual accumulated earnings, up to a social security cap, \tilde{y}_c , used to compute Social Security payments.
 - S_p : Parental state variables $S_p = (a_p, z_p, \widetilde{y_p})$.

 The question
 Literature
 Model
 Calibration
 Model outcomes
 Policy experiments
 Conclusion:

 000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Household's recursive problems

- Household's State Variables
 - *t* : Age.
 - *a* : Net worth from previous period.
 - z : Current earnings shock.
 - \tilde{y} : Annual accumulated earnings, up to a social security cap, \tilde{y}_c , used to compute Social Security payments.
 - S_p : Parental state variables $S_p = (a_p, z_p, \widetilde{y_p})$.
- Three cases
 - Working age agents without parents (already inherited)
 - Working age agents with parents alive
 - Retired agents

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	000	0000	0000	00000	
		0000000	00		0000	
					0000	
					00	

Working age agents who have already inherited

$$V'_{w}(t,a,z,\widetilde{y}) = \max_{c,a'} \left\{ U(c) + \beta E \left[V'(t+1,a',z',\widetilde{y'}) \right] \right\}, \quad (1)$$

$$c + a' = (1 - \tau_I)wy - \tau_s \min(wy, 5\tilde{y_c}) + [1 + r(1 - \tau_a)]a, (2)$$

$$a' \geq 0, \qquad (3)$$

$$y' = [(t-1)\widetilde{y} + \min(wy/5, \widetilde{y_c})]/t, \qquad (4)$$

De Nardi and Yang

.

Estate Taxation

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	000 0000000	0000	0000	00000 0000 0000 00	

Working age agents with parents alive

$$V_w(t, a, z, \widetilde{y}, S_p) = \max_{c, a'} \left\{ U(c) + \beta p_{t+7} E \left[V_w(t+1, a', z', \widetilde{y'}, S_p') \right. \right. \\ \left. + \beta (1 - p_{t+7}) E \left[V_w'(t+1, a'+b_n'/N, z', \widetilde{y'}) \right] \right\},$$

subject to

$$c + a' = (1 - \tau_l)wy - \tau_s \min(wy, 5\tilde{y_c}) + [1 + r(1 - \tau_a)]a, \qquad (5)$$

$$\widetilde{y'} = [(t-1)\widetilde{y} + \min(wy/5, \widetilde{y_c})]/t, \qquad (7)$$

De Nardi and Yang

Estate Taxation

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	000 000000	0000	0000	00000	
					00	

Retired agents

$$V_r(t, a, \widetilde{y}) = \max_{c, a'} \left\{ U(c) + \beta p_t V_r(t+1, a', \widetilde{y}) + (1-p_t)\phi(b'_k) \right\},$$
(10)

subject to

$$a' \geq 0,$$
 (11)

$$c + a' = [1 + r(1 - \tau_a)]a + (1 - \tau_l)P(\tilde{y})$$
 (12)

De Nardi and Yang

Estate Taxation

17 / 44

▲□▶ ▲圖▶ ★温▶ ★温▶ 三星

The question	Literature 00	Model 000 0000000	Calibration •000 00	Model outcomes	Policy experiments 00000 0000 0000	Conclusion
					00	

Exogenous Parameters

	Parameters		Value
Demographics	п	annual population growth	1.2%
	p_t	survival probability	see text
Preferences	γ	risk aversion coefficient	1.5
Labor earnings	ϵ_t	age-efficiency profile	see text
	$ ho_h$	AR(1) coef. of prod. inherit. process	0.40
	σ_h^2	innovation of prod. inherit. process	0.37

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 二臣

The question	Literature 00	Model 000 0000000	Calibration ○●○○ ○○	Model outcomes	Policy experiments 00000 0000 0000 000	Conclusions
--------------	------------------	--------------------------------	---------------------------	----------------	--	-------------

Exogenous parameters

	Param	Parameters	
Production	α	capital income share	0.36
	δ	depreciation	6.0%
Government policy	$ au_{a}$	capital income tax	20%
	$P(\widetilde{y})$	Social Security benefit	see text
	τ_{s}	Social Security tax	12.0%

• 4 earnings states: low, middle, high, and super-high, [1.0, 3.15, 9.78, 1, 061] (from Castañeda et al.)

э

・ロト ・ 一下・ ・ ヨト・

- 4 earnings states: low, middle, high, and super-high, [1.0, 3.15, 9.78, 1, 061] (from Castañeda et al.)
- Transition matrix for lowest three grid points based on PSID.

э

・ロト ・ 一下・ ・ ヨト・

The question	Literature 00	Model 000 0000000	Calibration ○○●○ ○○	Model outcomes	Policy experiments 00000 0000 0000 000	Conclusions
					00	

- 4 earnings states: low, middle, high, and super-high, [1.0, 3.15, 9.78, 1, 061] (from Castañeda et al.)
- Transition matrix for lowest three grid points based on PSID.
- Pick remaining six elements of our 4x4 transition matrix Q_y .

	Percentile (%)						
	Gini	1	5	20	40	60	80
SCF	0.63	14.76	31.13	61.39	84.72	97.21	100.00
All models	0.62	14.64	31.93	62.45	84.05	93.00	100.00

Table : Percentage of earnings in the top percentiles.

イロト 不得 トイヨト イヨト ヨーク

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	000 0000000	0000 00	0000	00000	

Transition matrix for Q_y

0.82	<u>2</u> 39 ().1733	0.0027	0.000070]
0.2	l71 ().6399	0.1428	0.000196
0.00)67 ().2599	0.7332	0.000198
0.1	L17 (0.0000	0.0794	0.808958

The transition matrix for Q_{yh}

Γ	0.8272	0.1704	0.0024	0.000000000000	1
	0.5748	0.4056	0.0196	0.0000000000	
	0.2890	0.6173	0.0937	0.000000005	
L	0.0001	0.0387	0.9599	0.0012647506	

⇒ Initial prob. distribution of earnings: [65% 33% 2% 0.00007%]. Fraction of sup-rich income goes up to 0.04% at age 60.

De Nardi and Yang

.

on	Literature	Mo
	00	OC
		0.0

Calibration

Model outcom

Policy experiment: 00000 0000 Conclusions

Benchmark: remaining parameters to match

			Gross	No Bequest
Parameters		Benchmark	Bequests	Motives
β discount factor		0.9454	0.9455	0.9525
ϕ_1 bequest utility		-5.4473	-6.1561	0.0000
ϕ_2 bequest shifter		1095K	1376K	0.0000
τ_b estate tax		21.43%	21.30%	62.94%
x _b estate exem		756K	786K	745K
τ_I labor tax		19.20%	19.20%	19.20%
			Gross	No Bequest
Moment	Data	Benchmark	Bequests	Motives
Wealth/output	3.10	3.10	3.10	3.11
Bequest/wealth	0.88-1.18%	0.88%	0.88%	0.58%
90th perc. bequests	4.34	4.51	4.29	4.71
% estates taxed	2.0%	1.92%	1.92%	2.04%
Estate tax/output	0.33%	0.33%	0.33%	0.32%
Gvt spending/output	18%	18.00%	18.00%	18.00%

De Match effective estate taxation

The question Literature Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000 00 000 000 000000	0000 0 0	0000	00000 0000 0000 0000	

Calibration of various models

- Re-calibrate gross bequest motive model to target same moments.
- No bequest motive model, calibrate what it can match.
 - \Rightarrow Bequest/wealth ratio too low (0.58 compared to 0.88%).
 - \Rightarrow Does not generate very large estates observed in the data.
 - \Rightarrow Estate tax rate is 64%.

The question Literature Model Calibration 0000 00 0000 0000 0000 0000000 000	Model outcomes ●000	Policy experiments 00000 0000 0000 0000	Conclusions
--	------------------------	---	-------------

Wealth inequality

• Models with bequest motives fit distribution of wealth well.

	Percentile (%)						
	Gini	1	5	20	40	60	80
1998 SCF	0.80	34.7	57.8	69.1	81.7	93.9	98.9
Benchmark	0.80	35.2	51.9	66.1	82.9	95.3	99.6
Gross bequests	0.80	35.3	52.1	66.3	83.0	95.3	99.6
No beq. motives	0.76	25.8	44.1	59.7	78.5	93.5	99.1

Table : Percentage of total wealth held by households in the top percentiles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

The question Literature wooder Calibration wooder outcomes Policy exper	eriments Conclusions

Gini by age

• Models with bequest motives closer to observed Gini by age.

De Nardi and Yang

Estate Taxation

The question 0000	Literature 00	Model 000 0000000	Calibration 0000 00	Model outcomes	Policy experiments 00000 0000 0000	Conclusions
					0000	

Tax incidence

Wealth Percentile	Age	Capital tax	Labor tax	Estate Tax	Total tax
0-1%	64.26	35.79	7.74	98.84	15.65
1-5%	61.80	18.14	7.66	1.16	9.86
5-10%	59.18	14.94	8.87	0.00	10.05

Table : Percentage of the total for a given tax paid by a selected wealth percentile.

- Labor income tax burden is more evenly distributed than the capital income tax.
- Estate tax burden is the most unevenly distributed.

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusio
0000	00	000 0000000	0000	000●	00000	
					0.0	

Family background

• Parental background is very important.

	Moving to parent's earnings					
Parent's earnings	1st	2nd	3rd			
Bequests only						
2nd	0.06	-	-			
3rd	0.57	0.42	-			
4th	14.87	14.71	13.98			
Bequests + humar	n capital	inheritance				
2nd	0.06	-	-			
3rd	5.59	5.43	-			
4th	35.71	35.50	28.41			

Table : Asset compensation required for moving from a parental background level to another, normalized as a fraction of average income.

The question 0000	Literature 00	Model 000 0000000	Calibration 0000 00	Model outcomes	Policy experiments	Conclusions

Policy experiments

Benchmark (net bequest motive)

- Vary two key margins of estate taxation:
 - Marginal tax rate τ_b .
 - Estate tax threshold x_b.
- Adjust
 - Capital income τ_a.
 - Labor income tax τ_l.

Gross bequest motive.

Fully altruistic dynastic models.

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclus
0000	00	000 0000000	0000	0000	•0000 0000 0000 0000	

Policy experiments

Study the effects of each reform on

- Aggregate capital and output.
- Wealth inequality.
- Importance of parental background.
- Welfare.

e Model

Calibration

Model outcome 0000 Policy experiments

Conclusions

Aggregate Effects, Adjusting the Capital Income Tax

$ au_{b}$	Xb	$ au_{a}$	K	Y	r	wage	
Net b	equest n	nodel, cha	inging the e	estate tax ra	ate		
0.00	-	21.6%	+0.71%	+0.25%	5.580	0.490	
0.21	756K	20.0%	3.100	1.000	5.622	0.489	
0.40	756K	18.7%	-0.59%	-0.21%	5.658	0.488	
0.60	756K	17.0%	-0.53%	-0.19%	5.654	0.488	
Net b	equest n	nodel, cha	inging estat	e tax rate a	and exem	ption lev	vel
0.55	675K	17.4%	-0.74%	-0.27%	6.667	0.488	

- \uparrow estate taxation $\Rightarrow \downarrow$ aggregate capital and income, up to $\tau_b = 50\%$.
- Statutory tax policy minimizes aggregate capital among all of the tax configurations that we have tried.

De Nardi and Yang

Estate Taxation

30 / 44

 Fhe question
 Literature
 Model
 Calibratic

 0000
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</

Model outco

Policy experiments

・ロト ・ 一下・ ・ ヨト・

Conclusions

Distributional effects, adjusting the capital income tax

				Percentile (%)					
$ au_{b}$	x _b	$ au_{a}$	Gini	1	5	20	40		
Net b	equest n	nodel, cha	ange the estate	e tax rat	e				
0.00	_	0.216	0.811	36.91	53.34	67.28	83.61		
0.21	756K	0.200	0.804	35.15	51.90	66.09	82.89		
0.40	756K	0.187	0.798	33.78	50.71	65.10	82.27		
0.60	756K	0.170	0.793	32.83	49.82	64.27	81.67		
Net bequest model, year 2000 statutory estate tax									
0.55	675K	0.174	0.794	32.99	49.98	64.43	81.74		

- The share of wealth held by the richest is monotonically decreasing in the estate tax rate.
- Statutory tax policy reduces wealth concentration.

Т	h	е	q	u	e	S	t	io	n	
0	0		0							

e Model

Calibratio

Model outcome 0000 Policy experiments

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Conclusions

Importance of parental background effects

	Moving to parent's earnings						
Parent's earnings	1st	2nd	3rd				
Benchmark							
2nd	0.06	-	-				
3rd	5.59	5.43	-				
4th	35.71	35.50	28.41				
Net bequest mode	l, year 200	00 statutory estate tax					
2nd	0.07	-	-				
3rd	5.46	5.29	-				
4th	33.70	33.52	26.73				

- Born to a family with the 4th parental background less important.
- Other group of people are barely affected.

-

The question 0000	Literature 00	Model 000 0000000	Calibration 0000 00	Model outcomes	Policy experiments 0000● 0000 0000 000	Conclusions

Welfare effects, going to year 2000 statutory estate tax

	Initial Earnings						
All	1st	Gaining					
Partial	equilibriu	m					
Net be	quest mot	ive, capi	tal incom	e tax ↓			
0.015	0.004	0.027	0.134	-77.277	0.961		
Genera	l equilibriı	ım					
Net be	quest mot	ive, capi	tal incom	e tax ↓			
0.005	-0.003	0.013	0.115	-75.100	0.384		

- PE: Majority of the population gains (> 95%).
- PE: Average gains for 1st, 2nd, 3rd productivity levels, loss for 4th.
- GE: ↓ wage rate ⇒ welfare loss. ↑ interest rate ⇒ welfare gain of the savers.

De Nardi and Yang

Policy experiments 0000

・ロト ・ 一下・ ・ ヨト・

Aggregate effects, comparing capital and labor income tax

$ au_{b}$	x _b	r	wage	$ au_{a}$	K	Y
Net b	equest n	nodel, ch	anging c	apital ind	come tax	
0.00	_	5.580	0.490	0.216	3.122	1.003
0.21	756K	5.622	0.489	0.200	3.100	1.000
0.40	756K	5.658	0.488	0.187	3.082	0.998
Net b	equest n	nodel, ch	anging la	abor inco	me tax	
0.00	-	5.531	0.492	0.196	3.148	1.006
0.21	756K	5.622	0.489	0.192	3.100	1.000
0.40	756K	5.697	0.487	0.189	3.061	0.996

· Very similar effects on the aggregates with capital and labor income tax adjustments.

e Model

Calibratic 0000 Model outcomes

Policy experiments

・ロト ・ 一下・ ・ ヨト・

Conclusions

Distributional effects, comparing capital and labor income tax

					Percent	tile (%)	
$ au_{b}$	Хb	$ au_{a}$	Gini	1	5	20	40
Net b	equest n	nodel, cha	anging capital	income t	ax		
0.00	_	0.216	0.811	36.91	53.34	67.28	83.61
0.21	756K	0.200	0.804	35.15	51.90	66.09	82.89
0.40	756K	0.187	0.798	33.78	50.71	65.10	82.27
Net b	equest n	nodel, cha	anging labor in	icome ta:	х		
0.00	_	0.196	0.811	36.92	53.32	67.22	83.54
0.21	756K	0.192	0.804	35.15	51.90	66.09	82.89
0.40	756K	0.189	0.799	33.79	50.78	65.20	82.36

 Very similar effects on inequality with capital and labor income tax adjustments.

De Nardi and Yang

Estate Taxation

35 / 44

э

ire Mode

Calibrati

Model outcome 0000 Policy experiments

Conclusions

Importance of parental background, comparing capital and labor income tax

	Moving to parent's earnings					
Parent's earnings	1st	2nd	3rd			
Benchmark						
2nd	0.06	-	-			
3rd	5.59	5.43	-			
4th	35.71	35.50	28.41			
Net bequest mode	l, changing	; capital tax				
2nd	0.07	-	-			
3rd	5.46	5.29	-			
4th	33.70	33.52	26.73			
Net bequest mode	l, changing	; labor tax				
2nd	0.06	-	-			
3rd	5.53	5.38	-			
4th	34.15	33.98	27.12			

 Very similar effects on the importance of parental background with capital and labor income tax adjustments.

De Nardi and Yang

Estate Taxation

36 / 44

e Model

Calibratio

Model outcome

Policy experiments

・ロト ・ 理ト ・ ヨト ・ ヨト

Conclusions

Welfare effects, going to year 2000 statutory estate tax

	Initial Earnings					
All	1st	2nd	3rd	4th	Gaining	
Partial	equilibriu	n				
Net bec	quest mot	ive, capi	tal incom	e tax ↓		
0.015	0.004	0.027	0.134	-77.277	0.961	
Net bec	quest mot	ive, labo	r income	tax ↓		
0.045	0.027	0.073	0.162	-89.250	0.990	
General	equilibriu	ım				
Net bec	quest mot	ive, capi	tal incom	e tax ↓		
0.005	-0.003	0.013	0.115	-75.100	0.384	
Net bec	quest mot	ive, labo	r income	tax↓		
0.020	0.009	0.035	0.111	-83.343	0.981	

 GE: Cutting labor income tax is much better for most from a welfare standpoint.

De Nardi and Yang

Estate Taxation

37 / 44

э

ure Mod

Calibrat 0000 Model outcome 0000 Policy experiments

・ロト ・ 理ト ・ ヨト ・ ヨト

Conclusions

Aggregate effects, comparing net and gross bequest motives

$ au_{b}$	x _b	r	wage	$ au_{a}$	K	Y
Net b	equest m	nodel, ch	nanging c	apital ind	come tax	
0.00	_	5.580	0.490	0.216	3.122	1.003
0.21	756K	5.622	0.489	0.200	3.100	1.000
0.40	756K	5.658	0.488	0.187	3.082	0.998
Gross	bequest	model,	changing	capital i	ncome ta	ах
0.00	-	5.560	0.491	0.215	3.133	1.004
0.21	786K	5.622	0.489	0.200	3.100	1.000
0.40	786K	5.669	0.488	0.188	3.076	0.997

• Very similar effects on the aggregates with utility from net and gross bequests.

De Nardi and Yang

Estate Taxation

38 / 44

 The question
 Literature
 Model
 Calibration
 Model outcomes
 Policy experiments
 Conclusion:

 0000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

 0000
 0000
 0000
 0000
 0000
 0000
 0000

Distributional effects, comparing net and gross bequest motives

					Percent	tile (%)	
$ au_{b}$	x _b	$ au_{a}$	Gini	1	5	20	40
Net b	equest n	nodel, yea	r 2000 statute	ory estate	e tax		
0.55	675K	0.174	0.794	32.99	49.98	64.43	81.74
Gross	bequest	model, ye	ear 2000 statu	itory esta	ite tax		
0.55	675K	0.179	0.792	32.39	49.57	64.15	81.59

• Very similar effects on inequality with utility from net and gross bequests.

э

・ロト ・ 理ト ・ ヨト ・ ヨト

Importance of parental background effects, comparing net and gross bequest motives

	Moving to parent's earnings				
Parent's earnings	1st	2nd	3rd		
Benchmark					
Net bequest mode	l, year 20	000 statutory estate tax			
2nd	0.07	-	-		
3rd	5.46	5.29	-		
4th	33.70	33.52	26.73		
Gross bequest mo	del, year 2	2000 statutory estate tax			
2nd	0.07	-	-		
3rd	5.43	5.27	-		
4th	33.65	33.47	26.71		

 Very similar effects on the importance of parental background with gross and net bequest models.

De Nardi and Yang

Estate Taxation

ure Mod

Calibrat 0000 Model outcome

Policy experiments

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Conclusions

Welfare Effects, going to year 2000 estate statutory taxation

	Initial Earnings						
All	1st	2nd	3rd	4th	Gaining		
General	equilibriu	n			<u> </u>		
Net beq	uest motiv	ve, capita	l income	tax↓			
0.005	-0.003	0.013	0.115	-75.100	0.384		
Net beq	uest motiv	ve, labor i	income ta	ax ↓			
0.020	0.009	0.035	0.111	-83.343	0.981		
Gross be	equest mo	tive, capi	tal incom	ie tax ↓			
-0.008	-0.011	-0.008	0.070	-60.013	0.097		
Gross be	equest mo	tive, labo	r income	tax↓			
0.005	-0.001	0.012	0.070	-67.207	0.457		

- Rich people with wealth in the utility function lose less.
- Fraction gaining and overall welfare higher when labor tax is lowered as estate tax is increased.

De Nardi and Yang

Estate Taxation

41 / 44

e question	Literature 00	Model 000 0000000	Calibration 0000 00	Model outcomes	Policy experiments ○○○○ ○○○○ ●○	Conclusions
					••	

Comparison with the literature

- Models with completely altruistic agents: Cagetti and De Nardi (2009), Castañeda et al. (2003)
- Similar results: abolishing estate taxation leads to:
 - $\uparrow 0.7 1.5\%$ of aggregate capital
 - $\uparrow 0.1 0.6\%$ of aggregate output
 - \uparrow 1.0-1.7 percentage point in wealth by the richest 1%.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ④

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Con
0000	00	000 0000000	0000	0000		

Tax burden Effects, going to year 2000 statutory

Wealth Percentile	Age	Capital tax	Labor tax	Estate tax	Total tax			
Benchmark								
0-1%	64.26	1.69	1.26	0.395	3.35			
1-5%	61.80	0.21	0.31	0.001	0.53			
Changing the capital income tax \downarrow								
0-1%	64.52	1.39	1.25	1.034	3.67			
1-5%	61.70	0.19	0.31	0.006	0.51			
Changing the labor income tax \downarrow								
0-1%	64.36	1.60	1.21	1.020	3.83			
1-5%	61.79	0.22	0.30	0.006	0.52			

- Estate tax revenue by the richest 1% increases substantially.
- Total tax increase as well, especially when adjusting labor tax.

De Nardi and Yang

Estate Taxation

The question	Literature	Model	Calibration	Model outcomes	Policy experiments	Conclusions
0000	00	000 0000000	0000	0000	00000 0000 0000 00	

Conclusions

- Changing the estate tax rate, and in particular \uparrow
 - \downarrow output and wealth.
 - \downarrow inequality.
 - \downarrow role of family background.
 - Welfare gains and benefits depend on tax used to balance the government budget constraint.
 - Aggregate, distributional, and parental background effects are very small, but the welfare effects from redistribution are large.
- Results surprisingly robust to bequest motive assumed + mechanisms driving wealth inequality.

イロト 不得 トイヨト イヨト ヨーク