Medicaid Insurance in Old Age

Mariacristina De Nardi Eric French John Jones

UCL, Chicago Fed, IFS, NBER, CEPR, SUNY-Albany

September 2015

De Nardi et al. (UCL, SUNY-Albany)

Medicaid Insurance in Old Age

A

Public health insurance for the elderly

- Medicare: Virtually everyone age 65+ is eligible
 - No income or asset tests
 - Pays for most medical services, but not all (e.g., nursing homes)

Public health insurance for the elderly

- Medicare: Virtually everyone age 65+ is eligible
 - No income or asset tests
 - Pays for most medical services, but not all (e.g., nursing homes)
- Medicaid: Means-tested health insurance that assists the poor or impoverished
 - Medicaid assists 70% of nursing home residents.
 - Nursing homes are very expensive.

- What is the degree of Medicaid redistribution?
 - How big are Medicaid payments for high-income versus low-income people?

A (10) A (10) A (10)

- What is the degree of Medicaid redistribution?
 - How big are Medicaid payments for high-income versus low-income people?
- How much do people value Medicaid insurance?
 - How big is this valuation for high-income versus low-income people?

The Sec. 74

- What is the degree of Medicaid redistribution?
 - How big are Medicaid payments for high-income versus low-income people?
- How much do people value Medicaid insurance?
 - How big is this valuation for high-income versus low-income people?
- Is Medicaid of about the right size?

- What is the degree of Medicaid redistribution?
 - How big are Medicaid payments for high-income versus low-income people?
- How much do people value Medicaid insurance?
 - How big is this valuation for high-income versus low-income people?
- Is Medicaid of about the right size?
- Who pays for Medicaid?

AHEAD cohort of HRS

- Household heads aged 70 or older in 1993/4
- Consider only the retired singles
- Follow-up interviews in 1995/6, 1998, 2000, 2002, 2004, 2006, 2008, 2010
- Asset, medical expense data begins in 1996 (1994 data faulty), uses 2,673 individuals
- Use full, unbalanced panel

AHEAD cohort of HRS

- Household heads aged 70 or older in 1993/4
- Consider only the retired singles
- Follow-up interviews in 1995/6, 1998, 2000, 2002, 2004, 2006, 2008, 2010
- Asset, medical expense data begins in 1996 (1994 data faulty), uses 2,673 individuals
- Use full, unbalanced panel
- Sort households by permanent income = average annuity income from Social Security + defined benefit pension plans over sample period

E N 4 E N

AHEAD cohort of HRS

- Household heads aged 70 or older in 1993/4
- Consider only the retired singles
- Follow-up interviews in 1995/6, 1998, 2000, 2002, 2004, 2006, 2008, 2010
- Asset, medical expense data begins in 1996 (1994 data faulty), uses 2,673 individuals
- Use full, unbalanced panel
- Sort households by permanent income = average annuity income from Social Security + defined benefit pension plans over sample period
- 1996-2010 waves of the Medicare Current Beneficiary Survey for information on payments (coded the same way as AHEAD)

< ロ > < 同 > < 回 > < 回 >

Share receiving Medicaid

Medicaid Recipiency by Cohort and Income: Data

Figure: Fraction receiving Medicaid by age, birth cohort and permanent income quintile.

De Nardi et al. (UCL, SUNY-Albany)

Forces working against redistribution

- High income live longer than low income. Life expectancy at age 70
 - 10th percentile of income distribution: 10.4 years.
 - 90th percentile of income distribution: 14.4 years.

Forces working against redistribution

- High income live longer than low income. Life expectancy at age 70
 - 10th percentile of income distribution: 10.4 years.
 - 90th percentile of income distribution: 14.4 years.
- Two pathways to qualify for Medicaid
 - Categorically needy: low income
 - Medically needy: low income net of medical spending
 - High income retirees wind up on Medicaid only if they have catastrophic medical spending

A D N A B N A B N A B N

Permanent Income	Average	Recipiency	Average Payment/
Quintile	Payment	Rate	Beneficiary
Bottom	9,080	.70	12,990
Fourth	5,720	.42	13,690
Third	2,850	.16	18,350
Second	1,950	.08	24,360
Тор	1,280	.05	23,790

Table: Average Medicaid payments, recipiency, and payments per

 beneficiary, 1996-2010 waves of the Medicare Current Beneficiary Survey.

Literature on Medicaid/Medicare insurance

- Lots of work on health effects of Medicaid/Medicare
 - Big effects: Card et al. 2009, Finkelstein et al. 2012; Chay et al. 2010; Yang et al. 2009.
 Small/zero effects: Brook et al. 1983; Fisher et al. 2003; Finkelstein and McKnight 2008
- Less on Medicaid/Medicare's effect on savings/medical expenses:
 - Scholz et al. 2006; Brown and Finkelstein 2008; De Nardi, French, and Jones 2010; Kopecky and Koreshkova 2013; Braun, Kopecky and Koreshkova 2015
- Most papers assume exogenous medical expenditure and/or little heterogeneity and do not focus on redistribution.

- Single people aged 70 and older
- Consumption of medical and non-medical goods, and savings decision
- Medical care does not affect longevity

- Single people aged 70 and older
- Consumption of medical and non-medical goods, and savings decision
- Medical care does not affect longevity
 - Consistent with many papers
 - Much of medical spending, especially late in life, is on long-term care
 - Spending improves quality of life, not length of life

4 6 1 1 4

Nursing home quality varies a lot

De Nardi et al. (UCL, SUNY-Albany)

Medicaid Insurance in Old Age

September 2015 10 / 34

4 3 > 4 3

< 47 ▶

Model

- Single people aged 70 and older
- Flow utility from medical and non-medical consumption

$$u(c_t, m_t, \mu_t) = \frac{1}{1-\nu} c_t^{1-\nu} + \mu_t \frac{1}{1-\omega} m_t^{1-\omega},$$

where:

- t = age;
- c_t = non-medical consumption;
- m_t = consumption of medical goods and services, includes
 - nursing home, drugs, doctor visits;
 - items paid out of pocket as well as by Mediciad, Medicare, or other insurers
- μ_t = stochastic medical needs shifter.

De Nardi et al. (UCL, SUNY-Albany)

4 3 5 4 3 5 5

Health and lifespan

• Health transition probabilities are functions of:

- gender
- permanent income
- age
- past health

Health and lifespan

• Health transition probabilities are functions of:

- gender
- permanent income
- age
- past health
- Mortality rates vary by:
 - gender
 - permanent income
 - age
 - health

 \Rightarrow Healthy, rich women live longer than poor, sick, men.

- A deterministic function of age, gender, and health status.
- A persistent shock.
- A transitory shock.

$$\begin{aligned} \log(\mu_t(\cdot)) &= f(\text{age, health status, } \psi_t), \\ \psi_t &= \zeta_t + \xi_t, \quad \xi_t \sim N(0, \sigma_{\xi}^2), \\ \zeta_t &= \rho_m \zeta_{t-1} + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma_{\epsilon}^2). \end{aligned}$$

(B)

Two key features of the insurance system

• Private, Medicare, Veterans Administration health insurance

- pay a share of total medical expenditure $m_t(1 q(h_t))$
- Using data from the MCBS we find
 - q(nursing home) = .68
 - q(good or bad) = .27

(B)

< 6 b

Private, Medicare, Veterans Administration health insurance

- pay a share of total medical expenditure $m_t(1 q(h_t))$
- Using data from the MCBS we find
 - q(nursing home) = .68
 - q(good or bad) = .27
- Social insurance programs (Medicaid and Supplemental Security Income (SSI))
 - Medicaid utility floors

A B F A B F

4 A N

- Medicaid transfers vary with medical needs.
- But we (the econometricians) do not fully observe medical needs directly.

< 回 > < 回 >

< 6 b

- Medicaid transfers vary with medical needs.
- But we (the econometricians) do not fully observe medical needs directly.
- So we need a model that satisfies the criteria:
 - Medicaid transfers vary with medical needs.
 - Model matches distribution of Medicaid payments.

イヨトイヨト

Medicaid as providing utility floor

Calculating transfers for the medically needy...

• Government computes minimum expenditure $\underline{x}_{mt} = c_t + q(h_t)m_t$ to achieve

$$\frac{1}{1-\nu}c_t^{1-\nu}+\mu_t\frac{1}{1-\omega}m_t^{1-\omega}=\underline{u},$$

A B F A B F

Medicaid as providing utility floor

Calculating transfers for the medically needy...

• Government computes minimum expenditure $\underline{x}_{mt} = c_t + q(h_t)m_t$ to achieve

$$\frac{1}{1-\nu}c_t^{1-\nu}+\mu_t\frac{1}{1-\omega}m_t^{1-\omega}=\underline{u},$$

Government makes transfer b_{mt} given expenditure <u>x_{mt}</u>

$$b_{mt} = \max \{0, \ \underline{x}_{mt} - \text{resources}_t\},\$$

4 3 5 4 3 5 5

Calculating transfers for the medically needy...

• Government computes minimum expenditure $\underline{x}_{mt} = c_t + q(h_t)m_t$ to achieve

$$\frac{1}{1-\nu}c_t^{1-\nu}+\mu_t\frac{1}{1-\omega}m_t^{1-\omega}=\underline{u},$$

Government makes transfer b_{mt} given expenditure <u>x_{mt}</u>

$$b_{mt} = \max \{0, \ \underline{x}_{mt} - \text{resources}_t\},\$$

• Given exogenous transfer, the person makes optimal decisions.

(日)

Modeling Medicaid tests and transfers

- Categorically needy: assets and income test
- Medically needy: total resources low compared to medical expenses
- Two eligibility criteria

イモトイモ

< 6 b

At the beginning of the period,

- the individual's health status and medical needs shocks are realized,
- needs-based transfers are given,
- the individual chooses consumption, medical expenditures, and savings,
- the survival shock hits.

Recursive formulation

$$\begin{split} V_t(a_t, g, h_t, l, \zeta_t, \xi_t) &= \max_{c_t, m_t, a_{t+1}, l_{Mt}} \left\{ \frac{1}{1 - \nu} c_t^{1 - \nu} + \frac{\mu(h_t, \zeta_t, \xi_t, t)}{1 - \omega} m_t^{1 - \omega} \right. \\ &+ \beta s_{g,h,l,t} E_t \Big(V_{t+1}(a_{t+1}, g, h_{t+1}, l, \zeta_{t+1}, \xi_{t+1}) \Big) \\ &+ \beta (1 - s_{g,h,l,t}) \frac{\theta}{1 - \nu} (e(a_{t+1}) + k)^{1 - \nu} \Big\}, \\ s.t. \ a_{t+1} &= a_t + y_n (ra_t + y_t) + b_t l_{Mt} - c_t - m_t q(h_t) \ge 0, \\ &\quad b_t = b(t, a_t, g, h_t, l, \zeta_t, \xi_t, \underline{u}) \\ &\quad a_{t+1} \le A_d, \text{ if } l_{Mt} > 0. \end{split}$$

De Nardi et al. (UCL, SUNY-Albany)

E

• First step: estimate parameters of income, health, mortality, and co-pay profiles.

4 3 > 4 3

- First step: estimate parameters of income, health, mortality, and co-pay profiles.
- Second step: taking as given the estimated first-step parameters, choose preference parameters, utility floor, and medical needs shocks to match
 - Median assets
 - Medicaid recipiency rate
 - Median and 90th percentile of out-of-pocket medical expenditures
 - First and second autocorrelations of medical expenditures

by PI quintile, cohort and age, using the method of simulated moments (MSM).

3

• □ ▶ • @ ▶ • E ▶ • E ▶

Look at

- Income quintiles
- Life expectancy
- Nursing home risk

4 3 > 4 3

< 6 b

Income quintiles by age

De Nardi et al. (UCL, SUNY-Albany)

- We model current health $\in \{\text{good}, \text{bad}, \text{nursing home}, \text{dead}\}$ as a function of
 - past health, gender, permanent income, age
- Starting with the initial joint distribution of the state variables, we simulate demographic histories using the estimated transition probabilities.

4 3 5 4 3 5 5

< 6 b

	Males			Females			
Income Percentile	Nursing Home	Bad Health	Good Health	Nursing Home	Bad Health	Good Health	All
10 50	1.65 1.69	6.02 7.32	7.51 9.47	2.48 2.73	10.01 11.99	12.01 14.26	10.44 12.53
90	1.75	8.81	11.31	3.00	13.94	16.15	14.39
Men Women							9.71 13.55
Bad Heal Good Hea	th alth						10.69 13.99

Table: Life expectancy at age 70.

De Nardi et al. (UCL, SUNY-Albany)

æ

イロト イヨト イヨト イヨト

	Males		Females		
Income	Bad	Good	Bad	Good	
Percentile	Health	Health	Health	Health	All [†]
10	26.4	30.1	41.2	45.2	40.7
50	27.2	32.0	43.6	47.9	43.3
90	27.2	32.4	44.4	49.0	43.9
Men					30.6
Women					46.1
Bad Heal	th				39.9
Good Hea	alth				45.0

Table: Percent ever entering a nursing home, people alive at age 70.

2

Second step estimates

flow utility =
$$\frac{1}{1-\nu}c_t^{1-\nu} + \mu_t \frac{1}{1-\omega}m_t^{1-\omega}$$

bequest utility = $\frac{\theta}{1-\nu}(e(a_{t+1})+k)^{1-\nu}$

Estimated parameters:

- β = .994, ν = 2.83, ω = 2.99 ⇒ model-predicted price elasticity of medical expenditure = 0.25.
- Categorically needy income limit = \$6,420.
- Utility floor (consumption equivalent) = \$5,260.
- Bequest motives parameters imply MPC out of terminal wealth of 17% and bequest threshold of \$3,600.

4 3 5 4 3 5 5

Medicaid recipiency

De Nardi et al. (UCL, SUNY-Albany)

Medicaid recipiency

De Nardi et al. (UCL, SUNY-Albany)

	Medicaid payments		Out-of-pocket expenses		
Income	MCBS	Model	MCBS	AHEAD	Model
Quintile	Data		Data	Data	
Bottom	9,080	10,070	4,050	2,550	2,210
Fourth	5,720	7,960	5,340	4,270	3,800
Third	2,850	6,000	6,470	5,050	6,330
Second	1,950	3,910	7,300	6,360	8,500
Тор	1,280	2,250	8,020	7,000	10,600
Men	2,850	3,780	5,440	4,760	8,280
Women	4,410	5,980	6,470	5,230	6,420

Table: Average Medicaid payments and out-of-pocket expenses.

De Nardi et al. (UCL, SUNY-Albany)

Medicaid Insurance in Old Age

A D N A P N A D N A D

Fix preference parameters at baseline estimates and

- Reduce consumption value of both categorically and medically needy floors by 10%
- Increase consumption value of both floors by 10%

4 3 > 4 3

< 6 k

	(1)	(2)	(3)
Permanent	Reduction	Compensating	Ratio
Income	in PDV of	Variation	of
Quintile	Payments		(2)/(1)
Bottom	4,500	6,300	1.40
Fourth	4,000	5,000	1.25
Third	2,900	4,400	1.52
Second	2,200	4,100	1.86
Тор	1,400	4,400	3.14
Men	1,300	1,100	0.85
Women	3,100	5,600	1.81
Good Health	2,600	4,800	1.85
Bad Health	3,300	5,000	1.52

Table: The costs and benefits of cutting Medicaid by 10%.

De Nardi et al. (UCL, SUNY-Albany)

Medicaid Insurance in Old Age

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Permanent	(1)	(2)	(3)
Income	Payment	Compensating	Ratio
Quintile	Increase	Variation	(2)/(1)
Bottom	4,700	2,600	0.55
Fourth	4,200	3,100	0.74
Third	3,100	3,600	1.16
Second	2,300	2,900	1.26
Тор	1,300	2,600	2.00
Men	1,400	600	0.43
Women	3,300	3,500	1.06
Good Health	2,500	3,000	1.20
Bad Health	3,500	3,000	0.86

Table: The costs and benefits of increasing Medicaid payments by 10%.

2

Permanent	(1)	(2)
Income	Marginal	Tax Cost
Quintile	Valuation	
Bottom	0.55	0.20
Fourth	0.74	0.29
Third	1.16	1.01
Second	1.26	2.00
Тор	2.00	4.59

Table: The benefits of increasing Medicaid payments by 10% and their tax cost.

э

(a)

- High income people ...
 - receive significant Medicaid transfers
 - value these transfers a lot
- Medicaid provides valuable insurance and its size is about right.

∃ > <</p>

< A >