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Definition and example

• Def.: separation of the data into groups (clusters) based on patterns in the data

• Not prediction, but understanding of the data

• Example: market segmentation
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Supervised learning

• Process:

1. Teach the machine using labeled training data

2. Provide the machine with new unlabeled data

3. Algorithm analyzes new data and produces the correct outcome

• Example:

1. Classification
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Unsupervised learning

• Process:

1. Provide the machine with unlabeled data

2. Algorithm acts on information without guidance

3. Algorithm groups data according to similarities, patterns, and differences

• Examples:

1. Clustering

2. Association
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Properties of clusters

1. All the data points in a cluster should be similar to each other

2. Data points in different clusters should be as different as possible
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Properties of clusters
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Properties of clusters
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K-means overview

• Clusters the data in a pre-specified number of subpopulations (K )

• Polythetic and hard clustering method

• Associates each cluster to a centroid (a prototypical instance in the data)

• Algorithm:

1. Compares distance between data points and centroids

2. Assigns each data point to a specific cluster
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K-means visually

Data set 1st iteration - 1st half

Source: Victor Lavrenko, University of Edinburgh
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K-means visually

1st iteration - 2nd half Old assignment - new centroids

Source: Victor Lavrenko, University of Edinburgh
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K-means visually

2nd iteration - 1st half 2nd iteration - 2nd half

Source: Victor Lavrenko, University of Edinburgh
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K-means algorithm

Inputs: K ; data points x1, . . . , xn where xi is a vector

1. Place K centroids c1, . . . , cK at random location.

2. Repeat until convergence:
2.1 For each point xi :

2.1.1 Find nearest centroid cj using
argmin

j
D(xi , cj)

2.1.2 Assign the point xi to cluster j

2.2 For each cluster j = 1, . . . ,K :
• Compute centroids as

cj(a) =
1

nj

∑
xi→cj

xi (a), ∀a = 1, . . . , d
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K-means objective function

• Minimize aggregate intra-cluster distance:

V =
K∑

j=1

∑

xi→cj

D(cj , xi )
2

• K-means always converges to a local minimum
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Optimal number of clusters

• Run K-means for different K and plot aggregate intra-cluster distance V

• Analyze the scree plot

• K is chosen “where the mountain ends and the rubble begins”
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Lloyd’s algorithm for K-means

• Goal: predict K centroids and a label µi for each data point

• Algorithm:

1. Initialize cluster centroids c1, c2, . . . , cK ∈ Rn randomly.
2. Repeat until convergence:

2.1 For every i = {1, . . . , n}, set

µi := argmin
j
||x i − cj ||2

2.2 For every j = {1, . . . ,K} set:

cj =

∑n
i=1 1{µ

i = j}x i∑n
i=1 1{µi = j}
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Randomly generated data, n = 200
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MATLAB Syntax

opts = statset('Display','final');
[idx opt,C opt,sum opt] = ...

kmeans(X,K,'Distance','sqeuclidean','Replicates',Z,'Options',opts);

• idx opt := n × 1 vector of cluster indices

• C opt := K × a matrix of centroids

• sum opt := K × 1 vector of within-cluster sum of points-to-centroid distances
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MATLAB Syntax

opts = statset('Display','final');
[idx opt,C opt,sum opt] = ...

kmeans(X,K,'Distance','sqeuclidean','Replicates',Z,'Options',opts);

• X ⇒ Data matrix

• K ⇒ Number of clusters

• 'Distance', 'sqeuclidean' ⇒ Use Euclidean distance

• 'Replicates', Z ⇒ Number of initial random assignments

• 'Options', opts ⇒ Displays the final output
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Scree plot
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Final clustering with K = 3
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Overview

• GOAL: develop discrete estimators when unobserved heterogeneity is not discrete

• Study two-step grouped fixed-effects (GFE) estimators for panel data

1. K-means clustering to classify individuals into groups

2. Estimate model with group-specific heterogeneity

• Analyze asymptotic properties of GFE estimators

• Extend two-step approach to improve performance

• Illustration in a dynamic discrete choice model of migration and probit model
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What the mainstream does

• Fixed-effects approaches in nonlinear panel data models

• No restrictions on the form of unobserved heterogeneity

• BUT large number of parameters, difficulties with time-varying heterogeneity

• Arellano and Hahn (2007)

• Discrete approaches

• Individual heterogeneity as a small number of unobserved types

• BUT need restrictions on the form of unobserved heterogeneity

• Keane and Wolpin (1997)
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What this paper does

• Considers discrete estimators

• Studies the properties in nonlinear models

• Main contribution: no restrictions on individual unobserved heterogeneity
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Role of K-means clustering

• Used in the first step of GFE

• Groups together individuals whose unobserved types are the most similar

• No assumptions on heterogeneity needed!

• Just need to choose K
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Role of K-means clustering - Example

Figure 1: Kmeans clustering

Data 3 groups 10 groups
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Notes: Source NLSY79. The sample is described in Section 5. The kmeans partitions are indicated in

dashed.

result in a drastic reduction in the number of parameters, however the approximation to the

latent heterogeneity may be too coarse. Taking a larger K, such as K = 10, may reduce

approximation error while still substantially reducing the number of parameters to estimate

relative to fixed-effects.

We analyze the properties of two-step GFE estimators under two main assumptions. First,

we assume that unobserved heterogeneity depends on a low-dimensional vector of latent types.

The types can be continuous. Hence, we use discrete heterogeneity as a dimension reduction

device, rather than viewing discreteness as a substantive assumption about population unob-

servables. This is an important difference relative to the literature.

Our setup covers models with rich, time-varying heterogeneity, in addition to more standard

models with time-invariant individual effects. In time-varying settings, our first assumption

implies that cross-sectional heterogeneity is low-dimensional. However, unlike methods that

explicitly incorporate time effects such as linear factor models and models with interactive

fixed-effects (e.g., Bai, 2009, Pesaran, 2006), here we do not specify the mapping between the

underlying types and the heterogeneity in the model, and we do not impose a factor structure

in estimation.

In many economic models, agents’ heterogeneity in preferences and technology is driven by

low-dimensional economic types, which manifest themselves in potentially complex ways in the

data. Through the use of kmeans, and in contrast with fixed-effects methods, GFE provides a

tool to exploit such nonlinear factor structures. To illustrate, consider Figure 2, where in this

example log-wages in the two locations are closely related to each other and approximately lie

on a curve. Such a structure could arise from the presence of a one-dimensional ability factor,

2
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Role of K-means clustering - Example

Figure 1: Kmeans clustering

Data 3 groups 10 groups
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Notes: Source NLSY79. The sample is described in Section 5. The kmeans partitions are indicated in

dashed.

result in a drastic reduction in the number of parameters, however the approximation to the

latent heterogeneity may be too coarse. Taking a larger K, such as K = 10, may reduce

approximation error while still substantially reducing the number of parameters to estimate

relative to fixed-effects.

We analyze the properties of two-step GFE estimators under two main assumptions. First,

we assume that unobserved heterogeneity depends on a low-dimensional vector of latent types.

The types can be continuous. Hence, we use discrete heterogeneity as a dimension reduction

device, rather than viewing discreteness as a substantive assumption about population unob-

servables. This is an important difference relative to the literature.

Our setup covers models with rich, time-varying heterogeneity, in addition to more standard

models with time-invariant individual effects. In time-varying settings, our first assumption

implies that cross-sectional heterogeneity is low-dimensional. However, unlike methods that

explicitly incorporate time effects such as linear factor models and models with interactive

fixed-effects (e.g., Bai, 2009, Pesaran, 2006), here we do not specify the mapping between the

underlying types and the heterogeneity in the model, and we do not impose a factor structure

in estimation.

In many economic models, agents’ heterogeneity in preferences and technology is driven by

low-dimensional economic types, which manifest themselves in potentially complex ways in the

data. Through the use of kmeans, and in contrast with fixed-effects methods, GFE provides a

tool to exploit such nonlinear factor structures. To illustrate, consider Figure 2, where in this

example log-wages in the two locations are closely related to each other and approximately lie

on a curve. Such a structure could arise from the presence of a one-dimensional ability factor,

2

(a) K = 3

Figure 1: Kmeans clustering

Data 3 groups 10 groups
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Notes: Source NLSY79. The sample is described in Section 5. The kmeans partitions are indicated in

dashed.

result in a drastic reduction in the number of parameters, however the approximation to the

latent heterogeneity may be too coarse. Taking a larger K, such as K = 10, may reduce

approximation error while still substantially reducing the number of parameters to estimate

relative to fixed-effects.

We analyze the properties of two-step GFE estimators under two main assumptions. First,

we assume that unobserved heterogeneity depends on a low-dimensional vector of latent types.

The types can be continuous. Hence, we use discrete heterogeneity as a dimension reduction

device, rather than viewing discreteness as a substantive assumption about population unob-

servables. This is an important difference relative to the literature.

Our setup covers models with rich, time-varying heterogeneity, in addition to more standard

models with time-invariant individual effects. In time-varying settings, our first assumption

implies that cross-sectional heterogeneity is low-dimensional. However, unlike methods that

explicitly incorporate time effects such as linear factor models and models with interactive

fixed-effects (e.g., Bai, 2009, Pesaran, 2006), here we do not specify the mapping between the

underlying types and the heterogeneity in the model, and we do not impose a factor structure

in estimation.

In many economic models, agents’ heterogeneity in preferences and technology is driven by

low-dimensional economic types, which manifest themselves in potentially complex ways in the

data. Through the use of kmeans, and in contrast with fixed-effects methods, GFE provides a

tool to exploit such nonlinear factor structures. To illustrate, consider Figure 2, where in this

example log-wages in the two locations are closely related to each other and approximately lie

on a curve. Such a structure could arise from the presence of a one-dimensional ability factor,

2

(b) K = 10
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Conditional densities
• fi (αi0, θ0) := conditional density of Yi on Xi

• αi0:= individual-specific vectors
• θ0 := vector of common parameters

• Focus on densities with the form:

ln fi (αi0, θ0) =
T∑

t=1

ln f (Yit |Yi ,t−1,Xit , αit0, θ0)

• Densities of exogenous covariates

ln gi (µi0) =
T∑

t=1

ln g(Xit |Xi ,t−1, µit0)
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Main assumption 1

Assumption 1: unobserved heterogeneity (αit0 and µit0 for t = 1, . . . ,T ) depends on
a low-dimensional vector of latent types.

• Discrete heterogeneity as a dimension reduction device

• No specification of mapping between underlying types and heterogeneity

• Let K-means capture the underlying structures

Formal statement

29 / 39



Introduction to clustering K-means clustering MATLAB implementation of K-means BLM (2019)

Main assumption 2

Assumption 2: there are individual-specific moments from which the underlying types
can be approximated.

• External measurements of the types or constructed from the panel data

• Requires an injectivity condition

Formal statement
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Estimator - 1st step: Clustering

• Approximate individual moments hi and assign clusters using K-means:

(ĥ, k̂1, . . . , k̂N) = arg min
(h̃,k1,...,kN)

N∑

i=1

||hi − h̃(ki )||2

• Use Lloyd’s algorithm to perform K-means
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Estimator - 2nd step: Estimation

• k̂i := cluster assignments

• Two-step GFE estimator:

(θ̂, α̂) = arg max
(θ,α)

N∑

i=1

ln fi (α(k̂i ), θ)

where α = (α(1)′, . . . , α(K )′)′
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Illustration: Dynamic Discrete Choice Model - Setting

• Model of location choices over J possible alternatives

• Continuum of agents i :
• Differ in permanent type αi ∈ RJ , which determines wage in each location

• “Detrended” log-wages in location j : lnWit(j) = αi (j) + εit(j)

• Flow utility of being in location j at time t: Uit(j) = ρWit(j) + ξit(j)

• Cost of moving between location j and j ′: ci (j)
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Illustration: DDC Model - Data

• NLSY79: males at least 22 years old in 1979

• J = 2 large regions: North-East and South (A) and Nort-Central and West (B)

• 1889 workers, observed for an average of 12.3 years
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Illustration: DDC Model - Estimation
Two steps:

1. Given an i.i.d. sample (Wi1, . . . ,WiT , ji1, . . . , jiT ) estimate αi (jit):

(α̂, k̂1, . . . , k̂N) = arg min
(α̃,k1,...,kN)

N∑

i=1

T∑

t=1

(lnWit − α̃(ki , jit))2

2. Maximize the log-likelihood of choices

(θ̂, ĉ) = arg max
(θ,c)

N∑

i=1

T∑

t=1

J∑

j=1

1{jit = j} lnPr(jit = j |ji ,t−1,Ji ,t−1, α̂(k̂i ,Ji ,t−1), c(k̂i ,Ji ,t−1), θ)
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Illustration:DDC - GFE estimates

Figure 4: GFE estimates of structural parameters across simulations

A. Homogeneous costs
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B. Heterogeneous costs

ρ̂ (utility) Ê(ĉi(j)) (cost)
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Notes: Solid is two-step GFE, dotted is bias-corrected, dashed is iterated once and bias-corrected,

dashed-dotted is iterated three times and bias-corrected. The vertical line indicates the true parameter

value. N = 1889, T = 16. Unobserved heterogeneity is continuously distributed in the DGP. Costs

are homogeneous in Panel A, and heterogeneous in Panel B. We estimate the number of groups K in

every replication. 500 replications.

provide details and report additional results in Appendix H. The random-effects estimator per-

forms quite well, especially when K = 8. Yet, computing a random-effects estimator in this

model is more challenging than computing fixed-effects or GFE estimators. In addition, to

our knowledge there are no theoretical guarantees for discrete random-effects estimators when

population heterogeneity is not discrete.

The fixed-effects estimator and its bias-corrected counterpart perform similarly to two-step

32

Solid is two-step GFE, dotted is bias-corrected, dashed is iterated once and biased corrected, dashed-dotted is iterated three times and bias corrected.

The vertical line is the true parameter value.
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Illustration: DDC - FE estimates

Figure 5: Fixed-effects and random-effects estimates of structural parameters across simula-

tions, model with homogeneous costs

A. Fixed-effects
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B. Random-effects
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Notes: See the notes to Figure 4. On the top panel we show results for fixed-effects (solid) and bias-

corrected fixed-effects (dotted). On the bottom panel we report discrete random-effects estimates with

K = 2 (solid), K = 4 (dotted), and K = 8 (dashed) groups. 500 replications.

GFE and bias-corrected GFE in the model with homogeneous costs. However, since many

individuals do not move between regions during the sample period, fixed-effects estimation

is infeasible in the model with cost heterogeneity. Discrete estimation is often used in such

contexts, and it is typically justified under the assumption that the types driving returns and

costs have a small number of points of support. It is interesting to see that GFE recovers the

wage effect ρ and the average of mobility costs ci(j) well in this case, especially when combined

with iteration and bias reduction. This illustrates the ability of GFE to take advantage of the

33

Solid is fixed-effects, dotted is bias-corrected fixed effects
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Illustration: DDC - RE estimates

Figure 5: Fixed-effects and random-effects estimates of structural parameters across simula-

tions, model with homogeneous costs

A. Fixed-effects

ρ̂ (utility) ĉ (cost)
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B. Random-effects

ρ̂ (utility) ĉ (cost)
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Notes: See the notes to Figure 4. On the top panel we show results for fixed-effects (solid) and bias-

corrected fixed-effects (dotted). On the bottom panel we report discrete random-effects estimates with

K = 2 (solid), K = 4 (dotted), and K = 8 (dashed) groups. 500 replications.

GFE and bias-corrected GFE in the model with homogeneous costs. However, since many

individuals do not move between regions during the sample period, fixed-effects estimation

is infeasible in the model with cost heterogeneity. Discrete estimation is often used in such

contexts, and it is typically justified under the assumption that the types driving returns and

costs have a small number of points of support. It is interesting to see that GFE recovers the

wage effect ρ and the average of mobility costs ci(j) well in this case, especially when combined

with iteration and bias reduction. This illustrates the ability of GFE to take advantage of the
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Solid is K = 2, dotted is K = 4, dashed is K = 8 groups
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Key takeaways

• Illustration: dynamic discrete choice model

1. Discrete GFE when unobserved heterogeneity is continuous
2. Good performance at low computational cost
3. Potential role for GFE estimators in structural models

• In general:

1. Use of discrete estimators as a dimension reduction device
2. Role of K-means
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Code for scree plot

%First, we initialize a grid for different values of K we will try
K grid=1:10;
%Then, we initialize a vector which will contain the aggregate distances.
%We will have one of such distances for every value of K we try.
agg sum total=zeros(length(K grid),1);
opts = statset('Display','final');
for i=K grid

[idx,C,sumd]=kmeans(X,i,'Distance','sqeuclidean','Replicates',5,...
'Options',opts);

agg sum total(i)=sum(sumd);
end

Back
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Another example

Figure 2: Kmeans in the presence of a low underlying dimension

Data 3 groups 5 groups
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Notes: Sample with the same conditional mean as in Figure 1, and one third of the conditional standard

deviation. The kmeans partitions are indicated in dashed.

for example. The kmeans-based partition efficiently adapts to the data structure in a way that

guarantees a low error of approximation.

Our second main assumption is that the researcher has individual-specific moments from

which the underlying types can be approximated. Moments may take the form of external

measurements of the types, such as measures of individual skills or firm productivity. When

such information is not available, we show that moments can be constructed from the panel

data. Indeed, individual-specific averages of outcomes and covariates depend on the distribution

of heterogeneity, and they will be functions of the latent types in large samples. For example,

in structural models, moments that are internal to the model can be based on choices, state

variables, or payoffs.

Recovering types from moments requires an injectivity condition. A population moment is

a function of the latent types. Injectivity requires that any two individuals with the same pop-

ulation moments have the same type. Verifying that a given moment vector satisfies injectivity

is conceptually related to verifying that a parameter is identified. Similarly to the case of iden-

tification, checking that moments satisfy injectivity may not be obvious. We discuss the choice

of moments in various models. In static models, we show how injectivity can be guaranteed,

given an identification assumption, by using individual-specific distributions of observables as

moments.

In practice, moments are estimated with noise. The performance of GFE depends on the

ability to estimate the moments with enough precision. In settings with internal moments that

are constructed from the panel, this requires the number of periods T to be sufficiently large.

Hence, similarly to nonlinear fixed-effects estimators, consistency of GFE requires that T tends
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Another example

Figure 2: Kmeans in the presence of a low underlying dimension
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Notes: Sample with the same conditional mean as in Figure 1, and one third of the conditional standard

deviation. The kmeans partitions are indicated in dashed.

for example. The kmeans-based partition efficiently adapts to the data structure in a way that

guarantees a low error of approximation.

Our second main assumption is that the researcher has individual-specific moments from
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measurements of the types, such as measures of individual skills or firm productivity. When

such information is not available, we show that moments can be constructed from the panel

data. Indeed, individual-specific averages of outcomes and covariates depend on the distribution

of heterogeneity, and they will be functions of the latent types in large samples. For example,

in structural models, moments that are internal to the model can be based on choices, state

variables, or payoffs.

Recovering types from moments requires an injectivity condition. A population moment is

a function of the latent types. Injectivity requires that any two individuals with the same pop-

ulation moments have the same type. Verifying that a given moment vector satisfies injectivity

is conceptually related to verifying that a parameter is identified. Similarly to the case of iden-

tification, checking that moments satisfy injectivity may not be obvious. We discuss the choice

of moments in various models. In static models, we show how injectivity can be guaranteed,

given an identification assumption, by using individual-specific distributions of observables as

moments.

In practice, moments are estimated with noise. The performance of GFE depends on the

ability to estimate the moments with enough precision. In settings with internal moments that

are constructed from the panel, this requires the number of periods T to be sufficiently large.
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(a) K = 3

Figure 2: Kmeans in the presence of a low underlying dimension
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Notes: Sample with the same conditional mean as in Figure 1, and one third of the conditional standard

deviation. The kmeans partitions are indicated in dashed.

for example. The kmeans-based partition efficiently adapts to the data structure in a way that

guarantees a low error of approximation.

Our second main assumption is that the researcher has individual-specific moments from

which the underlying types can be approximated. Moments may take the form of external

measurements of the types, such as measures of individual skills or firm productivity. When

such information is not available, we show that moments can be constructed from the panel

data. Indeed, individual-specific averages of outcomes and covariates depend on the distribution

of heterogeneity, and they will be functions of the latent types in large samples. For example,

in structural models, moments that are internal to the model can be based on choices, state

variables, or payoffs.

Recovering types from moments requires an injectivity condition. A population moment is

a function of the latent types. Injectivity requires that any two individuals with the same pop-

ulation moments have the same type. Verifying that a given moment vector satisfies injectivity

is conceptually related to verifying that a parameter is identified. Similarly to the case of iden-

tification, checking that moments satisfy injectivity may not be obvious. We discuss the choice

of moments in various models. In static models, we show how injectivity can be guaranteed,

given an identification assumption, by using individual-specific distributions of observables as

moments.

In practice, moments are estimated with noise. The performance of GFE depends on the

ability to estimate the moments with enough precision. In settings with internal moments that

are constructed from the panel, this requires the number of periods T to be sufficiently large.

Hence, similarly to nonlinear fixed-effects estimators, consistency of GFE requires that T tends
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(b) K = 5
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Assumption 1 - Formal statement

Assumption 1: (underlying dimension) There exist vectors ξi0 of dimension d , vectors
λt0 of dimension dλ, and two functions α and µ, such that αi ,t0 = α(ξi0, λt0) and
µit0 = µ(ξi0, λt0).
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Assumption 2 - Formal statement

Assumption 2: (injective moments) There exist vectors hi , and a function ϕ, such

that plimS→∞hi = ϕ(ξi0), and 1
N

∑N
i=1 ||hi − ϕ(ξi0)||2 = Op(1/S) as N, S tend to

infinity. Moreover, there exists a function ψ such that ξi0 = ψ(ϕ(ξi0)).
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