Aggregate Effects of Public Health Insurance Expansion: The Role of Delayed Medical Care

Mitchell VanVuren

August 29, 2022

US Health Insurance Coverage Jumps Discretely at Age 65

Source: NHIS data from 2002 to 2012

Does Delayed Care Offset Costs of Public Insurance Expansion?

- Two key novel channels related to delayed care:
 - **(**) Early care is more cost-effective \Rightarrow lower total medical expenses
 - 2 Early care saves lives \Rightarrow higher aggregate medical expenses
- In this paper: Aggregate effects of expanding Medicaid
- Main Result: Expansion is half as costly as previous estimates suggest
 - \$40 billion per year vs CBO \$80 billion per year
 - ► CE Welfare -0.4% vs Jung and Tran (2016) -0.7%

Model Ingredients

- OLG model with heterogeneous agents and ABH incomplete markets
- Two dynamic state variables: wealth and health
- Rich insurance market w/ endogenous premiums
- Endogenous health investment \Rightarrow Endogenous mortality
- Use micro estimates to discipline model:
 - DiD: 2014 ACA expansion led to decline in mortality (Miller, Johnson, and Wherry, 2021)
 - 2 RDD: increase in healthcare consumption at age 65 (Card, Dobkin, Maestas, 2008)

Summary of Quantitative Results

- Substantial impact of delayed care:
 - ► For every \$100 spent on Medicaid expansion, Medicare costs decrease by \$49
 - Life expectancy increases by 0.4 years
 - ▶ New insurance recipients gain 6% of consumption
 - Others lose 1% of consumption due to higher healthcare prices and taxes
 - ★ Losses twice as large with delayed care channel

Model

A Macroeconomic Model of Health Expenditure

- N measure of heterogeneous individuals indexed by
 - b: Assets (risk-free)
 - ► *h*: Health
 - ► a: Age
 - *z_p*: Permanent Productivity
 - *z_a*: Temporary Productivity

Individual Preferences

• Individual optimization problem:

$$\max \sum \left[\prod_{j=17}^{a-1} (1 - \pi(h_j, j))\right] \beta^a (\bar{u} + u(c_a, l_{m,a}, l_{c,a}))$$

s.t. $c_t + b_{t+1} + \underbrace{p_t \chi(i_t, x_t)}_{\text{Healthcare Spending}} + P_p = R_t b_t + \underbrace{T(z(z_p, z_{s,t}, a)(w_{m,t}l_{m,t} + w_{c,t}l_{c,t}))}_{\text{Post-tax Income}}$
 $b_{t+1} \ge 0$

- \bar{u} : the additional utility from being alive each period
 - Generates preferences over consumption, labor, and mortality

Death is Determined Endogenously

- At end of each period, die with probability $\pi(h, a)$
 - For simplicity $\pi(h, 100) = 1$; maximum age of 100
 - (Exogenous) Measure *n* of new individuals born each period
 - ★ No population growth
 - * No demographic concerns in public finance

Spending on Medical Care

- Individuals gain health by spending on medical care i
- Law of motion for health *h* is given by

$$h_{t+1} = \left(1 - \left(\delta_a + 1\{x > 0\}\delta_x\right)\right)h_t + \phi_a i_t^{\omega}$$

• $\phi_{\textit{a}}$ is decreasing in age \Rightarrow earlier care is more effective

Emergency Shocks

- Individuals face risk of health emergency each period
- Probability of emergency is $\pi_x(h, a)$
- When hit by emergency, face stochastic medical expenditure x

 $\ln x \sim N(\mu(h, a), \sigma(h, a))$

Individuals can purchase insurance to reduce health risk

- Five types of insurance plans
 - Employer-based Coverage
 - * Availablity follows Markov process with matrix M
 - 2 Marketplace Coverage
 - ★ Universally available
 - Oninsurance
 - ★ Universally available
 - 4 Medicaid
 - \star Available to individuals below productivity threshold \bar{z}
 - Medicare
 - ★ Available to individuals 65 or older

Health Insurance

• To pay for *i* and *x*, HH with plan *p* pays $\chi_p(i, x)$

$$\chi_p(i,x) = v_p i + [\rho_p \max(x - d_p, 0) + \min(x, d_p)] + P_p$$

- v_p : Copay rate (e.g. for GP visits, prescriptions drugs, etc.)
- d_p : Deductible
- ρ_p : Coinsurance rate (e.g. for hospital stays, ER visits, etc.)
- *P_p*: Per-period insurance premium

Insurance Companies Operate at Zero Profits

- ullet Insurance firms collect premiums and administer insurance subject to loading factor κ
- For plan *p*, zero profits implies:

(Premiums Collected) = $(1 - s_p)\kappa$ (Cost of Covered Care)

• *s*_p: government subsidy rate

Individual Productivity Process

• Household period productivity given by

$$z(z_{\rho}, z_s, a) = \exp\left(g(a) + z_{\rho} + z_s\right)$$

- Life-cycle component of productivity: g(a)
- Permanent productivity: $z_{p,t+1} = z_{p,t}$
- Temporary productivity: $z_{s,t+1} = \rho z_{s,t} + \varepsilon_t$

Supply Side

• Consumption and Medical sector labor are imperfect substitutes

$$I = \nu \left((1 - \alpha_m) I_m^{\frac{\xi+1}{\xi}} + \alpha_m I_c^{\frac{\xi+1}{\xi}} \right)^{\frac{\xi}{\xi+1}}$$

• Yields constant elasticity relative labor supply curve

$$\frac{l_m^*}{l_c^*} = \left(\frac{1-\alpha_m}{\alpha_m}\right)^{\xi} \left(\frac{w_m}{w_c}\right)^{\xi}$$

• Representative firms use Cobb-Douglas technology and operate in perfect competition

$$Y_m = A_m K_m^{\alpha} L_m^{1-\alpha}$$

•
$$Y_c = A_c K_c^{\alpha} L_c^{1-\alpha}$$

State Variables

- Individual level:
 - Assets b
 - e Health h
 - 3 Age *a*
 - ⁽⁴⁾ Permanent productivity z^p
 - **(5)** Temporary productivity z^s
 - Insurance plan p
 - Access to employer-provided insurance e
 - Information status λ
- Aggregate level:
 - $\textcircled{0} Cross-sectional distribution of (1) (8) \Omega$

Bellman Equation

$$V(b, h, a, z^{p}, z^{s}, p, e; \Omega) = \max \quad \overline{u} + u(c, l) + \\ +\beta(1 - \pi(h, a))\mathbb{E}[V(b', h', a + 1, z^{p}, z^{s'}, p', e'; \Omega'))$$

 $c + b' + p_h \chi_p(i, m) = (1 + r(\Omega))b + T((w_m(\Omega)I_m + w_c(\Omega)I_c)z(z^p, z^s, a)) \text{ if } a < 65$ $c + b' + p_h \chi_{\text{MCR}}(i, m) = (1 + r(\Omega))b + y_{a \ge 65}(z^p, \Omega) \text{ if } a \ge 65$ $h' = (1 - \delta_a - \delta_x)h + \phi i^{\psi}$ $I = \nu \left((1 - \alpha_m)I_m^{\frac{\xi+1}{\xi}} + \alpha_m I_c^{\frac{\xi+1}{\xi}}\right)^{\frac{\xi}{\xi+1}}$

Quantification

Data From Medical Expenditure Panel Survey

- Medical Expenditure Panel Survey (MEPS) provides data on
 - Detailed individual health status
 - Health insurance coverage
 - Healthcare expenditure paid OOP and paid by insurance
 - ★ Collected from medical provider component
 - $\star~\Rightarrow$ Actual, not "guessed", expenditure and coverage
 - ▶ Panel structure ⇒ Observe outcomes (e.g. hospitalization, mortality)
- Separate spending into emergency and non-emergency

How to Measure Health?

- Following Hosseini et al. (2021), use frailty index
- Have battery of varied health questions
 - Diagnoses: "Have you ever been diagnosed with diabetes?"
 - Self-reported: "Do you have difficulty lifting 10 pounds?"
 - Activities of Daily Living: "Do you need help using the telephone?"
 - Objective measures: BMI, K6 score
- Intuition: sum up number of "Yes"'s and normalize so that $f_i \in (0, 1)$
- Health index $h_i = 1 f_i$
 - $h_i = 1$: Maximally healthy, no health deficits
 - $h_i = 0$: Minimally healthy

Distribution of Measured Health

- Parameters fall broadly into 3 categories
 - Health parameters estimated using SMM
 - ② Directly estimated health parameters
 - Standard macro parameters

Two Key Parameters for Delayed Care

- $\bullet\,$ Returns to scale parameter for health investment ψ
 - Governs intertemporal substitution of healthcare
- Productivity of health investment $\phi_a = \phi_0 + \phi_1 a$
 - Level parameter ϕ_0 determines overall importance of health spending
- Discipline using two quasi-experiments from health economics literature

Card, Dobkin, and Maestas (2008)

- Estimate jumps in various healthcare outcomes at age 65 using RDD framework
- Use hospital admin data to estimate increase in utilization of various procedures
- 54% increase in average utilization
- \bullet Observed jump disciplines returns to scale ψ

Jump in Expenditure at Age 65: Model and Data

Miller, Johnson, and Wherry (2021)

- Use state-level Diff-in-Diff to estimate impact of Medicaid expansion on mortality of low income adults ages 55-64
- Mortality measured using Social Security admin data
- 9.4% decline in mortality
- $\bullet\,$ Decline disciplines productivity of health spending ϕ_0

Replicating MJW (2021) in Model

- **0** Calculate pre-expansion steady-state with eligibility cutoff \bar{z}_{PRE}
- **②** Select sample of adults age 55-64 with productivity less than \bar{z}_{POST}
 - Sample is measure 0
- Simulate outcomes in (a) world where cutoff remains \bar{z}_{PRE} and (b) changes to \bar{z}_{POST}
- The model DiD estimator can be calculated as (b) (a)
- Choose \bar{z}_{PRE} and \bar{z}_{POST} to match
 - estimated change in eligibility
 - post-expansion income cutoff of 138% of FPL

Decline in Morality due to Expansion: Model and Data

Estimating Other Health Parameters

- Market-based insurance plan parameters from data
- Government-provided insurance plan parameters from administrative numbers
- Mortality risk $\pi(h, a)$ estimated using logit regression
- Emergency risk $\pi_x(h, a)$ and expenditure mean $\mu(h, a)/variance \sigma(h, a)$ directly from data

Standard Macro Parameters

Description	Parameter	Value	
(Effective) Discount Factor	$\beta\pi(a,h)$	0.96	
CRRA	σ	2	
Frisch Elasticity of Labor	ν	1	
Disutility of Labor	κ	0.15	
Income Persistence	ho	.91	
Income SD	σ	.04	
Life-cycle Income	g(a)	Lagakos et al. (2018)	
Labor Share	α	0.66	
Tax Function	T(y)	$\lambda_{ au} y^{1- au}$	
Tax Progressivity	au	0.181	
Tax Level	$\lambda_{ au}$	0.73	
Social Security Function	$y_{a\geq 65}(z_p)$	Statutory	

Moments Targeted by SMM

Moment	Model	Data	Source	
Avg. VSL of Medicaid Recipient	\$2 million	\$2.25 million		
Jump in Medical Exp. at 65	Discussed Previously			
Mortality Response to Medicaid	Discussed Previously			
Mean of Health Spending	\$6,220	\$6,086	MEPS	
SD of Health Spending	\$4,359	\$10,047	MEPS	
Avg. Health	0.886	0.877	MEPS	
cov(Health, Age)	-1.11	-1.21	MEPS	
Emerg. vs Non-Emerg Health	-0.045	-0.090	MEPS	

Model Validation: Distribution of Health in Data and Model

Quantitative Results

Main Quantitative Experiment: Medicaid Expansion

- \bullet Increase Medicaid eligibility cutoff from \bar{z}_{PRE} to \bar{z}_{POST}
 - Same \bar{z}_{PRE} and \bar{z}_{POST} as Miller et al. Diff-in-Diff
 - Effectively simulating Medicaid expansion portion of ACA
- Expansion funded by adjusting tax level $\lambda_{\tau,t}$ each period

log(Healthcare Expenditure) by Age in Model

Expansion Successfully Reduces Delayed Care

- RDD-estimated jump in health expenditure at age 65 shrinks from 46% to 28%
- Spending for younger-than-65 increases
 - \blacktriangleright +2.9% for individuals between 18 and 60
 - \blacktriangleright +13.0% for individuals between 60 and 64
- \bullet Spending for older-than-65 decreases by 2.7%

Expansion Successfully Reduces Mortality

How Much Does Expansion Reduce Medicare Costs?

- For every \$100 spent on expansion, Medicare costs fall by \$49.63
 - ▶ Expansion increase Medicaid outlays by 1.37% of GDP
 - Reduces Medicare outlays by 0.68% of GDP
 - ▶ Taxes increase by 0.40% of GDP

Contribution of the Two Channels

	(1)	(2)	(3)
Variable	Post-Expansion	Exo. π	Exo. <i>i</i>
Medicaid Coverage (% Population)	+15.7%	+12.3%	+15.7%
Medicare Savings per \$100 Spent	\$49.63	\$56.93	\$0
Total Medicaid Spending (% of GDP)	+1.37%	+1.37%	+1.29%
Total Medicare Spending (% of GDP)	-0.68%	-0.78%	-0.00%
Total Tax Receipts (% of GDP)	+0.40%	+1.04%	+1.13%

• Early care channel: \$56.93 savings for every \$100 spent

• Mortality channel: \$7.30 increase in costs for every \$100 spent

CE Welfare Gain as a Function of Permanent Income

• Losses twice as large without delayed care channels

CE Welfare Gains as a Function of Ex-Post Age 40 Health

Conclusion

- Delayed care represents large potential cost savings
- Public health insurance expansion can reduce delayed care and save money
 - ▶ For every \$100 spent on Medicaid expansion, Medicare costs fall by \$49
- Substantial impact on welfare
 - ► Those who lose would lose twice as much without delayed care channels