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What is Reinforcement Learning (RL)?

Reinforcement learning is learning what to do–how to map situations to

actions–so as to maximize a numerical reward signal.
—Richard Sutton, Andrew Barto, Reinforcement Learning 2nd ed

The RL algorithm loop. Source: https://lilianweng.github.io/lil-log/2018/02/19/a-long-

peek-into-reinforcement-learning.html

https://gym.openai.com/envs/CartPole-v1/
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How does Reinforcement Learning Relate to Machine Learning?

Types of Machine Learning (Most Structure to Least)

RL vs. Sup.: Difference is Ground truth not known. Courtesy: IBM
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How does it compare to Bandits?

Main Difference: Environment

I Reinforcement Learning: Action affects future state

I Bandits: Action affects observables

I Online Learning: Action affects reward
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Definitions
I State Space S , Action space A, Observation Space O, Reward Space

R ⊂ R

I States: st ∈ S (book uses St, s′, s for particular states)
I Actions: at ∈ A
I Observables: ot ∈ O
I Policy function: πθ(at|st) (θ indexing), πθ : S → P(A)
I Policy function (if partially observed): π(at|ot).
I Reward (utility or loss) function: r : S ×A → R (Could be → P(R)).
I Reward at time t rt (book uses Rt, r for particular realization of Rt )

I Return following time t Gt := ∑T
k=0 γt+k+1rt+k+1

I Transition operator T s.t. Ti,j,k = p(st+1 = i|st = j, at = k), where

p(st+1 = i) = ∑
j,k

Ti,j,k p(st = j)p(at = k)

I Markovian setting where p(st+1|st) = p(st+1|st)
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Markov Decision Process

A Markov Decision Process (MDP) is

M = {S ,A, T , r}

A Partially Observed Markov Decision Process (POMDP) is

M = {S ,A,O, T , E , r},

where E is the emission probability:

E = p(ot|st)

.
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Formal Problem
Note: marginal probability pθ(st, at) indexed by θ since

pθ(st+1, at+1) = ∑ p(st+1, at+1|s1, a1, . . . st, at)p(s1, a1, . . . st, at)

= ∑ p(st+1, at+1|st, at)p(s1, a1, . . . st, at)

= ∑ p(st+1|st, at)πθ(at+1|st+1)p(s1, a1, . . . st, at)

= ∑ πθ(at+1|st+1)p(s1)
t

∏
j=1

πθ(at|st)p(st+1|st, at)

Problem in full info case is in MDP environment find:

θ∗ = arg max
θ

E(st,at)∼pθ(st,at)

T

∑
t=1

γtr(st, at)

where γ ∈ (0, 1) can be = 1 if T < ∞. Equivalently to finding optimal policy func

π∗ = πθ∗ .

Definition: Eπ, expectation under pθ(st, at) induced by π = πθ for some θ.
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Dynamic Programming
Classical ‘complete knowledge’ MDP solution method (agent knows v and pθ)

Usually impossible to solve analytically. We go for ε-optimality.

State-Value function under policy π (assuming nonstochastic r):

vπ(s) := Eπ

{
∞

∑
k=0

γkr(st+k+1, at+k+1)|st = s

}
∀s ∈ S

Bellman equation under policy π (assuming nonstochastic r) :

vπ(s) = ∑
a

π(a|s)
[

r(s, a) + ∑
s′

γvπ(s′)p(s′|s, a)

]
∀s ∈ S

By Bellman’s optimality principle, optimal value function under some optimal a:

v∗(s) = max
a

[
r(s, a) + ∑

s′
γv∗(s′)p(s′|s, a)

]
∀s ∈ S ,

and optimal policy π∗ by the arg max Goal: find vπ ≥ v∗ − ε for given ε > 0.
Greedy one-step ahead approach given v∗ for a.
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Q function
Reminder:

vπ(s) := Eπ

{
∞

∑
k=0

γkr(st+k+1, at+k+1)|st = s

}
∀s ∈ S

We also define:

qπ(s, a) := Eπ

{
∞

∑
k=0

γkr(st+k+1, at+k+1)|st = s, at = a

}
∀s ∈ S , a ∈ A

action-value function: start from s, take action a, then follow π. Note that:

q∗(s, a) = r(s, a) + ∑
s′

γv∗(s′)p(s′|s, a)

By Bellman’s principle of optimality, we then get optimal Bellman equation:

q∗(s, a) = r(s, a) + ∑
s′

γ max
a′

q∗(s′, a′)p(s′|s, a)

Don’t need to know dynamics of model to solve for optimal a today!

Useful for future model-free RL lectures.
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Policy Evaluation and Policy Improvement
I Prediction problem or policy evaluation takes a π and computes a vπ

I One method is Iterative policy evaluation, computes vπ via the Bellman

equation:

vk+1(s) = Eπ [r + γvk(st+1)|st = s] v0 guess given, ∀s ∈ S

I Given vπ want π′ s.t. vπ′(s) ≥ vπ(s) ∀s ∈ S
I Policy improvement theorem says we can do this by finding π′(s) s.t.

qπ(s, π′(s)) ≥ vπ(s)

or in other words we can find π′(s) by

π′(s) = arg max
a ∑

s′
p(s′|s, a)

[
r + γvπ(s′)

]
I Policy improvement: Greedily choose π′(s) to maximize return today given

vπ
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Generalized Policy iteration
Generalized Policy Iteration: Policy Improvement interacting with Prediction

Problem

Barto and Sutton, Introduction to Reinforcement Learning
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Classical Solution Methods– Approximate Dynamic Programming

Wont go into these today as you all probably saw during first year:

I Value function iteration (start from value function and iterate)

I Policy function iteration (Howard Policy Improvement) (start from policy

function and iterate)

I Linear Programming∗ (Optimizing twisted probability measures called

“occupancy measures” of future state probabilities under different actions.)

I Planning/search based methods (future lecture?) Ex. shooting method and

averaging over future simulations.
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Tabular Reinforcement Learning
I We assumed r was determined only by the state and action pair.

I This is called a tabular reinforcement learning environment
I Given state s and action a can look up unique value V, reward r or

action-value q. Basic setting for RL.

Courtesy: OpenAI Gym
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Classical Model Based RL vs. Dynamic Programming

I Line between RL and classic DP methods from optimal control is fuzzy.

I Primary distinction according to most is relaxation of assumption of complete

knowledge of model dynamics/rewards and updating knowledge of model.

I pθ(s, a) unknown and needs to be sampled from or fit.
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Reinforcement Learning: A Few Algorithms
Organized More Structure to Less

Model based RL. Courtesy: http://rail.eecs.berkeley.edu/deeprlcourse
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Reinforcement Learning: A Few Algorithms

Model Free. Courtesy: http://rail.eecs.berkeley.edu/deeprlcourse 24
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Reinforcement Learning: A Few Algorithms

Model Free. Courtesy: http://rail.eecs.berkeley.edu/deeprlcourse 26



Reinforcement Learning: A Few Algorithms

Actor Critic (Between Policy Gradient and Value Function). Courtesy: Berkeley, CS 285
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Sample Efficiency and Structure

Courtesy: http://rail.eecs.berkeley.edu/deeprlcourse
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Examples of specific algorithms

I Value function fitting methods

– Q-learning, DQN

– Temporal difference learning

– Fitted value iteration

I Policy gradient methods

– REINFORCE

– Natural policy gradient

– Trust region policy optimization

I Actor-critic algorithms

– Asynchronous advantage actor-critic (A3C)

– Soft actor-critic (SAC)

I Model-based RL algorithms

– Dyna

– Guided policy search

Will learn about some of these in future weeks.
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General Setting

MDP Solution:

θ∗ = arg max
θ

E(st,at)∼pθ(st,at)Ert∼pθ(rt|st,at)

T

∑
t=1

γtrt

Bellman Equation for State-Value (v) function:

v∗(s) = max
a ∑

s′,r
p(s′, r|s, a)

[
r + γv∗(s′)

]
Bellman Equation for Action-Value (q) function:

q∗(s, a) = ∑
s′,r

p(s′, r|s, a)
[

r + γ max
a′

q∗(s′, a′)
]
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Issues in Practice

I May not have perfect observability of underlying states.

– Turn to algorithms for POMDPs.

I May need many samples especially for model free settings.

– Research into ‘sample optimal’ RL algorithms.

I Curse of dimmensionality. Increasing State + action space dimension leads
to exponential increase in costs of exploring. Exponential number of states.

– Tackled in Deep RL. Other feature selection/dimmensionality reduction methods

I Lack of sufficient data to train on.

– Train on self-play. (AlphaGo Zero). Offline reinforcement learning.
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How Do We Design Intelligent _____ ?

I Machines?

I AI?

I Model Agents?

I Inference?
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How Do We Design Intelligent _____ ?

Key in all cases is that we are ‘adaptive’ to underlying changes in environment–

exogenous or endogenously caused

36
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Some examples of RL

Learning to Drive

(Courtesy: Wayve)
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Some examples of RL

Hide and Seek

(Courtesy: OpenAI)
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Some examples of RL

Alpha Go
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How does Reinforcement Learning Relate?

Courtesy: IBM
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What is Reinforcement Learning(RL) ?

Reinforcement learning is learning what to do-how to map situations to

actions–so as to maximize a numerical reward signal. The learner is not

told which actions to take, but instead must discover which actions yield

the most reward by trying them.
—Richard Sutton, Andrew Barto, Reinforcement Learning 2nd ed
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What is Learning/Machine Learning?

Definition
Learning Algorithm (Mitchell 1997)

A computer program is said to learn from experience E with respect to a class of

tasks T and performance measure P if its performance at tasks in T, as measured

by P, improves with experience E
In ML:

I Task T is objective

I Performance P is measure of prediction ability (e.g. loss)

I Experience E is some form of data (structured or not, labelled or not)

44



What is Learning/Machine Learning?

Definition
Learning Algorithm (Mitchell 1997)

A computer program is said to learn from experience E with respect to a class of

tasks T and performance measure P if its performance at tasks in T, as measured

by P, improves with experience E
In ML:

I Task T is objective

I Performance P is measure of prediction ability (e.g. loss)

I Experience E is some form of data (structured or not, labelled or not)

44



What is Learning/Machine Learning?

Definition
Learning Algorithm (Mitchell 1997)

A computer program is said to learn from experience E with respect to a class of

tasks T and performance measure P if its performance at tasks in T, as measured

by P, improves with experience E
In ML:

I Task T is objective

I Performance P is measure of prediction ability (e.g. loss)

I Experience E is some form of data (structured or not, labelled or not)

44



What is Learning/Machine Learning?

Definition
Learning Algorithm (Mitchell 1997)

A computer program is said to learn from experience E with respect to a class of

tasks T and performance measure P if its performance at tasks in T, as measured

by P, improves with experience E
In ML:

I Task T is objective

I Performance P is measure of prediction ability (e.g. loss)

I Experience E is some form of data (structured or not, labelled or not)

44



Machine Learning vs. Econometrics

I Fit and empirical performance vs. statistical properties or theoretical

guarantees

I Algorithms vs. estimation

I Not always clear cut... some work on theoretical guarantees in general

environments. (Conformal prediction, algorithmic learning theory)

Chernozhukov: https://arxiv.org/abs/1712.09089
Athey: https://arxiv.org/abs/1903.10075 (among many others)
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