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What is Reinforcement Learning (RL)?

Reinforcement learning is learning what to do-how to map situations to
actions—so as to maximize a numerical reward signal.

— Richard Sutton, Andrew Barto, Reinforcement Learning 2nd ed
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What is Reinforcement Learning (RL)?

Reinforcement learning is learning what to do-how to map situations to
actions—so as to maximize a numerical reward signal.

— Richard Sutton, Andrew Barto, Reinforcement Learning 2nd ed
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The RL algorithm loop. Source: https://lilianweng.github.io/lil-log/2018/02/19/a-long-
peek-into-reinforcement-learning.html
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How does Reinforcement Learning Relate to Machine Learning?

Types of Machine Learning (Most Structure to Least)

Supervised Reinforcement Unsupervised
learning learning learning
Learning spectrum

Learning structure Learning actions {policy) Finding hidden
from labeled data for based upon feedback structure in unlabeled
prediction from the environment data

RL vs. Sup.: Difference is Ground truth not known. Courtesy: IBM
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How does it compare to Bandits?

Main Difference: Environment
» Reinforcement Learning: Action affects future state
» Bandits: Action affects observables
» Online Learning: Action affects reward



Outline
Background for Reinforcement Learning

Markov Decision Processes (MDPs)



Definitions

» State Space S, Action space A, Observation Space O, Reward Space
RCR



Definitions

» State Space S, Action space A, Observation Space O, Reward Space
RCR
> States: s; ¢ S (book uses S;, s/, s for particular states)



Definitions
» State Space S, Action space A, Observation Space O, Reward Space
RCR
> States: s; ¢ S (book uses S;, s/, s for particular states)
» Actions: a; € A



Definitions
» State Space S, Action space A, Observation Space O, Reward Space
RCR
> States: s; ¢ S (book uses S;, s/, s for particular states)
» Actions: a; € A
» Observables: o; € O



Definitions
» State Space S, Action space A, Observation Space O, Reward Space
RCR
> States: s; ¢ S (book uses S;, s/, s for particular states)
» Actions: a; € A
» Observables: o; € O
» Policy function: 7rp(a;|s;) (6 indexing), 7ty : S — P(A)



Definitions
» State Space S, Action space A, Observation Space O, Reward Space
R CR
> States: s; ¢ S (book uses S;, s/, s for particular states)
» Actions: a; € A
» Observables: o; € O
» Policy function: 7rp(a;|s;) (6 indexing), 7ty : S — P(A)
» Policy function (if partially observed): 7t(at|o;).



Definitions
» State Space S, Action space A, Observation Space O, Reward Space
R CR
States: s; € S (book uses S;, s/, s for particular states)
Actions: a; € A
Observables: o; € O
Policy function: 7tg(a;|s;) (6 indexing), 7rg : S — P(A)
Policy function (if partially observed): 7t(a¢|o;).
Reward (utility or loss) function:  : S x A — R (Could be — P(R)).

vVvVvvyVyYVYyYy



Definitions

| 2

VVVYyVYVYYVYY

State Space S, Action space A, Observation Space O, Reward Space
R CR

States: s; € S (book uses S;, s/, s for particular states)

Actions: a; € A

Observables: o; € O

Policy function: 7tg(a;|s;) (6 indexing), 7rg : S — P(A)

Policy function (if partially observed): 7t(a¢|o;).

Reward (utility or loss) function:  : S x A — R (Could be — P(R)).
Reward at time t ; (book uses R;, r for particular realization of R; )



Definitions

| 2

VVVYyVYVYYVYYVYY

State Space S, Action space A, Observation Space O, Reward Space
R CR

States: s; € S (book uses S;, s/, s for particular states)

Actions: a; € A

Observables: o; € O

Policy function: 7tg(a;|s;) (6 indexing), 7rg : S — P(A)

Policy function (if partially observed): 7t(a¢|o;).

Reward (utility or loss) function:  : S x A — R (Could be — P(R)).
Reward at time t ; (book uses R;, r for particular realization of R; )
Return following time t G; := Y{_ 7" *1r, 11



Definitions

| 2

VVVVYVVYYVYYVYY

State Space S, Action space A, Observation Space O, Reward Space
R CR

States: s; € S (book uses S;, s/, s for particular states)

Actions: a; € A

Observables: o; € O

Policy function: 7tg(a;|s;) (6 indexing), 7rg : S — P(A)

Policy function (if partially observed): 7t(a¢|o;).

Reward (utility or loss) function:  : S x A — R (Could be — P(R)).
Reward at time t ; (book uses R;, r for particular realization of R; )
Return following time t G; := Y{_ 7" *1r, 11

Transition operator 7 s.t. T = p(st11 = ils; = j,ar = k), where

plser =1) =} Tijup(se = j)plar = k)
jk



Definitions

| 2

VVVVYVVYYVYYVYY

State Space S, Action space A, Observation Space O, Reward Space
R CR

States: s; € S (book uses S;, s/, s for particular states)

Actions: a; € A

Observables: o; € O

Policy function: 7tg(a;|s;) (6 indexing), 7rg : S — P(A)

Policy function (if partially observed): 7t(a¢|o;).

Reward (utility or loss) function:  : S x A — R (Could be — P(R)).
Reward at time t ; (book uses R;, r for particular realization of R; )
Return following time t G; := Y{_ 7" *1r, 11

Transition operator 7 s.t. T = p(st11 = ils; = j,ar = k), where

plser =1) =} Tijup(se = j)plar = k)
jk

Markovian setting where p(s;y1]s’) = p(si11]st)



Markov Decision Process

A Markov Decision Process (MDP) is

M={S AT,r}

A Partially Observed Markov Decision Process (POMDP) is
M == {SI A/ O/ 7-/ Sl 1’},
where & is the emission probability:

€ = p(otlst)
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Formal Problem
Note: marginal probability py(s;, a;) indexed by 6 since
po(siit,arp1) = Y p(si1, agalsi, ar, ... se,a)p(sy, a1, . .5t 1)
= ZP(5t+1,ﬂt+1\St,ﬁt)P<S1,ﬂ1, ... St,4t)

=Y p(selse, ar) (@ |sea) p(s, an, . . st ar)

t
=Y _mo(ap|ses1)p(s1) [ ] rmo(arlse) p(sisalse ar)
j=1

Problem in full info case is in MDP environment find:

6 = arg max E (5,00 ~po(se,ar) té'ytr(st, at)
where v € (0,1) can be = 1if T < oo. Equivalently to finding optimal policy func
gef;iﬁ)c:ﬁ: E, expectation under py(s;, a;) induced by 7t = 77y for some 6.
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Dynamic Programming
Classical ‘complete knowledge’ MDP solution method (agent knows v and py)
Usually impossible to solve analytically. We go for e-optimality.

State-Value function under policy 7t (assuming nonstochastic r):

vr(s) =E, {Z 'ykr(st+k+1,at+k+1)\st = s} Vse S
k=0

Bellman equation under policy 7t (assuming nonstochastic 7) :
vr(s) =) m(als) [r(s,a) + Z’yvn(s’)p(s'|5,a)] Vse S
a s/
By Bellman’s optimality principle, optimal value function under some optimal a:
U4(s) = max [r(s,a) - Z’yv*(s’)p(s’|5,a)] Vs €S,
S/

and optimal policy 7. by the arg max Goal: find v,; > v, — ¢ for given € > 0.
Greedy one-step ahead approach given v, for a.
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Q function
Reminder:

v(s) =E, {Z VEr (St k1, Appesn) ]St = s} Vse S
k=0

We also define:

gr(s,a) = Ex {Z VP (St ity Bpipsn ) |5t = 5,8 = a} VseS,ac A
k=0

action-value function: start from s, take action a, then follow 7r. Note that:
g(s,a) = r(s,a) + Y 70.(s") p(s'ls, a)
s/
By Bellman’s principle of optimality, we then get optimal Bellman equation:
g«(s,a) =r(s,a) + Z'ymax g« (s',a" )p(s'|s, a)
s’ a

Don’t need to know dynamics of model to solve for optimal a today!
Useful for future model-free RL lectures.



Policy Evaluation and Policy Improvement
» Prediction problem or policy evaluation takes a 7w and computes a v,



Policy Evaluation and Policy Improvement
» Prediction problem or policy evaluation takes a 7w and computes a v,

» One method is lterative policy evaluation, computes v, via the Bellman
equation:

Uk11(8) = Ex [r +qvk(se+1)|st =s] v guess given, Vs € S



Policy Evaluation and Policy Improvement
» Prediction problem or policy evaluation takes a 7w and computes a v,

» One method is lterative policy evaluation, computes v, via the Bellman
equation:

Uk11(8) = Ex [r +qvk(se+1)|st =s] v guess given, Vs € S

» Given v, want v’ s.t. v, (s) > vx(s) Vs € S



Policy Evaluation and Policy Improvement
» Prediction problem or policy evaluation takes a 7w and computes a v,

» One method is lterative policy evaluation, computes v, via the Bellman
equation:

Uk11(8) = Ex [r +qvk(se+1)|st =s] v guess given, Vs € S

» Given v, want v’ s.t. v, (s) > vx(s) Vs € S
» Policy improvement theorem says we can do this by finding 77/ (s) s.t.

qr(s, 7' (5)) = vn(s)

or in other words we can find 77/(s) by

' (s) = argmaapr(s’|s,a) [r+ yor(s")]



Policy Evaluation and Policy Improvement
» Prediction problem or policy evaluation takes a 7w and computes a v,

» One method is lterative policy evaluation, computes v, via the Bellman
equation:

Uk11(8) = Ex [r +qvk(se+1)|st =s] v guess given, Vs € S

» Given v, want v’ s.t. v, (s) > vx(s) Vs € S
» Policy improvement theorem says we can do this by finding 77/ (s) s.t.

qr(s, 7' (5)) = vn(s)

or in other words we can find 77/(s) by
' (s) = argmaax; p(s'ls,a) [r+ yur(s')]

» Policy improvement: Greedily choose 77’(s) to maximize return today given
Un



Generalized Policy iteration
Generalized Policy lteration: Policy Improvement interacting with Prediction
Problem

evaluation

Vs v

™ Vv

improvement

(PP —

Barto and Sutton, Introduction to Reinforcement Learning
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Classical Solution Methods— Approximate Dynamic Programming

Wont go into these today as you all probably saw during first year:
» Value function iteration (start from value function and iterate)

» Policy function iteration (Howard Policy Improvement) (start from policy
function and iterate)

» Linear Programming* (Optimizing twisted probability measures called
“occupancy measures” of future state probabilities under different actions.)

» Planning/search based methods (future lecture?) Ex. shooting method and
averaging over future simulations.
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Tabular Reinforcement Learning
» We assumed r was determined only by the state and action pair.
» This is called a tabular reinforcement learning environment
» Given state s and action a can look up unique value V, reward r or
action-value g4. Basic setting for RL.

Initialized

Pickup (4)
[ 0 0 o [ 0

230108105 197092096 230357004 220591839 103607344 85583017

996984239 407706992 1296022777 29 330877873 338230603

Courtesy: OpenAl Gym
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Classical Model Based RL vs. Dynamic Programming

» Line between RL and classic DP methods from optimal control is fuzzy.

» Primary distinction according to most is relaxation of assumption of complete
knowledge of model dynamics/rewards and updating knowledge of model.

» py(s,a) unknown and needs to be sampled from or fit.



Reinforcement Learning: A Few Algorithms
Organized More Structure to Less

Model-based RL algorithms

fita model/ learn p(sy41se, ar)
estimate the return
generate samples
(i.e. run the policy)

improve the policy [ERE RO

Model based RL. Courtesy: http://rail.eecs.berkeley.edu/deepricourse

22



Reinforcement Learning: A Few Algorithms

Another example: RL by backprop

fit a model/

estimate the return learn fy such that se41 = fy(se, a)

St+1
generate samples

(i.e. run the policy)

backprop through fy and r to

improve the polic .
improv POICY R I mo(St) = ay

Model based. Courtesy: http://rail.eecs.berkeley.edu/deepricourse 23



Reinforcement Learning: A Few Algorithms

Value function based algorithms

fit a model/
ﬁ fit V(s) or Q(s, a)

generate samples
(i.e. run the policy)
‘; UICTRENEITA set 7(s) = arg maxa Q(s, a)

Model Free. Courtesy: http://rail.eecs.berkeley.edu/deepricourse 24
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Reinforcement Learning: A Few Algorithms

Direct policy gradients
evaluate returns
ﬁ estimate the return IS CIE- 1))

generate samples
(i.e. run the policy)

| S— o (Y

Model Free. Courtesy: http://rail.eecs.berkeley.edu/deepricourse

26



Reinforcement Learning: A Few Algorithms

Actor-critic: value functions + policy gradients

fit a model/
ﬁ fit V(s) or Q(s, a)
generate samples
(i.e. run the policy)
; 6+ 6+ aVyE[Q(s a,)]

Actor Critic (Between Policy Gradient and Value Function). Courtesy: Berkeley, CS 285

27



Sample Efficiency and Structure

off-policy e=—————reeooouon’s on-policy

More efficient Less efficient
(fewer samples) (more samples)
< >
model-based model-based off-policy actor-critic  on-policy policy  evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

Courtesy: http://rail.eecs.berkeley.edu/deepricourse
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Examples of specific algorithms
» Value function fitting methods
- Q-learning, DQN
— Temporal difference learning
- Fitted value iteration
» Policy gradient methods
- REINFORCE
- Natural policy gradient
— Trust region policy optimization
» Actor-critic algorithms

- Asynchronous advantage actor-critic (A3C)
— Soft actor-critic (SAC)

» Model-based RL algorithms
— Dyna
— Guided policy search

Will learn about some of these in future weeks.
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General Setting

MDP Solution:

T
* t
0" = arg meax]E(sf,ut)~pe(sf,at)]Em~Pa(Vr\snﬂr) Z T
t=1

Bellman Equation for State-Value (v) function:

v.(s) =max )_p(s',rls, a) [r+yv.(s)]
oy
Bellman Equation for Action-Value (g) function:

q«(s,a) =) _p(s',rls,a) |r + ymaxq.(s',a)

s'r
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Issues in Practice

» May not have perfect observability of underlying states.
— Turn to algorithms for POMDPs.

» May need many samples especially for model free settings.
— Research into ‘sample optimal’ RL algorithms.

» Curse of dimmensionality. Increasing State + action space dimension leads
to exponential increase in costs of exploring. Exponential number of states.

— Tackled in Deep RL. Other feature selection/dimmensionality reduction methods
» Lack of sufficient data to train on.
— Train on self-play. (AlphaGo Zero). Offline reinforcement learning.
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How Do We Design Intelligent ?

» Machines?

> Al?

» Model Agents?
» Inference?



How Do We Design Intelligent ?

Key in all cases is that we are ‘adaptive’ to underlying changes in environment-
exogenous or endogenously caused
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Some examples of RL

Learning to Drive
(Courtesy: Wayve)



Some examples of RL

Hide and Seek
(Courtesy: OpenAl)



Some examples of RL

Alpha Go
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How does Reinforcement Learning Relate?

(Data with labels)
Input

Supervised learning

Critic
Output

(Mapping)

(Data without labels) (States and actions)
Input Input

Unsupervised Reinforcement

learning learning

Reinforcement
signal

Critic
Output Output
(Classes) [State/ction)

Courtesy: IBM
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What is Reinforcement Learning(RL) ?

Reinforcement learning is learning what to do-how to map situations to
actions-so as to maximize a numerical reward signal. The learner is not

told which actions to take, but instead must discover which actions yield
the most reward by trying them.

—Richard Sutton, Andrew Barto, Reinforcement Learning 2nd ed



What is Learning/Machine Learning?

Definition

Learning Algorithm (Mitchell 1997)

A computer program is said to learn from experience E with respect to a class of
tasks T and performance measure P if its performance at tasks in T, as measured
by P, improves with experience E

In ML:
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What is Learning/Machine Learning?

Definition
Learning Algorithm (Mitchell 1997)
A computer program is said to learn from experience E with respect to a class of
tasks T and performance measure P if its performance at tasks in T, as measured
by P, improves with experience E
In ML:

» Task T is objective

» Performance P is measure of prediction ability (e.g. loss)

» Experience E is some form of data (structured or not, labelled or not)



Machine Learning vs. Econometrics

» Fit and empirical performance vs. statistical properties or theoretical
guarantees


https://arxiv.org/abs/1712.09089
https://arxiv.org/abs/1903.10075
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Machine Learning vs. Econometrics

» Fit and empirical performance vs. statistical properties or theoretical
guarantees
» Algorithms vs. estimation

» Not always clear cut... some work on theoretical guarantees in general
environments. (Conformal prediction, algorithmic learning theory)

Chernozhukov: https://arxiv.org/abs/1712.09089
Athey: https://arxiv.org/abs/1903.10075 (@among many others)


https://arxiv.org/abs/1712.09089
https://arxiv.org/abs/1903.10075
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