Reinforcement Learning An Introduction

Brandon Kaplowitz

September 16, 2020

Outline

Background for Reinforcement Learning

Reinforcement Learning: The View from Space

How does Reinforcement Learning Relate to Machine Learning?

Markov Decision Processes (MDPs)

The Reinforcement Learning Problem

Formal Statement

Dynamic Programming

Tabular Reinforcement Learning

Model Based vs. Model Free RL

Appendix

Examples of Specific RL Algorithms

General Setting

RL in Practice

Intro

Examples

More on RL vs. ML

What is Reinforcement Learning (RL)?

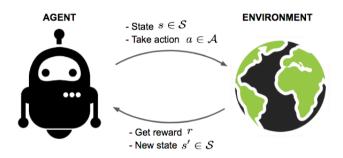
Reinforcement learning is learning what to do-how to map situations to actions-so as to maximize a numerical reward signal.

-Richard Sutton, Andrew Barto, Reinforcement Learning 2nd ed

What is Reinforcement Learning (RL)?

Reinforcement learning is learning what to do-how to map situations to actions-so as to maximize a numerical reward signal.

-Richard Sutton, Andrew Barto, Reinforcement Learning 2nd ed



The RL algorithm loop. Source: https://lilianweng.github.io/lil-log/2018/02/19/a-long-peek-into-reinforcement-learning.html

https://gym.openai.com/envs/CartPole-v1/

Outline

Background for Reinforcement Learning

Reinforcement Learning: The View from Space

How does Reinforcement Learning Relate to Machine Learning?

Markov Decision Processes (MDPs)

The Reinforcement Learning Problem

Formal Statement

Dynamic Programming

Tabular Reinforcement Learning

Model Based vs. Model Free RL

Appendix

Examples of Specific RL Algorithms

General Setting

RL in Practice

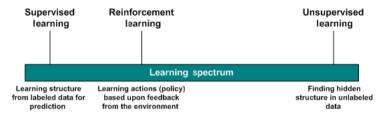
Intro

Examples

More on RL vs. ML

How does Reinforcement Learning Relate to Machine Learning?

Types of Machine Learning (Most Structure to Least)



RL vs. Sup.: Difference is Ground truth not known. Courtesy: IBM

How does it compare to Bandits?

Main Difference: Environment

▶ Reinforcement Learning: Action affects future state

How does it compare to Bandits?

Main Difference: Environment

- ▶ Reinforcement Learning: Action affects future state
- ► Bandits: Action affects observables

How does it compare to Bandits?

Main Difference: Environment

- ▶ Reinforcement Learning: Action affects future state
- ► Bandits: Action affects observables
- Online Learning: Action affects reward

Outline

Background for Reinforcement Learning

Reinforcement Learning: The View from Space How does Reinforcement Learning Relate to Machine Learning?

Markov Decision Processes (MDPs)

The Reinforcement Learning Problem

Formal Statement

Dynamic Programming

Tabular Reinforcement Learning

Model Based vs. Model Free RL

Appendix

Examples of Specific RL Algorithms

General Setting

RL in Practice

Intro

Examples

More on RL vs. ML

▶ State Space S, Action space A, Observation Space C, Reward Space $R \subset \mathbb{R}$

- ▶ State Space S, Action space A, Observation Space O, Reward Space $R \subset \mathbb{R}$
- ▶ **States**: $\mathbf{s}_t \in \mathcal{S}$ (book uses S_t , s', s for particular states)

- ▶ State Space S, Action space A, Observation Space O, Reward Space $R \subset \mathbb{R}$
- ▶ **States**: $\mathbf{s}_t \in \mathcal{S}$ (book uses S_t , s', s for particular states)
- **Actions**: $\mathbf{a}_t \in \mathcal{A}$

- ▶ State Space S, Action space A, Observation Space C, Reward Space $R \subset \mathbb{R}$
- ▶ **States**: $\mathbf{s}_t \in \mathcal{S}$ (book uses S_t , s', s for particular states)
- **Actions**: $\mathbf{a}_t \in \mathcal{A}$
- ▶ Observables: $o_t \in \mathcal{O}$

- ▶ State Space S, Action space A, Observation Space O, Reward Space $R \subset \mathbb{R}$
- ▶ **States**: $\mathbf{s}_t \in \mathcal{S}$ (book uses S_t , s', s for particular states)
- **Actions**: $\mathbf{a}_t \in \mathcal{A}$
- ▶ Observables: $o_t \in \mathcal{O}$
- ▶ **Policy** function: $\pi_{\theta}(a_t|s_t)$ (θ indexing), $\pi_{\theta}: \mathcal{S} \to \mathcal{P}(\mathcal{A})$

- ▶ State Space S, Action space A, Observation Space C, Reward Space $R \subset \mathbb{R}$
- ▶ **States**: $\mathbf{s}_t \in \mathcal{S}$ (book uses S_t , s', s for particular states)
- **Actions**: $\mathbf{a}_t \in \mathcal{A}$
- ▶ Observables: $o_t \in \mathcal{O}$
- **Policy** function: $\pi_{\theta}(a_t|s_t)$ (θ indexing), $\pi_{\theta}: \mathcal{S} \to \mathcal{P}(\mathcal{A})$
- **Policy** function (if partially observed): $\pi(a_t|o_t)$.

- ▶ State Space S, Action space A, Observation Space C, Reward Space $R \subset \mathbb{R}$
- ▶ States: $\mathbf{s}_t \in \mathcal{S}$ (book uses S_t , s', s for particular states)
- **Actions**: $\mathbf{a}_t \in \mathcal{A}$
- ▶ Observables: $o_t \in \mathcal{O}$
- **Policy** function: $\pi_{\theta}(a_t|s_t)$ (θ indexing), $\pi_{\theta}: \mathcal{S} \to \mathcal{P}(\mathcal{A})$
- **Policy** function (if partially observed): $\pi(a_t|o_t)$.
- ▶ **Reward** (utility or loss) function: $r : S \times A \to \mathbb{R}$ (Could be $\to \mathcal{P}(\mathbb{R})$).

- ▶ State Space S, Action space A, Observation Space C, Reward Space $R \subset \mathbb{R}$
- ▶ **States**: $\mathbf{s}_t \in \mathcal{S}$ (book uses S_t , s', s for particular states)
- **Actions**: $\mathbf{a}_t \in \mathcal{A}$
- ▶ Observables: $o_t \in \mathcal{O}$
- **Policy** function: $\pi_{\theta}(a_t|s_t)$ (θ indexing), $\pi_{\theta}: \mathcal{S} \to \mathcal{P}(\mathcal{A})$
- **Policy** function (if partially observed): $\pi(a_t|o_t)$.
- ▶ **Reward** (utility or loss) function: $r : S \times A \to \mathbb{R}$ (Could be $\to \mathcal{P}(\mathbb{R})$).
- **Reward at time t** r_t (book uses R_t , r for particular realization of R_t)

- ▶ State Space S, Action space A, Observation Space C, Reward Space $R \subset \mathbb{R}$
- ▶ States: $\mathbf{s}_t \in \mathcal{S}$ (book uses S_t , s', s for particular states)
- **Actions**: $\mathbf{a}_t \in \mathcal{A}$
- ▶ Observables: $o_t \in \mathcal{O}$
- **Policy** function: $\pi_{\theta}(a_t|s_t)$ (θ indexing), $\pi_{\theta}: \mathcal{S} \to \mathcal{P}(\mathcal{A})$
- **Policy** function (if partially observed): $\pi(a_t|o_t)$.
- ▶ **Reward** (utility or loss) function: $r : S \times A \to \mathbb{R}$ (Could be $\to \mathcal{P}(\mathbb{R})$).
- **Reward at time t** r_t (book uses R_t , r for particular realization of R_t)
- ▶ Return following time t $G_t := \sum_{k=0}^{T} \gamma^{t+k+1} r_{t+k+1}$

- ▶ State Space S, Action space A, Observation Space C, Reward Space $R \subset \mathbb{R}$
- ▶ **States**: $\mathbf{s}_t \in \mathcal{S}$ (book uses S_t , s', s for particular states)
- **Actions**: $\mathbf{a}_t \in \mathcal{A}$
- ▶ Observables: $o_t \in \mathcal{O}$
- **Policy** function: $\pi_{\theta}(a_t|s_t)$ (θ indexing), $\pi_{\theta}: \mathcal{S} \to \mathcal{P}(\mathcal{A})$
- **Policy** function (if partially observed): $\pi(a_t|o_t)$.
- ▶ **Reward** (utility or loss) function: $r : S \times A \to \mathbb{R}$ (Could be $\to \mathcal{P}(\mathbb{R})$).
- **Reward at time t** r_t (book uses R_t , r for particular realization of R_t)
- ▶ Return following time t $G_t := \sum_{k=0}^{T} \gamma^{t+k+1} r_{t+k+1}$
- ▶ **Transition** operator \mathcal{T} s.t. $\mathcal{T}_{i,j,k} = p(s_{t+1} = i | s_t = j, a_t = k)$, where

$$p(s_{t+1} = i) = \sum_{j,k} \mathcal{T}_{i,j,k} p(s_t = j) p(a_t = k)$$

- ▶ State Space S, Action space A, Observation Space C, Reward Space $R \subset \mathbb{R}$
- ▶ **States**: $\mathbf{s}_t \in \mathcal{S}$ (book uses S_t , s', s for particular states)
- **Actions**: $\mathbf{a}_t \in \mathcal{A}$
- ▶ Observables: $o_t \in \mathcal{O}$
- **Policy** function: $\pi_{\theta}(a_t|s_t)$ (θ indexing), $\pi_{\theta}: \mathcal{S} \to \mathcal{P}(\mathcal{A})$
- **Policy** function (if partially observed): $\pi(a_t|o_t)$.
- ▶ **Reward** (utility or loss) function: $r : S \times A \to \mathbb{R}$ (Could be $\to \mathcal{P}(\mathbb{R})$).
- **Reward at time t** r_t (book uses R_t , r for particular realization of R_t)
- ▶ Return following time t $G_t := \sum_{k=0}^{T} \gamma^{t+k+1} r_{t+k+1}$
- ▶ **Transition** operator \mathcal{T} s.t. $\mathcal{T}_{i,j,k} = p(s_{t+1} = i | s_t = j, a_t = k)$, where

$$p(s_{t+1} = i) = \sum_{j,k} \mathcal{T}_{i,j,k} p(s_t = j) p(a_t = k)$$

Markovian setting where $p(s_{t+1}|s^t) = p(s_{t+1}|s_t)$

Markov Decision Process

A Markov Decision Process (MDP) is

$$\mathcal{M} = \{S, A, T, r\}$$

A Partially Observed Markov Decision Process (POMDP) is

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}, \mathcal{E}, r\},\$$

where \mathcal{E} is the *emission* probability:

$$\mathcal{E} = p(o_t|s_t)$$

•

Outline

Background for Reinforcement Learning

Reinforcement Learning: The View from Space How does Reinforcement Learning Relate to Machine Learning? Markov Decision Processes (MDPs)

The Reinforcement Learning Problem

Formal Statement

Dynamic Programming
Tabular Reinforcement Learning
Model Based vs. Model Free RL

Appendix

Examples of Specific RL Algorithms

General Setting

RL in Practice

Intro

Examples

More on RL vs. ML

Note: marginal probability $p_{\theta}(\mathbf{s}_t, \mathbf{a}_t)$ indexed by θ since

$$p_{\theta}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) = \sum_{t=0}^{t} p(s_{t+1}, a_{t+1}|s_{t}, a_{t}, \dots s_{t}, a_{t}) p(s_{t}, a_{t}, \dots s_{t}, a_{t})$$

$$= \sum_{t=0}^{t} p(s_{t+1}, a_{t+1}|s_{t}, a_{t}) p(s_{t}, a_{t}, \dots s_{t}, a_{t})$$

$$= \sum_{t=0}^{t} p(s_{t+1}|s_{t}, a_{t}) \pi_{\theta}(a_{t+1}|s_{t+1}) p(s_{t}, a_{t}, \dots s_{t}, a_{t})$$

$$= \sum_{t=0}^{t} \pi_{\theta}(a_{t+1}|s_{t+1}) p(s_{t}) \prod_{t=0}^{t} \pi_{\theta}(a_{t}|s_{t}) p(s_{t+1}|s_{t}, a_{t})$$

Note: marginal probability $p_{\theta}(\mathbf{s}_t, \mathbf{a}_t)$ indexed by θ since

$$p_{\theta}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) = \sum_{t=0}^{t} p(s_{t+1}, a_{t+1} | s_{t}, a_{t}, \dots s_{t}, a_{t}) p(s_{t}, a_{t}, \dots s_{t}, a_{t})$$

$$= \sum_{t=0}^{t} p(s_{t+1}, a_{t+1} | s_{t}, a_{t}) p(s_{t}, a_{t}, \dots s_{t}, a_{t})$$

$$= \sum_{t=0}^{t} p(s_{t+1} | s_{t}, a_{t}) \pi_{\theta}(a_{t+1} | s_{t+1}) p(s_{t}, a_{t}, \dots s_{t}, a_{t})$$

$$= \sum_{t=0}^{t} \pi_{\theta}(a_{t+1} | s_{t+1}) p(s_{t}) \prod_{j=1}^{t} \pi_{\theta}(a_{t} | s_{t}) p(s_{t+1} | s_{t}, a_{t})$$

Problem in full info case is in MDP environment find:

$$\theta^* = \arg \max_{\theta} \mathbb{E}_{(s_t, a_t) \sim p_{\theta}(s_t, a_t)} \sum_{t=1}^{T} \gamma^t r(s_t, a_t)$$

where $\gamma \in (0,1)$ can be = 1 if $T < \infty$.

Note: marginal probability $p_{\theta}(\mathbf{s}_t, \mathbf{a}_t)$ indexed by θ since

$$p_{\theta}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) = \sum p(s_{t+1}, a_{t+1}|s_1, a_1, \dots s_t, a_t) p(s_1, a_1, \dots s_t, a_t)$$

$$= \sum p(s_{t+1}, a_{t+1}|s_t, a_t) p(s_1, a_1, \dots s_t, a_t)$$

$$= \sum p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_{t+1}|s_{t+1}) p(s_1, a_1, \dots s_t, a_t)$$

$$= \sum \pi_{\theta}(a_{t+1}|s_{t+1}) p(s_1) \prod_{j=1}^{t} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

Problem in full info case is in MDP environment find:

$$\theta^* = \arg\max_{\theta} \mathbb{E}_{(s_t, a_t) \sim p_{\theta}(s_t, a_t)} \sum_{t=1}^{T} \gamma^t r(s_t, a_t)$$

where $\gamma \in (0,1)$ can be =1 if $T < \infty$. Equivalently to finding optimal policy func $\pi^* = \pi_{\theta^*}$.

Note: marginal probability $p_{\theta}(\mathbf{s}_t, \mathbf{a}_t)$ indexed by θ since

$$p_{\theta}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) = \sum p(s_{t+1}, a_{t+1}|s_1, a_1, \dots s_t, a_t) p(s_1, a_1, \dots s_t, a_t)$$

$$= \sum p(s_{t+1}, a_{t+1}|s_t, a_t) p(s_1, a_1, \dots s_t, a_t)$$

$$= \sum p(s_{t+1}|s_t, a_t) \pi_{\theta}(a_{t+1}|s_{t+1}) p(s_1, a_1, \dots s_t, a_t)$$

$$= \sum \pi_{\theta}(a_{t+1}|s_{t+1}) p(s_1) \prod_{j=1}^{t} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

Problem in full info case is in MDP environment find:

$$\theta^* = \arg\max_{\theta} \mathbb{E}_{(s_t, a_t) \sim p_{\theta}(s_t, a_t)} \sum_{t=1}^{T} \gamma^t r(s_t, a_t)$$

where $\gamma \in (0,1)$ can be =1 if $T < \infty$. Equivalently to finding optimal policy func $\pi^* = \pi_{\theta^*}$.

Definition: \mathbb{E}_{π} , expectation under $p_{\theta}(s_t, a_t)$ induced by $\pi = \pi_{\theta}$ for some θ .

Outline

Background for Reinforcement Learning

Reinforcement Learning: The View from Space How does Reinforcement Learning Relate to Machine Learning?

The Reinforcement Learning Problem

Formal Statement

Dynamic Programming

Tabular Reinforcement Learning Model Based vs. Model Free RL

Appendix

Examples of Specific RL Algorithms

General Setting

RL in Practice

Intro

Examples

More on RL vs. ML

Classical 'complete knowledge' MDP solution method (agent knows v and p_{θ}) Usually impossible to solve analytically. We go for ε -optimality.

Classical '**complete knowledge**' MDP solution method (agent knows v and p_{θ}) Usually impossible to solve analytically. We go for ε -optimality.

State-Value function under policy π (assuming nonstochastic r):

$$v_{\pi}(s) := \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r(s_{t+k+1}, a_{t+k+1}) | s_t = s \right\} \quad \forall s \in \mathcal{S}$$

Classical '**complete knowledge**' MDP solution method (agent knows v and p_{θ}) Usually impossible to solve analytically. We go for ε -optimality.

State-Value function under policy π (assuming nonstochastic r):

$$v_{\pi}(s) := \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r(s_{t+k+1}, a_{t+k+1}) | s_t = s \right\} \quad \forall s \in \mathcal{S}$$

Bellman equation under policy π (assuming nonstochastic r):

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[r(s,a) + \sum_{s'} \gamma v_{\pi}(s') p(s'|s,a) \right] \quad \forall s \in \mathcal{S}$$

Classical '**complete knowledge**' MDP solution method (agent knows v and p_{θ}) Usually impossible to solve analytically. We go for ε -optimality.

State-Value function under policy π (assuming nonstochastic r):

$$v_{\pi}(s) := \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r(s_{t+k+1}, a_{t+k+1}) | s_t = s \right\} \quad \forall s \in \mathcal{S}$$

Bellman equation under policy π (assuming nonstochastic r):

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[r(s,a) + \sum_{s'} \gamma v_{\pi}(s') p(s'|s,a) \right] \quad \forall s \in \mathcal{S}$$

By Bellman's optimality principle, **optimal value function** under some optimal *a*:

$$v_*(s) = \max_a \left[r(s,a) + \sum_{s'} \gamma v_*(s') p(s'|s,a) \right] \quad \forall s \in \mathcal{S},$$

and optimal policy π_* by the $\arg\max$

Classical '**complete knowledge**' MDP solution method (agent knows v and p_{θ}) Usually impossible to solve analytically. We go for ε -optimality.

State-Value function under policy π (assuming nonstochastic r):

$$v_{\pi}(s) := \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r(s_{t+k+1}, a_{t+k+1}) | s_t = s \right\} \quad \forall s \in \mathcal{S}$$

Bellman equation under policy π (assuming nonstochastic r):

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left[r(s,a) + \sum_{s'} \gamma v_{\pi}(s') p(s'|s,a) \right] \quad \forall s \in \mathcal{S}$$

By Bellman's optimality principle, **optimal value function** under some optimal *a*:

$$v_*(s) = \max_a \left[r(s,a) + \sum_{s'} \gamma v_*(s') p(s'|s,a) \right] \quad \forall s \in \mathcal{S},$$

and optimal policy π_* by the $\arg\max$ **Goal**: find $v_{\pi} \geq v_* - \varepsilon$ for given $\varepsilon > 0$. *Greedy* one-step ahead approach given v_* for a.

Q function

Reminder:

$$v_{\pi}(s) \coloneqq \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r(s_{t+k+1}, a_{t+k+1}) | s_t = s \right\} \quad \forall s \in \mathcal{S}$$

We also define:

$$q_{\pi}(s,a) := \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r(s_{t+k+1}, a_{t+k+1}) | s_{t} = s, a_{t} = a \right\} \quad \forall s \in \mathcal{S}, a \in \mathcal{A}$$

Q function

Reminder:

$$v_{\pi}(s) \coloneqq \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r(s_{t+k+1}, a_{t+k+1}) | s_t = s \right\} \quad \forall s \in \mathcal{S}$$

We also define:

$$q_{\pi}(s,a) := \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r(s_{t+k+1}, a_{t+k+1}) | s_{t} = s, a_{t} = a \right\} \quad \forall s \in \mathcal{S}, a \in \mathcal{A}$$

action-value function: start from s, take action a, then follow π .

Q function

Reminder:

$$v_{\pi}(s) \coloneqq \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r(s_{t+k+1}, a_{t+k+1}) | s_t = s \right\} \quad \forall s \in \mathcal{S}$$

We also define:

$$q_{\pi}(s,a) := \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r(s_{t+k+1}, a_{t+k+1}) | s_{t} = s, a_{t} = a \right\} \quad \forall s \in \mathcal{S}, a \in \mathcal{A}$$

action-value function: start from s, take action a, then follow π . Note that:

$$q_*(s,a) = r(s,a) + \sum_{s'} \gamma v_*(s') p(s'|s,a)$$

Q function

Reminder:

$$v_{\pi}(s) := \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r(s_{t+k+1}, a_{t+k+1}) | s_t = s \right\} \quad \forall s \in \mathcal{S}$$

We also define:

$$q_{\pi}(s,a) := \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r(s_{t+k+1}, a_{t+k+1}) | s_{t} = s, a_{t} = a \right\} \quad \forall s \in \mathcal{S}, a \in \mathcal{A}$$

action-value function: start from s, take action a, then follow π . Note that:

$$q_*(s,a) = r(s,a) + \sum_{s'} \gamma v_*(s') p(s'|s,a)$$

By Bellman's principle of optimality, we then get optimal Bellman equation:

$$q_*(s,a) = r(s,a) + \sum_{s'} \gamma \max_{a'} q_*(s',a') p(s'|s,a)$$

Q function

Reminder:

$$v_{\pi}(s) \coloneqq \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r(s_{t+k+1}, a_{t+k+1}) | s_t = s \right\} \quad \forall s \in \mathcal{S}$$

We also define:

$$q_{\pi}(s,a) := \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r(s_{t+k+1}, a_{t+k+1}) | s_{t} = s, a_{t} = a \right\} \quad \forall s \in \mathcal{S}, a \in \mathcal{A}$$

action-value function: start from s, take action a, then follow π . Note that:

$$q_*(s,a) = r(s,a) + \sum_{s'} \gamma v_*(s') p(s'|s,a)$$

By Bellman's principle of optimality, we then get optimal Bellman equation:

$$q_*(s,a) = r(s,a) + \sum_{s'} \gamma \max_{a'} q_*(s',a') p(s'|s,a)$$

Don't need to know dynamics of model to solve for optimal a today! Useful for future model-free RL lectures.

lacktriangle Prediction problem or policy evaluation takes a π and computes a v_{π}

- Prediction problem or policy evaluation takes a π and computes a v_{π}
- One method is *Iterative policy evaluation*, computes v_{π} via the Bellman equation:

$$v_{k+1}(s) = \mathbb{E}_{\pi}\left[r + \gamma v_k(s_{t+1}) | s_t = s\right]$$
 v_0 guess given, $\forall s \in S$

- Prediction problem or policy evaluation takes a π and computes a v_{π}
- ▶ One method is *Iterative policy evaluation*, computes v_{π} via the Bellman equation:

$$v_{k+1}(s) = \mathbb{E}_{\pi}\left[r + \gamma v_k(s_{t+1}) | s_t = s\right]$$
 v_0 guess given, $\forall s \in S$

▶ Given v_{π} want π' s.t. $v_{\pi'}(s) \geq v_{\pi}(s) \ \forall s \in \mathcal{S}$

- Prediction problem or policy evaluation takes a π and computes a v_{π}
- One method is *Iterative policy evaluation*, computes v_{π} via the Bellman equation:

$$v_{k+1}(s) = \mathbb{E}_{\pi}\left[r + \gamma v_k(s_{t+1}) | s_t = s\right]$$
 v_0 guess given, $\forall s \in S$

- ▶ Given v_{π} want π' s.t. $v_{\pi'}(s) \geq v_{\pi}(s) \ \forall s \in \mathcal{S}$
- ▶ Policy improvement theorem says we can do this by finding $\pi'(s)$ s.t.

$$q_{\pi}(s, \pi'(s)) \geq v_{\pi}(s)$$

or in other words we can find $\pi'(s)$ by

$$\pi'(s) = \arg\max_{a} \sum_{s'} p(s'|s, a) \left[r + \gamma v_{\pi}(s') \right]$$

- Prediction problem or policy evaluation takes a π and computes a v_{π}
- One method is *Iterative policy evaluation*, computes v_{π} via the Bellman equation:

$$v_{k+1}(s) = \mathbb{E}_{\pi}\left[r + \gamma v_k(s_{t+1}) | s_t = s\right]$$
 v_0 guess given, $\forall s \in S$

- ▶ Given v_{π} want π' s.t. $v_{\pi'}(s) \geq v_{\pi}(s) \ \forall s \in \mathcal{S}$
- ▶ Policy improvement theorem says we can do this by finding $\pi'(s)$ s.t.

$$q_{\pi}(s, \pi'(s)) \geq v_{\pi}(s)$$

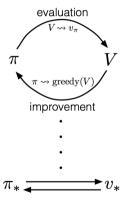
or in other words we can find $\pi'(s)$ by

$$\pi'(s) = \arg\max_{a} \sum_{s'} p(s'|s,a) \left[r + \gamma v_{\pi}(s') \right]$$

Policy improvement: *Greedily* choose $\pi'(s)$ to maximize return today given v_π

Generalized Policy iteration

Generalized Policy Iteration: Policy Improvement interacting with Prediction Problem



Barto and Sutton, Introduction to Reinforcement Learning

Classical Solution Methods- Approximate Dynamic Programming

Wont go into these today as you all probably saw during first year:

Value function iteration (start from value function and iterate)

Classical Solution Methods- Approximate Dynamic Programming

Wont go into these today as you all probably saw during first year:

- Value function iteration (start from value function and iterate)
- Policy function iteration (Howard Policy Improvement) (start from policy function and iterate)

Classical Solution Methods – Approximate Dynamic Programming

Wont go into these today as you all probably saw during first year:

- Value function iteration (start from value function and iterate)
- Policy function iteration (Howard Policy Improvement) (start from policy function and iterate)
- Linear Programming* (Optimizing twisted probability measures called "occupancy measures" of future state probabilities under different actions.)

Classical Solution Methods- Approximate Dynamic Programming

Wont go into these today as you all probably saw during first year:

- Value function iteration (start from value function and iterate)
- Policy function iteration (Howard Policy Improvement) (start from policy function and iterate)
- Linear Programming* (Optimizing twisted probability measures called "occupancy measures" of future state probabilities under different actions.)
- Planning/search based methods (future lecture?) Ex. shooting method and averaging over future simulations.

Outline

Background for Reinforcement Learning

Reinforcement Learning: The View from Space
How does Reinforcement Learning Relate to Machine Learning?

Markov Decision Processor (MDPs)

The Reinforcement Learning Problem

Formal Statement

Dynamic Programming

Tabular Reinforcement Learning

Model Based vs. Model Free RL

Appendix

Examples of Specific RL Algorithms

General Setting

RL in Practice

Intro

Examples

More on RL vs. ML

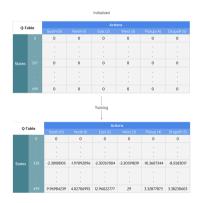
ightharpoonup We assumed r was determined *only* by the state and action pair.

- ▶ We assumed *r* was determined *only* by the state and action pair.
- ► This is called a tabular reinforcement learning environment

- ▶ We assumed *r* was determined *only* by the state and action pair.
- ► This is called a tabular reinforcement learning environment
- ▶ Given state s and action a can look up unique value V, reward r or action-value q. Basic setting for RL.

- ▶ We assumed *r* was determined *only* by the state and action pair.
- ► This is called a tabular reinforcement learning environment
- ▶ Given state s and action a can look up unique value V, reward r or action-value q. Basic setting for RL.

- ▶ We assumed *r* was determined *only* by the state and action pair.
- ► This is called a tabular reinforcement learning environment
- ▶ Given state s and action a can look up unique value V, reward r or action-value q. Basic setting for RL.



Courtesy: OpenAl Gym

Outline

Background for Reinforcement Learning

Reinforcement Learning: The View from Space

How does Reinforcement Learning Relate to Machine Learning?

Markov Decision Processes (MDPs)

The Reinforcement Learning Problem

Formal Statement

Dynamic Programming

Tabular Reinforcement Learning

Model Based vs. Model Free RL

Appendix

Examples of Specific RL Algorithms

General Setting

RL in Practice

Intro

Examples

More on RL vs. ML

Classical Model Based RL vs. Dynamic Programming

▶ Line between RL and classic DP methods from optimal control is fuzzy.

Classical Model Based RL vs. Dynamic Programming

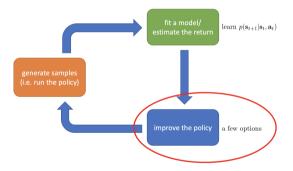
- Line between RL and classic DP methods from optimal control is fuzzy.
- Primary distinction according to most is relaxation of assumption of complete knowledge of model dynamics/rewards and updating knowledge of model.

Classical Model Based RL vs. Dynamic Programming

- Line between RL and classic DP methods from optimal control is fuzzy.
- Primary distinction according to most is relaxation of assumption of complete knowledge of model dynamics/rewards and updating knowledge of model.
- $ightharpoonup p_{\theta}(s,a)$ unknown and needs to be sampled from or fit.

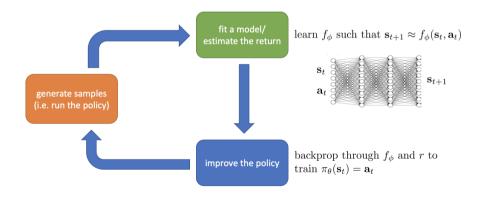
Organized More Structure to Less

Model-based RL algorithms



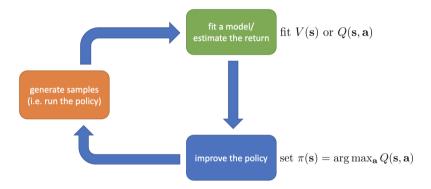
Model based RL. Courtesy: http://rail.eecs.berkeley.edu/deeprlcourse

Another example: RL by backprop



Model based. Courtesy: http://rail.eecs.berkeley.edu/deeprlcourse

Value function based algorithms



Outline

Background for Reinforcement Learning

Reinforcement Learning: The View from Space

How does Reinforcement Learning Relate to Machine Learning?

Markov Decision Processes (MDPs)

The Reinforcement Learning Problem

Formal Statement

Dynamic Programming

Tabular Reinforcement Learning

Model Based vs. Model Free RL

Appendix

Examples of Specific RL Algorithms

General Setting

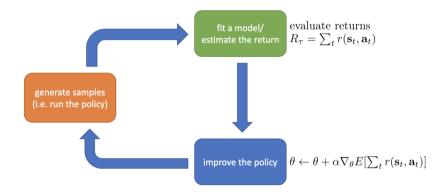
RL in Practice

Intro

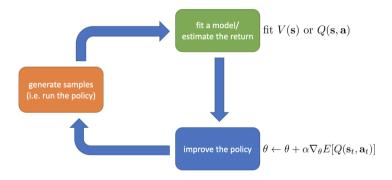
Examples

More on RL vs. ML

Direct policy gradients

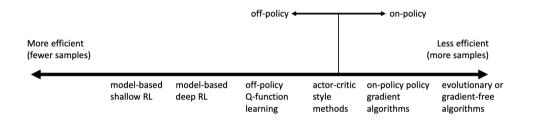


Actor-critic: value functions + policy gradients



Actor Critic (Between Policy Gradient and Value Function). Courtesy: Berkeley, CS 285

Sample Efficiency and Structure



Courtesy: http://rail.eecs.berkeley.edu/deeprlcourse

- Value function fitting methods
 - Q-learning, DQN
 - Temporal difference learning
 - Fitted value iteration

- Value function fitting methods
 - Q-learning, DQN
 - Temporal difference learning
 - Fitted value iteration
- Policy gradient methods
 - REINFORCE
 - Natural policy gradient
 - Trust region policy optimization

- Value function fitting methods
 - Q-learning, DQN
 - Temporal difference learning
 - Fitted value iteration
- Policy gradient methods
 - REINFORCE
 - Natural policy gradient
 - Trust region policy optimization
- Actor-critic algorithms
 - Asynchronous advantage actor-critic (A3C)
 - Soft actor-critic (SAC)

- Value function fitting methods
 - Q-learning, DQN
 - Temporal difference learning
 - Fitted value iteration
- Policy gradient methods
 - REINFORCE
 - Natural policy gradient
 - Trust region policy optimization
- Actor-critic algorithms
 - Asynchronous advantage actor-critic (A3C)
 - Soft actor-critic (SAC)
- Model-based RL algorithms
 - Dyna
 - Guided policy search

Outline

Background for Reinforcement Learning

Reinforcement Learning: The View from Space

How does Reinforcement Learning Relate to Machine Learning?

Markov Decision Processes (MDPs)

The Reinforcement Learning Problem

Formal Statement

Dynamic Programming

Tabular Reinforcement Learning

Model Based vs. Model Free RL

Appendix

Examples of Specific RL Algorithms

General Setting

RL in Practice

Intro

Examples

More on RL vs. ML

General Setting

MDP Solution:

$$\theta^* = \arg\max_{\theta} \mathbb{E}_{(s_t, a_t) \sim p_{\theta}(s_t, a_t)} \mathbb{E}_{r_t \sim p_{\theta}(r_t | s_t, a_t)} \sum_{t=1}^{T} \gamma^t r_t$$

General Setting

MDP Solution:

$$\theta^* = \arg\max_{\theta} \mathbb{E}_{(s_t, a_t) \sim p_{\theta}(s_t, a_t)} \mathbb{E}_{r_t \sim p_{\theta}(r_t | s_t, a_t)} \sum_{t=1}^{T} \gamma^t r_t$$

Bellman Equation for State-Value (v) function:

$$v_*(s) = \max_a \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_*(s')\right]$$

General Setting

MDP Solution:

$$\theta^* = \arg \max_{\theta} \mathbb{E}_{(s_t, a_t) \sim p_{\theta}(s_t, a_t)} \mathbb{E}_{r_t \sim p_{\theta}(r_t | s_t, a_t)} \sum_{t=1}^{T} \gamma^t r_t$$

Bellman Equation for State-Value (v) function:

$$v_*(s) = \max_a \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_*(s')\right]$$

Bellman Equation for Action-Value (q) function:

$$q_*(s,a) = \sum_{s',r} p(s',r|s,a) \left[r + \gamma \max_{a'} q_*(s',a') \right]$$

Outline

Background for Reinforcement Learning

Reinforcement Learning: The View from Space

How does Reinforcement Learning Relate to Machine Learning?

Markov Decision Processes (MDPs)

The Reinforcement Learning Problem

Formal Statement

Dynamic Programming

Tabular Reinforcement Learning

Model Based vs. Model Free RL

Appendix

Examples of Specific RL Algorithms

General Setting

RL in Practice

Intro

Examples

More on RL vs. ML

May not have perfect observability of underlying states.

- May not have perfect observability of underlying states.
 - Turn to algorithms for POMDPs.

- May not have perfect observability of underlying states.
 - Turn to algorithms for POMDPs.
- May need many samples especially for model free settings.

- May not have perfect observability of underlying states.
 - Turn to algorithms for POMDPs.
- May need many samples especially for model free settings.
 - Research into 'sample optimal' RL algorithms.

- May not have perfect observability of underlying states.
 - Turn to algorithms for POMDPs.
- May need many samples especially for model free settings.
 - Research into 'sample optimal' RL algorithms.
- Curse of dimmensionality. Increasing State + action space dimension leads to exponential increase in costs of exploring. Exponential number of states.

- May not have perfect observability of underlying states.
 - Turn to algorithms for POMDPs.
- May need many samples especially for model free settings.
 - Research into 'sample optimal' RL algorithms.
- Curse of dimmensionality. Increasing State + action space dimension leads to exponential increase in costs of exploring. Exponential number of states.
 - Tackled in Deep RL. Other feature selection/dimmensionality reduction methods

- May not have perfect observability of underlying states.
 - Turn to algorithms for POMDPs.
- May need many samples especially for model free settings.
 - Research into 'sample optimal' RL algorithms.
- Curse of dimmensionality. Increasing State + action space dimension leads to exponential increase in costs of exploring. Exponential number of states.
 - Tackled in Deep RL. Other feature selection/dimmensionality reduction methods
- Lack of sufficient data to train on.

- May not have perfect observability of underlying states.
 - Turn to algorithms for POMDPs.
- May need many samples especially for model free settings.
 - Research into 'sample optimal' RL algorithms.
- Curse of dimmensionality. Increasing State + action space dimension leads to exponential increase in costs of exploring. Exponential number of states.
 - Tackled in Deep RL. Other feature selection/dimmensionality reduction methods
- Lack of sufficient data to train on.
 - Train on self-play. (AlphaGo Zero). Offline reinforcement learning.

Outline

Background for Reinforcement Learning

Reinforcement Learning: The View from Space

How does Reinforcement Learning Relate to Machine Learning?

Markov Decision Processes (MDPs)

The Reinforcement Learning Problem

Formal Statement

Dynamic Programming

Tabular Reinforcement Learning

Model Based vs. Model Free RL

Appendix

Examples of Specific RL Algorithms

General Setting

RL in Practice

Intro

Examples

More on RL vs. ML

How Do We Design Intelligent _____?

Machines?

How Do We Design Intelligent _____?

- ► Machines?
- ► AI?

How Do We Design Intelligent ____?

- ► Machines?
- ► AI?
- Model Agents?

How Do We Design Intelligent _____?

- ► Machines?
- ► AI?
- ► Model Agents?
- ► Inference?

How Do We Design Intelligent _____?

Key in all cases is that we are 'adaptive' to underlying changes in environment– exogenous or endogenously caused

Outline

Background for Reinforcement Learning

Reinforcement Learning: The View from Space

How does Reinforcement Learning Relate to Machine Learning?

Markov Decision Processes (MDPs)

The Reinforcement Learning Problem

Formal Statement

Dynamic Programming

Tabular Reinforcement Learning

Model Based vs. Model Free RL

Appendix

Examples of Specific RL Algorithms

General Setting

RL in Practice

Intro

Examples

More on RL vs. ML

Some examples of RL

Learning to Drive (Courtesy: Wayve)

Some examples of RL

Hide and Seek (Courtesy: OpenAl)

Some examples of RL

Alpha Go

Outline

Background for Reinforcement Learning

Reinforcement Learning: The View from Space

How does Reinforcement Learning Relate to Machine Learning?

Markov Decision Processes (MDPs)

The Reinforcement Learning Problem

Formal Statement

Dynamic Programming

Tabular Reinforcement Learning

Model Based vs. Model Free RL

Appendix

Examples of Specific RL Algorithms

General Setting

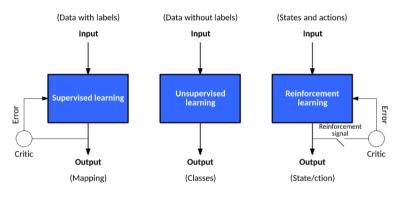
RL in Practice

Intro

Examples

More on RL vs. ML

How does Reinforcement Learning Relate?



Courtesy: IBM

What is Reinforcement Learning(RL)?

Reinforcement learning is learning what to do-how to map situations to actions—so as to maximize a numerical reward signal. The learner is not told which actions to take, but instead must discover which actions yield the most reward by trying them.

-Richard Sutton, Andrew Barto, Reinforcement Learning 2nd ed

Definition

Learning Algorithm (Mitchell 1997)

A computer program is said to *learn* from experience E with respect to a class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E

In ML:

Definition

Learning Algorithm (Mitchell 1997)

A computer program is said to *learn* from experience E with respect to a class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E

In ML:

Task T is objective

Definition

Learning Algorithm (Mitchell 1997)

A computer program is said to *learn* from experience E with respect to a class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E

In ML:

- Task T is objective
- Performance P is measure of prediction ability (e.g. loss)

Definition

Learning Algorithm (Mitchell 1997)

A computer program is said to *learn* from experience E with respect to a class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E

In ML:

- Task T is objective
- Performance P is measure of prediction ability (e.g. loss)
- Experience E is some form of data (structured or not, labelled or not)

► Fit and empirical performance vs. statistical properties or theoretical guarantees

- ► Fit and empirical performance vs. statistical properties or theoretical guarantees
- Algorithms vs. estimation

- ► Fit and empirical performance vs. statistical properties or theoretical guarantees
- Algorithms vs. estimation
- Not always clear cut... some work on theoretical guarantees in general environments. (Conformal prediction, algorithmic learning theory)

- ► Fit and empirical performance vs. statistical properties or theoretical guarantees
- Algorithms vs. estimation
- Not always clear cut... some work on theoretical guarantees in general environments. (Conformal prediction, algorithmic learning theory)

- ► Fit and empirical performance vs. statistical properties or theoretical guarantees
- Algorithms vs. estimation
- Not always clear cut... some work on theoretical guarantees in general environments. (Conformal prediction, algorithmic learning theory)

Chernozhukov: https://arxiv.org/abs/1712.09089 Athey: https://arxiv.org/abs/1903.10075 (among many others)