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Abstract

It has been previously shown both analytically and numerically that for sufficiently

large pools of patient-donor pairs, (almost) efficient kidney exchange can be achieved by

using at most 3-way exchanges, i.e. by using exchanges among no more than 3 patient-

donor pairs. However, as kidney exchange has grown in practice, exchanges among n>3

pairs have proved useful, and long chains initiated by non-directed, altruistic donors

have proven to be very effective. We explore why this is the case, both empirically and

theoretically.

We provide an analytical model of exchange when there are many highly sensitized

patients, and show that large cycles of exchange or long chains can significantly increase

efficiency. As large cycles of exchange cannot be used in practice, long non-simultaneous

chains initiated by altruistic donors significantly increase efficiency in patient pools of

the size and composition that presently exist.

1 Introduction

Various clearinghouses for kidney exchange today make a thicker market for patients and

their incompatible donors who wish to participate in an exchange with other such pairs.

Such clearinghouses are an attempt to organize a barter economy on a large scale, with the

aid of a computer-assisted clearinghouse.1

∗Ashlagi: iashlagi@mit.edu. Gamarnik: gamarnik@mit.edu. Roth: al roth@harvard.edu. We have had

valuable conversations about this paper with Jacob Leshno and Mike Rees.
1Recall that Jevons (1876) proposed that money was invented as a market design solution to overcome

precisely the difficulties of organizing barter economies–in particular, the low volume of trade that could be

expected through barter because of the difficulty of satisfying the “double coincidence” of wants involved in

simultaneous 2-way exchange.
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Roth et al. (2004) proposed how to organize kidney exchange, integrating exchanges

(closed cycles of trade) and chains (which need not be closed cycles). Due to incentive and

logistical constraints, exchanges need to be of small size. Initially clearinghouses organized

exchanges involving no more than 2 patient-donor pairs (Roth et al. (2005b)), and even

today exchanges often involve no more than 3 pairs (since a 3-way exchange involves the

simultaneous coordination of 6 operating rooms and surgical teams).

Clearinghouses for kidney exchange first conducted only simultaneous exchanges and an

important task was to identify efficient outcomes (see Saidman et al. (2006) and Roth et al.

(2007)). Roth et al. (2006) proposed that the growing number of non-directed donors would

allow the simultaneity constraint to be relaxed. (When a chain is initiated by a non-directed

donor, i.e. a donor who does not come with a particular patient who he wishes will receive

a kidney, it can be organized so that the non-directed donor makes the initial donation,

and no patient-donor pair has to donate a kidney before they have received one. Since this

reduces the cost of a broken link, such chains can be organized non-simultaneously, which

allows them to be longer, as more operating rooms and surgical teams can be assembled

over a longer time.) Particularly after the publication of Rees et al. (2009), which reported

the initial ten transplants from the first nonsimultaneous chain, a growing number of long

nonsimultaneous chains have been conducted. However there is an ongoing debate about

whether long chains increase efficiency beyond simultaneous small exchanges.

The empirical part of this paper examines the patient-donor pairs enrolled in several

kidney exchange clearinghouses and shows that allowing long chains significantly increases

efficiency. The key for this finding is the high percentage of ”highly sensitized” patients in

the data. Patients are highly sensitized if (for reasons other than blood type incompatibility)

the probability is low that any particular donor’s kidney will be compatible for them; i.e.

highly sensitized patients are those for whom finding a transplantable kidney will be difficult,

even from a donor with the same blood type.

We further provide an analytical framework for studying such highly sensitized pools.

Efficiency has been studied previously quite extensively. Roth et al. (2007) assume com-

patibility between a patient and a donor of two distinct incompatible pairs in the exchange

pool is determined merely according to blood types and show that 4-way exchanges are suf-

ficient for efficiency. Ünver (2010) showed a similar result in a dynamic setting. In practice

to receive a donor’s kidney a patient needs to also pass a tissue type test (crossmatch test).

The more sensitized a patient, the less likely he or she will match with a random donor.

However, simulations conducted by Roth et al. (2007) (without this assumption), promis-

ingly show that even on small exchange pool sizes, of 25–100 patient-donor pairs, even using

exchanges of at most size 3 hardly results in any efficiency loss. Ashlagi and Roth (2011)

show this analytically in large random exchange pools. Although these papers do not study
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non-directed donors, one can derive from their models of very large exchange pools that even

if each non-directed donor is limited to a chain of length 2, and exchanges to size at most 3,

there will be (almost) no efficiency loss.

These results seem to settle the efficiency problem, at least for exchange pools that grow

without limit.

Existing clearinghouses, however, operate with relatively small pools of patient-donor

pairs. Examining three data sets from three different exchange pools, we find that limiting

the maximum size of exchanges to 3-way and even 4-way exchanges results in a significant

loss of transplants. Alternatively, when an altruistic donor is in the pool, finding long chains

together with exchanges of at most size 3 can produce over 30% more transplants than using

only exchanges limited to size 3 or 4.

The data reveal that the empirical percentage of highly sensitized patients in the exchange

pool is significantly higher than the percentage of highly sensitized patients found numerically

in pools representative of the general patient population (for example in simulations used

by Roth et al. (2007)), and even higher than the percentage of highly sensitized patients

reported by the hospitals that enroll the incompatible pairs in the kidney exchange pool. The

empirical efficiency findings are a direct result of highly sensitized pools – small exchanges

that include a highly sensitized patient are rare, because highly sensitized patients can receive

kidneys from only a few donors, which makes the double coincidence needed for e.g. a 2-way

exchange unlikely. In a related paper, Ashlagi et al. (2011a) use simulations, also based

on clinical data, to show that long chains increase efficiency in a dynamic setting (see also

Ashlagi et al. (2011b)).23

Previous analytical models that have been adopted to study efficiency either assumed no

tissue type incompatibilities or derived it from the limiting assumptions of the model. The

relations between various groups of incompatible pairs distinguished by their blood types is

now well understood. In this paper we take an opposite approach; essentially we focus on

immunological (tissue-type) incompatibilities. For clarity, in section 4 we will model patient-

donor pairs of a single blood type, to show how chains and large exchanges become important

even in the absence of blood type incompatibility, when patients are highly sensitized. Our

results shed light on why chains are proving to be so useful, and how much they add to

efficiency.

2Understanding the causes of the empirical distribution of sensitivity of patients in the exchange pools is

an important topic for future research. At least one cause is that hospitals do not fully participate in kidney

exchange programs, for example by not revealing easy to match pairs that they can transplant through

internal (to the hospital) exchanges (see Ashlagi and Roth (2011), Ashlagi et al. (2010) and Toulis and

Parkes (2010) who study how to prevent this problem by redesigning the mechanism).
3Dickerson et al. (2011) further confirm the results by Ashlagi et al. (2011a) that long chains increase

efficiency in dynamic settings.
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2 A Model for Kidney Exchange

In an exchange pool there are kidney patients, each paired with an incompatible living

donor.4 An exchange pool induces a compatibility graph DV which captures the compati-

bilities between donors and patients in the pool. The set of incompatible pairs are the nodes

of the graph, denoted by V . For any two incompatible pairs v, u ∈ V , there is a directed

edge from u to v if and only if the donor of node u is compatible with the patient of node v.

A k-way exchange (k > 0) involves k incompatible pairs v1, v2, . . . , vk such that for every

i, 1 ≤ i < k, the donor of vi is compatible with the patient of vi+1) and vk is compatible with

the patient of v1.

In practice the size of an exchange is limited (mostly due to logistical constraints). We

assume there is an exogenous maximum size limit k > 0 for any exchange. Thus if k = 3

only exchanges of size 2 and 3 can be conducted.5

Although exchanges of size more than 3 are not used in practice due to simultaneity

constraints, chains, initiated by an altruistic donor can be conducted non-simultaneously

and thus can be of any size. A k-way chain (k > 0) involves an altruistic donor and k

incompatible pairs v1, v2, . . . , vk such that for every i, 1 ≤ i < k donor of vi is compatible

with the patient of vi+1).
6

An allocation is a set of distinct exchanges. An allocation M is called (k, l)-efficient if it

matches the maximum number of transplants possible using only exchanges of size no more

than k and chains of size no more than l. It is called k-efficient if it it is (k, 0)-efficient. It

is called efficient if it is (k, l)-efficient for unbounded k and l.

Roth et al. (2007) showed that in an exchange pool without altruistic donors and with no

tissue type incompatibilities across incompatible pairs, there is an efficient allocation which

uses exchanges no more than size 4 (assuming no tissue type incompatibilities implicitly

assumes a large pool). Ashlagi and Roth (2011) relaxed this assumption and showed that

in a large random exchange pool, based on a Bayesian distribution consistent with practice,

exchanges of size no more than 3 are needed for efficiency.7 Both these papers assume

the exchange pool is large. However, Roth et al. (2007) also support these results using

4Pairs that are compatible would presently go directly to transplantation and not join the exchange pool

(but see e.g. Roth et al. (2005a) and Sönmez and Ünver (2011) on the advantages of changing this policy).
5In the APD and NEPKE k was originally set to 2, was increased to 3, and now optimization is conducted

over even larger exchanges and chains, and the pilot national program considers exchanges up to size 3.

Exchanges are generally conducted simultaneously, so an exchange of size k requires 2k operating rooms and

surgical teams for the k nephrectomies (kidney removals) and k transplants.
6One can model chains begun by nondirected altruistic donors as (cyclic) exchanges by adding the altru-

istic donors to the pool and associate each of them with a virtual patient that can receive a kidney from any

other donor in the pool.
7See also Toulis and Parkes (2010) for 2-way efficient allocations.
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simulations on small exchange pools of sizes 25 to 100.

Although these studies do not consider altruistic donors, one can show that in the limit

as the pool grows large, each such donor will contribute only two more transplants to the

efficient outcome (see Section 4.1). These results seem to provide a good understanding

about efficiency in kidney exchange even with the presence of altruistic donors . We shall see

however in the next section that in real data 3 and even 4-way exchanges are not sufficient

to provide efficiency, and thus chains will be needed.

3 Empirical Efficiency

The empirical data we present here is from 3 kidney exchange clearinghouses. Each patient

has a level of percentage reactive antibodies (PRA) which determines the likelihood that

the patient will be compatible with a random donor. The lower the PRA of a patient, the

more likely the patient is compatible with a random donor. In their simulations, Roth et al.

(2007) use a PRA distribution which is taken from the UNOS data (see the first column in

Table 1). Three intervals are described, low (0-9), medium (10-79) and high (80-100).

In all data sets we can estimate the PRA by observing for each patient the number of

blood type compatible donors it is also tissue-type compatible with. In two of the data sets

we also have the reported PRA by the hospitals that submit the medical data about their

patients. Table 1 provides the estimated and reported (in parenthesis) distributions. Only

in the 1st data set we also have historical incompatible pairs (i.e. the set of all pairs enrolled

in a clearinghouse, as opposed to a snapshot of the pairs still enrolled at a given time), thus

the two columns for this data set. The size of the sets are: 361,131,251 and 74 respectively.8

Unos Historical 1st Set 1st Set 2nd Set 3rd Set

Size 497 131 251 74

Low PRA 70.19 24.93 (36.6) 21.37 6.77 0 (24.32)

Med PRA 20 23.26 (27.2) 12.97 13.14 38.38 (14.86)

High PRA 9.81 51.80 (36.2) 65.64 80.07 71.62 (60.810)

Table 1: PRA distributions in various real data sets.

Naturally the PRA distributions in the kidney exchange data sets will differ from the PRA

distribution in UNOS since low PRA patients are easier to match and therefore less likely to

8Dickerson et al. (2011) also mention that almost all 77 patients in the the UNOS program which launched

in 2010 are highly sensitized.
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join the pool. One way to generate a PRA distribution that is more realistic is by generating

incompatible pairs as follows: first randomize a patient, and then randomize a number of

potential donors for this patient. If either one of the donors matches the patient this patient

is assumed to find a donor and is not part of an incompatible pair. Similar processes were

used in Roth et al. (2007), Ashlagi et al. (2011a) and Ashlagi and Roth (2011). In Table

2 we report the PRA distributions using this process for various distributions of number of

donors for each patent. We also report in parenthesis the PRA distribution in the population

of the compatible donors that is induced by this process. The blood type of a patient as well

PRA of a patient in this process are similar to the ones used in Roth et al. (2007).

Note that uniformly generating 1-5 donors for each patient produces a PRA distribution

that is “close” to the reported distribution in 1st data set. Furthermore, the distribution

of compatible pairs generated by these processes doesn’t change substantially. Note that

only when the generating process of incompatible pairs is very conservative (many poten-

tial donors for each patient), does the percentage of high PRA patients gets close to the

percentage of high PRA patients in the the empirical 1st data set. Only when we get up

to the (unrealistically high) level of 5 donors for each patient does the percentage of highly

sensitized patients reach the level we observe in the 1st data set. This suggests that the high

levels of highly sensitized patients in the data is at least in part due to hospitals withholding

the more easily matched pairs.

1− 3 donors 1− 5 donors 1− 13 donors 5 donors 6 donors

Low PRA 47.65 (74.26) 39.7 (73.9) 28.73 (73.77) 17.04 (73.62) 12.2 (73.75)

Med PRA 28.21 (14.08) 27.67 (15.7) 22.12 (18.99) 24.41 (18.51) 21.88 (19.18)

High PRA 24.14 (1.62) 32.63 (2.1) 49.15 (3.56) 58.55 (2.83) 65.82 (3.16)

Table 2: PRA distributions from generated incompatible pairs processes. All but the last

column provides the distribution generated using a different uniform distribution of random

potential donors for each patient. The last column is the PRA distribution among all patients

who received transplants since 2008 according to UNOS (in parenthesizes are the PRA

distributions of compatible pairs generated from the process.

The very high percentage of high PRA patients (even reported PRA) in the exchange

pool suggests that compatibility graphs are sparse, and, so exchanges and short chains might

not be sufficient. We looked at the allocations in each of these sets allowing various maximum

exchange sizes. The results, reported in Table 3, show that by limiting only to 3 and even

4-way exchanges there is a substantial efficiency loss.

To summarize, we observed that large exchanges (and thus long chains) are needed for

efficiency in exchange pools of the size and composition we are seeing in clinical settings.

6



k = 2 k = 3 k = 4 k = 5 k =∞ (3,∞) (∞,∞) (3, 5)

Historical 1st Set 118 169 189 191 193 – –

Current 1st Set 6 9 11 13 16 – 16 –

2nd Set 22 42 45 47 51 54.5 54.5 47.6

3rd Set 0 3 4 4 4 7.5 7.5 5.8

Table 3: Cycles in Data. In the first 5 columns, we report the size of the k-efficient allocation

where ∞ stands for unrestricted k. In the last 3 columns a single random altruistic donor

(also from the data) is added. In those columns the size of efficient allocation is reported

given (k, l) where k is the size of the maximum exchange and l is the size of the maximum

length of a chain.

This follows from the high percentage of high PRA patients, which makes the compatibility

graphs sparse. An important question for future research and design is to understand why

is there such a big gap between the predicted PRA distribution and the empirical PRA

distribution. Alternatively, what causes the big difference between the efficiency results

obtained by Roth et al. (2007) and Ashlagi and Roth (2011), and the empirical efficiency

results we show here? At least part of the answer has to do with hospitals not revealing

their incompatible pairs to the exchange pools (see Ashlagi and Roth (2011)).

An additional factor that adds to this gap is the accumulation of very highly sensitized

patients over time due to the dynamic nature of exchange programs; consider for example

a very highly sensitized patient p in the pool who can receive a kidney from a donor d who

is also currently in the the pool. If p and d cannot be part of a 2-way or a 3-way exchange,

this donor might be part of a different exchange making the highly sensitized patient p wait

a long time for a different compatible donor.

In the next section we adopt a stylized model based on Erdos-Renyi random graphs, to

show that exchanges of size more than 3 (and therefore chains) are often needed for efficiency.

In the following section we will see that the absent of a linear fraction of unsensitized patients

leads to a linear efficiency loss (linear in the size of the pool). That is, chains are needed

in pools with many highly sensitized patients, and the presence of unsensitized patients

facilitates finding matches for the sensitized patients. (So when hospitals withhold their

easy to match pairs, and the resulting pool is highly sensitized, many fewer matches can be

made.)
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4 Random Compatibility Graphs with Many Highly

Sensitized Patients

Ashlagi and Roth (2011) analyzed random compatibility graphs that are generated from a

blood-type and tissue type distributions consistent with practice. In this section we will

simplify the distribution from which we generate the graph and assume all patients and

donors have the same blood type. In particular edges only depend on whether a donor and

a patient are tissue type compatible. This is equivalent to focusing on a subgraph of the

real compatibility graph. Roth et al. (2007) and Ashlagi and Roth (2011) showed that, as

the number of patient-donor pairs goes to infinity, efficient allocations match all the pairs in

those subgraphs to each other in exchanges of size at most 3. We will show here that under

more careful modeling of highly sensitized patients, even on those subgraphs, exchanges

longer than 3 and even 4-way are often needed for efficiency. 9

In a random compatibility graph there are n pairs. Recall that the PRA of a patient is

interpreted as the probability in which a patient will match a random donor. We simplify

here the PRA characteristics and assume there exist two levels of PRA, L and H. The

probability that a patient with PRA L (H) and a random donor are tissue type compatible

is given by pL (pH). We assume pL > pH . Furthermore, the probability that a random patient

has PRA L is given by υ ≥ 0. A random compatibility graph is denoted by D(n, pL, pH , υ).

Before we proceed to our results it will be useful to note that our model is closely related

to a directed Erdos-Renyi random graph. A directed (Erdos-Renyi) random graph D(n, p(n))

is a graph with n nodes and for every two distinct nodes v, u there is an edge from u to v

with probability p(n). Thus, if all donors have the same PRA, the graph is exactly a directed

random graph. The efficiency result by Ashlagi and Roth (2011) was derived from a theorem

of Erdos and Renyi which characterize the existence of a perfect matching in large random

graphs (in graph theory terminology, a perfect matching is an allocation using only exchanges

of size 2):

Erdos-Renyi Theorem: Let p(n) = (1 + τ)( lnn
n

)
1
2 where τ 6= 0. In almost every large

graph D(n, p(n)) there exists a perfect matching if and only if τ > 0.

In practice the probability that a patient is compatible with a random donor does not

depend on the size of the population. From the Erdos-Renyi theorem one can show if γL
and γH are constants, an efficient allocation using exchanges of size at most 3 exists in

D(n, γL, γH , υ) as n goes to infinity.

To model highly sensitized patients and the sparse compatibility graphs they generate we

9Our results can be generalized to other subgraphs in the original random exchange pool analyzed in

those papers, e.g. the subgraph induced by only incompatible pairs with an A patient and B donor and vice

versa.
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will neglect the fact that compatibility between a random patient and a random donor doesn’t

depend on the size of the population and assume that γH is a decreasing function of n.10

In particular we will analyze sparse large graphs (instead of directly analyzing finite sparse

graphs which make the problem intractable). For “medium” size pools such probabilities

make a good approximation since highly sensitize patients have very low probability to

be matched. For any k, we will denote by Wk the size of a k−efficient allocation when

D(n, pL, pH , υ) n is infinitely large.

In the next section we look more carefully into specific sets in the “real” compatibility

graphs and show that reinvestigating the structure of efficient allocations is needed. In

the subsequent sections we analyze two different settings that will shed light on why long

exchanges are useful for efficiency in sparse graphs.

4.1 Towards a (new) efficient allocation - more empirical findings

Before we continue with our model, let us recall the following result with blood types:

Theorem 4.1 (Ashlagi and Roth (2011)). Under any [sufficiently regular] blood type distri-

bution, in almost every large (limit) graph without altruistic donors there exist an efficient

allocation with exchanges of size at most 3 whose structure is as described in Figure 3.

Theorem 4.1 implies not only that exchanges of more than 3 are not needed but also

not “many” exchanges of size 3 are needed. The longer exchanges are (even if feasible) the

harder they are to implement, thus such a structure is important for practice. The Theorem

also implies that each altruistic donor can add at most 2 transplants. Under an efficient

allocation as described in Figure 3, an altruistic donor with blood type A,B or O can start

a chain with two underdemanded pairs (e.g. an A altruistic donor can give to an O-A pair

who can give to an A-AB pair).

As we observed in Section 3, long cycles and chains are needed for efficiency in real data.

We take here a closer look at the set of incompatible pairs in which both the patient and the

donor have blood type O (as an example). As described in Table 4, exchanges of size even 3

are not sufficient to match all O-O pairs and are not efficient within this set. Importantly,

highly sensitized patients significantly benefit from longer exchanges. Observe that almost

all low PRA patients are matched already for k = 3 and significantly more high PRA patients

are matched when longer than 3-way exchanges are allowed. For example, in the entire set,

10One way to motivate the assumption that the probability that a patient will be compatible declines as

the number of patient-donor pairs grows is if the population grows over time, so that there is some probability

that a patient may no longer be healthy enough for a transplant from donors who enter the pool further in

the future. We don’t formally take this approach here.
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Figure 1: The structure of an efficient allocation without altruistic donors. All selfdemanded

pairs are matched to each other. (excluding all selfdemanded pairs). All B-A pairs are

matched to A-B (assuming there are more B-A than A-B), the remainder of the A-B pairs

are matched in 3-way exchanges using O-A’s and B-O’s. AB-O are matched in 3-ways

each using two overdemanded pairs, and every other overdemanded pair is matched to a

corresponding underdemanded pair.

all 26 low PRA patients are matched already for k = 3 but k = 4 yields 6 more high PRA

matches than k = 3.

Table 5 is similar to Table 4 only the high PRA is set to 90.

Finally, we plot in Figure 2 a real graph induced by the incompatible pairs in which both

the donor and the patient have blood type A. Observe that many patients can get none or

one kidney from other donors, while their incompatible donors are compatible with other

patients. Furthermore, blue edges are part of cycles and blue nodes are incompatible pairs

with low PRA patients. Observe that there are many edges and paths that are not part of

cycles, which should be interpreted as potential chains.

4.2 All patients are highly sensitized

We assume in this section that all patients are highly sensitized. Our intention here is to

show that whether or not long exchanges are needed depends on the sparsity of the graph.

Technically, the random compatibility graph is just D(n, p(n)), where p(n) = pH(n). If

p(n) is “very small”, exchanges do not exist at all. The Erdos-Renyi Theorem implies that

for large enough p(n), allocations with only 2-way exchanges can cover all but at most one

pair, i.e. W2 + 1 ≥ Wk for all k > 2. The next result shows that for every k, when the

graph is sufficiently sparse, k+1-efficient allocations provide more transplants than k-efficient

allocations.
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Size k = 2 k = 3 k = 4 k = 5

30 (11.54,18.46)

matches 12.52 18.91 20.57 21.6

exchanges 21.9 122.47 565.22 2098.53

matched (L,H) (8.14, 4.38) (11.42, 7.49) (11.29, 9.28) (11.21, 10.39)

45 (18.07, 26.93)

matches 22.16 32.56 36.22 36.96

exchanges 50.35 391.47 2637.34 19641.47

matched (L,H) (13.29, 8.87) (17.41, 15.15) (17.29, 18.93) (17.46, 19.5)

65 (26, 39)

matches 36 52 58 58

exchanges 107 1180 11932 123963

matched (L,H) (21, 15) (26, 26) (26, 32) (26, 32)

Table 4: Cycles in selfdemanded pairs. High PRA is considered to be 80. The pools size is

given in the first column where in parenthesizes are the number of low and high PRA patients

respectively. The results in the last block refer to the entire pool we draw from. The rows

in each block describe: (i) number of matches obtained, (ii) number of all exchanges (not

necessarily disjoint), and (iii) number of matched low and high PRA patients restrictively.

Theorem 4.2. For every k ≥ 2, there exists pk(n) such that Wk = o(Wk+1) in almost every

graph D = D(n, pk(n)). That is Wk

Wk+1
tends to zero as n tends to infinity.

The proof 4.2 will follow directly from the next lemma which states in more detail the

size of exchanges for various k’s. The idea of the proof is to show that in sparse enough

graphs the number of exchanges of size exactly k + 1 in the pool is approximately the same

number of disjoint exchanges of size k + 1. Furthermore the number of exchanges of size at

most k is smaller than the number of exchanges of size k + 1.

Lemma 4.3. Let D(n, p(n)) be a random directed graph with p(n) = n−1+ε for some real

ε > 0.

1. If 0 < ε < 1
k+1

, Wk = Θ(nkε) in almost every D(n, p(n)). Furthermore the size of the

k-efficient allocation is Θ
(
nkε
)
.11

2. If ε < 0, Wk = o(1) in almost every D(n, p(n)).

3. If ε > 1
k
, Wk = n in almost every D(n, p(n)).

In the next section we analyze allocations in compatibility graphs that have a mixture of

low and high sensitized patients.

11For two functions f(n) and g(n) we write f = Θ(g) if there exist constants c1 < c2 such that c1f(n) ≤
f(n) ≤ c2g(n) for every sufficiently large m.
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Size k = 2 k = 3 k = 4 k = 5

30 (17.64, 12.36)

matches 12.1 18.8 20.43 21.25

exchanges 21.5 124.61 490.46 2594.77

matched (L,H) (10.3, 1.8) (15.44, 3.36) (16.33, 4.1) (16.7, 4.55)

45 (26.83, 18.17)

matches 21.62 32.36 36.03 36.87

exchanges 48.39 376.08 2668.54 18624.77

matched (L,H) (17.91, 3.71) (25.75, 6.61) (26.44, 9.59) (26.09, 10.78)

65 (39, 26)

matches 36 52 58 58

exchanges 107 1180 11932 123963

matched (L,H) (29, 7) (39, 13) (39, 19) (39, 19)

Table 5: Cycles in selfdemanded pairs. High PRA is set to 90.

4.3 Many (but not all) highly sensitized patients 0 < υ ≤ 1
2

In this section we will show that even with a substantial fraction of low sensitized patients

in the graph, considering only 2 and 3-way exchanges is not sufficient for efficiency. For

simplicity we will say a node/pair is an H (L) node if its patient has H (L) PRA. An

assumption we make through out this section is that the chance that a patient has Low

PRA is smaller than 1/2, i.e. υ ≤ 1
2
. This assumption is consistent with the the empirical

findings.12 As before D = D(n, pL(n), pH(n), υ) denotes a random compatibility graph. In

this section we assume pL = pL(n) is a constant and pH(n) = c
n

for some constant c > 0.

This reflect the assumption that incoming edges to H pairs have a small probability.

For our main result we need the following lemma about matchings in bipartite non-

directed random graphs. Given υ ∈ (0, 1) and c, let G(n, υ, c) be an undirected bi-partite

random graph with υn and (1− υ)n nodes on either sides and independent edge probability
c
n
. Let M(n, υ, c) denote the size of a largest matching in this graph.

Lemma 4.4. The limit α(υ, c) , limnM(n, υ, c)/n exists and satisfies the following proper-

ties:

1. 0 < α(υ, c) < min(υ, 1− υ),

2. α(υ, c) is a strictly increasing function in c, when υ is fixed.

In our main result in this section we show that 4-efficient allocations yield significantly

more transplants than 2-efficient allocations. Furthermore, there is a threshold of low

PRA patients above which 4-efficient allocations yield significantly more transplants than

12One can derive similar results for the reversed inequality.
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Figure 2: The graph induced by A-A incompatible pairs in the historical data set. Blue

dashed edges are part of exchanges (cycles) and blue filled nodes are incompatible pairs

whose patient has a low PRA.

3-efficient allocations. Finally, for all k ≥ 2, every k-efficient allocation matches all low

PRA patients, which means that high PRA patients are the ones that benefit from 4-way

exchanges (or chains). Note that this is consistent with the empirical findings in Section

4.1.13 We define α(·, ·) as in Lemma 4.4.

Theorem 4.5. With probability approaching one the the following holds

1. W4 = α(υ, c)n+ υn+ o(n), and W4 = W2 + ρn+ o(n), for some ρ > 0. In particular,

2-efficient allocations are smaller than the efficient allocation by at least a linear in n

value.

2. If α(υ, c(1 − pL)) < υ − α(υ, cpL), then W4 = W3 + o(n), and otherwise W4 = W3 +

ρn+ o(n), for some ρ > 0. In particular, the 3-efficient allocations are nearly efficient

13For k = 2 not all low PRA are matched in the data since the sample size is quite small.
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in the former case, but are smaller than the efficient allocation by at least a linear in

n value.

The proof is given in the appendix and we provide here the intuition for the first part

(the intuition is similar proof for the second part).

Let us begin with two observations that hold for both 2-efficient and 4-efficient allocations.

(i) The number of matches that can be achieved using exchanges that involve only H pairs

is o(n) (by Lemma 4.3), in particular it will be negligible in comparison to the number

of matches achieved at these efficient allocations.

(ii) Any linear fraction of L pairs can all (but at most one) be matched in a 2-way allocation.

We next construct a 2-way allocation that is approximately 2-efficient.14 Consider the

maximum 2-way allocation M2 that involves only exchanges with one H node and one L

node (see Figure 3). Applying Lemma 4.4 shows that the number of exchanges in M2 is

α(υ, cpL)n. Adding to M2 an allocation that matches all remaining L nodes (to each other)

using 2-way exchanges (which is feasible due to the second observation) results by the first

observation in the desired allocation.

Consider next a maximum set of disjoint (one-way) directed edges from L nodes to H

nodes, M4. By Lemma 4.4 the cardinality of such a set is α(υ, c)n > α(υ, cpL)n. To prove

the result it remains to show that all nodes in the graph induced only by nodes in M4 can be

matched to each other in 4-way exchanges, since again all remaining L nodes can be matched

to each other using 2-way allocations.

Figure 3: Construction of allocations with k = 2 and k = 4 in a graph in which all pairs

are blood type compatible and at least half the pairs are highly sensitized (for example the

graph induced by O-O pairs).

14Up to o(n) from the maximum size.
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The idea follows from the fact that “returning” to L nodes has a larger probability. Let

Q be the set of L nodes in M4. One can construct an artificial graph G̃ with set of nodes

Q, and an edge between every two nodes v, w ∈ Q exists if there is a 4-way exchange in the

graph induced by M4 involving two H nodes, v and w (see Figure 3). The key is to notice

that an edge in G̃ exists with constant probability, p2. Applying the Erdos-Renyi Theorem

to the G̃ completes the argument.

Importantly, Theorem and its proof imply that allowing exchanges longer than 4 will

benefit high PRA patients.

In our last result we will show that there are still many pairs that can be matched through

potential chains: allowing for longer chains will add significantly more H matched pairs. In

particular, beyond the 4-efficient allocation constructed in the previous theorem, there are

still many more potential chains that involve high PRA patients.

The following definition is needed. A (k, l)-quasi-allocation is a set of disjoint exchanges of

size at most k and paths (chains not starting with an altruistic donor) of size l. The random

compatibility graph does not include altruistic donors and therefore we are interested in

quasi-allocations (to which a non-directed altruistic donor could be appended to initiate a

chain). We denote by Sl the size of a maximum (4, l)-quasi-allocation.

Theorem 4.6. Fix l ≥ 0. There exists ρl > 0 such that Sl+1 ≥ Sk + ρln. Furthermore,

an efficient (4, l + 1)-quasi-allocation yields ρln more high PRA matches than (4, l)-quasi-

allocation.

5 Experimental Results

In Table 6 we provide simulation results using real data (not limited to specific types of

pairs) that show the benefit of chains. For each scenario we ran 300 trials drawing pairs and

altruistic donors from the entire data with re-sampling.

Observe that long chains allow more than 10% more transplants than when chains are

bounded to length 3 when the pool size is more than 50. Note that the additional high PRA

patients who are matched often substantially exceeds 10%. Finally, allowing for unbounded

chains and 3-way exchanges obtains almost the same number of matches that can be achieved

when both exchanges and chains can be unbounded in size, so long chains substitute well

for large exchanges when there are some non-directed donors available.
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6 Conclusion

There are a number of ways in which barter may be inefficient. Jevons (1876) famously

pointed to the double coincidences needed to make pairwise exchanges. Theory based on

large graphs that become very well connected in the limit predicted that also allowing 3-way

exchanges and short chains would overcome this difficulty. However the compatibility graphs

so far seen in practice are sparse. We show here empirically the effectiveness of long non-

simultaneous chains. In particular long chains are needed for efficiency due to the sparsity of

compatibility graphs that arise when many patients are very highly sensitized. We further

provide theoretical foundations to better understand the structure of efficient allocations in

sparse comparability graphs. Our findings suggest that tissue type incompatibilities are of

first order importance in understanding efficient kidney exchange, and that as long as we

see such a high percentage of highly sensitized patients, long chains will help achieve more

transplants.
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7 Appendix

Proof of Theorem 4.3. Denote by Sk the number of k-way exchanges in D(n, p). Thus

for some constant c > 0

ESk = c

(
n

k

)
pk ≈ (np)k = Θ

(
nkε
)

(1)

Since k is a constant E
(∑k

l=2 Sl

)
= Θ

(
nkε
)
. Since the number of disjoint cycles is at most

the number of cycles the second part follows.

We proceed with the first part. Let 0 < ε ≤ 1
k
. Denote by Qk the number of disjoint

exchanges of size k. By (1) E (Sl) = o(Sk+1) for any 2 ≤ l ≤ k. It is sufficient to show that

Qk = Θ(Sk). We will show this for k = 3 (for larger k’s the proof is similar).
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Denote by Yk the number of non-disjoint k-way exchanges.

Let ε < 1
3
. To see that Q3 = Θ(S3) it is sufficient to show that Y3 = o (S3). First we

show that EY3 = o (n3ε). Observe that two different 3-way exchanges in D(m, p(m)) can

overlap by either having exactly one edge in common or having exactly one node in common.

Therefore

EY3 ≈ n4p5 + n5p6 = n−1+5ε + n−1+6ε = O
(
n−1+6ε

)
= o

(
n3ε
)

(2)

where the last inequality follows since ε < 1
3
.

Let 0 < δ < 1− 3ε. By Markov’s inequality

Pr
(
Y3 ≥ n−1+6ε+δ

)
≤ n−1+6ε

n−1+6ε+δ
. (3)

Therefore Y3 = o(ES3).

We next show that S3 is concentrated around its mean. The covariance between any two

potential 3-way cycles is 0 unless the have exactly one edge in common. Therefore

V ar(S3) = 2

(
n

4

)
p5 ≈ 2n−5+4ε ≈ n5ε−1.

By Chevyshev’s inequality for small enough δ > 0

Pr
(
|S3 − ES3| ≥ n3ε−δ) ≤ 2n5ε−1

n6ε−2δ , (4)

implying that S3 = O(ES3) and therefore Y3 = o (S3).

Proof of Lemma 4.4. The existence and the actual value of the limit α(υ, c) is a delicate

issue, but can be addressed using the Karp-Sipser algorithm technique (see Bohman and

Frieze (2011)).

Now let us established the claimed properties. First, since each side contains a linear

number of isolated nodes, then α(υ, c) < min(υ, 1 − υ). Similarly, there exists a linear set

of isolated edges, and thus α(υ, c) > 0. To prove strict monotonicity, fix c < c′ and consider

graphs G(n, υ, c) and G(n, υ, c′) coupled on the same probability space by adding edges to

G(n, υ, c) with probability x such that c/n+ (1− c/n)x = c′/n. The newly obtained graph

is exactly G(n, υ, c′). Since the extra edges create a linear size matching between isolated

nodes in G(n, υ, c), we see that M(n, υ, c′) is larger than M(n, υ, c) by a linear term and the

proof is complete.

Proof of Theorem 4.3. We will first show how to construct an (approximately) 2-efficient

allocation and then show how to improve the number of matches using also 4-way exchanges.

Let L and H denote the set of L and H nodes in the graph D = D(n, pL, c/n, υ) respectively.

Let Wk denote (any) allocation achieving Wk.
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First we observe that by Theorem 4.3 and a simple monotonicity of edge likelihoods,

for any k ≥ 2, the size of the k-efficient allocation in the graph induced by H is o(n). We

therefore assume without loss of generality from now one that there are no edges between

any two H pairs.

Claim 7.1. With high probability, W2 = α(υ, cpL)n+ υn+ o(n).

Proof. Consider an undirected bi-partite graph between nodes L and H, where an edge

between nodes u ∈ L and v ∈ H exists if and only if directed edges (u, v) and (v, u) both

exist in D. Since each such edge exists with probability (c/n)pL independently for all edges,

then this graph is precisely G(n, υ, cpL). Now observe that two way exchanges involving

nodes in H constitute a matching between H and L in G(n, υ, cpL). Thus the portion of W2

involving H is upper bounded by α(υ, cpL)n+ o(n), and, as result W2 is at most the claimed

size. On the other hand, let M2 be the any optimal size matching in G(n, υ, cpL) between

nodes L and H. Let L2 be the nodes in L not involved in M2. Consider an undirected graph

on L2, where nodes u and v are connected if directed edges (u, v) and (v, u) exist in D. Since

this defines a dense random graph on L2 with edge probability p2L, there exists a perfect

(or nearly perfect) matching between these nodes. This matching together with M2 gives a

two-way exchange with size α(υ, c)n+ |L|+ o(n) = α(υ, c)n+ υn+ o(n), as claimed.

Claim 7.2. With high probability, W4 ≥ α(υ, c)n+ υn+ o(n).

Notice the claim coupled with Claim 7.1 and pL < 1 implies that W4 = W2 + ρn + o(n)

for some ρ > 0, namely the second claim of our theorem.

Proof. Consider an undirected bi-partite graph between nodes L and H, where an edge

between nodes u ∈ L and v ∈ H exists if and only if the directed edges (u, v) exists in D

(but no requirement on the opposite edge (v, u) is placed). Since each such edge exists with

probability (c/n) independently for all edges, then this graph is precisely G(n, υ, c). Let M̂2

be any optimal size matching in this graph. Let H(M2) and L(M2) be the H and L nodes in

this matching. For every two nodes u1, u2 ∈ L(M2) introduce an undirected edge between u1

and u2 if the edges (v1, u2) and (v2, u1) exist in the original graph D, where v1 and v2 are the

matches of u1 and u2 with respect to the matching M2. Each such edge (u1, u2) exists with

probability p2L, and thus there exists a perfect or near-perfect matching between the nodes

L(M2). For each edge (u1, u2) in this matching the 4-way exchange (u1, v1, u2, v2, u1) exists.

Thus we can create a 4-way exchanges which cover nodes H(M2) and L(M2). Consider

the remaining nodes L \ L(M2). As before, for every two nodes u1, u2 there introduce an

undirected edge if both of the directed edges (u1, u2) and (u2, u1) exist in the original graph

D. Since the edge density in this random graph is p2L, there exists a nearly perfect matching

and we can create two-way exchanges covering all or all but one nodes among L \ L(M2).
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We have obtained a combination of two and four-way exchanges which cover |H(M2)|+ |L|
nodes. Since |M2| = α(υ, c)n+ υn+ o(n), we obtained the claimed inequality.

Claims 7.1 and 7.2 together establish the first part of Theorem 4.5.

We now prove the second part of the theorem. As above, let M2 be any maximal size

matching between H and L, where an edge between u ∈ L and v ∈ L exists if there

is a directed edge (u, v) in the original graph D. As before, the size of this matching is

α(υ, c)n + o(n) with high probability. Let L0 be the set of L nodes matched. Consider the

partition of this set L0 = L1 ∪ L2, where L1 is the set of nodes u such that the reverse edge

(v, u) exists in the original graph D, where v is the match of u according to M2. Let L2

be the complement of L1 in L0. The size of L1 is α(υ, cpL)n + o(n) with high probability.

For every u ∈ L2 and its match v ∈ H, it has to be the case that v is a part of a 3-way

exchange (u, v, w), w ∈ L \ L0, if v is to be a part of the exchange at all. Thus there must

exist a matching between L2 and a subset of nodes L \ L0. Such matching cannot exist if

the size of L2 which is asymptotically α(υ, c(1− pL)n+ o(n) is larger than the size of L\L0

which is υn − α(υ, c)n. This establishes the second part of the claim. For the first part

we observe that if the situation is reversed than a perfect or nearly matching exists, since

the likelihood of a cycle (u, v, w) is p2L and we again invoke the perfect matching existence

property of random dense graphs.
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Size Alts (2, 3) (3, 3) (3,∞) (∞,∞)

50

0 8.24 (1.73) 11.31 (2.77) 11.31 (2.77) 13.85

1 9.78 (1.87) 12.56 (2.81) 14.17 (3.31) 14.88

2 11.83 (2.27) 14.61 (3.22) 16.53 (3.83) 16.69

3 (13.16 (2.73) 15.55 (3.32) 17.36 (3.98) 17.47

4 14.72 (2.85) 16.57 (3.67) 17.99 (4.19) 18.03)

5 15.89 (3.35) 17.67 (4.05) 18.89 (4.4) 18.91

100

0 22 (5) 28.8 (7) 28.8 (7) 33.6

1 26.8 (7) 37.8 (10.4) 42.2 (11.8) 42.6

2 25.6 (6.6) 33.2 (8.8) 37.6 (10.6) 38.6

3 25.4 (3.6) 33.6 (7.8) 39 (10.8) 39

4 30.8 (5.6) 38.4 (9) 43.4 (11.4) 43.4

5 31.8 (8.4) 40.2 (12) 44 (13.6) 44

150

0 35.34 (8.59) 50.39 (14.88) 50.39 (14.88) 58.65

1 36.22 (8.29) 51.56 (14.68) 58.88 (18) 60.08

2 39.36 (9.3) 54.64 (15.95) 62.46 (19.65) 62.72

3 40.83 (9.43) 55.54 (15.68) 63.24 (19.32) 63.34

4 44 (10.03) 58.93 (16.4) 66.04 (19.97) 66.09

5 45.48 (10.58) 59.24 (16.48) 66 (19.92) 66.02

200

0 48.3 (11.9) 70.32 (21.48) 70.32 (21.48) 81.7

1 50.84 (12.09) 73.34 (22.01) 83.4 (26.88) 84.67

2 54.28 (12.79) 76.03 (22.46) 86.66 (27.84) 87.02

3 55.48 (13.02) 76.88 (22.61) 87.54 (27.94) 87.85

4 58.6 (13.94) 80.27 (23.93) 90.38 (29.1) 90.49

5 60.66 (14.49) 81.83 (24.14) 91.52 (29.5) 91.58

250

0 63.56 (16.24) 93 (29.3) 93 (29.3) 107.2

1 66.97 (16.4) 96.32 (29.48) 107.84 (35.28) 110.36

2 68.02 (16.77) 96.34 (29.72) 109.78 (36.82) 110.53

3 71.6 (17.48) 100.96 (30.88) 113.88 (37.84) 114.2

4 73.72 (17.36) 102.22 (30.65) 114.94 (37.16) 115.09

5 73.97 (17.84) 101.54 (30.9) 113.96 (37.15) 114.06

Table 6: Size of allocations with different number of altruistic donors (Alts) and different

size pools. The number of matched high PRA patients is given in parenthesis.
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