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1. Models and objects of interest
General Model (Nonlinear, non-Gaussian state-space model)

(Kitagawa (1987), Fernandez-Villaverde and Rubio-Ramirez (2007)

v: = H(s,, &)
St:F(St—la 77t)
& and n ~ud

Example 1: Linear Gaussian Model
Yt — HSt + gt
s, =Fs 1+ 1

HEZ (M)
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Example 2: Hamilton Regime-Switching Model

Ve = s + o(s)&
s;=0or 1 with P(s;=i| s =J) = pj

(using s, = F(s,1,77;) notation:

s:=1(n: < pro t (Pr1=Pp10)s-1), where 17~ U[0,1])

Example 3: Stochastic volatility model
yi=e'g

S;= Ut NS —p) + 1
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Some things you might want to calculate

NOtatiOn: Yl‘: 0’1,)’2, 9yt)9 Sl‘: (Sb 82y « .- 9Sf)9

f(.|.) ageneric density function.

A. Prediction and Likelihood
(1) fls; | Y1)

T
(i) /s | Yor) ... Note fiY7) = [ [ /(. |Y,) is the likelihood
t=1

B. Filtering: f(s,| Y,)

C. Smoothing: f(s, | Y7).
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2. General Formulae (Kitagawa (1987))
MOdCl yt — H(St, 5t)> Sl‘ — F(SZ—b 771), 8aIld 77 ~ lld

A. Prediction of s; and y, given Y, ;.
(i)

£ Y = [ f(ss 1Y, )ds,
=[£G, 150X )/ (s Y,
= [ £ s, 1500 G, Y, ),

1)  f(|Y.)= j f,1s)f(s, 1Y, )ds, (“t” component of likelthood)
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Model: y, = H(s;, &), s;,=F(s.1, 17:), €and n ~1ud

B. Filtering

Fs 1YY= £s |y = L@l S Y SOl 1Y)

J 1Y) J 1Y)

C. Smoothing
f(St |YT) = jf(st’Sz+1 |YT)dSz+1 = jf(St |St+19YT)f(St+1 |YT)dSt+1

f(St+1 |St)f(Sz |Yz)
f(St+1 |Yt)

= jf(St |St+19Yt)f(St+l |YT)de+1 - j|:

f(Sm |YT)dS
fGalY)

:|f(St+l |YT)dSt+l

= f(s, 1Y) [ (5, 15,)
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3. Special Cases
Model: y, = H(s;, &), s,=F(s1, 17:), €and n ~ud

General Formulae depend on H, F, and densities of ¢ and 7.

Well known special case: Linear Gaussian Model
vi=Hs, + g

s;=Fs,  +n
g, 0)(2, O
~ 11dN ,
[mj {(Oj [0 ZJJ

In this case, all joint, conditional distributions and so forth are Gaussian,
so that they depend only on mean and variance, and these are readily
computed.
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Digression: Recall that 1f

GGG 5))
b Hy )\ Zpy  Zip

then (a[b) ~ N(ttaw, Zapp)

where t, =ty + Z0pZ,, (b — ) and X = oy — Zp 2, Zipa

Interpreting a and b appropriately yields the Kalman Filter and Kalman
Smoother.
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2 0

. 0 ¢
(repeating) Model: y,= Hs; + &, s,=Fs, + n, ). iidN ,
n, 0 0 Zn

Let s = E(s; | Yi), Py = Var(s, | Yk), M1 — E(Vt |Yt—1)9 2] = Var()’sz—l)-

Deriving Kalman Filter:

Stal'tlng pOlIltI Sf—l | Yt_l ~ N(Sl‘—l/t—la Pf_l/l‘—l)° Then

S Sti-1 F, P, H'
|Yz—1 ~N ) \
Vi Yoa )\HE,, HF, H'+2,

(Y

interpreting s, as “a’” and y, as “b” yields the Kalman Filter.
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g, 0y(2, O
Model: y,=Hs; + &, s,=Fs, + n, [ ]N iidN([ j,( n
n, 0)L 0 X

n

Details of KF:

(1) Sy1 = FSr1/01

(11) Py = FPyy 7+ 2,
(111) f4yr1 = Hsyp1,

(av) Xy = HPy \H + 2,
(V) K, = Py H'S

t/t—1

(V1) Sy = Sy + Ky — 1)
(vi1) Py = ([ = K)P .
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The log-likelihood 1s
. 1

L(Y7) = constant —O.SZ{ln D EE G AEN7E DN ﬂm_l)}
t=1

The Kalman Smoother (for s, and P,) is derived in analogous fashion
(see Anderson and Moore (2005 ), or Hamilton (1990).)
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5. A Stochastic Volatility Model (Linear, but non-Gaussian Model)
(With a slight change of notation)

Xt — O €

In(oy) = In(op1) + 7,

or, letting y, = In(x?), s, = In(o;) and & = In(e)

yZ=2St+gt

S;=S8p1 T 1

Complication: & ~ In( y;)
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3 ways to handle the complication

(1) Ignore 1t (KF 1s Best Linear Filter. Gaussian MLE 1s QMLE)
Reference: Harvey, Ruiz, Shephard (1994)

(2) Work out analytic expressions for all the filters, etc. (Uhlig (1997)
does this in a VAR model with time varying coefficients and stochastic
volatility. He chooses densities and priors so that the recursive formulae
yield densities and posteriors in the same family.)

(3) Numerical approximations to (2).
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Numerical Approximations: A trick and a simulation method.

Trick: Shephard (1994), Approximate the distribution of £by a mixture of

normals, & =) g,v,, where v, ~ iidN(1;, o), and P(q;~=1)=p;.

i=l1

! Pi H; O;

1 0-00730 ~10-12999 5:79596
2 0-10556 —3-97281 2-61369
3 0-00002 —8:56686 5:17950
4 0-04395 2:77786 0-16735
5 0-34001 0-61942 0-64009
6 0-24566 1-79518 0-34023
7 0-25750 - 1-08819 1-26261

(numbers taken from Kim, Shephard and Chib (1998))

(Note: It seems that using only #=2 does not work too poorly)
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z! density and n= 7 mixture approximation

(picture taken from Kim, Shephard and Chib (1998))

2 {@—ﬂ Mixture True

1.5
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Simulation method: MCMC methods (here Gibbs Sampling)

Some References: Casella and George (1992), Chib (2001), Geweke
(2005), Koop (2003).

4. Markov Chain Monte Carlo (MCMC) methods

Monte Carlo method: Let a denote a random variable with density f(a),
and suppose you want to compute Eg(a) for some function g. (Mean,
standard deviation, quantile, etc.)

- N
Suppose you can simulate from f(a). Then Eg(a) = %Zg(ai), where a; are
i=l1

draws from f(a). If the Monte Carlo stochastic process 1s sufficiently well
behaved, then Eg(a)—£— = Eg(a) by the LLN.

Markov Chains: Methods for obtaining draws from f(a). Suppose that it 1s
difficult to draw from f(a) directly. Choose draws a;, a,, as, ... using a
Markov chain.
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Draw a;, from a conditional distribution, say 4(a;+1|a;), where A has the
following properties:

(1) f(a) 1s the invariant distribution associated with the Markov chain.
(That is, if a; 1s draw from £, then a,,|a; 1s a draw from f.)

- N
(2) Draws can’t be too dependent (or else Eg(a) = %Z g(a,) will not be a
i=1

good estimator of £g(a).)

Markov chain theory (see refs above) yields sufficient conditions on / that
imply consistency and asymptotic normality of Eg(a). In practice,
diagnostics are used on the MC draws to see if there are problems.
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How can /(a;1|a;) be constructed so that f1s invariant distribution. Gibbs
sampling 1s one way. (Others ... )

Gibbs idea: partition a as a = (a', @*). Then fla', a*) = a’[a(a").

This suggests the following: given the i 'th draw of a, say @, = (a;,a’),
generate a;,; 1n two steps:

(i) draw o', from fla'|a®)

. 2
(i) draw a_, from fla'|a;,,)

. . . . 1 o)
Gibbs sampling is convenient when draws from fla'|a’) and fla"|a.,,) are
easy.
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Issues: When will this work (or when will it fail) ... draws are too

correlated (requiring too many Gibbs draws for accurate Monte Carlo
sample averages). Examples

(1) Bimodality:
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i) Absorbing point at (a' , a°):
(1) gp

Prob(a' = ' |a,=a*)=Prob(ey=ad*la' =ad" )=1
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N
Checking quality of approximation: Eg(a)= %Z g(a)
i=1

d

JN (Eg(a)— Eg(a))—N(0,V)

(1) 95% CI for Eg(a) = Eg(a)£1.96\V / N

(2) Multiple runs from different starting values (should not differ
significantly from one another)

(3) Compare l@(?) based on Ny, draws and last N, draws (say first 1/3

and last 1/3 ... middle 1/3 left out). The estimates should not differ
significantly from one another.
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Returning to the Stochastic Volatility Model

x;= oe, In(o) = 1In(ory) + 174

or

Vi=281t8& S=8s0tT 1
yvi=In(x), &=1In(x}) ~>_q,v,, where v; ~ iidN(z;, o), and P(q;~=1)=p;.
i=l

Smoothing Problem: E(o; | Y1) = E(g(s,) | Y7) with g(s) = €'

Leta=({s}/ {a.,,) = (@, a)

Jargon: “Data Augmentation™ ... add a, to problem even though it 1s not
of direct interest.)
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Model: y,=2 s, + an v, S; =S+ 1, vi~1idN(u, o), and P(q;=1)=p;.

Gibbs Draws (throughout condition on Y7)

(1) (a1 ] ay): {St}; | {qz‘t}:izﬂ

With {g,}"”"

varying “‘system’” matrices).

i known, this 1s a linear Gaussian model (with known time

(s, ({qiz}:i:vY 7) is normal with mean and variance easily determined

by formulae analogous to Kalman-filter (see Carter, C.K. and R. Kohn
(1994)).
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(i) (@2 | an): )70 1 i),

With s, known, & =y, — 2s, can be calculated. So

Yy) = Ji(e)p,

Prob(g;; =1 | { }f 1° 27 f.(e)p

where f; is the N(x;, o) density.
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More Complicated Examples:

p
TVP-VAR-SV Model: y, =) @,y +e¢, (e,~SV)
i=1

(VAR) Cogley and Sargent (2005), Uhlig (1997), (SVAR) Primiceri
(2005), (Markov Switching VAR) Sims and Zha (2006).

Simple univariate version: SW (2002) — y, 1s quarterly GDP growth rates.

Compute model’s implied SD of y, + y,; + y,-» + y,-3 = Annual growth
rate.
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UC-SV: Y, =+ &, =151+ 1n (&and i~ SV)
Stock and Watson (2007),

Note: AY,= n,+ & — &-1, so with constant volatility ¥, ~ IMA(1,1), and
SV yields a time varying MA coefficient.

Lecture 5 - 28, July 21, 2008



Yi=15t¢g, L= T T 1

7 7
In(¢)=2In(c, )+ D .q,,v,,,» In(n})=2In(c, )+> q,.V,.,

i=1 i=1
In(oy;) = In(o,-1) + L.y, In(o,,) = In(o,,1) + L,
a= ({rt},{Jg,t,aw},{qg,i,t,qn,i,t}) = (ai, az, a3)
Gibbs Draws:
1%} | {0 Onits 19zin Gnidt, Yr: “Kalman filter” — UC Model
{Oet, Onit | 1%}y \Gein 9nivt»> Yr: “Kalman filter” — SV (as above)

19zin Gnitt | 1% }51 06 Onit, Yri Mixture indicator draws ... as above
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Inflation (GDP Deflator) and smoothed estimate of 7
(N =10,000, burnin = 1000)

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
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10

Estimates of 7 from two independent sets of draws
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Estimates of o, from two independent sets of draws
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@:%ng JN (Eg(a) - Eg(a))—> N(0,)

Average values over all dates

Serial VIN JVin
Correlation in Eg(a)
g(a;)
T 0.19 0.025 0.7%
0.57 0.018 3%
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What can go wrong (2): “Absorbing Barrier” (or “just getting stuck™)

Yi;= 1+ g, = T+ 1
7 7
In(¢}) =2In(c, ) + Z 4., V..., In(n})=2 In(o,,)+ Z Gyi Vi
i=1 i=1

In(oy;) = In(o,-1) + ., In(o,,) = In(o,,1) + L,
a=({z}.{0,,,0,,}{0.1020,.,}) = (@1, a2, a3)
Cecchetti, Hooper, Kasman, Schoenholtz and Watson (2007)

What happens if o,, gets very small?
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Computing the likelihood: Particle filtering
Model: y, = H(s;, &), s;,=F(s.1, 17:), €and n ~1ud
The “#’th component” of likelihood: f(y,|Y,_,) = j F, 1s)f(s,|Y,_)ds,

Often f(y/s,) 1s known, and the challenge is f(s; | Y,-1). Particle filters use
simulation methods to draw samples from f(is; | Y1), say (S1, S2s, ... Su),
where s, 1s a called a “particle.” The #’th component of the likelithood can

then be approximated as W = lz f,ls.,).

N
Methods for computing draws utilize the structure of the particular
problem under study. Useful references include Kim, Shephard and Chib

(1998), Chib, Nardar1 and Shephard (2002), Pitt and Shephard (1999), and
Fernandez-Villaverde and Rubio-Ramirez (2007).
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