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1. Why Forecast?
(a) You want to know about the future (SPF, Financial Markets)
(b) You want to evaluate a model
Why use forecasting methods to evaluate models?

(1) Less prone to data mining, in-sample overfitting (indeed, in-
sample overfitting leads to out-of-sample “underfitting”)

(11) Instability
(111) In-sample methods too difficult

Recently developed forecast assessment methods have focused on both
of these (and 1t 1s useful to keep goals in mind as we discuss methods)
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2. Forecasting Basics
Y..;: variable to be forecast

X, vector of variables used to make forecast (typically would include
current and lags of ¥, and other variables).

Jme: Forecast of Y,;, made a time ¢,

emn 2 Yo — fromn

L(e): Loss associated with the error

“Risk” associated with f: E(L(e)).
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(a) Minimum MSE forecasts: Loss quadratic
L(e) = a + be* and Risk is Mean Squared Error (MSE). Goal is to find
mind minimum MSE (MMSE) forecast.

Key Result: MMSE forecast is the regression function: f.; = E(Y,X))
Some properties of MMSE forecasts:
(1) E(eqn | X;) =0, so that E(eq,X;) =0

(2) If X, includes current and past values of Y, then 1t implicitly includes

current and lagged values of e,. Thus E(e.,e,) =0, so that e,.;, follows an
MA(/h—1) process.

(3) Yin = funi + eun, Where the two rhs terms are uncorrelated. Thus,

2 2 2 2 2
oy =0,+0,,and o, > 0o;.
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(b) More than one forecast:

Let /' and f* denote two forecasts of Y. Let £ = S, + Bf + Sof denote a
third forecast.

Question: How should /' and /* be “combined” to form f° (what values of
S should be chosen)?

Answer: MMSE forecasts are regressions, so s are given by the

(population) values from the linear regression of Y, onto £, and

(Bates and Granger (1969), Granger and Ramanathan (1984)).

2
t+h/t*

The extension to n > 2 forecasts 1S obvious.

References: see Timmermann (2006)
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Problem: As a practical matter you must use estimates of the f’s from a
sample regression.

Forecast combining “puzzle”: When the number of forecasts to be
combined (n) 1s even moderately large, forecasts constructed using
estimated f's don’t perform very well. Better to use ad hoc averages like
sample means, medians, trimmed means, “consensus’ forecasts and so
forth. (Large literature surveyed in Timmermann.) JHS will say more
about this in Lecture 12.
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(c) Other Loss Functions:
Granger (1969) and Christoffersen and Diebold (1997).
If Risk(f) = E(L(Y—f)), and Y., | X; ~ N(tlysps, ©

forecast is fi: = thns + A 07,,,)-

), then the optimal

t+h/t

Proof: Write Y., = thny + e and frny = thsns + . Then
E(L(Y —f)) = E(L(e — a)), and the probability density of L(e — &) depends

only on o

t+h/t

Implication: In condition homoskedastic Gaussian world, optimal
forecasts are MMSE forecasts (444;,) + constant.
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Elliott, Komunjer and Timmermann (2005):

LY=f) =[a+ (1-2a)x1(Y—f<0)] Y

Non-quadratic, non-symmetric, ...

(They study properties of optimal linear forecasters f;.;,; = 6'X;, with an
aim to robustifying tests for forecast efficiency.)
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Estimating Parameters for Use in Forecasting Models:

(1) Should you use MLE or other estimators?

Example: AR(1) model: y,= ¢y, + &
Goal: forecast y,.»

Optimal forecast: fio, = fy;, Where = ¢
Two ways to forecast y,,

“Iterated”: Estimate ¢ from y,= ¢y, + &, and use [ = 4%y,

“Direct’: Estimate £ from y, = fy,» + u,, and use ﬂf;”;“ = ,5’ ¥,
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Pros and Cons:

¢ is MLE, and is “efficient” under AR(1), but what if model is
misspecified?

A has larger variance than ¢ under correct specification, but is robust to
misspecification (for the class of forecasts under consideration).

Literature: Cox (1961) to Schortheide (2005) (survey: Bhansali (1999))

Empirical Comparison: Marcelino, Stock and Watson (2006)
170 Monthly U.S. Macro Series, 1959-2002
Pseudo-out-of-sample forecasts (POOS)

AR and Bivariate VAR for 4 =3,6,12,24
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di 2
B Z( tJ:;}’lect)

Relative pseudo-out-of-sample MSE =

(el )’
Lag Length Horizon
3 6 12 24
AR(4) 0.99 0.99 1.00 1.05
AR(12) 1.01 1.01 1.03 1.10
AR(BIC) 0.98 0.97 0.99 1.05
AR(AIC) 1.00 1.01 1.02 1.09

Across Lag-Length Methods: AIC Iterated seemed to work best.

Lecture 10 - 12, July 21, 2008




Estimating Parameters for Use in Forecasting Models:

(2) Should you use “Real-Time Data™?

YVerh = BXe T Upy
Data Revisions in y and x. Issues to think about:

(a) y: what the goal of forecasting (first release, final release, ... )
initial

(b) x: real-time forecasting using real-time data, so it seems that x
should be used in regressions to estimate f.

Key question: is projection of y on x the same as projection of y on x"™"'?

nitial 4+ xrevision

... 1s revision “News” or ‘Noise” in the Mankiw,
Runkle, and Shapiro (1984) dichotomy.
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Forecast Assessment — Part 1 (Evaluating Forecasts/Forecasters ... Not
Models)

(a) Mincer-Zarnowitz (1969) Regressions: Y., = a+ [Bfuwns + YW+ s,

If /,+1: 1s MMSE forecast then =0, f= 1, y=0. Test all or subset.

Inference Issues:
(1) h> 1, upp, ~ MA(A—1) under H,. Use HAC SEs.

(1) If Y, 1s persistent (say I(1)), then so 1s £, so “unit-root” regression
inference problems. Easy fix: (Y, —Y) = a+ fun:— Y) + W, + upy,.

(111) & large, u 1s very persistent. HAC works poorly. (Richardson and
Stock (1989)).
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(b) Combining or “Encompassing” Regressions

2 forecasts /' and f.

Forecast combining regression: Y., = o+ B £, T o f2,, + U,

If ' is MMSE forecast, then Sy = % =0and 5, = 1.

Inference Issues: — Same as MZ regressions. Also, you might want to

make alternative more parsimonious imposing 4 =0 and g, + 5 = 1.
Imposing this constraint yields

T 2 1
Yiep — fz+h/z — :BZ(th/z_th/t) T U
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(c) Loss-Function Tests

2 forecasts f' and f* with forecast errors e' and e”.
Question: Is E(L(e")) = E(L(e”)) (or <or>)?

Testing using quadratic loss. Realized forecast errors e’ and e’.
Question: E[(e;)']1=E[(¢)’] or E[(e;)’ —(e;)']1=0?

. T
Sample moments of differences: d = %Zdr , where d, ={(e))’ —(¢,)’}
t=1

Is d statistically significantly different from zero.

Inference Issues: (1) 4> 1, serial correlation. Use HAC se’s.

Refs: Diebold and Mariano (1995), see West (2006) for history
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(d) Loss function tests with many competing forecasts:
7' is a benchmark model (say, random walk)

7 k =1, ..., nare n competing models

Question: Do any of the n competing models dominate the benchmark?
—_— T —_—
d, = %Zdt" , where d* = {(e/)* —(e")’}, so that d, is the sample MSE

t=1

improvement for model £ over benchmark prediction.

Test Statistic: RC = max; Jk (RC for “Reality Check”)

White (2000) derives limiting distribution of RC under null that
benchmark is optimal, so that critical values can be computed.

(See Hansen (2005) for a refinement.)
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Density Forecasts:

Chart 2 CPI inflation projection based on market
interest rate expectations

Percentage increase in prices on a year earlier

e s L e

|‘
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Evaluating Density Forecasts
Ref: Diebold, Gunther, Tay (1998)

Key Insight: Suppose Y has CDF F. Then U= F(Y) ~ U[0,1]. (Recall
random number generators often use ¥ =F '(U).)

Thus, 1f F;,, 1s the conditional CDF of Y., then U,.j, = F,1(Y:+) should
be U[0,1] and U, should be independent of data dated ¢ and earlier.

Interval Forecasts: “Provide a 95% ‘confidence interval’” for GDP growth
in the final quarter of 2008. (ref: Christoffersen (1998)).
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Forecast Assessment — Part 2 (Evaluating Models using POOS)
Key References: West (1996, 2006)

Key Statistical Difference Between this and Part 1: Explicitly account for
sampling variability in estimated model parameters.

Setup: Model 1 has forecasts /' (6,) and Model 2 has forecasts (). The
forecasts that are evaluated are based on estimated models f'(6)) and

2(6,).
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Pseudo-Out-Of Sampling (POOS) Forecasting Strategy:

Sample Size T'= R + P. Last P periods used for ‘Prediction” (construction
of pseudo-out-of-sample forecasts).

Strategy:
(i) Estimate @ using observations 1:R, 0,
(i) Forecast Y., using data through R and 6,.

then (recursive POOS)
(111) Estimate @ using observations 1:R+1, 4,

(iv) Forecast Yz.,,; using data through R+1 and 6,,,.

or (rolling POOS)
(i11) Estimate € using observations 2:R+1, éRH

(iv) Forecast Yz. ., using data through R+1 and 6,,,.
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Note (and this 1s important):

The Question of interest 1s:

(i) E[L(Y= f'(8))] = E[L(Y= ()] (or < or >)

NOT:

(i) E[L(Y— £ (8))] = E[L(Y— £*(6,))] (or < or >) (but I will return to this)

Many interesting cases in which

E[L(Y- £'(6))] < E[L(Y- £*(6,))], but E[L(Y— £'(6)))] > E[L(Y— f())]

(Example: Random Walk in Exchange Rates ... Engel and West (2005),
Clark and West (2006), Ross1 (2005).)

Focus here 1s on risk comparisons. Related issues arise in combining tests.
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A Complication: Nested vs. Non-nested models

Nested Models:
Model 1: y.1 =x/B+ &1 1s a special case of

MOdel 2 yﬁ-l — xt'ﬂ‘F Zl"y + eﬂ-l

Non-Nested Models
Model 1: y,.+1 =x/ B+ &1 1s not a special case of

MOdel 2 yﬁ-l — 21'7/ + eﬁ-l
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Non-Nested Models (West (1996)):
Model 1: y1 =x,+ &+ (scalar x, h = 1-step-ahead for convenience)
True Forecast: x5 True Forecast error: &

Estimated Forecast: x, ﬁt Estimated error: Y,.;—x; ﬁtZéMZ vl T Xt(,ét_ﬁ)
Model 2: yi1 =z, 7+ e

True Forecast: z,» True Forecast error: e,

Estimated Forecast: z,;7,  Estimated error: Y, 1~ z,7.=¢,,= €1 + z{7,~7)

Lecture 10 - 24, July 21, 2008



Recall that Loss Function Test looks at averages of d, = (¢’ —e’) over the
prediction period. Here, we must use d, = (¢> —¢é*). How are the sample

averages of d, and d, related?
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A Calculation:

Z( —¢) = Z(s =

\/—t;fﬂt 1 IB)z‘xt 1 +2\/_t;1(18t = B)X_ €,
Zél(% 1 7/) ftZR;I(% L= Y)zZ, e
J_ Z(g —e’)+o,(1)

where (from West (1996)) the final inequality holds when the E(gx,1) =
E(eiz,—1) = 0 (and some technical assumptions are satisfied).

: | | : o A
Bottom Line: — » (£’ -&)~—= » (&’ —¢’) (so sampling error if fand
N 2 (& =) N 2. (&7 =) ( pling B

=R+1 t=R+1

7 do not matter.
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Nested Models: McCracken (2000), Clark and McCracken (2001)
Identity (from last page):

T T

D, (& =e)=) (s -¢)
t=R+1 t=R+1
o A 2.2 o A
+ Z (IBt—l _IB) X T 2 Z (IBt—l _IB)xz—lgz
t=R+1 t=R+1
T - T
+ Z (Vo —7)z +2 Z (70— 7)z€,
t=R+1 t=R+1

T
Non-Nested Model: ) (&' —¢’) ~ O,(P"?) dominates rhs

t=R+1
Nested Models: y4 =x/f+ g+ and y4 =x/L+z/y + e

under equal loss, models are the same, so that & = e;. First term vanishes.
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Y (5 -é)=0

t=R+1

+ Z (Iét—l _ﬂ)z xtz—l +2 Z (ﬁt—l _ﬁ)xt—lgt

t=R+1 t=R+1
T - T
+ Z (Vo —7)z +2 Z (7 —7)z€
t=R+1 t=R+1

This 1s harder ... Papers by McCracken and Clark and McCracken attack
this by studying behavior of terms on rhs.

Key results: Limits are (somewhat complicated/messy) functions of
normals.

Implication: Can use parametric bootstrap (Gaussian errors) to
approximate limiting distribution, compute critical values and so forth.
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An Important Special Case: /' is a random walk forecast, f* is nested
within the random walk. (Clark and West (2006)).

Let y, denote the first difference of a variable of interest (e.g., an exchange
rate). Under the null, y,1s mds, while under the alternative it can be
predicted by x;.

Model 1: y1 = &1 Model 2y = x/f+ &1
Forecast 1: /' =0 Forecast 2: /2, = ,Bt
Errors (under Hy): é, = ¢, Errors (under Hy): &, =¢,,, —x, 'ﬁt
MSPE (under HO)
1 P
_thzﬂ _thﬂ +—Z(X IB) _2 thﬂx IBz
P =R+l t R+1 t r+l t r+l
Expectation:

o, ol+ E& f (xf&)zj
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Thus, under RW null

P A
E(MSE for RW) = E(MSE for alternative) — E (% Z (x,' ,Bt)zj

t=r+l

RW does not suffer from overfitting (x,'3,) and should forecast better than
alternative ... and ... the “overfitting” term can be estimated:

I NPT SR T I <Y SR I SR
E(FZ(X} IBt) j"‘ Ptgl(xt ﬂt) _Ptz (f;/t_l)

t=r+l =r+1

P
Clark-West test: standardized version of &7 — {&22 _% z ( ft/ztl)z],

t=r+1

where 62 and 62 are the POOS mean square prediction errors for f' (the
RW) and 7.
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What 1s the distribution of this difference‘7

\/F[&lz ( Z (ft/t D) jj Z gf/t 1

And ¢ f;; , is a mds under the null. Maybe a normal limit?

. R IS
Caution: (example) x,= 1, £, =8 = ﬁz y, = —Zel , and
— P t —
H, 1
g f = Zg Remember unit root AR Model, numerator of p— p 1s

CW: Using “Rolling” estimate of fbased on R observations to limit this
dependence. (Where R is fixed and not too large — Giacomini and White
(2001), discussed below.)
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CW Empirical Example:

Exchange Rates ($’s) Monthly: Canada, Japan, Switzerland, UK
POOS Period 1990-2003 (P = 166), use R = 120.

x = (1, I-month 1nterest differential)
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T.E Clark, KD. West | Journal of Econometrics 1 (11I1) I 1N 29
Table 6
Forecasts of monthly changes in US Dollar exchange rates
(1) (2) @ @ O @ (7 (8) 9)
Country Prediction 47 &3 adl.  gi.adj. MSPE-adjusted MSPE-mormal CCS
T 51~ (- adj) 8- 4
Canada 1990:1- 26 2o 00 Jl 0.13 0.04
2003:10 (0.08)
1.78% 0.541 3.67
Japan 1990:1- 1132 1155 0.75 10.80 0.53 —0.23
2003:10 (0.43)
1.24 —0.52 3.23F
Switzerland  1985:1- 1227 1233 096 1137 0.90 —0.06
2003:10 (0.48)
1.88% —0.13 2.43
U.K. 1985:1- 073 10.16 044 972 0.01 —(1.43
2003:10 (0.33)
(.03 —1.27 0.78
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1. Forecast Assessment — Part 1 (Evaluating Forecasts/Forecasters)
E[L(Y— /)] = E[L(Y— )] (or <or >)

2. Forecast Assessment — Part 2 (Evaluating Models using POOS
forecasting)

E[L(Y— £(6))] = E[L(Y— £(6))] (or < or >)

3. Forecasting Assessment — Part 3 (Evaluating Forecasting Models using
POOS forecasting)

E[L(Y- /'(0))] = E[L(Y=£7(6,))] (or <or >)

Giacomini and White (2006)
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Giacomini and White (2006):

Data Forecasting Procedure  Forecast

Forecasting Model 1: {x,y,}  —

Forecasting Model 2: {x,,»,} —

6, and whatever

6, and whatever

Question: E| L(f;\,)—L(f7,)|g, | =0 (or <or>)

1

t+1/t

2

t+1/t

(Using time ¢ information, can I predict which forecast will have smaller

loss?)

GMM Problem ... E| (L(fL,)~L(f2))4(g,) | =0
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Moment: E| (L(f},)~L(f2,))a(g,) |=0

Forecasting Model 1: {x.,y,}. . — |4 and whatever | = /i,

Forecasting Model 2: {x,y,} — |4, and whatever| = /.,

Inference Issues:
(1) Stationarity: using rolling samples {x,,»,}’
(2) h-step-ahead prediction: HAC (allowing for /# dependence)

(3) Unconditional comparisons (g(g;) = 1): Much more dependence (at
least R) ... method 1s (arguably) less useful. (Note: This 1s a different
question than the question that motivated their analysis.)
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