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Abstract

This paper examines the empirical difficulties inherent in assessing the credit quality of
collateralized debt obligations (CDOs). Because of the way CDO liabilities are structured,
CDO note payouts are sensitive to tail collateral loss events. As a result, in order to assess
the likelihood and severity of a CDO note’s losses, one needs to know the distribution of
losses for each collateral asset, as well as the dependence of losses across collateral assets.
In practice, CDO collateral losses are most commonly modeled using normal copulas. I
show that for more senior CDO tranches, standard credit risk metrics such as probability of
default, expected loss, and conditional expected loss are highly sensitive to model parameters
that are not directly observable. Given assumptions about the historical data available to
a credit analyst, I compute bounds on the accuracy of normal copula parameter estimators
and show that in applied settings data constraints are likely to impose severe limitations on
an analyst’s ability to accurately evaluate CDO tranches. Thus, CDO note credit ratings
should be viewed as more preliminary and less informative than comparable corporate bond
ratings.



1 Introduction

Collateralized debt obligations (CDOs) are structured fixed income securities whose payouts
depend on the performance of pools of collateral comprised of corporate bonds or loans
or other structured securities which are themselves backed by underlying collateral pools.
Recently, as large numbers of highly-rated CDO notes backed by mortgage securities have
experienced dramatic credit rating downgrades and significant falls in market valuations,
investors have become unwilling to hold them, creating liquidity and credit challenges for
financial institutions. Rating agencies that make a business of evaluating the credit quality of
fixed income securities have been criticized for issuing ratings for CDOs and other structured
products that were too optimistic or did not capture the full range of risks associated with
these securities. Perhaps most notably, the President’s Working Group on Financial Markets
(2008), a committee of financial regulators chaired by Treasury Secretary Henry Paulson,
concluded that “[c]redit rating agencies contributed significantly to the recent market turmoil
by underestimating the credit risk of subprime residential-mortgage-backed securities and
other structured credit products, notably [asset-backed] CDOs.”

Going forward, regulators and some policymakers have called upon rating agencies to
treat structured credit products differently from more traditional types of fixed income se-
curities such as corporate bonds. For example, the President’s Working Group recommends
that rating agencies “make changes to the credit rating process that could clearly differenti-
ate ratings for structured products from ratings for corporate and municipal securities” and
“work with investors to provide the information investors need to make informed decisions
about risk, including measures of the uncertainty associated with ratings and of potential
ratings volatility.” Implicit in these recommendations is the assumption that credit ratings
may not be directly comparable across different types of debt securities, and in particular,
that ratings for structured securities may not be as informative as those for corporate or
municipal bonds.

Why might the credit risk of similarly-rated structured and unstructured credit prod-
ucts differ? First, one-dimensional credit ratings convey only limited information about a
security’s credit risk. Typically, a bond’s rating is an assessment of its likelihood of default
or its expected loss relative to contractual principal and interest obligations. Other impor-
tant dimensions of risk, such as the security’s sensitivity to market-wide shocks, are not
explicitly factored into its credit rating. Structured securities backed by diversified pools
of assets are likely to be more sensitive to systematic factors than unstructured securities
with similar default probabilities or expected losses. Second, even if one focuses narrowly on
those dimensions of risk captured by ratings, it may simply be more difficult for analysts to
accurately gauge the credit quality of complex structured credit products. Thus, one may
need to exercise greater caution when relying on credit ratings or other metrics of structured
products’ future credit performance.

This paper examines the empirical challenges involved in measuring the credit risk of
CDOs and shows that CDO notes are inherently more difficult to evaluate than the collat-
eral backing them. CDO notes with significant credit enhancement only bear losses when
collateral losses are substantially higher than expected, so the distribution of CDO note
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payouts is highly sensitive to features of the upper tail of the distribution of collateral losses.
Since extreme collateral loss events are rare, accurately characterizing the upper tail of this
distribution is exceedingly challenging, especially when the collateral pool consists of high
quality bonds or loans that rarely default. In standard parametric portfolio credit models
used by rating agencies and others to evaluate CDOs, a CDO note’s loss distribution depends
on measures of the likelihood and expected severity of losses for each collateral asset as well
as parameters that describe the dependence of losses across collateral assets. All these pa-
rameters must be inferred from limited historical data, and small errors in estimating them
can result in large errors in model-implied measures of CDO credit quality. Thus, even if we
assume that the parametric model of collateral losses used to rate CDO deals is correctly
specified, sampling errors in estimated model parameters are likely to translate into large
errors in CDO risk metrics.

The paper is organized as follows. Section 2 briefly surveys prior research on normal
copula models commonly used to assess the credit risk of CDOs and other structured credit
products. Section 3 presents a stripped down version of a normal copula model and shows
how it can be used to compute loss distributions for unstructured and structured securities.
This model is considerably simpler than those typically used in practice. It is intended
to capture the salient features of richer copula-based credit models while allowing one to
investigate the role of a small number of key model parameters. Section 4 examines how
changes in model parameters affect standard metrics of the credit quality of debt securities
such as probability of default and expected loss. Simulations show that risk metrics for senior
CDO tranches are much more sensitive to errors in model parameters than risk metrics for
junior CDO tranches or unstructured bonds. Section 5 computes bounds on the accuracy
of estimated model parameters given assumptions about the historical data available to
an analyst. This section highlights how both the quantity and character of available data
imposes quantifiable limits on an analyst’s ability to accurately estimate model parameters.
Section 6 uses results from Sections 4 and 5 to simulate distributions of estimated credit
risk metrics for different types of structured and unstructured bonds. These results suggest
that even when high quality historical data are relatively plentiful, it may be difficult to
accurately judge the credit quality of more senior CDO notes, particularly when those notes
are backed by high quality collateral.

2 Literature review

Modeling dependence in realized defaults among groups of credit exposures is critical for
portfolio credit risk management. Normal copula models describe default dependence us-
ing systems of correlated normal latent credit factors. Copula-based models have become
popular over the last decade, both because they are computationally tractable and because
they can be derived from the structural corporate debt valuation framework articulated by
Merton (1974). Today, normal copula models are used in a broad range of risk management
applications. Widely used portfolio evaluation tools developed by The RiskMetrics Group
(Gupton, Finger and Bhatia 1997) and Moody’s/KMV (Kealhofer 1998) can be interpreted
as variants of normal copula models (Li 2000). Normal copula models are used to compute
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bank regulatory requirements under the Basel II risk-based regulatory capital accord (Basel
Committee on Banking Supervision 2004). Moody’s, Standard and Poor’s, and Fitch, the
three largest bond rating agencies, rely on normal copula models to develop credit ratings
for CDOs1 and normal copula models are commonly used to price CDO notes (Andersen
and Sidenius 2005a).

Despite their popularity, limitations of normal copula models have been well documented.
A particular concern is that models capable of fitting observable data under typical credit
conditions appear to understate the likelihood of extreme portfolio loss events. Numerous
authors have proposed extensions or generalizations of the normal copula framework to
address this problem. For example, Frey, McNeil and Nyfeler (2001) propose a copula model
based on thicker tailed t-distributed latent variables and Andersen and Sidenius (2005b)
and Burtschell, Gregory and Laurent (2007) extend the normal copula model to allow for
unobserved heterogeneity in latent factor correlations across credit exposures.

Normal copula models and their various extensions depend on vectors of parameters
that describe the probability and likely severity of individual credit loss events and the
correlation structure of latent credit factors. In applied settings these parameters must be
estimated from historical data or specified judgmentally by a credit analyst. Any errors
in estimating model parameters will naturally result in miss-measurement of the credit risk
associated with individual exposures or portfolios of exposures. Simulation studies by Loffler
(2001), Tarashev and Zhu (2008), and Hamerle and Rosch (2005) investigate the sensitivity of
portfolio loss measures to errors in estimating copula model parameters and Fender, Tarashev
and Zhu (2008) examine how changing normal copula model parameter assumptions can
affect CDO note credit ratings.

A small body of research has examined the statistical properties of specific estimators of
copula model correlation parameters. Gordy and Heitfield (2002) compare the small sample
properties of maximum likelihood and moment-based estimators of credit factor correlation
parameters and show how imposing intuitive parameter restrictions can improve estimation
efficiency. Frey and McNeil (2003) propose maximum likelihood estimators for copula cor-
relation parameters in the presence of non-normal latent credit factors, and Hamerle and
Rosch (2005) examine the sensitivity of correlation parameters to miss-specification of the
distribution of latent credit factors.

The analysis presented in this paper contributes to the academic literature on copula
models in a number of ways. I show how bounds on the accuracy of normal copula model
parameters can be determined with minimal assumptions about the actual estimators used.
Unlike previous research on the accuracy of copula model parameters, I allow for the possibil-
ity that an analyst may have access to data no the credit quality of non-defaulted firms that
are useful for estimating model parameters. This extension is important, since in applied
settings normal copula correlation parameters are commonly estimated using information on
equity returns or imputed asset returns for publicly traded firms or historical ratings tran-
sition data for rated bonds.2 Though others have investigated the effects of copula model

1See Jolivet, Lassalvy, Mueller-Heumann and Sieler (2006), Gilkes (2004), and Koo, Cromartie and Vedova
(2006) for descriptions of the normal-copula models used by Moody’s, S&P, and Fitch respectively.

2For example Gupton et al. (1997) describes how equity return correlations are used to infer latent factor
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specification errors on measures of portfolio credit risk, to my knowledge this paper is the
first to rigorously examine how data limitations affect the accuracy of credit risk metrics for
structured credit products.

3 The normal copula/beta model for correlated bond

credit losses

Throughout this paper, I will use the term “simple” bonds to describe traditional debt claims
on corporations or sovereigns. I will use the term “structured” bonds to describe bonds
issued by CDOs, whose payouts depend on an underlying collateral pool of simple bonds.
This section describes a stripped down version of the normal copula/beta model commonly
used to evaluate the credit risk of both simple and structured bonds. The specification
used in this analysis allows for cross sectional correlation in realized default rates for simple
bonds and stochastic losses for those bonds that default. Correlations in defaults are driven
by a single systematic risk factor. For simplicity, I assume that loss rates given default are
independent of the systematic factor. It should be noted that both the single systematic risk
factor assumption and the assumption that there is no systematic component of loss given
default can be easily relaxed in more applied settings, and indeed, this is commonly done in
practice.

3.1 Simple bonds

Under the simplest normal copula framework, bond i defaults during a specified horizon if an
unobservable normal latent factor Yi lies below the default threshold Φ−1(π) where Φ−1(·) is
inverse of the standard normal cumulative density function. The parameter π describes the
bond’s marginal probability of default. Cross-sectional correlation in defaults across pairs
of simple bonds i and j arises from correlations in latent credit factors Yi and Yj associated
with the bonds. Let

Yi =
√
ρX +

√

1 − ρEi

whereX is a standard normal random factor shared by all bonds, and Ei is a standard normal
idiosyncratic factor that is unique for each bond. The parameter ρ lies between zero and
one and determines the correlation in credit factors between pairs of bonds. Higher values
of ρ imply higher correlation between credit factors, and, by extension, higher correlation in
realized defaults.

Assume that bond i is a bullet loan that pays 1 + ri at maturity if the obligor does
not default, and (1 + ri)(1 − λi) if the obligor defaults. λi is a random variable describing
the realized loss given default of the bond. For corporate bond exposures, this loss rate is
often assumed to be drawn from a beta distribution which may or may not depend on the
systematic factor(s) that drive asset correlations. As noted above, for simplicity this analysis

correlation parameters used in the CreditMetrics portfolio risk model and Kealhofer (1998) explains how
Moodys/KMV uses imputed obligor asset returns to calibrate correlation parameters in its portfolio risk
model.
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assume that λi is independent of all other random variables. The beta distribution is a two
parameter distribution with support on the unit interval that can be fully characterized by
a mean parameter µ and a standard deviation parameter σ.3

The payout from a one dollar investment in bond i at the terminal date is

Vi = (1 + ri) − 1
{

Yi ≤ Φ−1(π)
}

λi(1 + ri)

The right-most term is the realized contractual loss per dollar invested. Note that when λi

is large, this loss rate may exceed 100 percent because of accrued but unpaid interest. Given
N homogeneous bonds, the joint distribution of V1 . . . VN is fully described by the parameter
vector θ = (π, ρ, µ, σ).

3.2 CDOs backed by simple bonds

The simplest types of collateralized debt obligations (CDOs) issue tranches of structured
debt securities backed by pools of corporate bonds. The normal-copula/beta model of bond
losses can be used to build up a model of CDO tranche credit losses. Consider a static
CDO deal backed by N bonds. Investments are made at the “deal date” and proceeds are
distributed to investors at the “terminal data”. The value of the collateral pool at the deal
date is normalized to 1 and the value of the collateral pool at the terminal date is denoted Vp.
Share ce of the collateral pool is funded by equity investors at the deal date. The remaining
1− ce of the pool is funded by a continuum of arbitrarily thin debt tranches. Debt tranches
are indexed by c ∈ [ce, 1]. c is a tranche’s attachment point in the CDO capital structure, so
higher values of c imply greater seniority. The interest paid to each debt tranche is described
by the non-increasing function r(c). At the terminal date, collateral is liquidated and tranche
c investors are paid 1 + r(c) if sufficient funds are available. If Vp is not sufficient to pay all
debt investors, tranches are paid according to seniority. If Vp exceeds that needed to pay
debt investors, equity investors receive any residual value.

Assuming no credit losses, the total value of all debt tranches senior to tranche c is

V̄ (c) = (1 − c) +R(c)

where R(c) =
∫ 1

c
r(s)ds is the total interest owed to these tranches. The realized value of

tranches senior to c is

V (c) = V̄ (c) − 1
{

Vp ≤ V̄ (c)
} (

V̄ (c) − Vp

)

The second right-hand term is the value of any realized credit losses for tranches senior to
c. Note that the value for a “slice” of the CDO with attachment point cl and detachment
point ch is V (cl) − V (ch). The value of the equity tranche is Vp − V (ce).

To keep notation simple, this analysis is restricted to CDOs backed by equal-weighted
pools of bonds that are homogeneous in the sense that all bonds in the pool share the same

3In the statistics literature the beta distribution is most commonly characterized by two shape parameters
α and β. I use the less common µ-σ parametrization to make the economic interpretation of model parameters
more transparent. It can be shown that α = (µ(1 − µ) − σ2) µ

σ2 and β = ((1 − µ)2 + σ2) µ

σ2 − 1.
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parameter vector θ and pay the same interest rate rp. Let M =
∑N

n=1 1 {Yn ≤ Φ−1(π)} be a
random variable that described the number of bonds in the CDO collateral pool that default
by the terminal date, and let λ̄M = 1

M

∑M

j=1 λj be the average loss given default for those M
bonds. The value of the collateral pool at the terminal date is

Vp = (1 + rp) −
M

N
λ̄M(1 + rp).

The random variables M and λ̄M determine Vp. M is a draw from a binomial-normal
mixture distribution, and, conditional on M , λ̄M is an average of M independent beta
random variables. Neither the marginal distributions of M nor the conditional distribution
of λ̄M given M can be expressed in closed form, but both can be computed analytically with
high precision. The product of these two distributions is the joint distribution of M and
λ̄M , which provides all the information necessary to compute the joint distribution of Vp and
V (c) for all c.

The distribution of CDO tranche payouts is fully determined by N , rp, r(c), and the
normal copula/beta model parameter vector θ for the collateral pool. N , rp, and r(c) are
known features of the CDO contract, but θ is not directly observable by market participants.
Given θ, any number of relevant metrics of the credit risk associated with a CDO note can
be computed. The next section examines how three common metrics of credit risk depend
on θ.

4 Sensitivity of credit risk metrics to model parame-

ters

This analysis considers three standard metrics of credit quality: probability of default, ex-
pected loss, and conditional expected loss. Define the expectation operator E [Z] as the
expected value of the random variable Z whose distribution is determined by θ. Let V be
the value of a one dollar investment in a debt security at the terminal date and let r be the
contractual interest on that security. The security’s probability of default is defined as

PD = E [1 {V < 1 + r}] . (1)

PD describes the likelihood of a credit loss, but not the magnitude of the loss. The expected
loss

EL = (1 + r) − E [V ] (2)

summarizes the expected likelihood and the magnitude of a credit loss. Note that EL may
exceed 100 percent because both principal and accrued interest may be lost.

PD and EL describe the first moments of a security’s loss distribution. In portfolio risk
management applications such as economic capital allocation, analysts also require infor-
mation about a security’s marginal contribution to portfolio-wide losses. A number of risk
metrics useful for describing the dependence between an individual exposure’s credit losses
and those of a broader portfolio have been proposed in the risk management literature, and
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I do not propose to survey them here. This analysis will consider one such measure derived
from an asymptotic single risk factor approximation. Gordy (2003) shows that if a portfolio
is well diversified and its overall loss rate depends on a single systematic factor X̄ then an
exposure’s marginal contribution to portfolio value-at-risk (VaR) can be determined analyt-
ically by calculating the conditional expected loss of the exposure given an adverse draw of
the systematic risk factor. The conditional expected loss associated with a qth percentile
portfolio VaR measure is

ELq = (1 + r) − E
[

V | X̄ = x̄q

]

(3)

where x̄q is the 1−qth percentile of the stochastic systematic risk factor. Unlike PD and EL,
which describe the center of the distribution of V , ELq describes the tail of this distribution.

Under the normal copula/beta model, EL, PD, and ELq for both simple and structured
bonds are determined by the parameter vector θ. For simple bonds,

PD = π

and
EL = (1 + r)πµ.

If we assume that correlation between the single systematic factor underlying a financial
institution’s overall asset portfolio X̄ and the systematic factor that affects bond default
rates X is 50 percent, the conditional expected loss for a simple bond is

ELq = (1 + r)Φ

(

Φ−1(π) −√
0.5ρx̄q√

1 − 0.5ρ

)

µ

where x̄q = Φ−1(1 − q).4

For simple bonds, PD is determined by the normal copula marginal default probability
parameter π, EL depends on both π and the expected loss-given-default parameter µ, and
ELq is a function of π, µ, and the asset value correlation parameter ρ. For structured bonds,
simple analytic formulas for PD, EL, and ELq are not available, but these risk metrics can
be computed numerically for any value of θ. In contrast to the case for simple bonds, PD,
EL, and ELq for structured bonds each depend on all four elements of θ.

The true value of the normal copula/beta model parameters, which will be denoted with
the subscript “0”, cannot be directly observed by a credit analyst. In practice, model param-
eters are either determined judgmentally or estimated from historical data. Any differences
between θ0 and the value of θ used to compute the expectations in equations (1), (2), and
(3) can result in errors in imputed risk metrics.

To illustrate how errors in θ can affect imputed risk metrics, this paper examines two
hypothetical CDO deals summarized in Tables 1 and 2. Both CDO deals are backed by
homogeneous collateral pools of 100 simple bonds described in the bottom rows of the tables.
In the mezzanine CDO example π0 = 0.05, ρ0 = 0.20, µ0 = 0.55, and σ0 = 0.35 and
bonds have a maturity of 5 years. In the high-grade CDO example, all normal copula/beta

4See Pykhtin and Dev (2002) for detailed analysis of conditional expected loss in the presence of a single
portfolio-wide systematic factor and a correlated CDO collateral-pool-specific factor.
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Table 1: Credit risk statistics for hypothetical CDO deal backed by 100 mezzanine-rated
bonds.

Position Spread PD EL EL0.95

Tranche (%) (bp) (%) (%) (%)
Junior 3.5 – 6.5 188 14.06 9.86 39.85

Jr. Mezz. 6.5 – 9.0 77 5.36 3.92 18.11
Sr. Mezz. 9.0 – 12.0 34 2.54 1.73 8.04

Senior 12.0 – 15.0 14 1.07 0.71 3.07
Sup. Sen. 15.0 – 100.0 0 0.43 0.01 0.05
Collateral 56 5.00 3.45 8.14

parameters are the same except the default probability parameter, which is set at π0 =
0.01. The default probability parameter for the mezzanine and high-grade cases roughly
corresponds to the five-year cumulative default rates for corporate bonds rated Baa- and
A- respectively. The collateral’s asset value correlation and LGD parameters are chosen to
be broadly consistent with those used in major rating agencies’ or regulators’ credit risk
models.5

In both cases, the collateral pool is financed by five debt tranches and an equity tranche.
As is typical of securitization deals, the credit risk metrics for a particular debt tranche bear
little direct relation to those of the underlying collateral pool, but are very sensitive to the
tranche’s position in the CDO capital structure. Tranches with lower attachment points,
which are the first to take losses, have much higher default probabilities, expected losses,
and conditional expected losses than more senior tranches. In the two examples presented
here tranche attachment and detachment points are chosen so that tranches in each deal with
the same seniority have similar risk metrics. Because the high-grade deal is backed by safer
collateral, each tranche of that deal requires less credit support to achieve a given default
probability or expected loss. A constant risk-free interest rate of four percent is assumed,
and spreads for CDO collateral and all tranches are set so that a risk-neutral pricing model
based on θ0 would value all bonds at par at the deal date.

Figures 1 through 8 show how deviations in each component of θ from θ0 affects PD,
EL, and ELq. Each line in a panel plots the ratio of a particular risk metric to its true
value (i.e., the risk metric computed given θ = θ0) as θ changes. For example, the first panel
of Figure 1 shows how bonds’ implied default probabilities change with π holding all other
elements of θ fixed at their true values. All lines cross at the true value of the parameter in
question.

As these results plainly show, structured bonds are considerably more sensitive to errors
in each component of θ than simple bonds, and the higher is a bond’s position in the CDO
capital structure the greater is its sensitivity to parameter errors. For more senior tranches,

5Basel II uses corporate bond asset correlation parameters ranging from 0.12 to 0.24 depending on firm
size (Basel Committee on Banking Supervision 2004). The LGD parameters are taken from default values
for unsecured corporate bonds used in rating agency CDO models.
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Table 2: Credit risk statistics for hypothetical CDO deal backed by 100 high-grade bonds.

Position Spread PD EL EL0.95

Tranche (%) (bp) (%) (%) (%)
Junior 1.0 – 2.0 183 13.24 9.56 35.17

Jr. Mezz. 2.0 – 3.0 76 5.41 3.89 17.06
Sr. Mezz. 3.0 – 4.0 37 2.53 1.87 8.62

Senior 4.0 – 6.0 15 1.29 0.75 3.35
Sup. Sen. 6.0 – 100.0 0 0.39 0.01 0.03
Collateral 11 1.00 0.68 1.92

risk metrics are remarkably sensitive to model parameters. For example, if a credit risk
manager were to use an asset value correlation parameter of 15 percent to evaluate the
“Senior” tranche of the mezzanine CDO in an environment where the true correlation was
20 percent, she would understate the tranche’s risk metrics by over 50 percent. Conversely,
if she used an asset correlation parameter of 25 percent, she would overstate the tranche’s
risk metrics by 75 percent.

5 Bounding the accuracy of model parameters

The sensitivity of structured bond risk metrics to θ begs the question, how accurately can
model parameters be estimated? The answer, of course, depends on the type and volume
of historical data available and the statistical estimator used. Practitioners typically use
historical data on the default frequencies of rated bonds to estimate default probability pa-
rameters. Factor correlation parameters can also be estimated from default data by backing
out implied factor correlation parameters from cross-sectional correlations in observed de-
fault rates.6 However, as Gordy and Heitfield (2002) show, accurately estimating correlation
parameters from default rate data requires long data histories and/or strong ex ante param-
eter restrictions. As noted earlier, the latent credit factors of the normal copula model have
a structural interpretation as obligor asset returns in a Merton (1974) valuation framework.
Leveraging this fact, practitioners often use information on equity returns or imputed asset
returns for publicly traded firms as proxies for latent credit factors.7 Alternatively, some
practitioners use information on bond rating transitions (which are far more common than
bond defaults) to estimate factor correlations.8 Loss given default parameters are typically

6The corporate bond factor correlation parameters used in version 3.0 of Standard and Poor’s CDO
Evaluator copula-based rating model are estimated using this approach (Gilkes 2004, pg. 8-9).

7For example, the corporate bond factor correlation parameters used in version 3.0 of Fitch Rating’s
Vector copula-based CDO model are estimated using a factor model of equity returns included in the Dow
Jones Global Universe index (Koo et al. 2006, pg. 21)

8Moody’s uses both rating transition information and correlations in imputed asset returns to calibrate
latent factor correlations used in version 2.3 of its CDOROM rating model (Fu, Gluck, Mazataud and Rosa
2004). It relies almost exclusively on historical rating transitions to calibrate correlations for asset-backed
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estimated from data on the market price of traded debt shortly after a default event or
ultimate recoveries on defaulted bonds or loans.

In this section, I present a stylized data generating process (DGP) capable of describing
the range of data that might reasonably be available to a credit analyst. I assume that
the normal copula/beta model is correctly specified in the sense that the DGP is consistent
with this model given a true parameter vector θ0. Using the DGP, I derive lower bounds on
the sampling variance of any unbiased estimator of θ0. This allows me to investigate how
the quantity and character of available historical data affects the accuracy of normal copula
parameter estimates.

Assume that an analyst observes T cohorts that each contain N simple bonds. All
bonds in all cohorts share the same underlying model parameter vector θ0. Within a cohort,
all bonds are sensitive to the same systematic risk factor X, but systematic risk factors
are assumed to be independent across cohorts. Such data could arise, for example, if one
observed information on T non-overlapping cohorts of bonds over time. In applied settings,
the stylized assumption that historical data can be grouped into independent, homogeneous
cohorts could be easily generalized in useful ways. For example, a more realistic DGP might
allow for correlations across cohort-specific systematic factors since in practice cohorts may
well be overlapping in time. Within cohort heterogeneity, particularly with respect to πo,
could also be accommodated as in Gordy and Heitfield (2002). This would allow one to
investigate the costs and benefits of pooling historical data across different types of credit
exposures. For the purpose at hand, relatively stylized DGP assumptions are more useful
because they allow us to investigate how broad features of available data affect parameter
estimates.

For each bond i in cohort t, the analyst observes the following information ex post. First
the analyst observes an indicator variable Dit which is equal to one if the bond defaults (i.e,
if Yit ≤ Φ−1(π0)) and zero otherwise. Second, if bond it defaults, the analyst observes the
realized loss rate given default λit. Finally, if the bond does not default, the analyst observes
a noisy signal of the bond’s realized latent credit factor Yit, denoted Y ∗

it . This signal is meant
to capture that information contained in proxy data on realized latent credit factors such as
equity returns, imputed asset returns, or rating migrations.

Y ∗

it is a weighted sum of Yit and a standard normal error term Uit which is assumed to
be independent of all other variables in the model:

Y ∗

it =
√
ω
(

√

1 − ψYit +
√

ψUit

)

.

The parameter ψ lies on the unit interval and captures the relative amount of noise in the
signal Y ∗

it . In the limiting case where ψ = 0, Y ∗

it is perfectly correlated with the realized
credit factor Yit. At the other extreme, where ψ = 1, Y ∗

it provides no information about Yit.
In this case Y ∗

it can be safely ignored by the analyst, and inference about θ0 must be based
solely on information about whether or not bonds have defaulted. ω controls the scale of Y ∗

it .
The nuisance parameters ω0 and ψ0 are not of direct interest to the analyst, but they must

securities that serve as CDO collateral (Toutain, Rosa, Fu, Mazataud and Jolivet 2005)
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be estimated in order to use information from Y ∗

it to estimate π0 and ρ0.
9 For the remainder

of this paper we will redefine θ to include these nuisance parameters.
Conditional on X, the likelihood of observing the vector (Dit, Y

∗

it , λit) can be expressed
as the product of a marginal likelihood for (Dit, Y

∗

it) given X which depends on π, ρ, ψ, and
ω and a conditional likelihood for λit given Dit which depends on µ and σ:

f (Dit, Y
∗

it , λit|X; θ) = f (Dit, Y
∗

it |X; π, ρ, ψ, ω) f (λit|Dit;µ, σ) (4)

The first right-hand term in (4) is

f (Dit, Y
∗

it |X; π, ρ, ψ, ω) =

[

Φ

(

Φ−1(π) −√
ρX√

1 − ρ

)]Dit

×
[

φ

(

(Y ∗

it/
√
ω) −√

1 − ψ
√
ρX√

S

)]1−Dit

×
[

Φ

(

−SΦ−1(π) − ψ
√
ρX − (1 − ρ)

√
1 − ψ (Y ∗

it/
√
ω)√

S
√

ψ(1 − ρ)

)]1−Dit

(5)

where S = (1− ψ)(1− ρ) + ψ. See the appendix for a derivation of (5). The second term in
(4) is the likelihood of the loss rate λit, which is only observable if Dit = 1. It can be written

f (λit|Dit;µ, σ) = [β (λit)]
Dit

where β(z) is the density function for a beta-distributed random variable with mean and
standard deviation parameter µ and σ respectively. The joint likelihood for cohort t is

Lt(θ) =

∫ N
∏

i=1

f (Dit, Y
∗

it |x; π, ρ)φ(x)dx
N
∏

i=1

f (λit|Dit;µ, σ) (6)

Given the likelihood of the DGP, the well known Cramer-Rao lower bound defines the
minimum covariance matrix of any asymptotically unbiased estimator for θ0. The Fischer
information matrix for our DGP is

I (θ0) = E

[

∂2 lnLt(θ0)

(∂θ)2

]

.

If an estimator of θ0 is asymptotically unbiased, then the difference between its covariance
matrix and 1

T
(I (θ0))

−1 is a positive semi-definite matrix. Among other things, this implies
that the variance of each element of the estimator is at least as large as the corresponding
diagonal element of the average of the inverse information matrix. If we posit a value of

9Exceptions occur in the limiting cases where ψ0 = 0 or ψ0 = 1. When ψ0 = 0 there is no uncertainty
about the information content of Y ∗

it and hence no need to estimate ψ0. In this case it is still necessary
to estimate the scale parameter ω0 When ψ0 = 1, Y ∗

it is irrelevant to inference of θ, so there is no need to
estimate either ψ + 0 or ω0.
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θ0, the Cramer-Rao bound can be computed directly for any combinations of T and N .10

Figures 9 and 10 show how the minimum standard deviation of π, ρ, µ, and σ vary as N , T ,
and ψ0 change. Since the sampling errors of µ and σ do not depend on ψ0, the bottom two
panels of the figures only show how estimator standard deviations change with N and T . 11

Though the absolute magnitude of the sampling error of π is larger for the mezzanine
bond population than for the high-grade population, the size of this error relative to the value
of π0 is larger for the high-grade population. Simply put, it is more difficult to accurately
estimate the frequency of low probability events. Somewhat surprisingly, the sampling error
of π can be significantly reduced by incorporating available information on latent credit
factors. Given that default probability parameters are commonly calibrated using only long-
run default frequencies, this fact does not appear to be widely appreciated.

When latent credit factors are not fully observable, the sampling error of ρ is inversely
related to the population default probability parameter π0. The standard deviations for ρ
in the high-grade bond population with unobservable latent factors (ψ0 = 1.0) are roughly
double those for the mezzanine bond population. However, when information on latent
credit factors is available, the relationship between π0 and the sampling error of ρ is more
attenuated. In the limit, where latent credit factors for non-defaulted bonds are fully ob-
servable (ψ0 = 0.0), the standard deviations of ρ are similar for high-grade and mezzanine
populations. These results underscore the value of observing high quality historical data
on the performance of those bonds that do not default. Comparing results for ψ0 = 1.0
and ψ0 = 0.2 we see that when estimating ρ, observing even somewhat noisy information
on latent credit factors is comparable to a four-fold increase in cohort size. Indeed, for the
high-grade bond population, estimating ρ with reasonable precision virtually requires some
type of credit factor data.

As one would expect, estimates of µ and σ are more accurate for populations where high
default rates imply more plentiful historical data on default loss severities. Because loss
severities are assumed to be independent of the systematic risk factor, increasing the cohort
size N has exactly the same affect on the standard errors of µ and σ as increasing the number
of cohorts T .

6 Distribution of credit risk metrics

Section 4 shows how standard measures of credit risk depend on estimated normal copula
model parameters, and Section 5 shows how the accuracy of parameter estimates depends
on the data available to an analyst. This section combines these results to examine how

10For a given data vector the hessian matrix is computed from (6). The the hessian’s expectation is
approximated by computing the average of the hessians produced by 10,000 simulated data vectors drawn
from the assumed DGP.

11Because the marginal distribution of Dit does not depend on µ and σ and the conditional distribution
of λit does not depend on π, ρ, ψ, and ω, the information matrix is block diagonal with respect to the two
sub-vectors. If an estimator achieves the Cramer-Rao bound, the sub-vectors will be uncorrelated with one
another. Note that this result does not hold in the more general setting in which loss given default depends
on X .
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the distributions of PD, EL and ELq are affected by characteristics of the data generating
process.

Given the sampling distribution of an estimator θ of θ0, the distribution of PD, EL,
and ELq for simple and structured bonds can be estimated using Monte Carlo simulation.
Unfortunately, while the Fischer information inequality allows one to bound the sampling
variance of unbiased estimators, it provides no additional insights into the small sample
properties of such estimators. Hence, in order to simulate the distribution of PD, EL,
and ELq, we need to make some assumptions about the sampling distribution of θ. The
parameters π, ρ, and µ, are bounded between zero and one and σ is bounded between
zero and

√

(1 − µ)µ, so the natural assumption that θ is drawn from a multivariate normal
distribution is inappropriate. One can circumvent this problem by reparameterizing the
normal copula model in such a way that each model parameter is defined over the entire real
line. Let

θ̃ =













Φ−1(π)
Φ−1(ρ)
Φ−1(µ)

Φ−1

(

σ√
(1−µ)µ

)













.

The transformed parameter vector θ̃ has support on ℜ4, and the sampling variance for a min-
imum variance unbiased estimator of θ̃0 can be derived by inverting the Fischer information
matrix for the reparameterized likelihood function.12

The sampling distributions of PD, EL, and ELq are simulated as follows. For each
Monte Carlo iteration I draw a value of θ̃ from a multivariate normal distribution with
mean and covariance parameters determined by θ̃0 and the Cramer-Rao bound. Using this
parameter value, I compute implied PD, EL, and ELq for simple bonds and CDO tranches.
The distribution of 10,000 simulated values of PD, EL, and ELq approximates the sampling
distribution of these risk metrics given a minimum variance unbiased estimator of θ̃.

Simulations are run for both the mezzanine and high-grade CDO deals described in
Section 4 under four hypothetical data generating processes:

• a “wide” panel with partially observable credit factors (N = 400, T = 5, ψ = 0.2);

• a “long” panel with partially observable credit factors (N = 100, T = 20, ψ = 0.2);

• a “wide” panel with unobservable credit factors (N = 400, T = 5, ψ = 1.0); and

• a “long” panel with unobservable credit factors: (N = 100, T = 20, ψ = 1.0).

To put these DGP assumptions in perspective, note that Moody’s publishes what are prob-
ably the most comprehensive historical data on corporate bond rating performance. This
dataset includes tabulations of rating transitions and defaults by cohort from 1970 to the
present. Given the five-year deal horizon used in our study, the Moody’s dataset would span

12An unbiased estimator of θ̃0 is not an unbiased estimator of θ0. For the DGP assumptions used in this
analysis, the bias in θ implied by an unbiased θ̃ is less than ten percent for all parameters in all cases, and
is usually less than five percent.
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7 non-overlapping cohorts. On average, each of these cohorts contains about 400 obligors
per initial rating grade. Data on loss severities tend to be more limited. For example, S&P’s
LossStats database contains information on bond and loan recovery rates for US corporate
default events going back to 1988.

Tables 3 and 4 report the bias and root-mean-squared-error for estimated risk metrics.
To make it easier to compare the relative magnitude of errors across tranches with different
risk metrics, these results are presented as percentage deviations from the true values. Tables
5 and 6 report 90 percent confidence intervals for estimated risk metrics. Figures 11 through
18 plot distributions of estimated risk metrics for collateral bonds and selected CDO tranches
under each DGP.

The wide dispersion of risk metrics for more senior CDO tranches is striking, particularly
when compared with the dispersion of risk metrics for simple bonds. For example, for the
high-grade CDO deal the lowest mean-squared-errors are produced by the wide data panel
with partially observable credit factors. In this setting the simulated 90 percent confidence
interval of estimated PDs for the “Senior” tranche spans a range from less than half of
the tranche’s true default probability to more than double the true value. In contrast, the
simulated confidence interval for a high-grade simple bond with about the same true default
probability spans a range of plus or minus only about one-third of the true value. A similar
pattern holds for all DGPs considered. All else equal, the higher a tranche’s position in a
CDO deal’s capital structure the greater is the dispersion in estimated risk metrics relative
to the tranche’s true risk metrics. For all but the most junior CDO tranches, estimated risk
metrics are biased upward, reflecting the nonlinear relationship between normal copula/beta
model parameters and estimated risk metrics. Note however, that the medians of simulated
risk metrics (not reported) closely match the true values for all tranches.

The type of collateral backing a CDO deal also affects the accuracy of estimated risk
metrics. Comparing results for like CDO tranches backed by high-grade and mezzanine
collateral, we see that risk metrics for CDO tranches backed by higher quality bonds have
larger sampling errors than those for similar tranches backed by lower quality collateral.
As shown in Section 5, when defaults are less common it is more difficult to accurately
estimate default probabilities, factor correlations, and parameters describing the distribution
of loss rates on defaulted bonds. The greater uncertainty associated with θ results in greater
dispersion in estimated risk metrics.

Obviously the quantity and character of available historical data affects the accuracy of
estimated risk metrics. As one would expect, observing more cohorts (higher T ) or more
bonds per cohort (higher N) reduces the dispersion of estimated risk metrics. Holding the
total number of data points (N · T ) fixed, wide, short panels (high N , low T ) produce
somewhat more accurate risk metrics than long, narrow panels (low N , high T ). Proxy
data for latent credit factors can dramatically improve the accuracy of risk metrics for both
unstructured and structured securities. Notably, such data significantly improve the accuracy
of PD and EL estimates for unstructured securities, even though these credit risk metrics
do not depend on asset correlation parameters.
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Table 3: Bias and root-mean-squared-error of risk metrics for mezzanine CDO

PD EL EL0.95

Bias RMSE Bias RMSE Bias RMSE
N = 100, T = 20, ψ0 = 0.2

Junior 0.2 20.2 1.0 25.6 -0.1 21.4
Jr. Mezz 2.5 33.5 3.8 38.8 2.6 36.3
Sr. Mezz 5.6 46.0 7.9 53.2 7.7 53.8
Senior 11.2 63.6 14.6 73.1 17.0 79.8

Collateral 0.5 10.2 0.4 11.6 0.6 13.8
N = 400, T = 5, ψ0 = 0.2

Junior 0.4 17.7 0.9 21.6 -0.0 17.7
Jr. Mezz 1.8 27.2 2.6 30.9 1.7 28.9
Sr. Mezz 3.6 35.8 4.9 40.5 4.8 41.3
Senior 6.6 47.0 8.5 53.0 10.0 58.1

Collateral 0.3 8.9 0.3 10.6 0.4 11.2
N = 100, T = 20, ψ0 = 1.0

Junior 3.2 35.7 4.8 42.4 0.8 32.2
Jr. Mezz 7.6 52.9 9.9 60.3 6.5 53.4
Sr. Mezz 13.4 70.8 17.5 82.1 16.5 80.6
Senior 23.8 99.1 30.3 115.5 34.5 125.9

Collateral 2.1 21.5 2.1 22.2 1.7 21.0
N = 400, T = 5, ψ0 = 1.0

Junior 9.6 50.4 10.8 53.8 2.8 32.8
Jr. Mezz 11.9 57.6 12.4 59.2 7.1 47.1
Sr. Mezz 12.8 61.4 13.4 63.5 11.6 60.9
Senior 14.2 67.0 15.6 71.1 17.5 78.6

Collateral 3.9 31.4 3.8 31.9 1.2 20.0
All figures expressed as percentage deviations from the true values.
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Table 4: Bias and root-mean-squared-error of risk metrics for high-grade CDO

PD EL EL0.95

Bias RMSE Bias RMSE Bias RMSE
N = 100, T = 20, ψ0 = 0.2

Junior 0.0 26.1 1.7 31.7 -0.1 27.0
Jr. Mezz 3.3 39.9 5.1 46.0 3.3 42.3
Sr. Mezz 7.3 54.1 9.4 60.6 8.5 59.4
Senior 12.3 69.3 17.3 83.4 19.0 88.0

Collateral 1.8 22.2 1.5 24.8 1.7 26.3
N = 400, T = 5, ψ0 = 0.2

Junior 0.6 25.3 2.1 30.2 0.2 24.7
Jr. Mezz 3.5 37.1 4.9 42.1 3.0 38.0
Sr. Mezz 6.6 48.6 8.1 53.7 7.1 52.3
Senior 10.2 60.4 13.6 71.0 14.9 75.0

Collateral 1.8 19.8 1.5 23.6 1.5 23.5
N = 100, T = 20, ψ0 = 1.0

Junior 1.8 41.6 4.1 48.7 -0.4 38.2
Jr. Mezz 7.0 60.0 10.1 69.3 6.2 61.1
Sr. Mezz 14.6 82.3 19.1 94.1 17.1 90.1
Senior 25.5 110.5 37.9 140.5 41.0 147.7

Collateral 4.8 36.4 4.7 39.0 4.4 40.2
N = 400, T = 5, ψ0 = 1.0

Junior 9.2 58.1 11.9 64.8 1.7 38.7
Jr. Mezz 14.6 73.7 16.2 78.8 7.2 56.8
Sr. Mezz 18.0 85.4 19.4 90.1 13.6 76.2
Senior 21.3 96.6 25.0 107.6 24.6 107.4

Collateral 7.9 47.5 7.6 49.4 2.9 35.5
All figures expressed as percentage deviations from the true values.
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Table 5: 90% confidence intervals for risk metrics of a mezzanine CDO.

PD (%) EL (%) EL0.95 (%)
Tranche True 5th 95th True 5th 95th True 5th 95th

N = 100, T = 20, ψ0 = 0.2
Junior 14.06 9.53 18.90 9.86 6.05 14.35 39.85 25.92 53.91

Jr. Mezz 5.36 2.82 8.68 3.92 1.88 6.84 18.11 8.74 30.36
Sr. Mezz 2.54 1.07 4.86 1.73 0.64 3.60 8.04 2.87 16.77
Senior 1.07 0.33 2.47 0.71 0.19 1.81 3.07 0.75 8.30

Collateral 5.00 4.23 5.90 3.45 2.84 4.16 8.14 6.49 10.16
N = 400, T = 5, ψ0 = 0.2

Junior 14.06 10.16 18.33 9.86 6.63 13.62 39.85 28.29 51.51
Jr. Mezz 5.36 3.25 8.02 3.92 2.23 6.18 18.11 10.41 27.64
Sr. Mezz 2.54 1.32 4.29 1.73 0.83 3.10 8.04 3.73 14.48
Senior 1.07 0.46 2.07 0.71 0.28 1.49 3.07 1.11 6.74

Collateral 5.00 4.32 5.77 3.45 2.90 4.09 8.14 6.73 9.74
N = 100, T = 20, ψ0 = 1.0

Junior 14.06 7.24 23.47 9.86 4.42 17.81 39.85 19.59 61.80
Jr. Mezz 5.36 1.93 10.90 3.92 1.24 8.62 18.11 5.75 36.71
Sr. Mezz 2.54 0.66 6.19 1.73 0.37 4.68 8.04 1.60 21.61
Senior 1.07 0.17 3.30 0.71 0.09 2.47 3.07 0.34 11.41

Collateral 5.00 3.52 7.05 3.45 2.39 4.88 8.14 5.73 11.27
N = 400, T = 5, ψ0 = 1.0

Junior 14.06 6.87 28.76 9.86 4.73 20.91 39.85 21.78 64.40
Jr. Mezz 5.36 2.50 11.74 3.92 1.79 8.64 18.11 8.29 35.19
Sr. Mezz 2.54 1.11 5.73 1.73 0.72 3.94 8.04 3.10 18.01
Senior 1.07 0.41 2.51 0.71 0.25 1.74 3.07 0.94 8.05

Collateral 5.00 2.99 8.04 3.45 2.04 5.58 8.14 5.76 11.07
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Table 6: 90% confidence intervals for risk metrics of a high-grade CDO.

PD (%) EL (%) EL0.95 (%)
Tranche True 5th 95th True 5th 95th True 5th 95th

N = 100, T = 20, ψ0 = 0.2
Junior 13.24 7.96 19.30 9.56 5.24 15.10 35.17 20.01 51.20

Jr. Mezz 5.41 2.50 9.49 3.89 1.61 7.35 17.06 7.10 30.59
Sr. Mezz 2.53 0.90 5.24 1.87 0.59 4.13 8.62 2.67 18.81
Senior 1.29 0.35 3.12 0.75 0.17 2.04 3.35 0.70 9.54

Collateral 1.00 0.69 1.41 0.68 0.44 0.99 1.92 1.22 2.85
N = 400, T = 5, ψ0 = 0.2

Junior 13.24 8.21 19.24 9.56 5.51 14.91 35.17 21.50 50.07
Jr. Mezz 5.41 2.74 9.24 3.89 1.82 7.07 17.06 8.18 29.19
Sr. Mezz 2.53 1.06 4.96 1.87 0.72 3.87 8.62 3.26 17.54
Senior 1.29 0.45 2.88 0.75 0.22 1.84 3.35 0.93 8.57

Collateral 1.00 0.72 1.36 0.68 0.45 0.97 1.92 1.29 2.76
N = 100, T = 20, ψ0 = 1.0

Junior 13.24 6.03 23.73 9.56 3.83 18.60 35.17 14.47 58.45
Jr. Mezz 5.41 1.64 11.75 3.89 0.96 9.30 17.06 4.10 37.41
Sr. Mezz 2.53 0.47 6.82 1.87 0.27 5.55 8.62 1.21 24.90
Senior 1.29 0.14 4.34 0.75 0.05 3.02 3.35 0.22 14.32

Collateral 1.00 0.56 1.71 0.68 0.36 1.19 1.92 0.99 3.43
N = 400, T = 5, ψ0 = 1.0

Junior 13.24 5.27 29.14 9.56 3.69 22.49 35.17 16.10 60.53
Jr. Mezz 5.41 1.93 13.63 3.89 1.32 10.22 17.06 5.95 36.74
Sr. Mezz 2.53 0.78 6.96 1.87 0.53 5.33 8.62 2.33 22.48
Senior 1.29 0.33 3.89 0.75 0.16 2.42 3.35 0.63 11.08

Collateral 1.00 0.48 1.95 0.68 0.31 1.35 1.92 1.03 3.24
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7 Conclusions

Overall, the results presented in Section 6 suggest that statements about the credit quality of
structured securities should be viewed with considerably more skepticism than comparable
statements about the credit quality of unstructured bonds. Because the credit performance
of a CDO deal’s various debt tranches depend on the full distribution of collateral losses,
evaluating the credit quality of CDO notes is inherently more difficult than evaluating the
credit quality of unstructured notes with similar underlying risk characteristics. All else
equal, CDO notes with greater seniority are more sensitive to model parameters that describe
the distribution of collateral losses. Even small errors in estimating these parameters can
have significant effects on measures of credit risk for senior CDO notes. Typically it is
more difficult to estimate such parameters when collateral defaults are rare. Thus, the
uncertainty associated with standard measures of CDO credit risk will be greatest when the
note of interest is relatively senior and/or the CDO collateral is of relatively high quality. In
other words, the safest CDO notes are likely to be the most difficult to accurately evaluate.

There are strong reasons to believe that in real world settings estimated risk metrics for
CDO tranches would be even less accurate than the simulations presented here suggest. This
analysis assumes that CDO collateral is homogeneous with respect to model parameters and
imposes a very simple dependence structure on collateral losses. In practice CDO collateral
may consist of a diverse mix of securities, factor correlations may vary depending on a
security’s type, region, or industry sector, and loss severities are likely to be correlated with
default rates. Thus, risk metrics for real world CDO tranches typically depend on a great
many more parameters than the four described here, and all parameters must be estimated
from limited historical data. This analysis also assumes that the collateral loss model used
to compute risk metrics is correctly specified and that model parameters are calibrated to
minimum variance unbiased estimators. Deviation from either of these assumptions could
lead to bias or additional dispersion in estimated risk metrics. Finally, it should be noted
that asset-backed-security CDOs (ABS CDOs), such as those that have performed most
poorly in recent months, are considerably more complex than the simple bond backed CDO’s
considered here. ABS CDO credit models must account for the effects of structural credit
enhancement on collateral performance and, because ABS CDO tranche payouts depend on
complex cash-flow distribution schemes, model results are likely to be particularly sensitive
to assumptions about the timing of collateral losses.

These findings lend support to financial regulators’ argument that credit rating agencies
should better distinguish between structured and unstructured bond ratings and disclose
relevant information about the uncertainties associated with ratings. Moody’s, Standard
and Poor’s, and Fitch all currently use the same ordinal rating scales to evaluate traditional
corporate debt securities and structured securities, and rating agencies have publicly asserted
that bond ratings should be treated as comparable across debt classes. For example, S&P
(Wong, Gillis and Michaux 2007) states:

Our ratings represent a uniform measure of credit quality globally and across
all types of debt instruments. In other words, an ‘AAA’ rated corporate bond
should exhibit the same degree of credit quality as an ‘AAA’ rated securitized
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debt issue.

The analysis presented here suggests that the uncertainty associated with ratings for high
quality structured products is likely to be much greater than that associated with high-
quality corporate debt securities. Quantitative models such as those used by rating agencies
to evaluate CDOs may provide useful tools for ranking risks across similar types of debt
securities, but, since underlying model parameters are estimated with error, there is a good
chance that these models will significantly misstate default probabilities, expected losses,
and other measures of the riskiness of these securities.

These results have implications for the way market participants manage CDO credit risk.
Two broad approaches to dealing with parameter uncertainty can be likened to the classical
and Bayesian paradigms of statistical inference. Under the “classical” approach, analysts
estimate risk metrics for CDO notes and other risk exposures using the best data and most
efficient statistical techniques available, but they also compute confidence intervals and other
descriptors of the accuracy of those risk metrics. Risk-management applications that account
for parameter uncertainty then involve a two-step process. In the first step, point estimates
of relevant risk metrics are taken at face value and used in the usual way. In the second step,
analysts examine how their conclusions change under adverse parameter “stress scenarios”
determined by the sampling distribution of the parameters used in the first step. Gossl
(2005) describes an alternative, Bayesian, approach under which parameter uncertainty is
embedded in the process of computing risk metrics. A distribution of model parameters is
assumed ex ante which is updated as new data become available. Risk metrics of interest
are computed by taking expectations that account for both the uncertainty associated with
predicting future credit performance and the uncertainty associated with model parameters.
Both the classical and Bayesian approaches can be expected to produce qualitatively similar
results. Structured credit exposures aught to attract higher economic capital requirements
and command higher spreads than would be the case if model parameters were known with
certainty, and the relative magnitude of these differences should be greater for safer CDO
notes.
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APPENDIX: Derivation of DGP likelihood

Conditional on X, Y ∗ and Y have the joint distribution,

[

Y ∗

Y

]

| X ∼ N
([ √

ω
√

1 − ψ
√
ρX√

ρX

]

,

[

ωS
√
ω(1 − ρ)

√
1 − ψ√

ω(1 − ρ)
√

1 − ψ 1 − ρ

])

.

where S = (1 − ψ)(1− ρ) + ψ. This implies that conditional on Y ∗ and X, Y is distributed

Y | Y ∗, X ∼ N
(

ψ
√
ρX + (1 − ρ)

√
1 − ψ (Y ∗/

√
ω)

S
,
ψ(1 − ρ)

S

)

.

Thus, we can write the joint distribution of Y ∗ and Y conditional on X as

f (y∗, y|X) =

φ

(

(y∗/
√
ω) −√

1 − ψ
√
ρX√

S

)

φ

(

Sy − ψ
√
ρX − (1 − ρ)

√
1 − ψ (y∗

√
ω)√

S
√

ψ(1 − ρ)

)

. (7)

The first right-hand term is the PDF of Y ∗ given X. The second term is the PDF of Y given
Y ∗ and X.

Recall that D is an indicator variable that is equal to one if Y ≤ Φ−1(π) and zero
otherwise. Y ∗ is only observable when D = 0. If D = 0 the joint likelihood of Y ∗ and D
given X is

f(y∗, D = 1|X) =

∫

∞

Φ−1(π)

f(y∗, y|X)dy = φ

(

(y∗/
√
ω) −√

1 − ψ
√
ρX√

S

)

×
(

1 − Φ

(

SΦ−1(π) − ψ
√
ρX − (1 − ρ)

√
1 − ψ (y∗/

√
ω)√

S
√

ψ(1 − ρ)

))

(8)

The second equality follows directly from (7). If D = 1, Y ∗ is not observable, and the
likelihood is

f(D = 0|X) =

∫ Φ−1(π)

−∞

f(y|X)dy = Φ

(

Φ−1(π) −√
ρX√

1 − ρ

)

. (9)

Combining (8) and (9) yields (5).
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Figure 1: Sensitivity of mezzanine CDO risk metrics to errors in the default probability
parameter π.

0.04 0.045 0.05 0.055 0.06
0

0.5

1

1.5

2

2.5

π

E
st

im
at

e/
T

ru
e

PD

 

 

0.04 0.045 0.05 0.055 0.06
0

0.5

1

1.5

2

2.5

π

E
st

im
at

e/
T

ru
e

EL

0.04 0.045 0.05 0.055 0.06
0

0.5

1

1.5

2

2.5

π

E
st

im
at

e/
T

ru
e

EL
0.95

Junior
Jr. Mezz
Sr. Mezz
Senior
Bond

24



Figure 2: Sensitivity of mezzanine CDO risk metrics to errors in the asset value correlation
parameter ρ.
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Figure 3: Sensitivity of mezzanine CDO risk metrics to errors in the expected loss given
default parameter µ.
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Figure 4: Sensitivity of mezzanine CDO risk metrics to errors in the loss-given-default volatil-
ity parameter σ.
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Figure 5: Sensitivity of high-grade CDO risk metrics to errors in the default probability
parameter π.
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Figure 6: Sensitivity of high-grade CDO risk metrics to errors in the asset value correlation
parameter ρ.
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Figure 7: Sensitivity of high-grade CDO risk metrics to errors in the expected loss given
default parameter µ.
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Figure 8: Sensitivity of high-grade CDO risk metrics to errors in the loss-given-default
volatility parameter σ.
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Figure 9: Minimum standard deviation of unbiased normal copula parameter estimators for
mezzanine bonds under various data generating processes (π0 = 0.05, ρ0 = 0.20, µ0 = 0.55,
σ0 = 0.35).
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Figure 10: Minimum standard deviation of unbiased normal copula parameter estimators for
high-grade bonds under various data generating processes (π0 = 0.01, ρ0 = 0.20, µ0 = 0.55,
σ0 = 0.35).
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Figure 11: Distribution of estimated mezzanine CDO risk metrics given a long data panel
with well observed credit factors (N = 100, T = 20, ψ = 0.2).
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Figure 12: Distribution of estimated mezzanine CDO risk metrics given a wide data panel
with well observed credit factors (N = 400, T = 5, ψ = 0.2).
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Figure 13: Distribution of estimated mezzanine CDO risk metrics given a long data panel
with unobserved credit factors (N = 100, T = 20, ψ = 1.0).
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Figure 14: Distribution of estimated mezzanine CDO risk metrics given a wide data panel
with unobserved credit factors (N = 400, T = 5, ψ = 1.0).
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Figure 15: Distribution of estimated high-grade CDO risk metrics given a long data panel
with well observed credit factors (N = 100, T = 20, ψ = 0.2).
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Figure 16: Distribution of estimated high-grade CDO risk metrics given a wide data panel
with well observed credit factors (N = 400, T = 5, ψ = 0.2).
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Figure 17: Distribution of estimated high-grade CDO risk metrics given a long data panel
with unobserved credit factors (N = 100, T = 20, ψ = 1.0).
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Figure 18: Distribution of estimated high-grade CDO risk metrics given a wide data panel
with unobserved credit factors (N = 400, T = 5, ψ = 1.0).
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