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Trends in Men’s Earnings Volatility: 

What Does the Panel Study of Income Dynamics Show? 

 

“… the volatility of family incomes has gone up – way, way up….  In fact, over the past 
generation the economic instability of American families has actually risen much faster 
than economic inequality….” 

-- Jacob S. Hacker (2006, p. 2) 
 
“The variance of transitory earnings … rose in the 1980s but declined in the 1990s.” 
    -- Robert A. Moffitt and Peter Gottschalk (2002, p. C68) 
 
“While earnings instability today is higher than the late 1960s and early 1970s, it has 
declined more or less steadily, aside from business-cycle effects, from a peak in the early 
1980s.” 
    -- Stephen Cameron and Joseph Tracy (1998, p. 2) 
 
“CBO’s analysis of the CWHS administrative data indicates that, since 1980, the trend in 
year-to-year earnings variability has been roughly flat.” 
    -- Congressional Budget Office (2007, p. 3) 
 

 

I.  Introduction 

 The seminal study by Gottschalk and Moffitt (1994) used 1970-1987 data from 

the Panel Study of Income Dynamics (PSID) to document that the well-known increase 

in men’s earnings inequality during that period stemmed partly from an increase in 

earnings volatility.  Several subsequent studies corroborated the general finding and filled 

in additional details about the trend.  Haider (2001), for example, analyzed PSID data for 

1967-1991 and concluded that “earnings instability increased dramatically during the 

sample period, with most of the increases occurring during the 1970s” (p. 829).  Haider 

also found that the rise in earnings volatility during the 1970s was associated mainly with 

increased volatility in annual hours of work, not average hourly earnings.1 

 As indicated by the quotations at the top of this page, a few researchers have 

extended the analysis of men’s earnings volatility trends to more recent years.  Cameron 

                                                 
1 Because the permanent component of earnings variation also increased, the rise in earnings volatility need 
not have reduced autocorrelations in earnings nor increased transition rates across quintiles of the earnings 
distribution.  The evidence that earnings volatility increased therefore is altogether consistent with studies – 
such as Kopczuk, Saez, and Song (2007) and Acs and Zimmerman (2008) – that have found relative 
stability in such measures of economic mobility.  
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and Tracy (1998) studied longitudinally matched Current Population Survey (CPS) data 

for 1967-1996.  They replicated Haider’s PSID-based finding that earnings volatility 

trended upwards during the 1970s and, after a large cyclical increase during the recession 

of the early 1980s, came back down for the rest of the 1980s to about the same level as in 

the late 1970s.  Cameron and Tracy also found that this relatively flat trend continued 

through the end of their sample period in 1996.  The Congressional Budget Office (2007) 

study by Dahl, DeLeire, and Schwabish used Social Security earnings histories for 1980-

2003.  The parts of their analysis that focused on men’s age-adjusted earnings (especially 

figure A-15) found trends similar to those previously reported by Haider and by Cameron 

and Tracy.  In addition, their results showed some indication of a rise in men’s earnings 

volatility in the early 2000s. 

 In contrast, Moffitt and Gottschalk’s (2002) analysis of 1969-1996 PSID data 

reported that the transitory variance of men’s log earnings “rose dramatically in the 

1980s, leveled off in the late 1980s, and fell after 1991” (p. C70).2  And Hacker’s (2006) 

analysis of 1974-2002 PSID data on family income, rather than men’s earnings, also 

reported a volatility increase in the 1980s, but found an even larger increase in the early 

1990s, followed by a decline later in the 1990s and another increase in the early 2000s.  

These new PSID analyses appear to be at odds both with each other and with the other 

recent studies based on other data sets. 

The question is which results are accurate and which are not.  If the answer were 

to be found mainly in differences among data sets, then we would need to ascertain which 

data are more reliable.  That would be difficult because each data set has strengths and 

weaknesses relative to the others.  Compared to the PSID, the data from the CPS and 

Social Security feature much larger sample sizes, and the administrative data from Social 

Security avoid the problem of survey response error.  But the longitudinally matched CPS 

data also have the relative disadvantage of systematically excluding individuals who 

changed residences, which must make the sample at least somewhat unrepresentative 

with respect to earnings changes.  Limitations of the Social Security data are that they are 

not publicly available for replication and further analysis, and they include only those 

                                                 
2 In an incomplete draft, Gottschalk and Moffitt (2006) extend their analysis through 2002 and find that 
earnings volatility began rising again in the late 1990s.  
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earnings reported by employers on W-2 forms.  In particular, they leave out earnings 

from self-employment, earnings abroad, “under the table” earnings, and earnings of some 

state and local government employees 

On the other hand, if a reanalysis of the PSID data were to find that the trends 

revealed in the PSID actually are qualitatively similar to those reported for the CPS and 

the Social Security data, then we might be more confident in the common patterns 

observed in all three data sets.  That is just what our study does find. 

Our results are previewed in figure 1, which shows the standard deviation of age-

adjusted year-to-year changes in log earnings for men in the PSID.  The data, which are 

described in detail below in section III, are from interviews in 1970 through 2005 and 

pertain to annual wage and salary income in the preceding calendar years.  Because the 

PSID has conducted interviews only in odd years since 1997, we look at two-year 

changes in log earnings: 1969-1971 (based on the 1970 and 1972 interviews), 1970-1972 

(based on the 1971 and 1973 interviews), 1971-1973, …, 1994-1996, 1996-1998, 1998-

2000, 2000-2002, and 2002-2004.  The time axis in the figure labels observations by the 

second year in the two-year difference; e.g., the observation for 1969-1971 is labeled as 

1971.  The figure also marks the timing and severity of recessions by plotting the annual 

civilian unemployment rate. 

One striking pattern in the figure, familiar from many previous studies, is that the 

dispersion in log earnings changes is greater during recessions,3 especially the severe 

recession in the early 1980s.  As for secular trends, the figure is fairly consistent with the 

trends previously described by Haider, Cameron and Tracy, and the Congressional 

Budget Office.  Men’s earnings volatility appears to have trended upwards during the 

1970s, but it is not clear that there was much further secular trend between the late 1970s 

and late 1990s.  Finally, a new upward trend in earnings volatility starts appearing by 

2000.  This last finding is consistent with some of the Social Security evidence reported 

in the Congressional Budget Office study.4 

                                                 
3 See, for example, Haider (2001), Cameron and Tracy (1998), Baker and Solon (2003), Gottschalk and 
Moffitt (2006), and Congressional Budget Office (2007). 
4 At the same time we began reanalyzing the PSID data, so did Dynan, Elmendorf, and Sichel (2008).  
Their study focuses on family income rather than men’s earnings, but the last panel of their figure 1 
includes a plot of the standard deviation of two-year percentage changes in men’s earnings.  Their plot is 
not exactly comparable to our figure 1 for several reasons.  First, they use a more comprehensive PSID 
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The remainder of our paper fleshes out these findings.  In section II, we discuss 

alternative ways of measuring trends in earnings volatility.  In section III, we first 

describe our data, and we then present a variety of analyses of men’s earnings volatility 

trends in the PSID.  Section IV summarizes and discusses our findings. 

 

II.  Measuring Earnings Volatility 

 Some previous studies of earnings volatility trends – such as Moffitt and 

Gottschalk (1995, 2002), Haider (2001), Baker and Solon (2003), and Gottschalk and 

Moffitt (2006) – have couched their analyses in terms of complicated parametric models 

of earnings dynamics.  The drawback of this approach is that the parametric models used 

in the literature are arbitrary mechanical constructs and the resulting estimates of trends 

can be sensitive to arbitrary variations in model specification.  For example, using a large 

sample of Canadian income tax records, which enabled more thorough specification 

checking than is possible with smaller U.S. data sets, Baker and Solon strongly rejected 

the restrictions of Moffitt and Gottschalk’s preferred model and found that imposing 

those restrictions substantially biased the estimation of Canadian trends in components of 

earnings variation. 

We therefore sympathize with the inclination of several other researchers – such 

as Dynarski and Gruber (1997), Cameron and Tracy (1998), Congressional Budget Office 

(2007), and Dynan, Elmendorf, and Sichel (2008) – to eschew complex earnings 

dynamics models and focus instead on simple statistics that might be reasonable indexes 

of earnings volatility under a wide range of data-generating processes.  The series we just 

previewed in section I – the standard deviation of year-to-year change in log earnings – is 

meant to serve as such a statistic.  The simple idea is that, if earnings volatility increases 

a lot, one might reasonably expect that development to be reflected in increased 

dispersion of earnings changes. 

                                                                                                                                                 
earnings measure, “total labor income.”  The difficulty with this measure, which we discuss below in 
section III, is that it is not measured consistently over time.  Second, they do not adjust their earnings 
growth variable for age or experience.  Third, their figure plots three-year rolling averages of the standard 
deviation, which makes it difficult to discern cyclical versus secular changes.  Notwithstanding these and 
other differences, Dynan, Elmendorf, and Sichel reach the same broad-brush conclusion that we and others 
do – that men’s earnings volatility has increased substantially since the early 1970s. 
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Similar concerns presumably are what motivated Moffitt and Gottschalk – in their 

1995, 2002, and 2006 papers – to supplement their analyses based on earnings dynamics 

models with what, in the 2006 paper, is called their “descriptive” approach.  The 

particular descriptive statistic they use to measure earnings volatility in year t  is the 

variance of log earnings in that year minus the fifth-order autocovariance5 between years 

t  and 5−t .  Although Moffitt and Gottschalk clearly express a preference for their 

analyses based on parametric earnings dynamics models, they also prominently feature 

their descriptive approach in all three papers.  Thanks to Moffitt and Gottschalk’s well-

deserved stature in the field, their descriptive approach has been quite influential; for 

example, Hacker (2006) adopted it for his own analysis of trends in family income 

volatility.  We therefore need to explain why we do not adopt it as well. 

Although we do not wish to commit to any particular model of the earnings 

dynamics process, we will begin to illustrate our concerns in terms of a simple version of 

the often-used variance components model that splits log earnings (after adjustment for 

life-cycle/cohort effects) into two orthogonal factors – a permanent component and a 

transitory component.  Expressed in a way that allows for trends in the dispersion of 

either component, the model is 

 

(1) it t i ity pα ε= +  

 

where ity  is the age-adjusted log earnings of individual i  in year t , iα  is an individual-

specific “fixed effect” with population variance 2
ασ , tp  is a year-specific factor loading 

(which might reflect, for example, year-specific returns to human capital), and itε  is a 

transitory component with time-varying variance 2
tσ  and negligible serial correlation.  

Then cross-sectional earnings inequality in year t , as measured by ( )itVar y , is simply 

 

(2) 2 2 2( )it t tVar y p ασ σ= + . 

 

                                                 
5 In the 2006 paper, Moffitt and Gottschalk switch to using the fourth-order autocovariance. 
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According to this model, an increase in earnings inequality could stem from an increase 

in either the permanent variance component (represented as an increase in tp ) or the 

transitory variance component 2
tσ . 

 Like most researchers who have used parametric models to study volatility trends, 

Moffitt and Gottschalk define earnings volatility as the transitory variance component 
2
tσ .  The question then becomes how well their descriptive statistic measures that 

component.  It is easy to show that 

 

(3) 2 2
, 5 5( ) ( , ) ( )it it i t t t t tVar y Cov y y p p p ασ σ− −− = + − . 

 

Thus, Moffitt and Gottschalk’s descriptive statistic correctly identifies the transitory 

variance component 2
tσ  only when 5t tp p −= ; that is, only when the permanent 

component is unchanged and earnings inequality has changed solely because of a change 

in the transitory component.  More generally, when both variance components are 

changing, their descriptive statistic conflates the two. 

More importantly, their statistic can be way off the mark not only for estimating 

the level of the transitory variance, but also for estimating its change over time.  Consider 

this simple example.  Suppose that, up through year 5−t , 15
2

5
2 === −− tt pσσα .  Then 

211)( 5, =+=−tiyVar ; that is, cross-sectional earnings inequality as of year 5−t  divides 

evenly between permanent and transitory variation.  Given stationarity up through time 

5−t , Moffitt and Gottschalk’s descriptive statistic would correctly identify 2
5−tσ  as 1. 

But now suppose that, in every year from 5−t  through t , the permanent factor 

loading p  increases at an annual rate of 0.1.  Then, by year t , cross-sectional inequality 

has grown to 25.31)5.1()( 2 =+=ityVar  with no increase whatsoever in the transitory 

variance component, which still equals 1.  Nevertheless, if one applies Moffitt and 

Gottschalk’s descriptive method for estimating 2
tσ , one overestimates it as 1.75.  The 

method incorrectly concludes that the transitory variance has increased by 75 percent 

over the five years, and it incorrectly ascribes 60 percent of the increase in inequality to 
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change in the transitory component.  The lesson is that, in a non-stationary environment 

(which, after all, is entirely what this trends literature is about), this descriptive statistic 

does not actually describe what anyone wants it to.  And this is not an artifact of the 

simple illustrative model from equation (1).  Readers can verify for themselves that 

adding complications – heterogeneity in earnings growth, serial correlation of the 

transitory component, or whatever – does not set things right. 

Accordingly, we look elsewhere for our descriptive statistics.  In particular, we 

will use measures of the dispersion in year-to-year earnings changes, such as the standard 

deviation of change in log earnings.  It seems reasonable to guess that trends in earnings 

volatility would be reflected in such measures, but we should check that guess.  To begin 

with, consider the variance of the age-adjusted change in log earnings between years 

2t −  and t  (the square of the standard deviation measure previewed in section I).  Under 

the model in equation (1), this variance is 

 

(4) 2
2

222
22, )()( −−− ++−=− tttttiit ppyyVar σσσα . 

 

As conjectured, this dispersion measure tends to be higher when the transitory variance is 

higher in years t  and 2t − .  The bad news is that, like Moffitt and Gottschalk’s statistic, 

this measure also is affected by changes in p .  The good news is that, if p ’s closer 

together in time tend to be more similar, this measure tends to be less distorted than the 

Moffitt-Gottschalk statistic in equation (3), which is contaminated by the five-year 

difference 5t tp p −− .  (Of course, this good news gets better still when one has access to a 

data set in which one can use the variance of one-year changes instead of two-year 

changes.)  Additional good news for the measure in equation (4) is that it squares the 

typically fractional change in the p ’s, leading to a smaller fraction multiplying 2
ασ . 

 Now consider again the numerical example above.  In year 5−t , our statistic in 

equation (4) correctly identifies 2
7

2
5 −− + tt σσ   as 1+1=2.6  In year t , our statistic estimates 

                                                 
6 Some readers of previous drafts have asked what happens if the transitory component is serially 
correlated.  If the second-order autocorrelation is stable and denoted by ρ , then the statistic in equation (4) 
would be )1(2 ρ−  instead of 2 ; that is, it would identify the level of the transitory variances rescaled by 
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2
2

2
−+ tt σσ  as 04.211)2.0( 2 =++ , instead of the correct value of 2.  This illustrates our 

claim that, although our statistic is affected by changes in the variance of the permanent 

component, it is much less sensitive to them than Moffitt and Gottschalk’s statistic is. 

 We can gain further insight into the behavior of our statistic by generalizing the 

earnings dynamics model in equation (1) to encompass permanent as well as transitory 

earnings shocks.  The extended model is 

 

(5) ( )it t i it ity p uα ε= + +  

 

where itu  follows a random walk 

 

(6) , 1it i t itu u v−= +  

 

with innovation variance 2
vσ .  This extension makes the earnings dynamics model more 

realistic by allowing for long-lasting shocks such as the persistent earnings losses often 

suffered by workers displaced from their jobs.7  With this addition to the model, the 

variance measure in equation (4) now gets modified to 

 

(7) 222
2

2
2,

2
22, 2)()()( vttttiitttiit puVarppyyVar σσσα ++++−=− −−−−  

 

where , 2i i tuα −+  might be thought of as worker i ’s permanent human capital as of time 

2t − .  The important change relative to equation (4) is the addition of the last term 
2 22 t vp σ , the component of the variance in earnings change that comes from permanent 

shocks. 

The key lesson is that an earnings volatility measure based on dispersion in year-

to-year earnings change reflects permanent shocks in addition to transitory ones.  Thus, in 

                                                                                                                                                 
the factor ρ−1 .  Of course, if the serial correlation parameter changes over time, matters become much 
more complicated.  Indeed, it would become less clear what we even mean by changes in earnings 
volatility.  
7 Jacobson, LaLonde, and Sullivan (1993) and Stevens (1997). 
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contrast to model-based studies that attempt to identify the transitory variance, our study 

and others using similar methods include permanent shocks in the measurement of 

earnings volatility.  There is something to be said for that.  Interest in earnings volatility 

trends stems in large part from a concern about whether earnings risk has increased.  

Because permanent shocks, such as those experienced by many displaced workers, are 

even more consequential than transitory ones, it makes good sense to include them in the 

measurement of earnings volatility. 

 Having said that, however, we should be very clear that measures like the 

standard deviation of change in log earnings muddle together permanent shocks and 

transitory shocks without making any distinction between them.  Furthermore, as 

discussed by Blundell, Pistaferri, and Preston (forthcoming) and Cunha, Heckman, and 

Navarro (2005), even if one could separate permanent and transitory variation, 

identifying the associated risk still would require further information on whether the 

shocks were or were not anticipated and whether the affected individuals were or were 

not insured against the shocks.  These important questions constitute a crucial (and 

daunting) agenda for future research.8  Our empirical analysis in the next section is just a 

preliminary step directed at the simpler question of what are the basic facts regarding 

overall trends in men’s earnings variability. 

 

III.  Evidence from the Panel Study of Income Dynamics 

A.  Data 

 Our data are from the Panel Study of Income Dynamics, a longitudinal survey 

administered by the University of Michigan’s Survey Research Center every year from 

1968 through 1997 and every other year since then.  We use the data from the nationally 

representative Survey Research Center component of the PSID sample.9 

                                                 
8 Blundell, Pistaferri, and Preston (forthcoming), for example, begin to tackle these issues by using 
consumption data along with income data.  
9 We do not use the Survey of Economic Opportunity component (the so-called “poverty sample”) mainly 
because of the serious irregularities in that sample’s selection.  The problems recounted in Brown (1996) 
are too numerous to repeat here in their entirety.  The problem we find most disturbing is that, for reasons 
that remain unknown to this day, the computer consulting firm in Washington, DC that the Office of 
Economic Opportunity hired to select low-income households from the Census Bureau’s 1967 Survey of 
Economic Opportunity sample failed to include most of the eligible households in the lists it transmitted to 
the Survey Research Center.  Worse yet, the omissions clearly were not random.  Brown’s memo notes a 
racial pattern – the transmission rate was 55 percent for non-whites and 21 percent for whites.  A passage 
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 Like some previous researchers, we first analyze the wage and salary income of 

male household heads because it is the earnings variable that the PSID has measured 

most consistently over time.  We exclude imputations for missing values, the inclusion of 

which would distort measured earnings variability.10  The wage and salary income 

variable is available only in “bracketed” (i.e., interval) form for the PSID’s 1968 and 

1969 interviews, so our data set begins with the 1970 survey, which collected income 

information for the 1969 calendar year.   Because the PSID was administered annually 

through 1997 and every other year since, our earnings data are for every year from 1969 

through 1996 plus 1998, 2000, 2002, and 2004.  Accordingly, our analyses of earnings 

changes will pertain to two-year differences for 1969-1971, 1970-1972, 1971-1973, …, 

1994-1996, 1996-1998, 1998-2000, 2000-2002, and 2002-2004. 

 We restrict our sample of earnings observations to calendar years when the male 

head of household is between the ages of 25 and 59.  For a two-year change to be 

included in our analysis, the worker must be within that age range in both years.  At the 

outset of each analysis in section III.B, we will provide information on the available 

sample sizes.  Each of those analyses of earnings changes begins with a regression 

adjustment for mean effects of year (such as inflation in nominal wages), life-cycle stage, 

and cohort.  In particular, we apply least squares (separately for each year) to a regression 

of the earnings change variable on age and age squared, and then use the residual as the 

object of the subsequent analysis of dispersion in earnings changes.11 

 

                                                                                                                                                 
he quotes from the Survey Research Center’s 1984 PSID User Guide also refers to “substantial” variation 
across geographic areas.  That passage concludes, “By the time we realized that not all the addresses of the 
‘signers’ had been forwarded, the Census personnel knowledgeable about the process had moved on to 
designing the 1970 Census, and OEO personnel were not able to provide us any information.  Our repeated 
efforts to secure more information about the lost cases were not successful.” 
10 On the advice of PSID staff, we interpret the several instances from 1994 on in which wage and salary 
income is coded as 1 as missing values that require imputation. 
11 We stop at a quadratic because going to a cubic specification typically resulted in coefficient estimates 
for the cubed terms that were small and statistically insignificant.  In any case, given the restricted age 
range in our sample, variations on our age controls (including using none at all) turn out to have very minor 
effects on our results concerning volatility trends.  Because even adjustments for age made little difference 
in measuring dispersion of earnings growth, we have not pursued adjustments for other observable 
variables such as years of education. 
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B.  Analyses of PSID Earnings Changes 

 We begin by describing in detail the analysis previewed in our introductory 

section.  That analysis looks at the trend in the standard deviation of change in log 

earnings.  For this particular analysis, in addition to the sample restrictions listed above, 

we exclude observations of zero earnings.  We also exclude the top and bottom 1 percent 

of positive observations in each year.  Besides the usual reasons for excluding outliers, 

dropping the top 1 percent eliminates all the top-coded observations and thereby sidesteps 

the question of whether and how to adjust them.  We recognize, however, that excluding 

zeros and other extreme observations in a study of earnings volatility is not entirely a 

good thing.  Accordingly, in an alternative analysis described later in this section, we take 

a different approach to the extreme observations. 

 In combination, all the sample restrictions applied in the present analysis leave us 

with a total of 43,346 observations over our 30 years of data on two-year differences.  

The average sample size per year is thus 1,445.  The smallest sample size is 1,005 for 

1969-1971, and the largest is 2,016 for 2000-2002. 

Our preliminary regression of change in log earnings on a quadratic in age each 

year causes our residualized measure of change in log earnings to have zero sample mean 

in every year.  Accordingly, we estimate the variance of each year’s change in log 

earnings with that year’s sample mean squared residual.  The estimated standard 

deviation plotted in figure 1 is the square root of the estimated variance.12 

As already discussed in our introductory section, figure 1 displays the familiar 

finding that earnings volatility is strongly countercyclical.  Like Haider (2001) and 

Cameron and Tracy (1998), we find that earnings volatility trended upwards during the 

1970s.  Like those studies and the Congressional Budget Office (2007) study, which 

began with 1980 data, we do not see much evidence of increasing volatility during the 

1980s or most of the 1990s (apart from temporary bulges during the recessions of the 

early 1980s and early 1990s).  This impression of the 1990s is all the stronger if one 

discounts the observations for 1990-1992 through 1993-1995, i.e., the observations that 

come at least partly from the 1993 and 1994 PSID interviews.  Kim et al. (2000) explain 

                                                 
12 The associated 95 percent confidence band, shown in light blue, is based on the textbook result on the 
asymptotic distribution of the sample mean squared residual under the classical regression assumptions 
(Schmidt, 1976). 
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that the data from those interviews should be viewed cautiously because the continuity of 

the PSID data in those years was disrupted by a major overhaul of the survey that 

included, among other things, a switch to computer-assisted telephone interviewing, a 

shift from human to automated editing of the data, and changes in the structure of the 

income questions.  Finally, like the Congressional Budget Office results for men’s age-

adjusted earnings, our results suggest that men’s earnings volatility started to increase by 

2000. 

In figure 2, we check the sensitivity of our results to several variations in the 

analysis.  First, although the wage-and-salary-income variable we use is defined almost 

consistently over time, there is an exception.  Starting in the 1993 survey year (which 

inquired about 1992 income), a new earnings category called “income from extra jobs” 

was separated out, and it is possible that some of this income might previously have been 

included in the PSID’s measure of wage and salary income.  In figure 2, the blue line 

connecting the dashed data points shows what happens to our earnings volatility series 

from figure 1 (shown in figure 2 as purple diamonds) when we add income from extra 

jobs in with wage and salary income.  Up through the data for 1991, of course, the two 

series are identical.  Even afterwards, the differences are trivial, so this comparability 

issue appears to be of no consequence. 

Second, several previous studies (e.g., Baker and Solon, 2003) have documented 

greater year-to-year earnings variation for workers in their twenties and as they approach 

retirement age.  If the representation of those age groups in the population changed over 

time, this could produce the appearance of a trend in earnings volatility even if the life-

cycle profile of earnings volatility did not shift at all.  We therefore check what happens 

if we restrict our sample’s age range to 30-54 instead of 25-59.  As expected, the 

resulting yellow line connecting the triangular data points in figure 2 is lower, but it 

displays a time pattern quite similar to that for the larger sample. 

Third, as already discussed in footnote 4, one difference between our main 

analysis and the earnings analysis by Dynan, Elmendorf, and Sichel (2008) is that they 

use a more comprehensive earnings measure, “total labor income,” which includes 

bonuses, overtime, tips, commissions, and the labor parts of business, farm, market 

gardening, and roomers/boarders income in addition to wage and salary income.  The 
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difficulty is that the PSID’s treatment of business and farm income in total labor income 

has varied over the years, and it is not possible to construct a consistent series over time.  

One approach we have tried is to use total labor income excluding business and farm 

income.  The resulting series is shown in figure 2 as the black line connecting the 

rectangular data points.  This series starts with the 1975-1977 observation because, prior 

to 1975, business and farm income were measured in bracketed form.  We also have 

followed Dynan, Elmendorf, and Sichel’s approach of using the PSID’s total labor 

income variable up through 1992, adding in the “labor part of business income” after 

1992 (when the PSID stopped counting it in “total labor income”), and excluding all 

observations with positive farm income.  (Unfortunately, this approach remains 

inconsistent over time because, starting with the 1993 survey’s measurement of 1992 

income, the PSID changed the way it calculates the labor part of business income.)  The 

resulting series is shown in figure 2 as the green line connecting the circular data points.  

The volatility measures for these more comprehensive earnings variables track quite 

similarly to our series for wage and salary income until the early 1990s, when they start 

diverging upwards, especially the series that includes business income.  It is unclear how 

to interpret the divergence.  On one hand, the pattern with the more comprehensive 

earnings variables may signify that earnings components besides wage and salary income 

really did contribute to rising earnings volatility throughout most of the 1990s.  On the 

other hand, the divergence coincides with the timing of the major overhaul of the PSID’s 

data collection and editing procedures, and might be merely an artifact of the changes in 

survey procedures.  In any case, all the alternative series show rising volatility in the 

early 2000s, long after the changes in the survey had occurred.  

One limitation of all our analyses so far is that the standard deviation is just one 

arbitrary measure of dispersion in earnings changes.  A second limitation is the exclusion 

of zeros and other extreme earnings observations.  One way of addressing the first 

limitation is to present a more complete picture of changes in the distribution of log 

earnings changes by plotting various quantiles of the distribution.  Returning to the wage-

and-salary-income variable used in figure 1, figure 3 displays the 10th, 25th, 50th, 75th, and 

90th sample percentiles of the log earnings changes for each year.  The 50th percentiles are 

always close to zero because the preliminary regression adjustments force the sample 
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means to be zero.  In figure 3, the cyclical increases in the dispersion of earnings changes 

in the severe recessions of the mid 1970s and early 1980s are manifested mainly as a 

lowering of the relative position of the 10th percentile.  In contrast, the secular increases 

in the spread of the distribution during the 1970s and after 1998 are more symmetric. 

Bringing the zeros into the analysis requires us to stop using logarithms and to 

measure relative dispersion in earnings changes in another way.  We begin by taking two-

year differences in the level (not log) of real earnings.  We use the CPI-U-RS to put 

earnings into real terms.  Again we account for mean effects of year, age, and cohort by 

estimating a separate regression in each year of the change in real earnings on a quadratic 

in age, and then we proceed to study the residualized version of the earnings change.  We 

rescale the residualized real earnings change between years 2−t  and t  into relative 

terms by dividing it by the simple average of the sample means of real earnings in the 

two years.  Initially using the same sample as before, figure 4 plots the quantiles of this 

alternative measure of earnings change.  A comparison to figure 3 shows that, holding the 

sample constant, the two alternative measures show qualitatively similar time patterns. 

Next, using the new measure of earnings change, we repeat the entire procedure 

with an expanded sample that includes zeros and other extreme earnings observations.  

The new sample contains a total of 53,840 observations over our 30 years of data on two-

year differences.  The sample size per year averages 1,795 and ranges from a low of 

1,230 in 1969-1971 to a high of 2,500 in 2000-2002.  Figure 5 plots the quantiles of the 

measured earnings changes for the expanded sample.  Naturally, with outliers added to 

the sample, dispersion is greater than in the previous figures.  Again, however, the 

temporal patterns are greater dispersion in severe recession years and secularly increasing 

dispersion in the 1970s and after 1998.  The most striking difference from the earlier 

figures is that the post-1998 increase in dispersion is even greater.13        

Finally, as a check on our eyeball impressions of our figures, we apply least 

squares to regressions of the earnings volatility time series plotted in the figures on the 

unemployment rate and a piecewise linear time trend.  For figure 1, the volatility variable 

                                                 
13 Dynan, Elmendorf, and Sichel (2008) observe a similar pattern and express a concern that it may be 
driven by an increase in erroneous observations of zero earnings in the PSID.  The post-1998 increase in 
dispersion becomes still more pronounced if we use Dynan, Elmendorf, and Sichel’s measure of relative 
earnings change: ]2/)/[()( 22 −− +− tttt xxxx  where tx  is real earnings in year t . 
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is the estimated standard deviation of the age-adjusted change in log earnings.  For 

figures 3-5, the dispersion variable we use is the difference between the 90th and 10th 

percentiles.  Using tY  to denote each measure of the dispersion of earnings changes 

between years 2−t  and t , we estimate the regression of each tY  on the civilian 

unemployment rates in years t  and 2−t  (to account for business cycle effects) and a 

spline function in time that allows for distinct time trends in three parts of our sample 

period: 1969-1971 through 1979-1981, 1979-1981 through 1990-1992, and 1990-1992 

through 2002-2004.  The results are shown in table 1.  As expected from our visual 

impressions of the figures, the coefficient estimates for the unemployment variables are 

almost always significantly positive, and the estimated time trends are significantly 

positive in the first and third time periods, but not in the second. 

 

IV.  Summary and Discussion 

Our reanalysis of the Panel Study of Income Dynamics has found that, apart from 

business cycle fluctuations, men’s earnings volatility trended upwards during the 1970s, 

but did not show a clear secular trend after that until climbing again after 1998.  These 

patterns are broadly consistent with those that Cameron and Tracy (1998) found in the 

Current Population Survey and that the Congressional Budget Office (2007) found in 

Social Security administrative data. 

We are well aware that our results raise more questions than they answer, and so 

we conclude with several suggestions for further research.  First, we believe that the 

finding that increasing earnings volatility for men has resumed in recent years is 

potentially very important, and we think it should be checked with other data.  In 

particular, despite the inability to follow residential movers in the CPS, a study that 

updates Cameron and Tracy’s analysis beyond 1996 would be valuable.  If the CPS 

results turn out to corroborate the patterns we have observed in the PSID, the much larger 

sample size of the CPS would then enable more finely detailed analyses, such as 

Cameron and Tracy’s disaggregations by age, education, and industry. 

Second, the growing literature on earnings volatility trends should be connected to 

the growing literature on trends in job tenure and turnover (see Farber, 2007, and the 
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references therein).  Further research along the lines of Stevens (2001) that explores the 

earnings implications of changing job stability would illuminate both literatures. 

Third, results in Congressional Budget Office (2007) and Dynan, Elmendorf, and 

Sichel (2008) suggest that, at the same time that earnings volatility has risen for men, it 

has decreased for women, which is not surprising in light of women’s increasingly stable 

attachment to the labor market.  Future research should combine the patterns by gender 

into a more complete picture and should give particular attention to the covariation of 

spouses’ earnings.   

Finally, we wish to reemphasize the point we made at the end of section II – that 

translating measured trends in dispersion of earnings change into conclusions about 

earnings risk will require additional information about whether the observed earnings 

changes were or were not anticipated and whether the affected individuals were or were 

not insured against the earnings changes. 
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Table 1.  Estimated Coefficients (and Standard Errors) for Regressions of Measures of 

Dispersion in Earnings Changes, 1969-1971 to 2002-2004 

 

 (1) 
Standard 

Deviation of 
Change in Log 

Earnings 

(2) 
90-10 

Difference for 
Change in Log 

Earnings 

(3) 
90-10 

Difference for 
Relative 

Change in Real 
Earnings (Zeros 

and Outliers 
Excluded) 

(4) 
90-10 

Difference for 
Relative 

Change in Real 
Earnings (Zeros 

and Outliers 
Included) 

     
Intercept 0.1678 

(0.0341) 
0.3985 

(0.0425) 
0.3905 

(0.0286) 
0.4609 

(0.0466) 
     
Piecewise-
linear time 
trend: 

    

1969-1971 to 
      1979-1981 

0.0059 
(0.0027) 

0.0094 
(0.0034) 

0.0075 
(0.0023) 

0.0088 
(0.0038) 

1979-1981 to 
      1990-1992 

0.0019 
(0.0018) 

-0.0012 
(0.0023) 

-0.0026 
(0.0015) 

-0.0031 
(0.0025) 

1990-1992 to 
      2002-2004 

0.0055 
(0.0019) 

0.0122 
(0.0024) 

0.0100 
(0.0016) 

0.0265 
(0.0027) 

     
Unemployment 
rates: 

    

Year t  0.0152 
(0.0045) 

0.0168 
(0.0057) 

0.0153 
(0.0038) 

0.0222 
(0.0062) 

Year 2−t  0.0122 
(0.0043) 

0.0128 
(0.0053) 

0.0039 
(0.0036) 

0.0118 
(0.0058) 

     
Number of 
time-series 
observations 

30 30 30 30 

1ρ̂  0.5508 0.0816 0.0825 -0.1169 

2ρ̂  0.3668 -0.1358 -0.3476 -0.1036 
     
 

Note:  1ρ̂  and 2ρ̂ , the estimates of the first- and second-order autocorrelations of the 
error term, are calculated from least squares estimation of autoregressions (without 
intercepts) of the residuals.  The regressions to calculate 1ρ̂  stop with the 1994-1996 
observation because, after that, the PSID interviews occur every other year. 
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Figure 1.  Standard Deviation of Age-Adjusted Change in Log Earnings, 1969-1971 to 2002-2004 
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Figure 2.  Standard Deviation of Age-Adjusted Change in Log Earnings with Various Earnings Measures 
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Figure 3.  Quantiles of Age-Adjusted Change in Log Earnings, 1969-1971 to 2002-2004 
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Figure 4.  Quantiles of Relative Age-Adjusted Change in Real Earnings (Zeros and Outliers Excluded), 1969-1971 to 2002-2004 
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Figure 5.  Quantiles of Relative Age-Adjusted Change in Real Earnings (Zeros and Outliers Included), 1969-1971 to 2002-2004 
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