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Abstract

Affine models are very popular in modeling financial time series as they allow for analytical calcu-

lation of prices of financial derivatives like treasury bonds and options. The main property of affine

models is that the conditional cumulant function, defined as the logarithmic of the conditional char-

acteristic function, is affine in the state variable. Consequently, an affine model is Markovian, like

an autoregressive process, which is an empirical limitation. The paper generalizes affine models by

adding in the current conditional cumulant function the past conditional cumulant function. Hence,

generalized affine models are non-Markovian, such as ARMA and GARCH processes, allowing one to

disentangle the short term and long-run dynamics of the process. Importantly, the new model keeps

the tractability of prices of financial derivatives. This paper studies the statistical properties of the new

model, derives its conditional and unconditional moments, as well as the conditional cumulant func-

tion of future aggregated values of the state variable which is critical for pricing financial derivatives.

It derives the analytical formulas of the term structure of interest rates and option prices. Different

estimating methods are discussed (MLE, QML, GMM, and characteristic function based estimation

methods). Three empirical applications developed in companion papers are presented. The first one

based on Feunou (2007) presents a no-arbitrage VARMA term structure model with macroeconomic

variables and shows the empirical importance of the inclusion of the MA component. The second

application based on Feunou and Meddahi (2007a) models jointly the high-frequency realized variance

and the daily asset return and provides the term structure of risk measures such as the Value-at-Risk,

which highlights the powerful use of generalized affine models. The third application based on Feunou,

Christoffersen, Jacobs and Meddahi (2007) uses the model developed in Feunou and Meddahi (2007a)

to price options theoretically and empirically.
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1 Introduction

Affine models are often used to model the short term of interest rates because they lead to

closed form of the bond prices and yields whatever the maturity. In addition, these yields are

linear functions of the state variables, often the short term interest rate when one considers a

one-factor model, which makes the pricing and the statistical inference simple. This approach

has been introduced in continuous time by Vasicek (1977) where the short term interest rate is

assumed to follow a Gaussian autoregressive process of order one and extended by Duffie and

Kan (1997) to more non-negative models. Discrete time versions of affine models are studied

theoretically in Darolles, Gourieroux, and Jasiak (2006) and Gourieroux, Monfort, and Polime-

nis (2002) among others while several papers, including Piazzesi (2005) and Ang and Piazzesi

(2003), used them to characterize the term structure of interest rates and its interaction with

macroeconomic variables; see Piazzesi (2003) for a survey on affine term structure models.

Likewise, several authors used the affine processes for modeling the stochastic volatility of

asset returns and characterized analytically the formulas of option prices; see Heston (1993)

and Duffie, Pan and Singleton (2000) in continuous time and Heston and Nandi (2001) in

discrete time.

A discrete time process xt is called affine when its conditional cumulant function, denoted

ψt(u), and defined as the logarithmic of the moment generating function,1 i.e.,

ψt(u) ≡ log[E[exp(uxt+1) | xτ , τ ≤ t]],

is given by

ψt(u) = ω(u) + α(u)xt. (1.1)

Any autoregressive process of order one, AR(1), with i.i.d. innovations is affine. A consequence

of (1.1) is that an affine process is Markovian, which could be a limitation for modeling some

financial data. It is well known that financial data, like volatility of asset returns, exhibit

serial correlation that the Markov ARCH models of Engle (1982) do not describe well, which

led to the introduction of the GARCH models in Bollerslev (1986). Likewise, we do know that
1Instead of considering the moment generating function, one could use the characteristic function which

exists for any random variable while the moment generating function does not exist for some random variables.

The theory developed in this paper holds for characteristic functions. However, we decided to use the moment

generating function for convenience and due to its familiarity with researchers in financial economics.
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allowing for non-Markovian components in a model, like moving average (MA) components,

allows one to disentangle the short-term and the long-run dynamics of the variable of interest,

which could be important for some financial data like volatility of asset returns and short term

of interest rates (Andersen and Lund (1997)).

Several generalizations of affine models have been introduced in order to include more

memory in the basic model (1.1) and maintaining the tractability of affine models, i.e. by

maintaining closed forms for the yields. Dai and Singleton (2003) and Dai, Singleton and

Yang (2006) assumed that the coefficients that drive the affine model follow a Markov switch-

ing model. The authors show the empirical usefulness of this approach although filtering

techniques are needed to price and estimate the model. Darolles, Gourieroux and Jasiak

(2006) added lags of xt in (1.1), i.e. they proposed an affine model of order p > 1. Monfort

and Pegararo (2007a) successfully applied this approach to the term structure of interest rates,

although one could need several lags leading to the estimation of many parameters. In a dif-

ferent paper, Monfort and Pegoraro (2007b) combined the two approaches describe above, i.e.

they added lags and assumed that some parameters are driven by a Markov switching model.

Again, such a method needs filtering techniques for both pricing and estimating the model.

In this paper, we follow a more traditional approach by including MA component in the

model. The following example highlights our approach. Assume that the process xt is an

ARMA(1,1) given by

xt = a + bxt−1 + εt − cεt−1, εt i.i.d., |b| < 1, |c| < 1,

where the cumulant function of ε is denoted ψε(·). One can show (see Section 2) that

ψt(u) = (ua + (1− c)ψε(u)) + u(b− c)xt + cψt−1(u),

which suggests the following extension of (1.1)

ψt(u) = ω(u) + α(u)xt + βψt−1(u). (1.2)

One could view the new model as an extension of AR models to ARMA ones. Actually, it is

much more than that because Eq. (1.2) implies that any power function of xt is an ARMA

process. This is the case because the conditional cumulant function of xt is an auto-regression.

Our approach has several advantages. It involves fewer parameters than the approach in

Darolles, Gourieroux and Jasiak (2006). The pricing and estimation procedures of the model

are simpler than those of a model with Markov switching factors like Dai, Singleton and Yang
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(2006). It also allows one to disentangle the short term dynamics of xt from its long-run ones.

When one considers an affine model (1.1), the function α(u) captures both short and long-run

dynamics, which could be restrictive. We do know from the volatility literature that GARCH

models allow for more persistence than ARCH models and that this is empirically important.

Our empirical examples highlight this advantage.

Several dynamic term structure models with macroeconomic variables introduce latent

variables in the affine state variable; see Ang and Piazzesi (2003). Such an approach is often

used because current values of the macroeconomic variables do not fully explain the term

structure of interest. However, it is always hard to understand what exactly these latent

variables are. It is well known from the time series literature that AR models with latent vari-

ables, called structural models, imply reduced form ARMA representations for the observable

variables. Consequently, one could interpret the new model as a reduced from of affine models

with latent factors.

We introduce a slightly more general model than (1.2) by allowing the coefficient in front

of ψt−1(u) to be a function of u, i.e., we study the model defined by

ψt(u) = ω(u) + α(u)xt + β(u)ψt−1(u). (1.3)

This extension is theoretically important because Eq. (1.2) implies that the vector (xt,mt),

where mt = E[xt+1 | xτ , τ ≤ t], is a bivariate affine model while it is not the case for the model

defined by Eq. (1.3). Likewise, we allowed for several lags of xt and ψt−1(u) in Eq. (1.3), i.e.,

we consider ARMA(p,q) type models.

The paper has several contributions. First, we study the statistical properties of the model

and derive several conditional and unconditional moments and cumulants. We also derive

the conditional cumulant function of the vector (xt+1, xt+2, ..., xt+h). This function is critical

when one wants to derive analytical formulas of yields and option prices. We then derive the

Treasury yields when assuming that short term of interest rate is given by (1.3) under the risk

neutral measure or the physical measure (the latter needs the specification of the price of the

risk). Fiannly, we derive the formulas of options prices when assuming a stochastic volatility

where the dynamics of the stochastic variance is given by Eq. (1.3).

One can use several methods to estimate the model. One could either characterize the

likelihood of the model as in our empirical analysis, or follow Singleton (2001) by using the

characteristic function of the process xt and the instrumental variable approach of Hansen

(1982). Actually, an efficient use of the whole characteristic function leads to an efficient

estimation of the parameters comparable to the maximum likelihood estimators; see Carrasco
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and Florens (2001, 2006) and Carrasco, Chernov, Florens, and Ghysels (2006). It would also

be possible to use the conditional mean and variance of the process xt combined with the

Gaussian quasi-maximum likelihood approach to consistently estimate the parameters.

Three empirical applications developed in companion papers are presented. The first one

based on Feunou (2007) presents a no-arbitrage VARMA term structure model with macroe-

conomic variables and shows the empirical importance of the inclusion of the MA compo-

nent. The second application based on Feunou and Meddahi (2007a) models jointly the high-

frequency realized variance and the daily asset return and provides the term structure of

risk measures such as the Value-at-Risk, and highlights the powerful use of generalized affine

models. The third application based on Feunou, Christoffersen, Jacobs and Meddahi (2007)

uses the model developed in Feunou and Meddahi (2007a) to price options theoretically and

empirically.

The rest of the paper is organized as follows. Section 2 provides the simple generalized

affine model and provides its statistical properties. Section 3 provides the analytical formulas

of the term structure of interest rates when the short term of interest rates is a generalized

affine process under the physical or the risk-neutral measure. Likewise, section 3 provides the

formulas of the option prices when the volatility of the stock returns is a generalized affine

process under the physical or the risk-neutral measure. Section 4 provides three empirical

examples while Section 5 concludes. Appendix A provides an example where the function β(·)
is not constant. The proofs of Sections 2 and 3 are provided in Appendix B, while Appendix

C provides the generalized affine model of higher order.

2 The Simple Generalized Affine Model

This section introduces and studies the simple model defined in the previous section.

Definition: Generalized Affine Process. A process xt is called a generalized affine process

of order (1,1) when the conditional cumulant function of xt+1 given its lagged values xt, xt−1, ...,

is characterized by

ψt(u) ≡ log E[exp(uxt+1) | xτ , τ ≤ t] = ω(u) + α(u)xt + β(u)ψt−1(u). (2.1)
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2.1 Examples

Several well know examples in the time series and financial literatures are generalized affine.

Obviously, affine models correspond to the case β(u) = 0. Other examples are given below.

2.1.1 Linear and Non-Linear ARMA(1,1) Models

Assume that xt follows a linear ARMA(1,1) where the innovation process is i.i.d., i.e.

xt = a + bxt−1 + εt − cεt−1, εt i.i.d., |b| < 1, |c| < 1,

where the cumulant function of ε is denoted ψε(·). Denote the conditional mean of xt+1 by

mt, i.e.,

mt = a + bxt − cεt.

Observe that

mt = a + (b− c)xt + cmt−1.

Hence,

ψt(u) = log Et[exp(uxt+1)] = umt + ψε(u) = u(a + (b− c)xt) + ψε(u) + ucmt−1

= u(a + (b− c)xt) + ψε(u) + c(ψt−1(u)− ψε(u))

= (ua + (1− c)ψε(u)) + u(b− c)xt + cψt−1(u),

i.e. any ARMA(1,1) process with i.i.d. innovations defined in (2.1.1) is a generalized affine

process given in (2.1) where

ω(u) = ua + (1− c)ψε(u), α(u) = u(b− c), β(u) = c.

Let us now assume that the conditional mean of xt is non-linear but still has an MA(1)

structure, i.e.

xt = f(xt−1) + εt − cεt−1, εt i.i.d., |c| < 1.

The condition mean of xt+1 denoted mt is given by

mt = f(xt)− cεt = f(xt)− cxt + cmt−1.

Hence,

ψt(u) = log Et[exp(uxt+1)] = umt + ψε(u) = u(f(xt)− cxt) + ψε(u) + ucmt−1

= (1− c)ψε(u) + u(f(xt)− cxt) + cψt−1(u).
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Consequently, a non-linear ARMA(1) process with i.i.d. innovations is not a generalized affine

process but belongs to the family defined by

ψt(u) = ω(u) + α(u, xt) + β(u)ψt−1(u). (2.2)

This family is studied in Feunou and Meddahi (2007b) and called generalized non-affine models.

2.1.2 GARCH(1,1) Type Models

We start the analysis by considering the model introduced in Bollerslev (1986), i.e.,

xt = µ + εt = µ +
√

ht−1zt, zt i.i.d. N (0, 1), ht = ω + αε2
t + βht−1,

with α ≥ 0, β ≥ 0, α + β < 1. By doing the same calculations as in the ARMA example, one

gets

ψt(u) =
(

(1− β)µu + ω
u2

2

)
+

1
2
αu2(xt − µ)2 + βψt−1(u). (2.3)

In other words, the GARCH(1,1) is not a generalized affine process as (2.1) but a generalized

non-affine process given by (2.2).

It is well known that the GARCH(1,1) does not lead to closed forms of option prices.

Heston and Nandi (2000) proposed a different specification for ht that solved the problem

where ht is given by2

ht = ω + α(zt − γ
√

ht−1)2 + βht−1.

Likewise, one can show that the conditional cumulant function of xt+1 is given by

ψt(u) =
(

uµ(1− β − αγ2) +
u2

2
(ω + α

(xt − µ)2

ht−1
− 2γ(xt − µ))

)
+ (β + αγ2)ψt−1(u). (2.4)

Consequently, the Heston and Nandi (2000) model is a generalized non-linear model defined

by (2.2) where the function α(xt, u) depends on xt and ht−1, i.e., the whole past of xt.

Eq. (2.4) looks more non-linear than Eq. (2.3), which is puzzling given that the Heston and

Nandi (2000) model leads to analytical formulas for option prices while the Bollerslev (1986)

does not. As already mentioned, affine models lead to closed form of prices of derivatives.

It turns out that the variance process ht is affine when one considers the Heston and Nandi

(2000) while it is not the case for the traditional GARCH model. More precisely, one has

Heston & Nandi : log E[exp(uht+1) | hτ , τ ≤ t] = uω + ψχ2(1)(αu) + ((β + αγ2)u− 2γ2u2)ht

Bollerslev : log E[exp(uht+1) | hτ , τ ≤ t] = uω + ψχ2(1)(αuht) + βuht,

2There is an additional coefficient γ that appears in (2.1.2) which captures the leverage effect. One could

easily add such term in Bollerslev’s GARCH equation.
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where ψχ2(1)(·) denotes the cumulant function of the χ2(1) distribution. We will consider

again the Heston and Nandi (2000) model when we will derive the option pricing formulas of

generalized affine models.

2.1.3 ACD(1,1) type models

Engle and Russell (1997) introduced the autoregressive conditional duration (ACD) model

where the duration xi between two consecutive trades follows the process

xi = ηi−1 vi, vi i.i.d., vi > 0, E[vi] = 1, ηi = ω + αxi + βηi−1.

If one assume that vi follows an exponential distribution whose density function is fv(v) =

exp(−v), then one gets

ψi = Ei[exp(uxi+1)] =
1

1− uηi
, u <

1
ηi

,

which is not a generalized affine model. However, it is the case for the logarithmic duration

model of Bauwens and Giot (2000) defined by

xi = exp(ηi−1) vi, vi i.i.d., vi > 0, E[vi] = 1, log(ηi) = ω + α log(xi) + βηi−1.

For this model, log(xi) is an ARMA(1,1) and therefore a generalized affine process.

2.1.4 The Function β(·) is Varying

It is worth noting that in all the previous examples, the function β(u) given in (2.1) does not

depend on u. We provide in Appendix A an example where β(·) is varying.

2.2 Existence of Generalized Affine Models

Generalized affine models are defined recursively by their conditional cumulant function in

(2.1). Therefore, one needs to show that the function ψt(·) in (2.1) is a proper cumulant

function. The rest of this subsection focuses on the model where β(·) is constant, the other

model being studied case by case as in the previous subsection.

The first important property of cumulant functions is that the sum of cumulant functions

is a cumulant function. Consequently, when ω(u), α(u)xt, and β(u)ψt−1(u) are cumulant

functions, the function ψt(u) defined in (2.1) is a cumulant function. Observe that often, as in
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our empirical examples, ω(u)+α(u)xt is the cumulant function of an affine model. Therefore,

the generalized affine model is well defined when β(u)ψt−1(u) is a cumulant function.

The second important property of cumulant functions is related to infinitely divisible ran-

dom variables. A random variable z whose cumulant function denoted ψz(u), is called infinitely

divisible when for any positive number c, cψz(u) is a cumulant function. Observe that a con-

sequence of this definition is that cψz(u) is the cumulant function of an infinitely divisible

random variable. Such variables appear in central limit theorems; examples of infinitely di-

visible random variables include normal, Poisson, and Gamma random variables. The first

version of Darolles et al. (2006) provided sufficient conditions such that an affine process is

infinitely divisible. In particular, popular affine models in finance, i.e. the Gaussian and the

square root processes are infinitely divisible. This second property of cumulant functions is

quite important for our purpose. By expanding recursively ψt(u) given in (2.1), one gets

ψt(u) =
t−1∑

i=0

βi(ω(u) + α(u)xt−i) + βtψ0(u)

where ψ0(u) is the unconditional cumulant function of x0. Consequently, when β > 0 and

ω(u) + α(u)xt−i is the cumulant function of an indivisible random variable (like some affine

models derived in Darolles et al. (2006)), βi(ω(u) + α(u)xt−i) is a cumulant function of an

infinitely divisible random variable. The definition of infinitely divisible random variables im-

plies that the sum of infinitely divisible random variables is also an infinitely divisible random

variable. Therefore,
∑t

i=0 βi(ω(u) + α(u)xt−i) is the cumulant function of an infinitely divis-

ible random variable. Consequently, ψt(u) is the cumulant function of an infinitely divisible

random variable when one assumes that this is the case for ψ0(u). In other words, sufficient

conditions to guarantee that ψt(u) defined in (2.1) is a proper cumulant function are: β ≥ 0,

ω(u) + α(u)(x) and ψ0(u) are cumulant functions of indivisible random variables.

A question not studied here is the existence of a stationary solution of (2.1). As usual,

such a question is very difficult for discrete time non-linear models like GARCH models and

it is left for future research. In the sequel of the paper, we assume such existence.

2.3 Cumulant and Moment Structures

In this section ww derive some moments and cumulants of the process.
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2.3.1 Conditional Cumulants and Moments

Given that the process xt is defined by its conditional cumulant function, it is more convenient

to derive the conditional cumulant of xt+1 and then the conditional moments. The conditional

cumulant of xt+1 of order n denoted κn,t, is given by

κn,t = ψ
(n)
t (0),

where f (n)(·) denotes the n-th derivative function of a function f(·). We will also use the

notation

κn,t ≡ (κ1,t, κ2,t, ..., κn,t)>. (2.5)

Proposition 2.1 Let xt be a generalized affine process defined by (2.1). Then,

κn,t = ω(n)(0) + α(n)(0)xt +
n−1∑

j=0

(
n

j

)
β(j)(0)κn−j,t−1 (2.6)

and

κn,t = ωn + αnxt + βnκn,t−1 (2.7)

where

ωn =




ω(1)(0)

ω(2)(0)

:

:

ω(n)(0)




, αn =




α(1)(0)

α(2)(0)

:

:

α(n)(0)




, (2.8)

and

βn =




β (0) 0 0 ... 0(
2
1

)
β(1) (0) β (0) 0 ... 0

: : : ... :

: : : ... :(
n

n−1

)
β(n−1) (0)

(
n

n−2

)
β(n−2) (0) ...

(
n
1

)
β(1) (0) β (0)




(2.9)

Consequently, the vector κn,t is a VAR(1).

An important implication of the proposition is that any conditional cumulant κn,t is a linear

combination of xt and its lagged values. This property is a characteristic of affine type models.

One has different forms when one considers generalized non-affine models defined in (2.2).

Another consequence of the VAR representation is that when β(·) is not constant, a cumulant
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admits an ARMA representation of higher order. However, when β(·) is constant, one has a

GARCH(1,1) type equation for κn,t

κn,t = ω(n)(0) + α(n)(0)xt + βκn,t−1.

We will show below that xt admits an ARMA(1,1) representation. Hence, kn,t admits an

ARMA(2,1) representation.

There is a mapping between the cumulants and the moments of a random variable, which

allows one to derive the conditional moments of xt+1 from its conditional cumulants. More

precisely, by denoting the conditional moments by mn,t, i.e.,

mn,t = E[xn
t+1 | xτ , τ ≤ t],

one has

m1,t = κ1,t

m2,t = κ2,t + κ2
1,t

m3,t = κ3,t + 3κ2,tκ1,t + κ3
1,t

m4,t = κ4,t + 4κ3,tκ1,t + 3κ2
2,t + 6κ2,tκ

2
1,t + κ4

1,t

m5,t = κ5,t + 5κ4,tκ1,t + 10κ3,tκ2,t + 10κ3,tκ
2
1,t + 15κ2

2,tκ1,t + 10κ2,tκ
3
1,t + κ5

1,t

m6,t = κ6,t + 6κ5,tκ1,t + 15κ4,tκ2,t + 15κ4,tκ
2
1,t + 10κ2

3,t + 60κ3,tκ2,tκ1,t

+ 20κ3,tκ
3
1,t + 15κ3

2,t + 45κ2
2,tκ

2
1,t + 15κ2,tκ

4
1,t + κ6

1,t.

Therefore, by using the results of Proposition 2.1, one gets the conditional moments of xt+1.

2.3.2 Unconditional first and second moments

As in affine models, we can compute unconditional moments which are useful to understand

the dynamics of the model and to estimate it. We start by focusing on the covariance struc-

ture of the process xt which will allow us to show that xt is an ARMA(1,1) (with possibly

heteroskedastic innovations).

Proposition 2.2 Let xt be a generalized affine process of order (1,1). Then,

E [xt] =
ω(1) (u)

1− (
α(1) (u) + β (0)

)

V ar (xt) =

(
1 +

α(1) (0)2

1− (
α(1) (0) + β (0)

)2

)
×

(
α(2) (0) + 2β(1) (0)

1− β (0)
E [xt] +

ω(2) (0)
1− β (0)

)
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E (xtxt+h) = ω(1) (0)E [xt] +
(
α(1) (0) + β (0)

)
E (xtxt+h−1) .

Corollary 1

Cov (xt, xt+h) =
(
α(1) (0) + β (0)

)h−1
cov (xt, xt+1) .

Hence, xt is an ARMA(1,1) whose autoregressive root equals α(1)(0) + β(0). In addition, one

has:

Proposition 2.3

corr (xt, xt+1) =
cov (xt, xt+1)

V ar (xt)
= α(1) (0)


1 +

α(1) (0)β (0)

1−
(
β (0)2 + 2α(1) (0)β (0)

)

 .

2.3.3 Unconditional moments of cumulants

Given that we know all the dynamics of the generalized affine process, it is of interest to

study the dynamics of the higher moments like cov(xn
t , xm

t+h) which will be useful for esti-

mation purpose. Since cov(xn
t , xm

t+h) is related to cov(κn,t, κm,t+h), we need first to compute

unconditional first and second moments of cumulant.

By using the vector of cumulant κn,t given by equation (2.7), we deduce the following uncon-

ditional mean of cumulant.

E [κn,t] ≡ κn =
(
I − βn

)−1 (ωn + E (xt) αn) .

Hence, one has

Proposition 2.4

E [κ1,tκn,t] =
(
I − βn

)−1
[
E (xt) ωn +

(
cov (Xt, Xt+1)− E (xt)

2
)

αn

]

cov (κn,t κ1,t) = V (xt)
(
I − βn

)−1
αn.

Consequently, one gets

Proposition 2.5

E [κ1,t+hκn,t] =
(
α(1) (0) + β (0)

)h
E [κ1,tκn,t] +

[
1−

(
α(1) (0) + β (0)

)h
]

E (xt) E [κn,t]

cov (κn,t κ1,t+h) =
(
α(1) (0) + β (0)

)h
cov (κn,t κ1,t) .
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One needs to characterize the variance matrix of the vector of cumulants κn,t, which is the

goal of the following proposition.

Proposition 2.6 V (κn,t) is the solution to the following quaternion Matrix equation

V (κn,t)− βnV (κn,t) β
>
n = θn

where

θn = V (xt)
[
αnα>n + αnα>n

(
I − β

>
n

)−1
β
>
n + βn

(
I − βn

)−1
αnα>n

]
.

By using the formula

vec (AXB) = (Bᵀ ⊗A) vec (X) ,

one gets the unconditional variance-covariance matrix of of κn,t:

vec [V (κn,t)] =
(
I − βn ⊗ βn

)−1
vec (θn) .

Consequently, one gets the covariance matrix between κn,t and κn,t+h:

Proposition 2.7

Cov [κn,t , κn,t+h] = Cov [κn,t , κn,t+h−1]β
>
n + cov [κn,t κ1,t+h−1] α>n

= Cov [κn,t , κn,t+h−1]β
>
n + V (xt)

(
α(1) (0) + β (0)

)h−1 (
I − βn

)−1
αnα>n

= V (κn,t)
(
β
>
n

)h

+ V (xt)
(
α(1) (0) + β (0)

)h−1 (
I − βn

)−1
αnα>n

(
I − β

>
n

)−1
[
I −

(
β
>
n

)h
]

.

2.3.4 Higher order covariance

In this subsection, we use the results of the previous subsection to characterize the covariance

structure of the third and fourth moments. We begin by deriving the third moments.

Proposition 2.8 One has

Cov
(
x2

t , xt+h

)
=

(
α(1) (0) + β (0)

)h
Cov

(
x2

t , xt

)
.

12



We need to compute Cov[x2
t , xt]. For this purpose, we will use E

[
κ3

1,t

]
who is given by

E
[
κ3

1,t

](
1−

(
α(1) (0) + β (0)

)3
)

=
[
ω(1) (0)

]3
+

[
α(1) (0)

]3
E [κ3,t]

+3
[
α(1) (0)

]2 (
β (0) + α(1) (0)

)
E [κ1,tκ2,t]

+3
[
ω(1) (0)

]2 (
β (0) + α(1) (0)

)
E [xt]

+3ω(1) (0) β (0)2 E
(
κ2

1,t

)
+ 3ω(1) (0)

[
α(1) (0)

]2
E

[
x2

t

]
.

All the terms in the right hand side have already been computed in section 2.3.3. Consequently,

one can deduce E
[
x3

t

]
and cov

(
x2

t , xt

)
from

E
[
x3

t

]
= E [κ3,t] + 3E [κ1,tκ2,t] + E

[
κ3

1,t

]
and cov

(
x2

t , xt

)
= E

[
x3

t

]
+ E

[
x2

t

]
E [xt]

Likewise, cov
(
x2

t , κ2,t+h

)
and cov

(
x2

t , κ2
1,t+h

)
can be computed recursively as follows:

cov
(
x2

t , κ2,t+h

)
= β (0) cov

(
x2

t , κ2,t+h−1

)
+

(
α(2) (0) + 2β(1) (0)

)
Cov

(
x2

t , xt+h

)
,

cov
(
x2

t , κ2
1,t+h

)
=

(
β (0) + α(1) (0)

)2
cov

(
x2

t , κ2
1,t+h−1

)
+

[
α(1) (0)

]2
cov

(
x2

t , κ2,t+h−1

)

+2ω(1) (0)
(
β (0) + α(1) (0)

)
Cov

(
x2

t , xt+h

)
.

We then get cov
(
x2

t , x2
t+h

)
from

cov
(
x2

t , x2
t+h

)
= cov

(
x2

t , κ2
1,t+h−1

)
+ cov

(
x2

t , κ2,t+h−1

)
.

2.4 Cumulant Function of Future Aggregated Returns

An important formula used in the analytical calculation of the term structure of interest rates

and option prices is the conditional distribution function of
∑h

i=1 aixt+i for given real numbers

ai. Affine models allow one to derive the conditional cumulant function of (xt+1, xt+2, ..., xt+h)

and consequently the one of
∑n

i=1 aixt+i. It turns out that this is the case for generalized affine

models.

Proposition 2.9 The conditional cumulant function of (xt+1, xt+2, ..., xt+h) is given by

log Et

[
exp

(
h∑

i=1

uixt+i

)]
=

h∑

k=1

{
β (dk)

k−1 Ψt (dk) +
1− β (dk)

k−1

1− β (dk)
ω (dk)

}
(2.10)
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where the sequence (dk)1≤k≤h is defined as follows:

dk = uk +
h−1∑

j=k

β (dj+1)
j−k α (dj+1) for k ≤ h− 1, dh = uh. (2.11)

We will often use (2.10) in the next section when we derive yields and option prices.

3 Analytical Formulas of Prices of Financial Derivatives

This section analytically characterizes the yields and option prices when one assumes a gen-

eralized affine model for the interest rate and the stochastic volatility respectively. For each

of them, we follow two approaches. First assume the affine model under the physical measure

(P-measure) and specify the price of risk and then derive the price of the financial derivatives

(bonds or options). The second approach consists on specifying the affine model under the

risk neutral measure (Q-measure) and then derive the prices of the financial derivatives. We

start the analysis by studying the term structure model

3.1 The Term Structure of Interest Rates

3.1.1 Generalized Affine Model Under the P-Measure

We assume that under the P-measure, the short term of interest rate denoted rt follows a

generalized affine process given in (2.1), i.e.,

log EP
t [exp(urt+1)] ≡ ψP

t (u) = ωP (u) + αP (u)rt + βP (u)ψP
t−1(u).

When βP (u) = 0 one gets affine models like those of Vasicek (1977) and Duffie and Kan (1996)

who derived the term structure of interest rates.

In order to derive the dynamics of rt under the Q-measure and the yield curve, one needs

to specify the stochastic discount factor denoted here Mt,t+1 or the price of risk. We follow the

general approach of Gourieroux and Monfort (2007) who proposed the following formulation:

Mt,t+1 = exp(γrt+1 + θt). (3.1)

Given the restriction

exp(−rt) = EP
t [Mt,t+1], (3.2)
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one gets

θt = −rt − ψt(γ) and Mt,t+1 = exp(γrt+1 − rt − ψt(γ)). (3.3)

In the sequel, we define B(t, h) and rt,h as

B(t, h) = EP
t

[
h∏

i=1

Mt+i−1,t+i

]
, rt,h = − log(B(t, h))

h
. (3.4)

We are now able to derive the term structure of interest rates, i.e., the formula of rt,h when h

varies.

Proposition 3.1

rt,t+h =
1− βP (γ)h

1− βP (γ)
ΨP

t (γ)
h

+
1
h

ωP (γ)
1− βP (γ)

(
h− 1− βP (γ)h

1− βP (γ)

)

+
rt

h
−

h∑

k=1

βP (dk)
k−1 ΨP

t (dk)
h

−
h∑

k=1

1− βP (dk)
k−1

1− βP (dk)
ωP (dk)

h

with

dk = uk +
h−1∑

j=k

βP (dj+1)
j−k αP (dj+1) for k ≤ h− 1, dh = uh

where

u1 = γ − αP (γ)
1− βP (γ)h−1

1− βP (γ)
, uh = γ, and uj = γ − 1− αP (γ)

1− βP (γ)h−j

1− βP (γ)
for 1 < j < h.

A major difference of the yield curve between affine and generalized affine models is the

introduction of terms like ψP
t (γ) and ψP

t (dk). These terms imply that the whole past of rt

influences the term structure of interest rates given that ψP
t (u) is a function of rt and its past.

Another question of interest is the characterization of the dynamics of rt under the Q-

measure. We denote ψQ
t (u) the conditional cumulant function of rt+1 under the Q-measure,

i.e.,

ψQ
t (u) ≡ log EQ

t [exp(urt+1)]. (3.5)

Proposition 3.2 Dynamics of rt under the Q-measure. One has

ψQ
t (u) = ψP

t (u + γ)− ψP
t (γ). (3.6)

Hence,

ψQ
t (u) = ωQ(u) + αQ(u)rt + βQ(u)ψQ

t−1(u) + [β(u + γ)− β(u)]ψt(u), (3.7)
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where

ωQ(u) = ωP (u + γ)− ωP (γ), αQ(u) = αP (u + γ)− αP (γ), βQ(u) = βP (u + γ). (3.8)

Eq. (3.6) is model free, i.e. it does not depend on our generalized affine specification. In

particular, the same equation appears in affine models; see Gourieroux and Monfort (2007)

and Monfort and Pegoraro (2006a). An additional term appears in (3.7) which vanishes when

β(·) is constant, as in our empirical examples. When this term does not vanish, the short

term of interest rate is not a generalized affine under the Q-measure. However, the following

proposition characterizes the conditional cumulant of (rt+1, ψ
P
t+1(γ)) which will allow us to

understand the dynamics of rt+1 under the Q-measure. In the sequel, ψQ
r,ψ(γ),t(u, v) denotes

the conditional cumulant function of (rt+1, ψ
P
t+1(γ)) under the Q-measure.

Proposition 3.3

ψQ
r,ψ(γ),t (u, v) = ωQ

1 (u, v) +
(
αQ

1 (u, v) rt + αQ
2 (u, v)ψp

t (γ)
)

+ βQ
1 (u, v) ψQ

r,ψ(γ),t−1 (u, v)

− αQ
2 (u, v)βQ

1 (u, v)ψQ
t−1(γ)

(3.9)

where

ωQ
1 (u, v) = vωP (γ)

[
1− βP

(
u + vαP (γ) + γ

)]
+ ωP

(
u + vαP (γ) + γ

)

αQ
1 (u, v) = αP

(
u + vαP (γ) + γ

)
, αQ

2 (u, v) = vβP (γ)− 1

βQ
1 (u, v) = βP

(
u + vαP (γ) + γ

)
.

While the definition of generalized affine models (2.1) is given for univariate processes and of

order (1,1), the extensions to multivariate and higher order is not very difficult (see Appendix

C); Eq. (3.9) means that the bivariate vector (rt+1, ψ
P
t+1(γ)) is a generalized affine process

of order (2,1). Consequently, one can characterize formulas of financial derivatives, including

yields, by using the generalized affine dynamics of (rt+1, ψ
P
t+1(γ)) under the Q-measure.

3.1.2 Generalized Affine Model Under the Q-Measure

We now assume that the short term of interest rate rt follows a generalized affine process given

in (2.1) under the Q-measure, i.e.

log EQ
t [exp(urt+1)] ≡ ψQ

t (u) = ωQ(u) + αQ(u)rt + βQ(u)ψQ
t−1(u).

The following proposition provides the formula of the yield curve.
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Proposition 3.4 The yield at horizon h is

rt,t+h =
rt

h
− 1

h

h−1∑

k=1

{
βQ (dk)

k−1 ΨQ
t (dk) +

1− βQ (dk)
k−1

1− βQ (dk)
ωQ (dk)

}
(3.10)

where

dk = −1 +
h−2∑

j=k

βQ (dj+1)
j−k αQ (dj+1) for k ≤ h− 2, dh−1 = −1. (3.11)

On could also characterize the dynamics of rt under the P-measure if one assumes a stochastic

discount factor. We assume again that the stochastic discount factor is given by3 (3.1). Hence,

one gets

ψp
t (u) = −rt − θψQ

t (u− γ)− ψQ
t (−γ),

which leads to

ψp
t (u) = ψQ

t (u− γ)− ψQ
t (−γ). (3.12)

Again, this equation is model free and appears in affine models (Gourieroux and Monfort

(2007), Monfort and Pegoraro (2006a)). Likewise, rt+1 is not a generalized affine process

under the P-measure. However, the vector (rt+1, ψt+1(−γ)) is a generalized affine process

of order (2,1) as shown in the following proposition. In the sequel, ψP
r,ψ(−γ),t denotes the

conditional cumulant function of (rt+1, ψt+1(−γ)) under the P-measure:

Proposition 3.5

ψP
r,ψ(−γ),t (u, v) = ωP

1 (u, v) +
(
αP

1 (u, v) rt + αP
2 (u, v) ψp

t (−γ)
)

+ βP
1 (u, v) ψQ

r,ψ(−γ),t−1 (u, v)

− αQ
2 (u, v)βP

1 (u, v)ψP
t−1(−γ)

(3.13)

where

ωP
1 (u, v) = vωQ (−γ)

[
1− βQ

(
u + vαQ (−γ)− γ

)]
+ ωQ

(
u + vαQ (−γ)− γ

)

αP
1 (u, v) = αQ

(
u + vαQ (−γ)− γ

)
, αP

2 (u, v) = vβQ (−γ)− 1

βP
1 (u, v) = βQ

(
u + vαQ (−γ)− γ

)
.

3Observe that when one specifies the dynamics of rt under the Q-measure as a generalized affine process, one

could allow γ in (3.1) to be time-varying and adapted to the information available at time t. A consequence is

that the short term of interest rate will not be a generalized affine process under the P-measure; see Gourieroux

and Monfort (2007) for the same discussion about affine models.
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3.2 Option Pricing

We now consider models of stock returns where we assume that the conditional variance of the

returns is time-varying and is generalized affine. In what follows rt denotes the log-returns of

the stock price, i.e.

rt+1 = ln
(

St+1

St

)
.

The key approach behind the analytical calculations of Heston (1993), Duffie, Pan, and Sin-

gleton (2000), and Heston and Nandi (2000) is the possibility to write the joint process (rt, ht)

as an affine process, where ht+1 is the conditional variance of rt+1 given an information set

that contains rt and its lagged values and possibly another variable, latent or not, like in

stochastic volatility models. In what follows, we will allow for both cases. We will write the

joint model of (rt+1, ht+1). The variable ht+1 could be the conditional variance of rt+2 given

{rτ , hτ , τ ≤ t} (including GARCH type models). The variable ht+1 could be an observable

variable like in our empirical example where it equals the high frequency realized volatility. In

the rest of this section the information set It is the sigma algebra generated by {rτ , hτ , τ ≤ t}.
The conditional expectation operator E[· | It] will be denoted Et[·].

3.2.1 Generalized Affine process under the P-Measure

We denote the conditional cumulant function of (rt+1, ht+1) under the P measure by ψP
t (u, v):

ψP
t (u, v) = log EP

t [exp(urt+1 + vht+1)] = ωP (u, v) + αP (u, v)ht + βP (u, v)ψP
t−1(u, v).

When one assumes that ht is exactly the conditional variance of rt+1, one needs to impose the

following restrictions on the cumulant function in order to guarantee this assumption:

∂2ωP

∂u2
(0, 0) = 0,

∂2αP

∂u2
(0, 0) = 1,

∂2βP

∂u2
(0, 0) = 0 (3.14)

which implies
∂2ψt

∂u2
(0, 0) = V arP

t [rt+1] = ht.

We denote by r the short term interest rate supposed constant for simplicity. We consider the

following stochastic discount factor

Mt,t+1 = exp(γrt+1 + λht+1 + θt). (3.15)

Observe that both Heston and Nandi (2000) and Christoffersen et al. (2006) assumed that

λ = 0. There is no theoretical foundation for such assumption other than simplicity. In other

words, we allow the volatility to be priced.
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In addition, one needs to impose restrictions in order to guarantee that Mt,t+1 is a stochastic

discount factor, which implies that prices under the Q-measure are martingales. This is the

purpose of the following proposition.

Proposition 3.6 The parameters γ and λ are restricted by the following system of equations

ω (1 + γ, λ)− ω (γ, λ) = r (1− β (γ, λ))

α (1 + γ, λ) = α (γ, λ)

β (1 + γ, λ) = β (γ, λ) .

Observe that when β(·) is a constant function, the third equation in the previous system holds,

which leads to a fully identified system.

We will now characterize the dynamics of (rt+1, ht+1) under the Q-measure by deriving its

conditional cumulant function denoted ψQ
t (u, v).

Proposition 3.7 We have

ΨQ
t (u, v) = ΨP

t (u + γ, v + λ)−ΨP
t (γ, λ) (3.16)

and

ΨQ
t (u, v) = (ωp(u + γ, v + λ)− ωp(γ, λ))

+ (αp(u + γ, v + λ)− αp(γ, λ))ht + β(u + γ, v + λ)ΨQ
t−1 (u, v)

+ (β(u + γ, v + λ)− β(γ, λ))ψt−1(γ, λ).

(3.17)

Several remarks are in order. When one assumes that ht is the conditional variance of

rt+1 under the P-measure, i.e. under (3.14), Eq. (3.17) implies that ht is also the conditional

variance of rt+1 under the Q measure. In other words, one keeps (3.17) under the Q-measure.

In addition, as for the term structure of interest rates, an additional term appears in (3.17),

implying that the process (rt+1, ht+1) is not generalized affine process under the Q-measure.

Likewise, this additional term vanishes when the function β(·) is constant. Again, one can still

prove that a particular vector is a generalized affine model of higher order, which will allow us

to derive option prices. More precisely, one can show that the vector (rt+1, ht+1, ψt+1(γ, λ))

is a generalized affine process of order.

We now provide the formula of the option prices.
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Proposition 3.8 The price at time t of a European call option with payoff (St+h −X)+ at

time t + h is given by

Ct = exp(−rh)StC1,t − exp(−rh)XC2,t (3.18)

where

C1,t =
exp (rh)

2
+

∫ +∞

0

1
πu

Im

[
exp

(
ΨQ

t,t+h (1 + iu)− iu ln
(

X

St

))]
du

C2,t =
1
2

+
∫ +∞

0

1
πu

Im

[
exp

(
−iu ln

(
X

St

)
+ ΨQ

t,t+h (iu)
)]

du

and

ΨQ
t,t+h (u) = −Ψt (γ, λ)

1− β (γ, λ)h

1− β (γ, λ)
− ω (γ, λ)

1− β (γ, λ)

[
h− 1− β (γ, λ)h

1− β (γ, λ)

]

+
h∑

k=1

{
β (dk)

k−1 Ψt (dk) +
1− β (dk)

k−1

1− β (dk)
α (dk)

}

with

dk = (u + uk, vk) +
h−1∑

j=k

β (dj+1)
j−k (0, α (dj+1)) for k ≤ h− 1 (3.19)

dh = (u + uh, vh)

and

uh = γ, vh = λ

uj = γ − α (γ, λ)
1− β (γ, λ)h−j

1− β (γ, λ)
for 1 ≤ j < h

vj = λ− α (γ, λ)
1− β (γ, λ)h−j

1− β (γ, λ)
for 1 ≤ j < h.

This proposition uses Fourier transforms, which is a traditional approach in affine models. It is

important to notice that, for this purpose, we had to use the logarithmic of the characteristic

function instead of the logarithmic of the moment generating function. A simple modification

of the notation is sufficient to make this change.

3.3 Generalized Affine process under the Q-Measure

This subsection specifies the dynamics of (rt+1, ht+1) under the Q-measure, ΨQ
t (u, v), and

derives the option prices. We assume that

ΨQ
t+1 (u, v) = ω (u, v) + α (u, v) ht+1 + β (u, v)ΨQ

t (u, v) . (3.20)
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A well defined risk-neutral distribution for log-returns must satisfy

exp (r) = EQ [exp (rt+1) |It]

where r is the risk-free rate. Thus ΨQ
t (1, 0) must satisfy

ΨQ
t (1, 0) = r.

Proposition 3.9 Eq. (3.20) is a valid risk-neutral model if and only if

ω (1, 0)
1− β (1, 0)

= r (3.21)

α (1, 0) = 0.

The result is an implication of the following representation of expression of the model:

ΨQ
t+1 (u, v) =

ω (u, v)
1− β (u, v)

+ α (u, v)
∞∑

i=0

β (u, v)i ht−i+1.

We are now able to characterize the option prices.

Proposition 3.10 When (3.21) holds, the price at time t of European call option with payoff

(St+h −X)+ at time t + h :

Ct = exp(−rh)C1,t − exp(−rh)XC2,t

where

C1,t =
exp (rh)

2
+

∫ +∞

0

1
πu

Im

[
exp

(
ΨQ

t,t+h (1 + iu)− iu ln
(

X

St

))]
du

C2,t =
1
2

+
∫ +∞

0

1
πu

Im

[
exp

(
−iu ln

(
X

St

)
+ ΨQ

t,t+h (iu)
)]

du

ΨQ
t,t+h (u) =

h∑

k=1

{
c (dk)

k−1 ΨQ
t (dk) +

1− β (dk)
k−1

1− β (dk)
ω (dk)

}

and the sequence (dk)1≤k≤h is defined as follows:

dk = (u, 0) +
h−1∑

j=k

β (dj+1)
j−k (0, α (dj+1)) for k ≤ h− 1 (3.22)

dh = (u, 0).

We will use these formulas in the empirical section.
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4 Three Empirical Examples

This section provides three empirical examples developed in companion papers.

4.1 The Term Structure of Realized Risk

This example is studied in Feunou and Meddahi (2007a) and has two goals. The first one is

to model the joint dynamics of the returns and the realized variance. The second goal is to

compute the term structure of the value-at-risk, i.e. to characterize the quantile function of

the aggregated returns,
∑h

i=1 rt+i, when h varies.

We consider the daily realized variance computed as the sum of squared intra-daily returns,

five-minutes and thirty-minutes returns in our empirical application. The recent literature

on volatility shows the importance of such measures. The basic theory on realized volatility

assumes that the underlying process is in continuous time and shows that the realized variance

converges to the integrated variance when the length of intra-day returns goes to zero. In our

empirical analysis, we specify the model in discrete time and we do not make the formal

connection between the realized variance and the daily returns. We will specify discrete

models, affine or generalized affine, and allow the data to select the best model. We will,

however, use some insights from continuous time when we specify the discrete model. In what

follows the conditioning information is It = σ(rτ , RVτ , τ ≤ t) where rt is the daily returns.

We start our analysis by modeling the realized variance as either an affine process or a

generalized one. Consider the affine model given by

ψt(u) = log Et[exp(uRVt+1)] = ω(u) + α(u)RVt. (4.1)

Given the non-negativity of the realized variance process, we will consider two examples. The

first one corresponds to the Inverse Gaussian case while the second one is the Gamma case,

which corresponds to the exact discretization of the square-root process, studied in Gourieroux

and Jasiak (2006)):

Inverse Gaussian : ω(u) = ν(1−
√

1− 2uµ), α(u) =
ρ

µ
(exp(1−

√
1− 2uµ)− 1) (4.2)

Gamma : ω(u) = −ν log(1− uµ), α(u) =
ρu

1− uµ
. (4.3)

When we extend our analysis to the generalized affine case, i.e.,

ψt(u) = log Et[exp(uRVt+1)] = ω(u) + α(u)RVt + βψt−1(u), (4.4)
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we still consider the same two examples of Inverse-Gaussian and Gamma. We prove in Section

2 that this leads to a proper cumulant function.

We use the maximum likelihood method to estimate the four models. The empirical results

are provided in Tables 1 and 2. The main empirical result is that the coefficient β is non-zero

whatever the model or the realized volatility measure (based on five-minutes or thirty-minutes).

In particular, the increase of the log-likelihood is substantial when one allows β to be non-zero.

Another interesting result is that the inverse Gaussian model describes better the date for the

two frequencies.

We now want to specify a joint model for the returns and the realized variance. When one

considers a continuous time stochastic volatility model

d log pu = (a + bσ2
u)du + σudWu

and assumes that there is no leverage effect, one gets that the daily return rt+1 = log(pt+1)−
log(pt) has the following distribution:

rt|σ(pτ , σs, τ ≤ t, s ≤ t + 1) ∼ N (a + bIVt+1, IVt+1),

which suggests the following discrete time model that we study:

rt+1 | σ(rτ , RVτ , RVt+1, τ ≤ t) ∼ N (a + bRVt+1, c + dRVt+1). (4.5)

We assume that RVt+1 follows (4.4) where α(u) follows either (4.2) or (4.3). By denoting the

joint cumulant function of (rt+1, RVt+1) as ψr,RV ;t(v, u) defined by

ψr,RV ;t(v, u) ≡ log Et[exp(vrt+1 + uRVt+1)],

one gets

ψr,RV ;t(v, u) = (va + v2c/2) + ψt(vb + v2d/c + u).

Hence, the joint process rt, RVt is indeed a generalized affine process because one has

ψr,RV ;t(v, u) = ω̃(v, u) + α̃(v, u)RVt + βψr,RV ;t−1(v, u), (4.6)

where

ω̃(v, u) = (va + v2c/2)(1− β) + ω(vb + v2d/2 + u) (4.7)

α̃(v, u) = α(vb + v2d/2 + u). (4.8)

Tables 3 and 4 provide the results of the maximum likelihood estimators. Again, the

coefficient β is non-zero and the inverse Gaussian model provided the best fit.
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We compute the term structure of the Value-at-Risk, i.e., we compute the 5%-quantile of

rt+1:t+h ≡ 1√
h

h∑

i=1

rt+i.

For this purpose, we derive the conditional characteristic function of rt+1:t+h and then we

invert it to get the cumulative distribution function. This approach has been used in the

affine case and continuous time by Duffie and Pan (2001).

In practice, the value at risk of rt+1:t+h will depend on RVt and its lagged values. In order

to graphically present the results, one needs to choose RVt. We proceed by taking from the

data three values for RVt: a small value (low case), a median one (median case) and a large

one (high case). Then, we use the lagged values of each of them to plot the term structure of

the value-at-risk (VaR).

Figures 1 to 5 present and compare Affine and Generalized affine term structures of the

value-at-risk. Figure 3 shows that in a low variance day, the VaR increases with the maturity

and that the affine model overestimates the VaR. In contrast, in a high or median volatility

day, affine model overestimates the VaR for lowest maturity and underestimates it for longer

maturities. Underestimation of the VaR could lead to important risk management problems;

see Feunou and Meddahi (2007a) for more discussions. We also show in that paper that it

is useful to consider realized variances, i.e., we used the same approach with the Heston and

Nandi (2000) daily model and show that the model with realized volatility is the best one.

We also provide in Feunou and Meddahi (2007a) the term structure of another risk measure

called the expected shortfall.

4.2 A No-Arbitrage VARMA Term Structure Model with Macroeconomic
Variables

This example hinges on Feunou (2007) where a no-arbitrage VARMA term structure model

with macroeconomic variables is studied. Ang and Piazzesi (2003) and Ang, Piazzesi and Wei

(2006) studied the term structure of interest rates by assuming that the state variable is a

Vector AR process (VAR). The state variable included macroeconomic variables (inflation and

real activity), denoted Xt, and financial variables (short term yield which proxies the level and

term spread which proxies the slope), denoted Yt. The state variable is Zt = (Xt, Yt)′. Here,

instead of assuming that the state variable is VAR, we will assume that it is a VARMA one:

Zt+1 = µ + φZt + Σ(εt+1 −Θεt) , ε ∼ i.i.d. N (0, I).
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We can show that the conditional cumulant function of Zt+1 denoted ψt(u) satisfies the fol-

lowing recursive relation:

ψt(u) = ω(u) + α(u)′Zt + ψt−1(θ(u))

with

ω(u) = u′µ +
1
2
u′Σ

(
I4 −ΘΘ′) Σ′u, α(u) = u′

(
φ− ΣΘΣ−1

)
, θ(u) =

(
ΣΘΣ−1

)′
u.

Feunou (2007) extends the theoretical analysis of the current paper to the multivariate case.

In particular, the analytical form of the term structure is derived. Some details are given

below.

The estimation by the maximum likelihood shows that the VARMA model describes better

the data than the VAR model. In addition, we find that the VARMA forecasts are more accu-

rate than those of VAR and a naive random walk model; see Table 7. We did the forecasting

exercise for different horizons, and find that the VARMA model provides smaller forecasting

errors in and out of sample. Since we want to assess the VARMA performance in fitting the

whole yield curve, we need a coherent framework which allows to connect yields of maturity

n to the state variable Zt.

In a no-arbitrage context, we need to specify a pricing kernel. Our parametric specification

of the pricing kernel is similar to the one used in the literature (see Ang and Piazzesi (2003,

2006))

Mt+1 = exp
(
−y

(1)
t − 1

2
λᵀ

t λt − λᵀ
t εt+1

)
.

To maintain the tractability of the model, affine price of risk (λt) is often used λt = λ0 +λ1Zt,

(again see Ang and Piazzesi (2003)). In the context of our VARMA model, we will depart

from the literature by adding the expected future state variable Et(Zt+1), i.e.,

λt = λ0 + λ1Zt + λ2Et(Zt+1). (4.9)

Several interpretation can be given to equation (4.9). First, we can reformulate it as follows

λt = λ0 + λ1Zt + λ2

(
µ +

(
φ− ΣΘΣ−1

)
Zt + ΣΘΣ−1Et−1(Zt)

)

= λ∗0 + λ∗1Zt + λ∗2Et−1(Zt)

where

λ∗0 = λ0 + λ2µ, λ∗1 = λ1 + λ2

(
φ− ΣΘΣ−1

)
, and λ∗2 = λ2ΣΘΣ−1.
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Thus, the parameter λ2 captures the past information impact on the current market price

of risk. Another way of rewriting the price of risk is to express it in terms of the expected

variable Et−1(Zt) and the unexpected news Σεt:

λt = λ∗0 + λ∗1Σεt + (λ∗1 + λ∗2) Et−1(Zt).

Feunou (2007) shows that bond yields (with maturity n) are no longer affine of the state

variable Zt, but are rather affine function of the state variable Zt and its past conditional

expectation Et−1(Zt), i.e.

y
(n)
t = an + bᵀ

1,nZt + bᵀ
2,nEt−1(Zt). (4.10)

Another representation derived in Feunou (2007) is

y
(n)
t = an + (b1,n + b2,n)ᵀEt−1(Zt) + bᵀ

1,nΣεt, (4.11)

where the coefficients an, b1,n, and b2,n are given in Feunou (2007).

The estimation of the unknown parameters (parameters of the historical distribution and

parameters of the price of risk) is done in two steps. The first step estimates the parameters

of the historical distribution of the state vector by using the maximum likelihood method.

By taking the parameters of the historical dynamic as their estimated values, we estimate in

the second step the pricing kernel’s parameters by minimizing the squared difference between

the model implied yield and the observed yield (in practice, the maturities are 1, 2, 3, and 4

years). Since there is an endogenous component in the state vector (the term spread), we run

a constrained minimization in order to guarantee that the dynamic of the yield to maturity

60 months in the VARMA model is coherent with the relation (4.10); see Ang and Piazzesi

(2006) and Feunou (2007) for more details.

In order to assess the impact of the MA component, i.e., the impact of the vector Θ on the

yield curve, we provide in Figures 6 to 9 the loading coefficients an, b1,n, b2,n and b1,n + b2,n

for the different models and the different component of the state variable. These figures show

clearly that there are differences between the VAR and VARMA term structure models. The

likelihood estimates as well as the pricing errors are in favor of the VARMA approach, which

highlights the importance of using generalized affine models.

4.3 Realized Option Pricing model

This example hinges on Feunou, Christoffersen, Jacobs and Meddahi (2007). We used the

model developed in the first empirical example and used the option pricing formulas derived
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in Section 3.2 where ht equals the realized variance RVt. We model jointly the dynamics

of the return rt and realized variance RVt in the same way as in section 4.1, with a slight

modification of the distribution of the stock log-returns rt conditional on realized variance

RVt. Following Christoffersen et al (2006), Feunou (2006), and Feunou and Tedongap (2007),

we used a skewed inverse Gaussian distribution, which nests the normal distribution. This

extension is empirically important.

The model is given by

rt+1 | σ(rτ , RVτ , RVt+1, τ ≤ t) ∼ a + bRVt+1 − η(c + dRVt+1) +
1
η
yt+1, (4.12)

with yt+1 ∼ IG(η2(c + dRVt+1)). IG means the standard inverse gaussian distribution. The

conditional cumulant function of the return rt+1 conditional on It and RVt+1 is given by

E[exp(urt+1)|RVt+1, It] = exp(ω0(u) + α0(u)RVt+1)

with

ω0(u) = u(a− cη) + cη2

(
1−

√
1− 2u

η

)
, and α0(u) = u(b− dη) + dη2

(
1−

√
1− 2u

η

)
.

In the affine case, the conditional cumulant function of RVt+1 given It is given by (4.1) where

ω(u) and α(u) are defined either by (4.2) for the inverse gaussian case or by (4.3) for the

gamma case. We extend this affine case to the generalized affine of order (1,2) as follows

ψt(u) = log Et[exp(uRVt+1)] = ω(u) + α(u)RVt + β1ψt−1(u) + β2ψt−2(u). (4.13)

Consequently, the joint cumulant function of (rt+1, RVt+1) given It is

ψr,RV ;t(v, u) = ω0(v) + ψt(u + α0(v)).

Eq. (4.13) implies that the joint process (rt, RVt) is a generalized affine process

ψr,RV ;t(v, u) = ω̃(v, u) + α̃(v, u)RVt + β1ψr,RV ;t−1(v, u) + β2ψr,RV ;t−2(v, u) (4.14)

with ω̃(v, u) = ω0(v)(1− β1 − β2) + ω(u + α0(v)) and α̃(v, u) = α(u + α0(v)).

We assume that the generalized affine model is defined under the risk-neutral probability

measure. The estimation is done by minimizing the MSE of the implied Black-Scholes volatility

from the option (IVMSE) defined as

IV MSE =
1
n

n∑

i=1

(σi − σi (θ))
2
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where the implied volatilities are obtained as

σi = BS−1 (Ci, Ti, Xi, S, r) and σi (θ) = BS−1 (Ci (θ) , Ti, Xi, S, r) ,

with BS−1 being the inverse of the Black-Scholes formula, Ti the time to maturity, Xi the

strike price, S the price of the underlying stocks and r the riskless interest rate.

Figures 10, 11 and 12 represent the daily implied volatility bias, option price bias and

implied volatility RMSE. The generalized affine model clearly outperforms the affine model in

terms of pricing errors. This result holds whatever the maturity of the moneyness; see Tables

5 and 6.

5 Conclusion

The paper extends affine models by introducing moving average type components in the condi-

tional cumulant functions. The extension is important theoretically because important models

like ARMA are not affine. The extension is also empirically important as shown in three em-

pirical examples.

There is an alternative approach that leads to non-Markov affine processes. It uses the

Laplace transform of the process xt defined as Lt(u) = exp(ψt(u)) instead of the cumulant

function. The traditional affine models are characterized by

Lt(u) = exp(ω(u) + α(u)xt).

In a companion paper, we are currently studying the process defined by

Lt(u) = γ(u) + exp(ω(u) + α(u)xt) + β(u)Lt−1(u).
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Appendix A

In this appendix, we build a generalized affine model where the function β(·) varies. Let us consider
a positive process Xt with conditional cumulant function Ψt.

Et [exp (uXt+1)] = exp (Ψt (u))

We define Ψt (u) recursively as follows:

Ψ0 (u) = ω (u) + a0 (u,X0)

Ψ1 (u) = ω (u) + a0 (u,X1) + a1 (u,X0)

Ψ2 (u) = ω (u) + a0 (u,X2) + a1 (u,X1) + a2 (u,X0)

and generally, we have

Ψt (u) = ω (u) +
t∑

i=0

ai (u,Xt−i) (A.1)

The first issue is to give some conditions on sequence functions ai(u, x) and ω (u) such that Ψt(u) is a
well defined cumulant function.

If ω (u) and ai (u, x) are cumulant functions ∀ i, then Ψt (u) is a well defined cumulant function.
Indeed, the sum of cumulant function is a cumulant function.

Consequently we will choose ω (u) and ai (u, x) such that they will be always cumulant functions.
Another consequence is the fact that we can write Xt+1 as follows

Xt+1 = ηt+1 +
t∑

i=0

Zi,t+1

where ηt+1 and Zi,t+1 are mutually conditionally independent with cumulant function ω (u) and
ai (u,Xt−i). This give us a simple approach to simulate Xt+1.

The final goal is to rewrite definition of Ψt (u) given by (A.1) recursively. To achieve this goal the
following expression is given to cumulant function ai (u, x)

ai (u, x) = Pi (x) [exp (a (u) i + b (u))− 1] (A.2)

Pi (x) = exp (λ0 + λ1i) x

As it was the case with Ψt (u), we need to make sure that (A.2) is a valid cumulant function.
This is done using Lemma 5.4.1 of Lukacs (1970) (page 111) where it is shown that p(g(u)− 1) is an
infinitely divisible cumulant function whenever g(u) is a characteristic function and p > 0.

Thus if a (u) and b (u) are cumulant functions and X a positive process, then ai (u, x) is a cumulant
function. Since process Xt is built using cumulant generating function, it is hard to simulate. We give
an answer in the following lines. Proposition 5.1 shows how a random variable with cumulant function
ai (u, x) can be simulated.

32



Proposition 5.1 p(g(u)− 1) is the cumulant function of Z iff

Z =
N∑

n=0

Yn

where random variables N and Yn are mutually independent, N follows Poisson distribution of param-
eter p and the moment generating function of Yn is g(u).

Since Ψt (u) is the conditional cumulant function of Xt+1 (which is a positive random variable), we
must then choose ω (u), a (u) and b (u) such that Ψt (u) is a cumulant function of a positive random
variable. The following proposition addresses this issue.

Proposition 5.2 If a (u), b (u) and ω (u) are cumulant functions of positive random variable, then
Ψt (u) is a well defined conditional cumulant function of positive random variable Xt+1

We are now ready to write Ψt (u) recursively.

Ψt (u) = ω (u) +
t∑

i=0

Pi (Xt−i) [exp (a (u) i + b (u))− 1]

= ω (u) +
t∑

i=0

Pi (Xt−i) exp (a (u) i + b (u))−
t∑

i=0

Pi (Xt−i)

= ω (u) +
t∑

i=0

exp ((a (u) + λ1) i + λ0 + b (u))Xt−i −
t∑

i=0

exp (λ0 + λ1i)Xt−i

Proposition 5.3 ω (u) can always be reformulated was following

ω (u) =
c (u)

1− exp (a (u) + λ1)
− c (0)

1− exp (λ1)

As shown below, the proof of Proposition 5.3 is a direct consequence of the fact that ω (u) is a
cumulant function.

We can then rewrite Ψt (u) as following.

Ψt (u) = ft (u)− ft (0)

with

ft (u) =
c (u)

1− exp (a (u) + λ1)
+

t∑

i=0

exp ((a (u) + λ1) i + λ0 + b (u)) Xt−i

=
c (u)

1− exp (a (u) + λ1)
+ exp (λ0 + b (u))

t∑

i=0

exp (a (u) + λ1)
i
Xt−i
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Proposition 5.4 ft+1 (u) evolves recursively as follows:

ft+1 (u) = c (u) + exp (λ0 + b (u)) Xt+1 + exp (a (u) + λ1) ft (u)

An immediate consequence of Proposition 5.4 is the recursive formulation of Ψt(u) given by proposition
5.5.

Proposition 5.5

Ψt(u) = ω0 (u) + α1 (u) ft(0) + α2 (u) ft−1(0) + β (u)Ψt−1(u) (A.3)

where

ω0 (u) = c(u)− c(0)eb(u)

α1 (u) = eb(u) − 1

α2 (u) = eλ1

[
ea(u) − eb(u)

]

β (u) = eλ1+a(u)

Note that in the right hand side of equation (A.3), we have ft(0) instead of Xt. For this reason
the conditional cumulant generating function of ft(0) is evaluated. The joint conditional moment
generating function of Xt+1 and ft+1(0) is:

Et [exp (uXt+1 + vft+1(0))] = Et

[
exp

(
uXt+1 + v

(
c(0) + eλ0Xt+1 + eλ1ft(0)

))]

= exp
(
vc(0) + veλ1ft(0) + Ψt(u + veλ0)

)

Thus if we denote Ψc
t (u, v) = ln (Et [exp (uXt+1 + vft+1(0))]), we have

Ψc
t (u, v) = vc(0) + veλ1ft(0) + Ψt(u + veλ0)

= vc(0) + veλ1ft(0) + ω0

(
u + veλ0

)
+ α1

(
u + veλ0

)
ft(0)

+α2

(
u + veλ0

)
ft−1(0) + β

(
u + veλ0

)
Ψt−1(u + veλ0)

= vc(0) + veλ1ft(0) + ω0

(
u + veλ0

)
+ α1

(
u + veλ0

)
ft(0)

+α2

(
u + veλ0

)
ft−1(0) + β

(
u + veλ0

) [
Ψc

t−1 (u, v)− vc(0)− veλ1ft−1(0)
]

The whole expression of Ψc
t (u, v) is summarized in the following proposition.

Proposition 5.6

Ψc
t (u, v) = W (u, v) + A1 (u, v) ft(0) + A2 (u, v) ft−1(0) + B (u, v)Ψc

t−1 (u, v)

where

W (u, v) = vc(0)
(
1− β

(
u + veλ0

))
+ ω0

(
u + veλ0

)

A1 (u, v) = veλ1 + α1

(
u + veλ0

)

A2 (u, v) = α2

(
u + veλ0

)− veλ1β
(
u + veλ0

)

B (u, v) = β
(
u + veλ0

)
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In conclusion the vector (Xt+1, ft+1(0)) is a generalized affine of order (2,1), implying a univariate
generalized affine for ft+1(0) as stated in the following corollary.

Corollary 2 Notice that by imposing u = 0 we have a generalized affine model of order (2, 1) for
ft(0).

Indeed

Et [exp (vft (0))] ≡ exp
(
Ψf

t (v)
)

= exp (Ψc
t (0, v))

with
Ψc

t (0, v) = W (0, v) + A1 (0, v) ft(0) + A2 (0, v) ft−1(0) + B (0, v)Ψc
t−1 (0, v)

Proposition 5.7 Generally, for any given s, (ft(0), ft(s)) is a generalized affine of order (2, 1)

We can restrict ft(0) to be positive by just imposing c (0) to be positive and considering positive
initial value f0(0). On the other hand ft(0) can take any sign if any restriction is made on c (0) and
f0(0). All these assertions are consequences of the recursive definition of ft+1 (0)

ft+1 (0) = c (0) + exp (λ0)Xt+1 + exp (λ1) ft (0)

Since Xt+1 is a positive random variable, if ft (0) ≥ 0 and c (0) ≥ 0, then ft+1 (0) ≥ 0. c (0) is an
undetermined parameter with undetermined sign. This implies that if the sign of c (0) and ft (0) are
undetermined then ft+1 (0)’s sign is also undetermined.

Generalized affine of order (1, 1) (for ft(0)) can be obtained by restricting functions a and b to
satisfy A2 (0, v) = 0. Solving A2 (0, v) = 0 implies

b (v) = a (v) + ln
(
1− veλ1−λ0

)

Let us denote eλ1−λ0 = µ, ln (1− vµ) remind us a component of ARG of Gourieroux and Jasiak
(2006). Thus the following choice of function a(.),

a (v) =
vρ

1− vµ
− ν ln (1− vµ)

with ρ ≥ 0, ν ≥ 1 insures well defined generalized affine model of order (1, 1) for ft(0).These examples
of functions a(.) and b(.) are cumulant functions of positive random variables which are in fact the
only restrictions needed on function a(.) and b(.). In general, the following general function a(.) is
sufficient to satisfy A2 (0, v) = 0.

a (v) = a (v)− ν ln (1− vµ)

where a (v) is the cumulant function of a positive random variable, and ν > 1.
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Proposition 5.8 Let denote eλ1−λ0 = µ, if

b (v) = a (v) + ln (1− vµ)

and
a (v) = a (v)− ν ln (1− vµ)

where a (v) is the cumulant function of a positive random variable, and ν > 1. then A2 (0, v) = 0 which
implies that ft(0) is a generalized affine of order (1, 1).

Proof of Proposition 5.1: The proof is quite easy, in fact it is done by realizing that if G is the
distribution function corresponding to characteristic function g (or moment generating function), then
F = e−p

∑∞
0

pn

n! G
n? is the distribution function corresponding to characteristic function (or moment

generating function exp (p(g(u)− 1))). In this expression Gn? means the convolution of n identical
distribution function G. The simulation of random variable corresponding to distribution function F

is also easy to deal with. Let consider a sequence of iid random variable (Yi)i=1,2..., and a discrete
random variable N which is independent to (Yi)i=1,2... and which follows a Poisson distribution with
parameter p. The following random variable X has F as distribution function:

Z =
N∑

n=0

Yn

where Y0 is a constant.

Proof of Proposition 5.2: The result is the consequence of the fact that p(g(u)−1) is the cumulant
function of positive random variable when g (u) is the moment generating function of a positive random
variable. This result is deduced from the previous Proposition, indeed since p(g(u)−1) is the cumulant
function of Z =

∑N
n=0 Yn, and g(u) the moment generating function of Yn. Yn ≥ 0 ⇒ Z ≥ 0

Proof of Proposition 5.3: In fact, for any given choice of a cumulant function of positive random

variable ω (u), choose c (u) as follows

c (u) = (1− exp (a (u) + λ1))
[
ω (u) +

δ

1− exp (λ1)

]

for any real δ. Since ω (u) and a (u) are a cumulant functions, thus ω (0) = a (0) = 0, which implies
that

c (0) = δ
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Proof of Proposition 5.4: Indeed

c (u) + exp (λ0 + b (u)) Xt+1 + exp (a (u) + λ1) ft (u)

= c (u) + exp (λ0 + b (u)) Xt+1 +
exp (a (u) + λ1) c (u)
1− exp (a (u) + λ1)

+ exp (λ0 + b (u))
t∑

i=0

exp (a (u) + λ1)
i+1

Xt−i

=
c (u)

1− exp (a (u) + λ1)
+ exp (λ0 + b (u))

t+1∑

i=0

exp (a (u) + λ1)
i
Xt+1−i

= ft+1 (u)

Proof of Proposition 5.5:

ft+1 (u) = c (u) + exp (λ0 + b (u)) Xt+1 + exp (a (u) + λ1) ft (u)

and
Ψt (u) = ft (u)− ft (0)

imply that

Ψt(u) + ft(0) = c(u) + eb(u)
[
ft(0)− c(0)− eλ1ft−1(0)

]

+eλ1+a(u) [Ψt−1(u) + ft−1(0)]

Proof of Proposition 5.7: Indeed

Et [exp (uft+1(0) + vft+1(s))] = Et

[
exp

(
u

(
c(0) + eλ0Xt+1 + eλ1ft(0)

)

+v
(
c(s) + eλ0+b(s)Xt+1 + eλ1+a(s)ft(s)

)
)]

= exp

(
uc(0) + vc(s) + ueλ1ft(0)

+veλ1+a(s)ft(s) + Ψt(ueλ0 + veλ0+b(s))

)

≡ exp (Ψc,s
t (u, v))

Ψc,s
t (u, v) = uc(0) + vc(s) + ueλ1ft(0) + veλ1+a(s)ft(s) + Ψt(ueλ0 + veλ0+b(s))

= uc(0) + vc(s) + ueλ1ft(0) + veλ1+a(s)ft(s) + ω0

(
ueλ0 + veλ0+b(s)

)

+α1

(
ueλ0 + veλ0+b(s)

)
ft(0) + α2

(
ueλ0 + veλ0+b(s)

)
ft−1(0)

+β
(
ueλ0 + veλ0+b(s)

)
Ψt−1(ueλ0 + veλ0+b(s))

= uc(0) + vc(s) + ueλ1ft(0) + veλ1+a(s)ft(s) + ω0

(
ueλ0 + veλ0+b(s)

)

+α1

(
ueλ0 + veλ0+b(s)

)
ft(0) + α2

(
ueλ0 + veλ0+b(s)

)
ft−1(0)

+β
(
ueλ0 + veλ0+b(s)

) [
Ψc,s

t−1 (u, v)− uc(0)− vc(s)− ueλ1ft−1(0)− veλ1+a(s)ft−1(s)
]
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Hence

Ψc,s
t (u, v) = W s (u, v) + As

1 (u, v)′ ft(0, s) + As
2 (u, v)′ ft−1(0, s) + Bs (u, v) Ψc,s

t−1 (u, v)

where
ft(0, s) =

(
ft(0)
ft(s)

)

W s (u, v) = (uc(0) + vc(s))
(
1− β

(
ueλ0 + veλ0+b(s)

))
+ ω0

(
ueλ0 + veλ0+b(s)

)

As
1 (u, v) =

(
ueλ1 + α1

(
ueλ0 + veλ0+b(s)

)

veλ1+a(s)

)

As
2 (u, v) =

(
α2

(
ueλ0 + veλ0+b(s)

)− ueλ1β
(
ueλ0 + veλ0+b(s)

)

−veλ1+a(s)β
(
ueλ0 + veλ0+b(s)

)
)

Bs (u, v) = β
(
ueλ0 + veλ0+b(s)

)
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Appendix B

This appendix provides the proofs of Section 2 and Section 3.

Proof of Proposition 2.2. Cumulant’s equation implies that

κ1,t = ω(1) (0) + α(1) (0) Xt + β (0)κ1,t−1 (B.1)

by taking the unconditional expectation in both side of the equation we get the first result. i.e

E [Xt] = E [κ1,t] =
ω(1) (u)

1− (
α(1) (u) + β (0)

)

Since
V (Xt) = E [κ2,t] + V [κ1,t]

the equation of κ2,t is

κ2,t = ω(2) (0) + α(2) (0) Xt + 2β(1) (0) κ1,t−1 + β (0) κ2,t

this implies that

E [κ2,t] =
α(2) (0) + 2β(1) (0)

1− β (0)
E [Xt] +

ω(2) (0)
1− β (0)

V [κ1,t] = α(1) (0)2 V (Xt) + β (0)2 V [κ1,t−1] + 2α(1) (0) β (0)
[
E

(
κ2

1,t−1

)− E [Xt]
2
]

= α(1) (0)2 V (Xt) +
(
β (0)2 + 2α(1) (0)β (0)

)
V [κ1,t−1]

thus

V [κ1,t] =
α(1) (0)2

1−
(
β (0)2 + 2α(1) (0) β (0)

)V (Xt)

hence

V (Xt) =

(
1 +

α(1) (0)2

1− (
α(1) (0) + β (0)

)2

)
E [κ2,t]

Thus we can the second result.

for h ≥ 2 we have

E [XtXt+h] = E [XtEt+h−1 [Xt+h]]

= E [Xtκ1,t+h−1]

= E
[
Xt

[
ω(1) (0) + α(1) (0) Xt+h−1 + β (0) κ1,t+h−2

]]

= ω(1) (0) E (Xt) + α(1) (0) E [XtXt+h−1] + β (0) E [XtXt+h−1]

= ω(1) (0) E (Xt) +
(
α(1) (0) + β (0)

)
E (XtXt+h−1)
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Proof of Corollary 1: From the Proposition 2.2, we have that

E (XtXt+h) = ω(1) (0) E [Xt] +
(
α(1) (0) + β (0)

)
E (XtXt+h−1)

this implies that

E (XtXt+h) =
(
α(1) (0) + β (0)

)h−1

E (XtXt+1) + E (Xt)
2

[
1−

(
α(1) (0) + β (0)

)h−1
]

=
(
α(1) (0) + β (0)

)h−1

cov (Xt, Xt+1) + E (Xt)
2

we then get the result.

Proof of Proposition 2.3:

cov (Xt, Xt+1) = cov (Xt, κ1,t)

= cov
(
Xt, ω

(1) (0) + α(1) (0) Xt + β (0) κ1,t−1

)

= α(1) (0) V (Xt) + β (0)V (κ1,t−1)

= α(1) (0) V (Xt) +
β (0)α(1) (0)2

1−
(
β (0)2 + 2α(1) (0) β (0)

)V (Xt)

Proof of Proposition 2.4: Indeed

E [κ1,tκn,t] = E
[
κ1,t

(
ωn + αnxt + βnκn,t−1

)]

= ωnE (xt) + E (xtκ1,t)αn + βnE [κ1,t−1κn,t−1]

Proof of Proposition 2.5:

E [κ1,t+hκn,t] = E
[(

ω(1) (0) + α(1) (0)Xt+h + β (0) κ1,t+h−1

)
κn,t

]

= ω(1) (0)E [κn,t] +
(
α(1) (0) + β (0)

)
E [κ1,t+h−1κn,t]

Proof of Proposition 2.6:
κn,t = ωn + αnxt + βnκn,t−1

implies that

V (κn,t)− βnV (κn,t)β
>
n = V (xt) αnα>n + βncov (κn,t−1 κ1,t−1)α>n + αncov (κ1,t−1 κn,t−1)β

>
n

= θn
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Proof of Proposition 2.7:

Cov [κn,t , κn,t+h] = Cov
[
κn,t , ωn + αnxt+h + βnκn,t+h−1

]

= Cov [κn,t , xt+h]α>n + Cov [κn,t , κn,t+h−1] β
>
n

= Cov [κn,t , κn,t+h−1]β
>
n + cov [κn,t κ1,t+h−1] α>n

Proof of Proposition 2.8:

Cov
(
x2

t , xt+h

)
= Cov

(
x2

t , κ1,t+h−1

)

= Cov
(
x2

t , ω(1) (0) + α(1) (0) xt+h−1 + β (0) κ1,t+h−2

)

= α(1) (0) Cov
(
x2

t , xt+h−1

)
+ β (0) Cov

(
x2

t , κ1,t+h−2

)

=
(
α(1) (0) + β (0)

)
Cov

(
x2

t , xt+h−1

)

Proof of Proposition 2.9: We have

Vt,h(u1, u2, ...., uh) ≡ Et


exp




h∑

j=1

ujxt+j







= Et



exp




h−1∑

j=1

ujxt+j


Et+h−1 [exp (uhxt+h)]





= Et


exp


Ψt+h−1 (uh) +

h−1∑

j=1

ujxt+j







From Eq. (2.1), one gets easily

∀j ≥ 1, Ψt+j (u) = β (u)j Ψt (u) + ω (u)
1− β (u)j

1− β (u)
+ α (u)

j∑

k=1

β (u)j−k
xt+k. (5.2)

Hence,

log(Vt,h(u1, u2, ..., uh)) = β (uh)h−1 Ψt (uh) + ω (uh)
1− β (uh)h−1

1− β (uh)

+ log Et


exp




h−1∑

j=1

(
uj + α (uh)β (uh)h−1−j

)
Xt+j







= β (uh)h−1 Ψt (uh) + ω (uh)
1− β (uh)h−1

1− β (uh)

+ log Vt,h−1(u1 + α(uh)β(hu)h−2, u2 + α(uh)β(hu)h−3, ..., uh−1 + α(uh)).

The result (2.10) is then obtained by induction.
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Proof of Proposition 3.4. B (t, h) is the price at t of a zero-coupon bond which give 1 at t + h

B (t, h) = EQ
t

[
exp

(
−

h−1∑

i=0

rt+i

)]

= exp

[
−rt +

h−1∑

k=1

{
β (dk)k−1 Ψt (dk) +

1− β (dk)k−1

1− β (dk)
ω (dk)

}]

where the last equality follows from Proposition 2.9 while the sequence (dk)1≤k≤h−1 is defined in (3.11).

Given that the yield at horizon h is rt,t+h = −ln (B (t, h))/h, one gets (3.10).

Proof of Proposition 3.6. One has

Et [Mt+1] = exp(−r)

Et [Mt+1 exp (rt+1)] = 1,

which leads to

θt + Ψt (γ, λ) = −r

θt + Ψt (1 + γ, λ) = 0.

Hence,

θt = −r −Ψt (γ, λ)

Ψt (1 + γ, λ)−Ψt (γ, λ) = r

By using the following expression of the model:

Ψt+1 (u, v) =
ω (u, v)

1− β (u, v)
+ α (u, v)

∞∑

i=0

β (u, v)i
ht−i+1

one gets,

ω (1 + γ, λ)
1− β (1 + γ, λ)

− ω (γ, λ)
1− β (γ, λ)

+
∞∑

i=0

[
β (1 + γ, λ)i

α (1 + γ, λ)− β (γ, λ)i
α (γ, λ)

]
ht−i = r

which implies

ω (1 + γ, λ)
1− β (1 + γ, λ)

− ω (γ, λ)
1− β (γ, λ)

= r

β (1 + γ, λ)i
α (1 + γ, λ)− β (γ, λ)i

α (γ, λ) = 0, ∀i ≥ 0.

Therefore,

ω (1 + γ, λ)
1− β (1 + γ, λ)

− ω (γ, λ)
1− β (γ, λ)

= r

β (1 + γ, λ) = β (γ, λ)

α (1 + γ, λ) = α (γ, λ) .
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Proof of Proposition 3.7.

EQ
t [exp (urt+1 + vΨt+1 (γ))] = EQ

t [exp (urt+1 + v (ω (γ) + α (γ) rt+1 + β (γ) Ψt (γ)))]

thus

Ψ∗t (u, v) = vω (γ) + vβ (γ)Ψt (γ) + ΨQ
t (u∗)

= vω (γ) + vβ (γ)Ψt (γ) + Ψt (u∗ + γ)−Ψt (γ)

where
u∗ = u + vα (γ)

this implied that

Ψ∗t+1 (u, v) = vω (γ) + (vβ (γ)− 1)Ψt+1 (γ) + Ψt+1 (u∗ + γ)

= vω (γ) + (vβ (γ)− 1)Ψt+1 (γ) + ω (u∗ + γ)

+α (u∗ + γ) rt+1 + β (u∗ + γ)Ψt (u∗ + γ)

= vω (γ) + (vβ (γ)− 1)Ψt+1 (γ) + ω (u∗ + γ) +

+α (u∗ + γ) rt+1 + β (u∗ + γ) [Ψ∗t (u, v)− vω (γ)− (vβ (γ)− 1)Ψt (γ)]

For Proposition 3.8, we provide a general proof when the joint dynamic of return and its conditional

variance follow a generalized affine of order (p,q). See the proof of Proposition 5.12 for more details.
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Appendix C: Generalized Affine Models of Higher Order

The generalized affine model of order (1,1) can be straightforwardly extended to order

(p,q) as following.

ψt(u) = ω(u) +
p∑

j=0

αj(u)xt−j +
q∑

j=1

βj(u)ψt−j(u) (C.1)

Let note

κn,t = ψ
(n)
t (0)

In this section, we give some details on generalization of several issue which have been

addressed in order (1,1).

Cumulant and moment structure

κn,t = ω(n)(0) +
p∑

j=0

α
(n)
j (0)xt−j +

q∑

j=1

n−1∑

i=0

(
n− 1

i

)
β

(i)
j (0)κn−i,t−j (C.2)

κn,t = (κ1,t, κ2,t, ..., κn,t)′

κn,t = ωn +
p∑

j=0

αj,nxt−j +
q∑

j=1

βj,nκn,t−j (C.3)

where

ωn =




ω(1)(0)

ω(2)(0)

..

..

ω(n)(0)




, αj,n =




α
(1)
j (0)

α
(2)
j (0)

..

..

α
(n)
j (0)




and

βj,n =




βj(0) 0 0 ... 0(
2
1

)
β

(1)
j (0) βj(0) 0 ... 0

: : : ... :

: : : ... :(
n

n−1

)
β

(n−1)
j (0)

(
n

n−2

)
β

(n−2)
j (0) ...

(
n
1

)
β

(1)
j (0) βj(0)




κn,t = ωn + αnXt + ι
′
βnκn,t−1

44



where

αn = [α0,n, ..., αp,n]

Xt =




xt

xt−1

:

:

xt−p




, ι
′

(n×q)
= (1, ..., 1) , κn,t−1 =




κn,t−1

κn,t−2

:

:

κn,t−q




and

βn =




β1,n 0 0 · · · 0

0 β2,n 0 · · · 0

: 0
. . . · · · :

: :
. . . . . . 0

0 · · · · · · 0 βq,n




Unconditional moments

From equation (C.3), we deduce unconditional mean of cumulant,

E (xt) =
ω(1)(0)

1−∑p
j=0 α

(1)
j (0)−∑q

j=1 βj(0)

E [κn,t] =


I −

q∑

j=1

βj,n



−1 

ωn + E (xt)
p∑

j=0

αj,n




If the process is covariance stationary, then the autocovariance function γ (h) = Cov (xt, xt+h)

is the solution of the following recurrence sequence

γ (h) =
p∑

j=0

α
(1)
j (0)γ (h− 1− j) +

q∑

j=1

βj(0)γ (h− j)

with γ (0) = V (xt)

Indeed

Cov (xt, xt+h) = cov (xt, κ1,t+h−1)

= cov


xt, ω

(1)(0) +
p∑

j=0

α
(1)
j (0)xt+h−1−j +

q∑

j=1

βj(0)κ1,t+h−1−j




=
p∑

j=0

α
(1)
j (0)cov (xt, xt+h−1−j) +

q∑

j=1

βj(0)cov (xt, κ1,t+h−1−j)
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Let us denote the covariance between xt and κn,t+h by δn (h) = cov (xt ; κn,t+h). δn (h) is

the solution of the following recurrence sequence

δn (h) =
p∑

j=0

γ (h− j) αj,n +
q∑

j=1

δn (h− j)β
ᵀ
j,n

Denote the covariance between κn,t and κn,t+h by δn (h) = cov (κn,t ; κn,t+h). δn (h) is the

solution of the following recurrence sequence

δn (h) =
p∑

j=0

δn (h− j)ᵀ αj,n +
q∑

j=1

δn (h− j) β
ᵀ
j,n

Cumulant Function of Aggregated Returns.

Let Vt,h (u1, · · · , uh) = Et

[
exp

(∑h
i=1 uixt+i

)]
; the following proposition shows how to

compute Vt,h by recursion. Details on proofs are provided in appendix.

Proposition 5.9

ln [Vt,h (u1, · · · , uh)] = ωh +
p−1∑

j=0

δh
j xt−j +

q∑

j=0

γh
j Ψt−j (u) + ln

[
Vt,h−1

(
uh−1

1 , · · · , uh−1
h−1

)]

Details on definition of sequences ωh, γh
j and δh

j are provided in the proof.

A more general result.

Wt,h (u, v; v0) = Et

[(
v0 +

h∑

i=1

vixt+i

)
exp

(
h∑

i=1

uixt+i

)]

Wt,h (u, v; v0) = v0Vt,h (u1, · · · , uh) +
h∑

i=1

viEt

[
xt+i exp

(
h∑

i=1

uixt+i

)]

for 1≤ i ≤ h

Et

[
xt+i exp

(
h∑

i=1

uixt+i

)]
=

∂

∂ui
[Vt,h (u1, · · · , uh)]

thus
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Wt,h (u, v; v0) = v0Vt,h (u1, · · · , uh) +
h∑

i=1

vi
∂

∂ui
[Vt,h (u1, · · · , uh)]

The term structure of interest rates.

We specify the generalized affine model of order (p,q) for the historical dynamic of short

term rate rt+1.

ln EP
t [exp (urt+1)] ≡ ψt(u) = ω(u) +

p∑

j=0

αj(u)rt−j +
q∑

j=1

βj(u)ψt−j(u)

We give the exponential affine form to the pricing kernel Mt,t+1

Mt,t+1 = exp (γrt+1 − rt − ψt (γ))

The following proposition provides closed-form expression of yield to maturity h at time t

(noted rt,t+h).

Proposition 5.10

rt,t+h = −ω∗h (γ)
h

−
0∑

j=1−p

δj (γ)
h

rt+j +
rt

h
−

q∑

k=0

γk (γ)
h

Ψt−k (γ)− ln Vt,h (u1, · · · , uh)
h

Proof and definition of function sequences γk, ω∗h(u) and δj(u) are provided below.

Option Pricing.

As for order (1,1), we assume that the joint dynamic of log returns rt+1 and it conditional

variance ht+1 follows a generalized affine model under the historical probability measure.

Ψt (u, v) = log EP
t [exp (urt+1 + vht+1)] = ω(u, v) +

p∑

j=0

αj(u, v)ht−j +
q∑

j=1

βj(u, v)ψt−j(u, v)

We give the following pricing kernel

Mt+1 = exp (γrt+1 + λht+1 + θt)

where

θt = −r − ψt (γ, λ)

ψt (1 + γ, λ)− ψt (γ, λ) = r
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We show below the following proposition

Proposition 5.11 Price of risk γ are solution of the following equation

q∑

i=1

min(k,p)∑

j=0

{
νi (1 + γ, λ) αj (1 + γ, λ) β̂k−j

i (1 + γ, λ)− νi (γ, λ) αj (γ, λ) β̂k−j
i (γ, λ)

}
= 0, ∀k ≥ 0

where β̂j(u, v) for j=1,..,q, are inverse of real or complex root of 1−∑q
j=1 βj(u, v)Lj

Observe that sufficient conditions which guarantee these equalities are:

νi (1 + γ, λ) = νi (γ, λ) , ∀ 1 ≤ i ≤ q

αj (1 + γ, λ) = αj (γ, λ) , ∀ 0 ≤ j ≤ p

β̂i (1 + γ, λ) = β̂i (γ, λ) , ∀ 1 ≤ i ≤ q

Let ψQ
t,t+h denotes the conditional risk-neutral cumulant function of aggregated future

returns
∑h

i=1 rt+i. The following proposition give the closed form expression of ψQ
t,t+h.

Proposition 5.12

ψQ
t,t+h (u) = −rh− ψt (γ, λ)−

h∑

i=2

ω∗i−1 (γ, λ)−
h∑

i=2

[
q∑

k=0

γi−1,k (γ, λ) ψt−k (γ, λ)

]

−
0∑

j=1−p




h∑

i=j+2

δi−1−j (γ, λ)


ht+j + log Vt,h ((u1, v1) , ..., (uh, vh))

See below for the proof and definition of the sequences ui, vi, and the functions sequence

ω∗i (u, v), δi(u, v) and γi,j(u, v).

The price at t of a European call option which pays (St+h −X)+ at t+h is given by

Ct = exp (−rh) [StC1,t −XC2,t]

where

C1,t =
erh

2
+

∫ +∞

0

1
πu

Im

[
exp

(
ψQ

t,t+h (1 + iu)− iu ln
(

X

St

))]

C2,t =
1
2

+
∫ +∞

0

1
πu

Im

[
exp

(
ψQ

t,t+h (iu)− iu ln
(

X

St

))]
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Proof of Proposition 5.9. Let note

Ψt (u) =




Ψt (u)

Ψt−1 (u)

:

:

Ψt−q (u)




, ω (u) =




ω (u)

0

0

:

0




, α (u) =




α0 (u)

α1 (u)

:

:

αp (u)




, α (u) =




α (u)ᵀ

0
(p+1,1)

:

:

0
(p+1,1)




β (u) =




β1 (u) β2 (u) · · · βq (u) 0

1 0 · · · · · · 0

0 1
. . . :

:
. . . . . . 0 :

0 · · · 0 1 0




Ψt (u) = ω (u) + α (u)Xt + β (u) Ψt−1 (u)

Ψt+j (u) =
j−1∑

k=0

β (u)k
[
ω (u) + α (u)Xt+j−k

]
+ β (u)j Ψt (u)

⇒
Ψt+j (u) =

j−1∑

k=0

βk,1 (u) [ω (u) + α (u)ᵀ
Xt+j−k] + βj,1 (u)Ψt (u)

where

βk,1 (u) =
[
β (u)k

]
(1,1)

βj,1 (u) =
[
β (u)j

]
(1,:)

Ψt+j (u) = ω (u)
j−1∑

k=0

[
β (u)k

]
(1,1)

+
j−1∑

k=0

βk,1 (u)

[
p∑

i=0

αi (u)xt+j−k−i

]
+

q∑

i=0

[
β (u)j

]
(1,i+1)

Ψt−i (u)

= ω (u)
j−1∑

k=0

[
β (u)k

]
(1,1)

+
p+j−1∑

i=0

[
i∑

k=0

αi−k (u) βk,1 (u)

]
xt+j−i +

q∑

i=0

[
β (u)j

]
(1,i+1)

Ψt−i (u)

= ω∗j (u) +
p+j−1∑

i=0

δi (u) xt+j−i +
q∑

i=0

γj,i (u) Ψt−i (u)

Ψt+j (u) = ω∗j (u) +
p+j−1∑

i=0

δi (u) xt+j−i +
q∑

i=0

γj,i (u)Ψt−i (u) (C.4)
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where

ω∗j (u) = ω (u)
j−1∑

k=0

[
β (u)k

]
(1,1)

δi (u) =
i∑

k=0

αi−k (u)
[
β (u)k

]
(1,1)

γj,i (u) =
[
β (u)j

]
(1,i+1)

Vt,h (u1, · · · , uh) = Et

[
exp

(
h∑

i=1

uixt+i

)]

= Et

[
exp

(
h−1∑

i=1

uixt+i + Ψt+h−1 (uh)

)]

= Et

[
exp

(
h−1∑

i=1

uixt+i +
h−2∑

k=0

βk,1 (uh) [ω (uh) + α (uh)ᵀ
Xt+h−1−k] + βh−1,1 (uh)Ψt (uh)

)]

= exp


 ω (uh)

∑h−2
k=0 βk,1 (uh) + βh−1,1 (uh) Ψt (uh)

+
∑0

i=1−p

(∑h−1−i
k=0 βk,1 (uh)αh−1−k−i (uh)

)
xt+i


Vt,h−1

(
uh−1

1 , · · · , uh−1
h−1

)

where

uh−1
i = ui +

h−1−i∑

k=0

βk,1 (uh) αh−1−k−i (uh)

ln [Vt,h (u1, · · · , uh)] = ωh +
p−1∑

j=0

δh
j xt−j +

q∑

j=0

γh
j Ψt−j (u) + ln

[
Vt,h−1

(
uh−1

1 , · · · , uh−1
h−1

)]

where

ωh = ω (uh)
h−2∑

k=0

βk,1 (uh)

γh
j =

[
β (uh)h−1

]
(1,j+1)

δh
j =

h−1+j∑

k=0

α
h−1−k+j

(uh)
[
β (uh)k

]
(1,1)

Proof of Proposition 5.10.

The price at t of a zero coupon bond which pay 1 at t+h is given by:
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B(t, h) = EP
t

[
h∏

i=1

Mt+i−1,t+i

]

= EP
t

[
exp

(
γ

h∑

i=1

rt+i −
h∑

i=1

rt+i−1 −
h∑

i=1

ψt+i−1 (γ)

)]

Using relation (5), we have

h∑

i=1

ψt+i−1 (γ) =
h∑

i=1

[
ω∗i−1 (γ) +

p+i−2∑

k=0

δk (γ) rt+i−k−1 +
q∑

k=0

γi−1,k (γ)Ψt−k (γ)

]

=
h∑

i=1

ω∗i−1 (γ) +
h−1∑

j=1−p




h∑

i=j+1

δi−1−j (γ)


 rt+j +

q∑

k=0

[
h∑

i=1

γi−1,k (γ)

]
Ψt−k (γ)

= ω∗h (γ) +
h−1∑

j=1−p

δj (γ) rt+j +
q∑

k=0

γk (γ)Ψt−k (γ)

where

ω∗h (γ) =
h∑

i=1

ω∗i−1 (γ)

δj (γ) =
h∑

i=j+1

δi−1−j (γ)

γk (γ) =
h∑

i=1

γi−1,k (γ)

The price at t of zero-coupon bond which pay 1 at t + h is defined as follows:

B(t, h) = exp


ω∗h (γ) +

0∑

j=1−p

δj (γ) rt+j − rt +
q∑

k=0

γk (γ)Ψt−k (γ)


× EP

t

[
exp

(
h∑

i=1

uirt+i

)]

= exp


ω∗h (γ) +

0∑

j=1−p

δj (γ) rt+j − rt +
q∑

k=0

γk (γ)Ψt−k (γ)


Vt,h (u1, · · · , uh)

where

ui = γ − 1 + δi (γ) , i ≤ h− 1

uh = γ

Thus
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ln B(t, h) = ω∗h (γ) +
0∑

j=1−p

δj (γ) rt+j − rt +
q∑

k=0

γk (γ) Ψt−k (γ) + ln Vt,h (u1, · · · , uh)

rt,t+h = −ω∗h (γ)
h

−
0∑

j=1−p

δj (γ)
h

rt+j +
rt

h
−

q∑

k=0

γk (γ)
h

Ψt−k (γ)− ln Vt,h (u1, · · · , uh)
h

Proof of Proposition 5.11. We can rewrite the model as follows:

Ψt (u, v)


1−

q∑

j=1

βj(u, v)Lj


 = ω(u, v) +

p∑

j=0

αj(u, v)ht−j

Denote by β̂j(u, v) for j=1,..,q, the inverse of real or complex root of 1−∑q
j=1 βj(u, v)Lj . Then,

there exist real numbers ν1, ..., νq such that:

1
1−∑q

j=1 βj(u, v)Lj
=

q∑

j=1

νj (u, v)

1− β̂j(u, v)L

Thus

Ψt (u, v) =
ω(u, v)

1−∑q
j=1 βj(u, v)

+
p∑

j=0

q∑

i=1

νi (u, v)αj(u, v)

1− β̂i(u, v)L
ht−j

=
ω(u, v)

1−∑q
j=1 βj(u, v)

+
p∑

j=0

q∑

i=1

νi (u, v)αj(u, v)
∞∑

k=0

β̂i(u, v)kht−j−k

=
ω(u, v)

1−∑q
j=1 βj(u, v)

+
p∑

j=0

q∑

i=1

∞∑

k=j

νi (u, v)αj(u, v)β̂i(u, v)k−jht−k

=
ω(u, v)

1−∑q
j=1 βj(u, v)

+
∞∑

k=0




q∑

i=1

min(k,p)∑

j=0

νi (u, v)αj(u, v)β̂i(u, v)k−j


 ht−k

ψt (1 + γ, λ)− ψt (γ, λ) =
ω (1 + γ, λ)

1−∑q
j=1 βj (1 + γ, λ)

− ω (γ, λ)
1−∑q

j=1 βj (γ, λ)

+
∞∑

k=0




q∑

i=1

min(k,p)∑

j=0

{
νi (1 + γ, λ) αj (1 + γ, λ) β̂k−j

i (1 + γ, λ)

−νi (γ, λ) αj (γ, λ) β̂k−j
i (γ, λ)

}
 ht−k.

This implies that

ω (1 + γ, λ)
1−∑q

j=1 βj (1 + γ, λ)
− ω (γ, λ)

1−∑q
j=1 βj (γ, λ)

= r
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q∑

i=1

min(k,p)∑

j=0

{
νi (1 + γ, λ)αj (1 + γ, λ) β̂k−j

i (1 + γ, λ)− νi (γ, λ) αj (γ, λ) β̂k−j
i (γ, λ)

}
= 0, ∀k ≥ 0.

Sufficient conditions that guarantee these equalities are:

νi (1 + γ, λ) = νi (γ, λ) , ∀ 1 ≤ i ≤ q

αj (1 + γ, λ) = αj (γ, λ) , ∀ 0 ≤ j ≤ p

β̂i (1 + γ, λ) = β̂i (γ, λ) , ∀ 1 ≤ i ≤ q

Proof of Proposition 5.12.

ψQ
t,t+h (u) = log

[
EQ

t

[
exp

(
u

h∑

i=1

rt+i

)]]

= log

[
EP

t

[
Mt+1 × · · · ×Mt+h × exp

(
u

h∑

i=1

rt+i

)]]

= log

[
EP

t

[
exp

(
u

h∑

i=1

rt+i + γ

h∑

i=1

rt+i + λ

h∑

i=1

ht+i +
h∑

i=1

θt+i−1

)]]

= log

[
EP

t

[
exp

(
(u + γ)

h∑

i=1

rt+i + λ

h∑

i=1

ht+i − rh−
h∑

i=1

ψt+i−1 (γ, λ)

)]]

using the fact that

Ψt+j (u, v) = ω∗j (u, v) +
p+j−1∑

i=0

δi (u, v) ht+j−i +
q∑

i=0

γj,i (u, v)Ψt−i (u, v)

with ω∗j (u, v) = ω (u, v)
∑j−1

k=0

[
β (u, v)k

]
(1,1)

, δi (u) =
∑i

k=0 αi−k (u, v)
[
β (u, v)k

]
(1,1)

, γj,i (u) =
[
β (u, v)j

]
(1,i+1)

and

β (u, v) =




β1 (u, v) β2 (u, v) · · · βq (u, v) 0

1 0 · · · · · · 0

0 1
. . . :

:
. . . . . . 0 :

0 · · · 0 1 0



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ψQ
t,t+h (u) = −rh− ψt (γ, λ)−

h∑

i=2

ω∗i−1 (γ, λ)−
h∑

i=2

[
q∑

k=0

γi−1,k (γ, λ)ψt−k (γ, λ)

]

−
0∑

j=1−p




h∑

i=j+2

δi−1−j (γ, λ)


 ht+j + log Vt,h ((u1, v1) , ..., (uh, vh))

where

Vt,h ((u1, v1) , ..., (uh, vh)) = EP
t

[
exp

(
h∑

i=1

(ui, vi)
(

rt+i

ht+i

))]

with

ui = u + γ, ∀ 1 ≤ i ≤ h

vh = vh−1 = λ

vj = λ−
h∑

i=j+2

δi−1−j (γ, λ) , 1 ≤ j ≤ h− 2
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Table 1: MLE Estimation of Generalized- Autoregressive Inverse Gaussian Process

on Realized variance Data.

The data is the Deutsche mark (DM) / US dollar (USD) exchange rate realized variance. Sample

period is 1986:12:01 to 1996:12:01 with a total of 2449 observations

30 min 5 min
Affine G-Affine Affine G-Affine

par Est STD Est STD Est STD Est STD
β 0.6044 0.0354 0.5686 0.0342
ρ 0.3438 0.0183 0.1857 0.0166 0.3860 0.0174 0.2264 0.0174
µ 0.2124 0.0091 0.1665 0.0071 0.1525 0.0059 0.1213 0.0046
ν 1.3454 0.0386 0.5447 0.0522 2.1936 0.0624 0.9156 0.0836
LIK 54.9468 121.4220 -216.4841 -143.1975
BIC -0.0129 -0.0368 0.0980 0.0712

Table 2: MLE Estimation of Generalized- Autoregressive Gamma Process on Re-

alized variance Data.

The data is the Deutsche mark (DM) / US dollar (USD) exchange rate realized variance. Sample

period is 1986:12:01 to 1996:12:01 with a total of 2449 observations

30 min 5 min
Affine G-Affine Affine G-Affine

par Est STD Est STD Est STD Est STD
β 0.6093 0.0341 0.5781 0.0324
ρ 0.3288 0.0191 0.1875 0.0163 0.3976 0.0184 0.2340 0.0173
µ 0.1867 0.0063 0.1527 0.0054 0.1414 0.0046 0.1156 0.0038
ν 1.5890 0.0433 0.5880 0.0577 2.3374 0.0682 0.8918 0.0835
LIK -151.6401 -80.2328 -358.8048 -276.5893
BIC 0.07148 0.0455 0.1561 0.1257
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Table 3: MLE Estimation of Generalized- Autoregressive Normal Inverse Gaussian

Process on returns and realized variance Data.

The data is the Deutsche mark (DM) / US dollar (USD) exchange rate returns and realized variance.

Sample period is 1986:12:01 to 1996:12:01 with a total of 2449 observations

30 min 5 min
Affine G-Affine Affine G-Affine

par Est STD Est STD Est STD Est STD
β 0.6111 0.0396 0.5449 0.0419
ρ 0.3255 0.0203 0.1754 0.0179 0.3444 0.0193 0.2150 0.0192
µ 0.2341 0.0114 0.1834 0.0087 0.1642 0.0071 0.1328 0.0058
ν 1.2565 0.0398 0.5045 0.0545 2.0818 0.0647 0.9380 0.0961
a 0.0063 0.0139 0.0063 0.0140 0.0064 0.0180 0.0064 0.0180
c -0.0214 0.0448 -0.0214 0.0449 -0.0180 0.0433 -0.0180 0.0434
b 1.74E-08 5.709E-06 1.44E-08 6.024E-06 4.98E-08 1.093E-05 1.54E-08 5.777E-06
d 0.9282 0.0290 0.9282 0.0290 0.7551 0.0236 0.7551 0.0236
LIK -1600.0932 -1547.4719 -1838.6743 -1790.0531
BIC 0.8069 0.7850 0.9234 0.9034
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Table 4: MLE Estimation of Generalized- Autoregressive Normal Gamma Process

on returns and realized variance Data.

The data is the Deutsche mark (DM) / US dollar (USD) exchange rate returns and realized variance.

Sample period is 1986:12:01 to 1996:12:01 with a total of 2449 observations

Table 2: Joint Estimation, Panel B:R-RV- DM/USD: gamma

30 min 5 min
Affine G-Affine Affine G-Affine

par Est STD Est STD Est STD Est STD
β 0.6172 0.0381 0.5696 0.0383
ρ 0.3043 0.0211 0.1744 0.0174 0.3599 0.0203 0.2206 0.0190
µ 0.2033 0.0075 0.1668 0.0065 0.1503 0.0054 0.1239 0.0046
ν 1.5165 0.0447 0.5542 0.0610 2.2383 0.0698 0.8907 0.0935
a 0.0063 0.0139 0.0063 0.0139 0.0064 0.0180 0.0064 0.0179
c -0.0214 0.0447 -0.0214 0.0448 -0.0180 0.0433 -0.0180 0.0432
b 7.0E-09 2.701E-06 3.36E-08 7.974E-06 1.75E-08 7.241E-06 5.9E-09 3.153E-06
d 0.9282 0.0290 0.9282 0.0290 0.7551 0.0236 0.7551 0.0236
LIK -1782.7432 -1726.3807 -1975.3616 -1915.0602
BIC 0.8961 0.8723 0.9901 0.9644

Table 5: Implied volatility Root mean squared error by maturity, Implied volatility

bias and option price bias by Moneyness

We estimate the models on a total of 16, 506 contracts with an average call price of 46.05 and average

implied volatility of 20.26. The estimation have been done by minimizing the Black-Scholes IVRMSE

Moneyness

S/X<0.975 0.975<S/X<1 1<S/X<1.025 1.025<S/X All

Model IVRMSE (%)
Affine 3.8809 4.2988 4.4313 5.0642 4.3768
G-Affine 2.9471 2.9476 3.2201 3.7181 3.1915

Model IV bias (%)
Affine 0.2134 -0.0661 0.0346 -0.3556 -0.0166
G-Affine 0.0211 0.1873 0.3723 -0.2216 0.0694

Model Option price bias
Affine 0.4357 -0.3601 -0.4654 -1.2721 -0.3124
G-Affine 0.1809 0.0281 0.0990 -0.9638 -0.1342
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Table 6: Implied volatility Root mean squared error by maturity, Implied volatility

bias and option price bias by Moneyness

We estimate the models on a total of 16, 506 contracts with an average call price of 46.05 and average

implied volatility of 20.26. The estimation have been done by minimizing the Black-Scholes IVRMSE

Maturity

DTM<30 30<DTM<90 90<DTM<180 180<DTM All

Model IVRMSE (%)
Affine 5.4750 4.3179 3.9963 3.8295 4.3768
G-Affine 3.9103 3.1432 2.8824 2.9301 3.1915

Model IV bias (%)
Affine 0.5038 -0.2423 -0.0693 0.1737 -0.0166
G-Affine 0.8447 0.1338 -0.2344 -0.4328 0.0694

Model Option price bias
Affine 0.3352 -0.5526 -0.5843 0.0199 -0.3124
G-Affine 0.8570 0.3845 -0.5387 -1.8517 -0.1342
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Table 7: State variable forecasting errors: RMSE.

we measure the difference between model forecast of state variable Zt, for a given horizon h (Et[Zt+h])

and observed state variable Zt+h. RMSE =
√

1
T

∑T
t=1 (Et[Zt+h]− Zt+h)2 In sample period is 1952:06

to 2000:12. Out of sample exercise is conducted by successively estimating on 200+i th first observations

and forecasting the 200+i+1

x1,t x2,t y
(1)
t y

(60)
t − y

(1)
t x1,t x2,t y

(1)
t y

(60)
t − y

(1)
t

IS RMSE 1 month horizon IS RMSE 3 months horizon

RW 0.1368 0.2491 0.6601 0.6049 0.2880 0.5309 1.0632 0.8731
VAR 0.1312 0.2439 0.6271 0.5705 0.2651 0.4993 0.9722 0.7678

VARMA 0.1296 0.2372 0.6116 0.5586 0.2631 0.4858 0.9692 0.7615

OS RMSE 1 month horizon OS RMSE 3 months horizon

RW 0.1248 0.1367 0.5424 0.5874 0.2782 0.2557 0.7559 0.7818
VAR 0.1244 0.1367 0.5161 0.5684 0.2799 0.2545 0.7264 0.7515

VARMA 0.1212 0.1375 0.5076 0.5681 0.2779 0.2493 0.6829 0.7254

IS RMSE 6 months horizon IS RMSE 12 months horizon

RW 0.4461 0.9014 1.3589 1.0510 0.7319 1.4017 1.7494 1.2651
VAR 0.3915 0.8034 1.2137 0.8711 0.6142 1.1155 1.5490 0.9487

VARMA 0.3885 0.7796 1.2012 0.8586 0.6096 1.0646 1.5406 0.9437

OS RMSE 6 months horizon OS RMSE 12 months horizon

RW 0.4154 0.3983 0.9770 0.9765 0.6149 0.6192 1.3765 1.2150
VAR 0.4197 0.3819 0.9556 0.9078 0.6182 0.5488 1.1998 0.9481

VARMA 0.4186 0.3722 0.8761 0.8702 0.6187 0.5272 1.1204 0.9336

Table 8: Cross Section Root Mean Squared Errors.

I measure the difference between model-yields ŷ
(n)
t and observed yield y

(n)
t . RMSE(n) =√

1
T

∑T
t=1

(
ŷ
(n)
t − y

(n)
t

)2

In sample period is 1952:06 to 2000:12. Out of sample exercise is conducted

by successively estimating on 200+i th first observations and forecasting the 200+i+1

y
(12)
t y

(24)
t y

(36)
t y

(48)
t Total

In Sample
VAR 0.3669 0.2519 0.1774 0.1774 0.2466

VARMA 0.3529 0.2433 0.1740 0.1740 0.2385

Out of Sample
VAR 0.3867 0.2832 0.1866 0.0846 0.2607

VARMA 0.3636 0.2679 0.1781 0.0830 0.2462
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Table 9: Yield curve forecasting errors by horizon.

I measure the difference between model forecast of yield to maturity n, for a given horizon m (Et[ŷ
(n)
t+h])

and observed yield y
(n)
t+h. RMSE(n)(h) =

√
1
T

∑T
t=1

(
Et[ŷ

(n)
t+h]− y

(n)
t+h

)2

In sample period is 1952:06 to

2000:12. Out of sample exercise is conducted by successively estimating on 200+i th first observations

and forecasting the 200+i+1

y
(12)
t y

(24)
t y

(36)
t y

(48)
t y

(12)
t y

(24)
t y

(36)
t y

(48)
t

IS RMSE 1 month horizon IS RMSE 3 months horizon

RW 0.5065 0.4395 0.4034 0.3898 0.9221 0.8201 0.7377 0.6884
VAR 0.5650 0.4624 0.4125 0.3829 0.8638 0.7619 0.6876 0.6479

VARMA 0.5493 0.4533 0.4083 0.3814 0.8524 0.7570 0.6858 0.6481

OS RMSE 1 month horizon OS RMSE 3 months horizon

RW 0.3297 0.3386 0.3434 0.3487 0.6299 0.6671 0.6551 0.6472
VAR 0.5024 0.4356 0.3808 0.3464 0.7368 0.6971 0.6438 0.6117

VARMA 0.4656 0.4115 0.3675 0.3414 0.6783 0.6636 0.6239 0.6039

IS RMSE 6 months horizon IS RMSE 12 months horizon

In Sample

RW 1.2328 1.1003 0.9938 0.9375 1.6257 1.4786 1.3614 1.3059
VAR 1.1274 1.0021 0.9086 0.8562 1.4826 1.3475 1.2284 1.1645

VARMA 1.1106 0.9929 0.9031 0.8541 1.4694 1.3378 1.2202 1.1601

OS RMSE 6 months horizon OS RMSE 12 months horizon

RW 0.9455 0.9785 0.9531 0.9318 1.4762 1.4753 1.4156 1.3777
VAR 1.0187 0.9651 0.8976 0.8491 1.3991 1.3413 1.2597 1.1914

VARMA 0.9440 0.9180 0.8676 0.8339 1.3237 1.2831 1.2166 1.1622
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Figure 1: Generalized Autoregressive Normal Inverse gaussian term structure of

value-at-risk

We use parameters estimated from the MLE to compute the term structure of value at risk. Several

cases have been considered depending on the day where the term structure is evaluated. The cases are

High volatility day (day with higher realized variance), Median volatility day and Low volatility day
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Figure 2: Autoregressive Normal Inverse gaussian term structure of value-at-risk

We use parameters estimated from the MLE to compute the term structure of value at risk. Several

cases have been considered depending on the day where the term structure is evaluated. The cases are

High volatility day (day with higher realized variance), Median volatility day and Low volatility day
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Figure 3: Term structure of Value-at-risk Conditional on a low variance day

We use parameters estimated from the MLE to compute the term structure of value at risk. We

compared Affine and Generalized affine term structure
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Figure 4: Term structure of Value-at-risk Conditional on a median variance day

We use parameters estimated from the MLE to compute the term structure of value at risk. We

compared Affine and Generalized affine term structure
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Figure 5: Term structure of Value-at-risk Conditional on a high variance day

We use parameters estimated from the MLE to compute the term structure of value at risk. We

compared Affine and Generalized affine term structure.
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Figure 6: Constant yield coefficient an for the VAR and VARMA model

The figure displays an yield constant coefficient as a function of maturity n.

63



5 10 15 20 25 30 35 40 45 50 55 60
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Weights for inflation (b
1,n

)

Yield Maturity n

 

 
VAR
VARMA

5 10 15 20 25 30 35 40 45 50 55 60
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Weights for Real Activity (b
1,n

)

Yield Maturity n

 

 
VAR
VARMA

5 10 15 20 25 30 35 40 45 50 55 60
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

Weights for Short Rate (b
1,n

)

Yield Maturity n

 

 
VAR
VARMA

5 10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weights for Term Spread (b
1,n

)

Yield Maturity n

 

 

VAR
VARMA

Figure 7: b1,n yield weights for the VAR and VARMA model.

The figure displays b1,n yield weights as a function of maturity n.
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Figure 8: b2,n yield weights for the VARMA model.

The figure displays b2,n yield weights as a function of maturity n. Notice that these weights are zero

for the VAR model.
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Figure 9: b1,n + b2,n yield weights for the VAR and VARMA model.

The figure displays b1,n + b2,n yield weights as a function of maturity n.
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Figure 10: Implied Volatility Bias

The figure displays implied volatility bias as a function of the day at which option is priced. Implied

volatility bias is the difference between model and observed black scholes implied volatility. For each

day we compute average available Implied volatility bias
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Figure 11: Option price Bias

The figure displays Option price bias as a function of theb day at which option is priced. Option price

bias is the difference between model and observed Option price. For each day we compute average

available option bias
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Figure 12: Implied Volatility Root mean squared error (IVRMSE)

The figure displays IVRMSE as a function of day at which option is priced. IVRMSE is the square-root

of the average squared difference between model and observed black scholes implied volatility.

66




