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Abstract 
 
In analyzing the macroeconomic impact of asset price booms and crashes, it is the disasters 
that really matter. This emphasis suggests shifting the empirical study of the impact of housing 
and equity bubbles beyond their impact on the expected value of changes in growth and 
inflation.  With this in mind, we develop and implement procedures for measuring the impact of 
equity and property booms on the extreme tails of the distribution of deviation in output and 
price-level from their trends.  To do this, we bring together quantile regression techiques and 
vector autoregression methods to generate a set of tools that allow us to address questions like 
the following : If we see real housing prices that are ten percent above their trend, what can we 
infer about the 10th percentile of the distribution of (log) output deviations from its trend 1,or 2, or 
3 years later ? 
 
Using data from a broad cross-section of countries, we estimate panel-quantile-vector 
autoregressions to estimate point forecasts and confidence intervals for the predicted impact of 
asset price booms on the quantiles of the output and price-level distribution. The results suggest 
that at horizons of 3 years that both housing booms and equity booms significantly worsen 
growth and inflation prospects, creating outsized risks that real output will decline significantly 
below trend and that prices will rise significantly above trend.  
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I. Introduction 
 

When housing and equity markets boom, what happens?  Wealth effects lead to consumption 

increases.  Declines in the cost of firm finance and the return to residential construction bring on 

and investment boom.  Higher government revenues give rise to rising expenditure and lower 

taxes.  But when the boom inevitably turns into a bust, euphoria turns to despair.  Consumption 

and investment collapse, and government revenues do, too.  Households and firms go 

bankrupt, defaulting on loans.  Balance sheet deterioration extends to financial institutions, as 

lenders are left holding collateral that no longer makes them whole.1 

 

Since the boom is gradual, while the crash is sudden, the impact of asset price bubbles would 

seem to be quite asymmetrical.  On the way up, growth is marginally higher; on the way down, 

there is a real risk of catastrophe.  This pattern with extended periods of regular and steady 

growth, punctuated by sudden and relatively short downturns, largely mirrors the time profile of 

economic expansions interrupted by infrequent recessions. This asymmetry means that 

policymakers intent on stabilizing economic activity are constantly focused on preventing 

downturns.  In particular, for central bankers to meet their stabilization objectives, they must do 

their best to avoid true disaster. The specter of the Great Depression of the 1930s continues to 

haunt modern monetary policymakers.  

 

In working to avoid the worst possible macroeconomic outcomes, policymakers are acting as 

the risk managers for the economic and financial system. Then Federal Reserve Board 

Chairman Alan Greenspan put it best in 2003 when he said that “a central bank seeking to 

maximize its probability of achieving its goals is driven, I believe, to a risk-management 

approach to policy.  By this I mean that policymakers need to consider not only the most likely 

future path for the economy but also the distribution of possible outcomes about that path.” 

(Greenspan 2003, pg. 3)  

 

Because of their focus on behavior at the mean of the data, standard time-series 

macroeconometric models are not well suited to empirical implementation of the risk-

management approach.  Methods based on the logic of ordinary least squares regression or 
                                                 
1 For a summary of the impact of asset price bubbles on the macroeconomy see Cecchetti (2006).  For a more 
detailed discussions of the impact of housing on consumption, see Betraut (2002) and Case, Quigley and Shiller 
(2005).  And, for the debate over the appropriate policy response, see Bernanke and Gertler (1999 and 2001) for the 
“con” side, and Cecchetti, Genberg, Lipsky and Wadhwani (2000) for the “pro” side. 
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maximum likelihood estimation provide us with an understanding of behavior at the mean of the 

data.  The results answer questions about how the most likely outcome changes when 

conditioning variables (i.e. exogenous regressors) change. This provides us with information 

about shifts or translations in the distribution of possible outcomes. While a risk manager will be 

interested in these, she will also be concerned about whether the evolution of exogenous 

conditions has had an impact on the shape of the distribution.  For example, does a boom in the 

equity or housing market affect the worst possible growth outcomes?  What happens to the 

lowest quartile or decile of the distribution of growth outcomes following a boom?  Do standard 

methods give the right impression, or do we need more? 

 

We address these questions head on using quantile regression techniques. Quantile regression 

is designed to address the specific question we are interested in: How much does a change in a 

conditioning variable in a multivariate regression affect the shape of the lower or upper tail of the 

distribution of the dependent variable?   

 

Since our focus is on dynamic responses, we generalize quantile methods to the case of vector 

autoregressions.  Using quantile vector autoregression (QVARs) techniques, we are able to ask 

a more subtle time-series question: How does a change in the level of housing or equity prices 

today influence the lower tail of growth output (or the upper tail of inflation outcomes) several 

years in the future?2  And, in order to exploit all of the information that we have available in 

sample of countries, we show how to apply the QVAR technique in a panel context. 

 

Our results suggest several important conclusions. First, we find that the impact of housing and 

equity booms on growth and inflation differs across quantiles. That is, the effect at the center of 

the distribution differs from the impact on the tails in ways that standard VAR techniques are not 

designed to reveal.   Among our various results, the most intriguing examine the impact of an 

asset price boom at the 90th percentile of the asset price distribution on the 10th percentile of the 

output growth distribution (a pretty big disaster) and the 90th percentile of the inflation 

distribution.  Using a panel of 27 countries we find that an equity boom has a negligible effect on 

growth and inflation at a 4-quarter horizon, but a severe impact negative impact at a horizon of 

12 quarters.  That is, if we see equity in the 90th percentile today, a further increase in prices will 

make the worst growth and inflation outcomes significantly worse.  

 
                                                 
2This work builds a statically coherent structure for intuitive ideas introduce in Cecchetti (2008). 
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Using data from 17 countries we find that housing booms create analogous long-horizon effects 

on the tails of the output and growth distributions. But in contrast to the results for equity, 

housing booms also have short-horizon effects, improving the worst growth and inflation 

outcomes 4-quarters out. 

 

The remainder of the paper proceeds in four sections.  Section 2 presents the basic intuition of 

quantile regression showing how to extend the simple procedure to estimation, prediction and 

inference in a vector autoregression.  In addition, we provide an outline of how the panel QVAR 

procedure is implemented.  We then move on in Section 3 with a set of preliminary results 

based primarily on estimates from U.S. data alone.  Specifically, we explain in detail the added 

information we obtain by estimating the models relating housing and equity to output and prices 

(pairwise).  Section 4 moves on to the panel estimates that are based on a broad cross-section 

of countries.  As we discuss, estimation based on 17 countries for the housing models 27 for the 

equity models results in a dramatic increase in efficiency. The smaller standard errors for 

predictions made using the panel QVAR models allow us to draw much more precise 

conclusions.  Section 5 summarizes the conclusions:  In virtually every case, asset price booms 

result in the worst output and inflation outcomes becoming even worse.  
 

 

II. Quantile Vector Autoregressions 
 

Our interest is in estimating the impact of asset price booms and busts on the likelihood that 

growth and inflation will end up tail of their unconditional distribution. In order to address this 

question we will develop and implement a technique that we call “quantile vector 

autoregression”, or QVAR.  To explain our method, we proceed in a series of three steps.  Since 

most macroeconomists are unfamiliar with the general techniques of quantile regression, we 

start with the basics.   Then we describe the application of quantile regression in a single-

country vector autoregression.  Finally, we show how to generalize our QVAR method to a 

panel of countries.  In order to keep things manageable in the main body of the paper, we have 

relegated the technical details of what is new to Appendix B.  
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II.1 Quantile Regression: The Basics 

 
Everyone with even the most basic understanding of econometrics knows that ordinary least 

squares regressions provide estimates of responses of a dependent variable to a change in a 

set of independent variables measured at the mean of the data.  Put only slightly more 

technically, the coefficients in an OLS regression provide measures of the derivative of the 

conditional mean function.  That is, for a regression model 

 

(1)  /
t t tY X β ε= +  

 

where tX  is an 1k × vector of regressors and β  is the vector of coefficients, under the 

assumption ( | ) 0t tE Xε =  (that is,  there is no prediction error for a given tX  level),  

( )
( | )t t

k k
t

dE Y X
dX

β = , where ( )k
tX  is the kth element of the vector tX  and kβ  is the corresponding 

coefficient. The coefficient kβ is the answer to the question:  For a one unit change in the kth 

conditioning variable, ( )k
tX , how does the entire distribution of Y shift?  Which direction does it 

move; to right ( kβ >0) or the left ( kβ <0); and by how much? 

 

But the impact of conditioning variables on the central tendency of the dependent variable may 

not be the only quantity of economic interest. There are times when we care not only about 

shifts in the location of the distribution of Y – changes in the conditional mean – but also about 

changes in the shape of that distribution. For example, does a change in ( )k
tX change the 

thickness of the upper or lower tail of the distribution of tY ? We submit that for the case of asset 

price booms and busts, this question is at least as interesting.   

 

In order to address how changes in a set of conditioning variables influence the shape of the 

distribution of a dependent variable, Koenker and Bassett (1978) developed the concept of 

“quantile regression”.  Quantile regression is designed to answer the following question: When a 

conditioning variable ( )k
tX changes, what happens to the τth quantile of the distribution of tY ? 
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Koenker (2005, pg. 1) begins his book on quantile regression by quoting Mosteller and Tukey 

(1977), who write that “[j]ust as the mean gives an incomplete picture of a single distribution, so 

the regression curve gives a correspondingly incomplete picture for a set of distributions.” 

 

In their introduction to quantile regression, Koenker and Hallock (2001) describe a variety of 

cases in order to illustrate how conclusions can change when one shifts away from simply 

modeling conditional means. One example looks at the impact of a variety of maternal and 

demographic characteristics on the birth weight of babies.  Looking at the difference between 

boys and girls, Koenker and Hallock report that boys are on average 100 grams larger than 

girls, with a 90-percent confidence interval of roughly  ±4 grams – that is the mean effect.  The 

authors go on to describe how this disparity is smaller at the lower quantiles than at the higher 

ones.  At the 5th percentile of the distribution, for example, boys are only 45 grams larger than 

girls, while at the 95th percentile they are 130 grams larger.  As Koenker and Hallock (2001, pg. 

149) conclude “The conventional least squares confidence interval does a poor job of 

representing this range of disparities.”3 

 

At first blush, the idea of modeling regression quantiles seems extremely complex.  After all, the 

percentiles of a distribution are order statistics, the properties of which are not the stuff of even 

graduate econometrics books.  In a multivariate context the problem is particularly vexing. How 

would you order the sample record for a dependent variable conditional on a set of explanatory 

variables?  Fortunately, as Koenker (2005) explains, it is possible to turn the estimation of these 

order statistics into a straightforward optimization problem that is computationally tractable.  The 

critical insight is to write down the right penalty or loss function. 

 

To see how this works, recall that we can write down an ordinary least squares problem as an 

optimization problem where we minimize the sum of squared deviations of the fitted values for 

the dependent variable from the data. That is, for observations indexed by t, 

 

(2)  
1

ˆ arg min ( ( ))
T

OLS t
B tβ

β ρ ε β
∈ =

= ∑   

 

where ( )ρ ⋅  is a weighting function, and  B is the parameter space.  

                                                 
3 Chapter 1 of Koenker (2005) contains additional examples, including one examining the impact of unionization on 
wages – unionization raises the lower quantiles but has little impact on the upper one. 
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(3)  /( )t t tY Xε β β= −  

 

is the regression error evaluated at the coefficient value β.  

 

In the ordinary least squares case the weighting function in (2) is quadratic, so 2( )t tρ ε ε= . But if, 

instead of a parabola, the function ρ  is chosen to be a “V”-shape piecewise linear function (as 

those illustrated in Figure 1) then, depending on the exact shape of the V function, the 

optimization problem yields an estimate at a particular quantile of the distribution of ε. 

 

To be more specific, consider the following weighting function for the regression error in (3), 

 

(4) 
            for 0

( )
(1 ) | |  for 0

t t
t

t t
τ

τε ε
ρ ε

τ ε ε
>⎧

= ⎨ − <⎩
 

 

where | |⋅  denotes the absolute value. That is, for positive errors, we weight the deviations of the 

fitted regression line from the data byτ, and for negative errors, weight the absolute deviations 

by (1-τ).  

 

According to this weighting scheme, in the case of τ = ½, the overestimates (i.e., the positive 

errors) and the underestimates (i.e., the negative errors) are weighted symmetrically. Then β̂  is 

chosen so that the probability of tY  less than / ˆ
tX β  equals the probability that tY  is greater 

than / ˆ
tX β . The resulting β̂  is the mean-absolute-value estimator for β  – the multivariate analog 

to the sample median in a univariate problem as shown in Panel A of Figure 1. In other words, 
/ ˆ
tX β  will be the sample median of tY .  

 

For the more general case where the loss function is piecewise linear but asymmetrical, as 

illustrated in panel B of Figure 1, we obtain an estimate at a quantile that depends on the 

relative slopes on the two sides of the origin.  To paraphrase Koenker (2005, pg. 7), if an 

underestimate is marginally three times more costly than an overestimates (the case where τ=¼ 
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in the figure), we will choose β̂  so that the probability of tY  less than / ˆ
tX β  is three times greater 

than the probability that tY  is greater than / ˆ
tX β .  The result will be the 75th percentile of tY .  

 
 

Figure 1: Loss Function for Quantile Regression   
A. Minimum Absolute Distance  

0

450450

( )jτρ ε

jε0

450450

( )jτρ ε

jε  

 
B. τth Quantile  

0

τ-1 τ

( )jτρ ε

jε0

τ-1 τ

( )jτρ ε

jε

 
The estimate of the conditional impact of X on Y at the τth quantile regression is given by 
ˆ( ) arg min ( ( ))t

t
τ

β
β τ ρ ε β= ∑ , where ( ( ))tτρ ε β is the weighting function defined in (4). The technique 

involves minimizing the sum of asymmetrically weighted residuals. Setting  τ=½  yields the median, or 
minimum distance estimator as in panel A; for τ=¼ the result is the 75th percentile, more like what is 
shown in panel B. 
 
 

To proceed, we need to introduce a small amount of notation some notation.  It is useful to write 

the weighting function in (4) more compactly as  

 

(4’)          0( ) ( 1 )
tt tτ ερ ε τ ε<= −  

where ( )1 ⋅  is an indicator function that equals one when the argument ( )⋅ is true.  Let function 

( )Qτ ⋅  denote the population τ th quantile of the argument, so ( | )t tQ Xτ ε  denotes the τth quantile 

of tε  conditional on the regressor vector tX . Then under the assumption that ( | ) 0t tQ Xτ ε =  

(i.e., for a given tX , there is no prediction mistake at the τ th quantile), the quantile regression 

estimator, denoted by ˆ( )β τ , is defined as4   

 

                                                 
4 If the true model is nonlinear, then we interpret our linearized quantile regression as the best linear predictor for the 
conditional quantile. 
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(5)    /

1

ˆ( ) arg min ( )
T

t tB t
Y Xτβ

β τ ρ β
∈

=

= −∑ .  

 

Note that the restriction on the error term in the quantile regression, that ( | ) 0t tQ Xτ ε = , is 

analogous to the conditional mean restriction that ( | ) 0t tE Xε = in the OLS regression.  As in the 

standard case, this assumption provides identification in a quantile regression.  

 

Assuming the regressors are weakly stationary and that the density of the error εt conditional on 

Xt at a given quantile τ is continuous, the first order condition (F.O.C.) for the problem in (5) is5 

 

(6)    ( )/
1

ˆ ( )
1

1 0
t t

T

tY X
t

T X
β τ

τ−
<

=

− =∑ . 

 

And the resulting estimator satisfies the sample quantile condition /ˆ ˆ( | ) ( )t t tQ Y X Xτ β τ= .  Details 

of the derivation of (6) can be found in Koenker and Bassett (1978) and Koenker (2005).  

 
II.2 Single-Country Quantile Vector Autoregression: Estimation, Inference and Prediction 
 

Since our interest is in the dynamic responses of growth and inflation to equity or housing 

booms, we need to reformulate the quantile procedure to allow us to consider vector 

autoregression.   To see the approach, consider the example of a simple two-equation vector 

autoregression with the log of real output, yt, and log of the real price of housing, ht (both 

measured as deviations from a filtered trend). If the coefficients are constrained to be constant 

across quantiles, as in the standard OLS estimation, the bivariate VAR model is 

 

(7) 
/

1
/

2

0
0

t tt

t tt

y x
h x

εγ
εβ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
, 

 

where four lags are used in our study, so xt=[1 yt-1 yt-2 yt-3 yt-4 ht-1 ht-2 ht-3 ht-4]’. 

                                                 
5 Because of the kink in the “V”, this first-order conditions cannot hold exactly. Nevertheless, as T → ∞ , because 
the single point has measure zero, the left hand side of equation (6) converges to zero. Stated more precisely, the left 
hand side of the first-order condition is 1/ 2( )po T − . 
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In our study, instead, we consider the case in which the output equation is estimated at quantile 

τ1 and the housing equation is estimated at quantile τ2.  To explicitly address the dependence of 

the VAR model on quantiles, we rewrite (7) as   

 

(8)   
/

1 11
/

2 22

( )( )0
( )( )0

t tt

t tt

y x
h x

ε τγ τ
ε τβ τ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
. 

 

This problem is interesting as it addresses questions like: If there is a boom in which housing 

prices are in 90th percentile of the data ( 2τ =0.9), what happens to the 10th percentile of the 

output gap distribution ( 1τ =0.1)?  Or more generally, this formulation allows us to answer 

questions like: Conditioning on the value of the tx vector, what is the entire distribution of the 

output gap ty if the housing price th  is at 2τ th quantile? 

 

Estimation 

To proceed, assume that the errors 1tε  and 2tε  satisfy the population quantile restrictions 

1 1 1( ( ) | ) 0t tQ xτ ε τ =  and 
2 2 2( ( ) | ) 0t tQ xτ ε τ = , respectively. These restrictions imply that the 

population responses of the τ1
th quantile of y and the τ2

th of h to changes in X are characterized 

by:  

 

(9) 1

2

/
1

/
2

( | ) ( )

( | ) ( )
t t t

t t t

Q y x x

Q h x x
τ

τ

γ τ

β τ

=

=
 

 

To estimate the model (9), analogous to the single equation model in the previous subsection, 

we solve the following joint optimization problem: 

 

(10) 
1

2

/
1

1

/
2

1

min ( ( ))

min ( ( ))

T

t t
t
T

t t
t

y x

h x

τγ

τβ

ρ γ τ

ρ β τ

=

=

−

−

∑

∑
 

 



  Measuring the Impact of Asset Price Booms Using Quantile Vector Autoregressions 
 

Cecchetti and Li  10 February 2008 
 

where ( )
iτρ ⋅  ( 1,2i = ) is the “V”-function defined in (4’) for 1τ τ= and 2τ τ=  respectively .6 

 

Point estimation of γ(τ1) and β(τ2) are obtained by the variant of the linear programming 

algorithm described in Koenker and Park (1996).  In practice, the two QVAR functions can be 

estimated on an equation-by-equation basis to yield 1 2
ˆˆ( ) and ( )γ τ β τ . 

 

Inference 

In order to conduct inference on the estimates 1 2
ˆˆ( ) and ( )γ τ β τ  we focus on the first order 

condition for the optimization problem in (10).  The presence of more than one equation in our 

setup means that we must take account of the cross-equation correlation. We address this issue 

by stacking the two first-order conditions.  Write the joint F.O.C. as  

 

(11) 1
1 2

1

ˆˆ( ( )), ( )) 0
T

t
t

T g γ τ β τ−

=

=∑  

where  

/
1

/
2

1 ( )
1 2

2 ( )

( 1 )
( ( )), ( ))

( 1 )
t t

t t

ty x
t

th x

x
g

x
γ τ

β τ

τ
γ τ β τ

τ
<

<

−⎡ ⎤
⎢ ⎥=

−⎢ ⎥⎣ ⎦
.  

 

The two moment functions in 1 2( ( )), ( ))tg γ τ β τ  are obtained by applying (6) to the QVAR model 

in (10) on an equation-by-equation basis. Then by treating (11) as the sample moment 

restriction in a generalized method of moments (GMM) framework, joint asymptotic normality 

can be established through the standard argument, and the joint asymptotic distribution of 

1 2
ˆˆ( ) and ( )γ τ β τ  can be derived that automatically takes account of the cross-equation 

correlation. Moreover, throughout the paper we utilize heteroskedasticity and autocorrelation 

consistent standard errors (HAC estimators), which is a natural extension when applying 

quantile regression technique to times series data. See Appendix B.2 for all derivation details. 

 

Prediction: The Univariate Case 

                                                 
6 It is worth noting that by making one of the ρτ(⋅) functions quadratic we can estimate one equation at the mean of 
the data, while estimating the other at the τth quantile.   That is, we estimate one equation by OLS and the other by 
optimizing the function analogous to one of the equations in (7).  
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The nature of the questions we seek to answer requires that we formulate predictions of the 

endogenous variables in the QVAR several periods into the future.  For example, we would like 

to know if a housing price boom today increases the risk of output falling well below trend 3 

years in the future.  This requires forecasting the impact of a move in housing prices today on 

the lower tail of the distribution of the output gap 12 quarters into the future.  To address 

questions of this sort, we compute the quantile impulse response function at various horizons. 

 To understand how we use the QVAR to do this, let us start with a simple example of a first-

order univariate autoregression 

 

(12)  1t t tY Y uα −= +  

 

where α is a parameter and ut is an i.i.d. mean zero random variable.  If we use the 

conventional OLS estimator for α, ˆOLSα , then the one-period ahead forecast for Yt+1 is  

 

(13)  ( )t+1 t tˆ|   OLSE Y Y Yα= . 

 

Iterating forward, and recalling that E(ut+k|Yt)=0 for all k>0, we can then compute the k-period 

ahead forecast as 

 

(14) ( )t k t tˆE Y | Y   Yk
OLSα+ = , 

where ˆ k
OLSα  is the OLS estimate of the coefficient α raised to the kth power. 

 

Suppose, instead of the estimate of the mean of Yt+k conditional on Yt, we are interested in 

forecasting Yt+k, conditional on Yt, at the τth quantile.  That is, for a given value of the 

conditioning variable, which is current Y in this case, we want to know if the shape of the tail of 

the distribution of Yt+k has changed. 

 

Starting again with the one-period-ahead forecast, and using the notation we established earlier, 

the conditional quantile function for the response of Yt+1 to Yt  at theτth quantile, Qτ(Yt+1|Yt), 

equals 

 

(15) 1 ˆ( | ) ( )t t tQ Y Y Yτ α τ+ = . 
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Multiple-period-ahead forecasts are more complex than in the conditional-mean case because it 

is possible to condition on previous forecasts at any quantile.  The simplest case is where we 

pick one value for τ and stick with it.  To understand how that works, define 1( )tY τ+ as the one-

period-ahead forecast given by (15).  The forecast of Yt+2 at the τth quantile conditional on this is 

then 

 

(16)  2
2 1 1ˆ ˆ[ | ( )] ( ) ( ) ( )t t t tQ Y Y Y Yτ τ α τ τ α τ+ + += = ,  

 

which looks very similar to the case using OLS in (14).  

 

In principle, there is no reason to condition the two-period-ahead forecast of the τth quantile of Y 

on the one-period-ahead forecast at the same quantile.  One might, for example, chose to 

forecast Yt+1 at a quantile τ* that is different from τ, the quantile of interest for the forecast of Yt+2.  

In this case,  

 

(17)  * * *
2 1 1ˆ ˆ ˆ[ | ( )] ( ) ( ) ( ) ( )t t t tQ Y Y Y Yτ τ α τ τ α τ α τ+ + += = . 

 

The obvious conclusion is that any k-period-ahead forecast at a particular quantile depends on 

the entire path of the quantiles chosen for the (k-1) forecasts that precedes it. This leads to a 

cautionary note: Prediction using regression quantiles requires an economically sensible choice 

for the path of the quantiles.  In what follows, we do what seems natural and predict the k-

period-ahead quantile assuming that τ is fixed for the entire path.  

 

Prediction: Using the QVAR 

Turning finally to the case of prediction from the vector autoregression, we start by rewriting (8), 

the two-equation QVAR for output and housing, in its companion form 

 

(18)  Zt = A0(τ1,τ2) + A1(τ1,τ2)Zt-1+εt 

 

where for a two-equation four-lag QVAR, A0(τ1,τ2) and A1(τ1,τ2) are 8 1×  vector and 8 8×  matrix 

that contain coefficients γ(τ1) and β(τ2) at the quantiles of interest (plus zeros and ones), Zt = [yt 
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yt-1 yt-2 yt-3 ht ht-1 ht-2 ht-3]’; and εt includes ε1t and ε2t, as well as zeros. See appendix B.3 for 

details. 

 

Suppose that we are interested in the k-period ahead forecast for the τ1
th quantile of output 

conditional on a housing price boom of size ht.  This means that the initial level of the vector of 

right-hand-side variables in (17) is Zt=[0 0 0 0 ht 0 0 0]’.  Then the k-period ahead forecast 

(analogous to the impulse response) for the τ1
th quantile of yt+k(τ1)  is  

 

(19)     ( )/ 2 3 1
1 1 1 1 2 1 1 2 1 1 2 1 1 2 0 1 2 1 1 2

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )k k
t k ty e I A A A A A A Zτ τ τ τ τ τ τ τ τ τ τ τ τ−
+

⎡ ⎤= + + + +⎣ ⎦  

 

where 1e is a selection column vector (with its first element being one and other elements being 

zeros) picking up the first element of the forecasted 1( )t kZ τ+ , and 0 1 2
ˆ ( , )A τ τ  and 1 1 2

ˆ ( , )A τ τ  are 

matrix functions of the estimated values of the coefficients γ(τ1) and β(τ2). 

 

Because the k-period-ahead forecast 1( )t ky τ+  is a complex nonlinear function of the estimated 

coefficient matrices 0 1 2
ˆ ( , )A τ τ  and 1 1 2

ˆ ( , )A τ τ  we cannot compute an exact closed-form 

expression for the variance of the forecast. Instead, we use the δ-method to compute an 

approximate variance of the forecast.  Even so, a nontrivial technical problem involving matrix 

differentiation arises. To be more specific, we need to compute the derivative of an 8 1×  vector, 

( )2 3 1
1 1 1 1 0 1

k k
tI A A A A A A Z−+ + + + , with respect to 0A  and 1A  where 1A  is an 8 8× matrix. The 

solution to this problem is provided in Appendix B.3. 

 

II.3 Panel Quantile Vector Autoregression: Estimation, Inference, and Prediction  
 
Extending the QVAR analysis to the case of a panel data set is straightforward, so we relegate 

all details to Appendix B.2.  Briefly, starting with the single equation panel case, we can write 

the output equation for country i at quantile jτ as 

 

(20) /
1 1,( ) ( )it it j i it jy x γ τ α ε τ= + + . 
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In this formulation countries differ only in the additive fixed effect αi, not in their dynamic 

responses, ( )jγ τ . Following the derivations above for a single country, and restricting the fixed 

effect to be the same across all quantiles, we can write the conditional τj
th quantile function for 

output gap as  

 

(21) /( | ) ( )
j it it it j iQ y x xτ γ τ α= + . 

 

Equation (21) is based on the quantile restriction 1,( ( ) | )
j it j itQ xτ ε τ =0. Using (21), we can 

compute estimates of the parameters of interest from a panel of n countries, estimated over J 

quantiles by solving the following optimization problem: 

 

(22)    
1

1 2

/

, ( ), ( ),..., ( ) 1 1 1
min [ ( ) ]

J

J n T

t t j i
j i t

y xτα γ τ γ τ γ τ
ρ γ τ α

= = =

− −∑∑∑ . 

 
Computationally, solution of (22) requires that we stack the data country by country, and then 

utilize the interior point method described earlier. See Appendix B.2 for more details.  

 

Turning to the multiple-equation case – the panel QVAR – consider the following balanced 

panel generalization of (8): 

 

(23) 
/

1, 111
/

2, 222

( )( )0
( )( )0

itit iit

itit iit

y x
h x

ε ταγ τ
ε ταβ τ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 

 

where the regressor vector xit is defined as in (8).  In this multiple equation case, the individual 

equation conditional quantile functions are still given by (20), and point estimates of the 

parameters can then be obtained on an equation-by-equation basis. 

 

Inference and prediction in the panel case are generalizations of the QVAR methods described 

in the previous subsection. See Appendix B.2.  Briefly speaking, one can concentrate out, the 

quantile fixed effects by pre-multiplying the data matrix by a specific quantile residual matrix.  

After this transformation, many previous results on inference and prediction directly carry over to 

the panel setup.  
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III. Preliminaries: Data, Testing and U.S. Results 

 

It is useful to begin with a short description of the data we use, as well as a preliminary 

examination of its properties.  Can we justify using quantile methods on these data?  Do equity 

and housing booms simply change the conditional mean of predicted growth and inflation, 

leaving the shape of the distribution unchanged?  Or, as in the example of infant birth weight 

discussed by Koenker and Hallock (2001), do asset price bubbles affect the shape of the 

distribution as well?  In particular, if we witness a boom in equity or housing prices, does this 

change our view of the outcomes in the tail of the growth and inflation distribution four or twelve 

quarters later?  To answer this question, we test for the equality across the quantiles in the 

coefficients from the panel QVAR in (18) above.  Next, in order to demonstrate the economic 

importance of moving away from conventional VAR estimates, we present results for the U.S. 

alone. Then, in Section IV, we turn to the panel estimates of the models. 

III.1 The Data 

We use the data and follow the procedures in Cecchetti (2008). Briefly, we begin with quarterly 

data from 1970 to 2003 on real GDP, the aggregate price level, real equity prices, and real 

housing prices for a cross-section of countries.  For housing, we have 17 countries, and for 

equity there are 27.7 First, for each country we take the deviation of the log of each series – real 

GDP, the aggregate price level, the real equity price index, and the real housing price index – 

from its Hodrick-Prescott (1997) filtered trend with a smoothing parameter equal to 1600 (the 

results are robust to using a parameter of 9600).  Taking deviations from country-specific (and 

time-varying) trends has the advantage that it removes country fixed effects.  While there are 

surely numerous conditions that vary in these countries over the sample, this is at least a 

minimum condition for pooling. It is important to note that the use of a two-sided filter means 

that large positive deviations of asset prices from this trend – these are the booms – must be 

followed by crashes.  Put another way, the booms we locate cannot continue indefinitely. 

                                                 
7 The 17 countries in the housing price sample are Australia, Belgium, Canada, Denmark, Finland, Greece, Ireland, 
Israel, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, the U.K, and the U.S. The 27 
countries in the equity price data sample add Austria, Chile, France, Germany, Italy, Japan, Korea, Mexico, Peru, and 
South Africa. Sources are listed in Appendix A.  
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III.2 Test for Equal Coefficients 

Turning to the model estimates, throughout the remainder of the paper we report results for 

bivariate QVAR for four pairs of estimates: 

Model A: Output and Housing 

Model B: Inflation and Housing 

Model C: Output and Equity 

Model D: Inflation and Equity 

 

To get a sense of the results, we begin with the case of model A using both U.S. data and panel 

data.  That is, we estimate the models given by equation (8) for U.S. data and equation (23) for 

panel data – the bivariate QVARs for output and housing with four lags. Figure 2a plots the 

estimates of the coefficients for the output equation using U.S. data. Each panel of the figure 

plots the coefficient estimate from the 10th to the 90th quantile (with an increment of one), with its 

shaded 90-percent confidence interval, along the vertical axis, and the quantile along the 

horizontal axis. So, for example, the top left panel shows the coefficient estimate for yt-1 across 

the quantiles. For the purpose of comparison, the OLS estimate is plotted as the flat dotted line 

in each panel. The estimates clearly vary across the quantiles; in some cases substantially.  For 

instance, the coefficient on output lagged one quarter, yt-1, ranges from 0.8 at the 10th quantile to 

1.3 at the 90th quantile, while the OLS estimate is 0.94.  For coefficients of 3ty −  and 3th − ,  the 

shaded interval estimates rarely include the OLS estimate. The above observations are even 

more evident when panel dataset is used. See Figure 2b. These plots strongly suggest that it is 

worth going to the trouble of constructing these estimates. 

 

While visual inspection of plots like the ones in Figures 2a and 2b is very informative, it is also 

useful to construct statistical tests for the proposition that the coefficients in the regressions are 

equal.  Specifically, for each of the four panel QVAR models A through D we test four 

hypotheses.  Using conventional Wald statistics, we examine 

i) equality of the estimates at the 10th and 50th quantiles, 

ii) equality of the estimates at the 50th and 90th quantiles,  

iii) equality of the estimates at the 10th and 90th quantiles, and  

iv) equality of the estimates at the 10th, 50th, and 90th quantiles together.  
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Figure 2a:  Quantile Regression Estimates for U.S. 
Output-Housing Equation 

 yt=γ0+γ1yt-1+γ2yt-2+γ3yt-3+γ4yt-4+γ5ht-1+γ6ht-2+γ7ht-3+γ8ht-4+ε1t 

      

 
Figure 2a displays the estimates of the output-housing equation for U.S. data, over quantiles ranging from 
0.10 to 0.90. The shaded regions are the 90% confidence intervals. The dotted straight line in each panel 
represents the OLS estimate.  

 

We perform each of these four tests equation by equation for both U.S. data and panel data.  

Since each of the four models includes two equations, that means we are doing 8x4x2=64 tests. 
In all cases, we are able to reject the null hypothesis of equality at very high levels of 

significance.  The largest p-value for the test is 0.0017.8   

                                                 
8 We also tested a series of hypothesis associated with the symmetry of the estimated parameters.  Equation by 
equation, following Newey and Powell (1987), we test the joint null hypothesis that ½[β(0.1)+ β(0.9)]= β(0.5) 
and ½[β(0.25)+ β(0.75)]= β(0.5), and equivalently for γ(τ).  For the U.S.-only model, we can never reject 
symmetry. By contrast, for the panel-QVAR we can reject symmetry at the 5-percent significance level in 
4 of the 8 cases.  We find it unsurprising that the errors in the model estimated using single-country data 
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 Figure 2b:  Quantile Regression Estimates for Panel Data 
Output-Housing Equation  

yit=γ0,i+γ1yi,t-1+γ2yi,t-2+γ3yi,t-3+γ4yi,t-4+γ5hi,t-1+γ6hi,t-2+γ7hi,t-3+γ8hi,t-4+ε1I,t 
 

 

 
Figure 2b displays the estimates of the output-housing equation for the panel data, over quantiles ranging 
from 0.10 to 0.90. The shaded regions are the 90% confidence intervals. The dotted straight line in each 
panel represents the OLS estimate. 

  

Thus, exercises conducted in this subsection suggest that the macroeconomic relations of 

interest are not constant across quantiles. This in turn implies that OLS estimation will not be 

adequate for our purpose of forecasting the worst economic outcomes because OLS estimates 

average different quantile-specific relations. This justifies the application of QVAR technique 

developed in Section II to constructing predictions in output and inflation in the rest of the paper.  

                                                                                                                                                              
is more likely to be symmetric than the errors estimated in a model that pools an array of disparate 
countries.  
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III.3 Economic Significance and the Case of the U.S. 
 
The equal coefficient tests clearly allow us to conclude that the estimates across the quantiles 

are statistically distinguishable.  But are the differences important in a quantitative economic 

sense?   

 

We address this question in two related ways.  First, we calculate measures of goodness of fit – 

the analog to an R2 for a quantile regression.  Then we look how employing QVAR estimates 

changes the predictions that we obtain for the impact of housing or equity booms on output and 

inflation. 

 

We measure the goodness-of-fit in quantile regression by computing a statistic that is analogous 

to the familiar 2R  of classical least squares regression. That is, we measure the improvement in 

the criterion function that arises from the inclusion of the regressors.  Specifically, the pseudo-
2R  measure at the τ th quantile, 2 ( )R τ  is defined as 

(24)     

/

2 1
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1
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where / ˆ( ( ))t tY Xτρ β τ−∑  is the minimized unrestricted objective function at the τ th quantile, 

and 0
ˆ( ( ))tYτρ β τ−∑  is the minimized restricted objective function at the τ th quantile with only 

intercept and no regressors.   

 

Figure 3 plots the pseudo-R2 measure defined in (24), 2 ( )R τ , for the output and inflation 

equations in the four bivariate QVAR models (Models A–D), estimated using U.S. data.  The 

results are quite striking.  For both housing and equity the fit of the two output models (Models A 

and C) is best at the lower quantiles. That is, we are able to explain movements in the 10th 

quantile of the output distribution (the lower tail) better than we can match the evolution of the 

90th quantile (the upper tail).  For inflation, shown in the lower two panels of the figure (Models B 

and D), the situation is reversed. Here we see that the best fit is at the upper quantiles. Not only 

does the fit vary at different points in the output and inflation distribution, but in several cases 

the differences across the quantiles is large.  For example, looking at the results for Model B, 
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the inflation-housing model in the bottom left of Figure 3, 2 ( )R τ varies from 0.28 to 0.47.  This is 

further evidence of the importance of moving away from the OLS estimation to model the 

dynamics of the responses of output and inflation to asset price movements. 

 

Figure 3: QVAR Goodness of Fit for U.S. data   

    

    
 

 
Figure 3 displays the pseudo-R2 across quantiles for the first equations in the four QVAR models.  The 
pseudo-R2, 2 ( )R τ , measure is defined in (24) and compares the information from the minimized 
objective functions for the full model and the intercept only specification.  
 
 

We have emphasized from the outset that our primary interest is in measuring the extent to 

which housing and equity booms influence the lower tail of the output distribution and the upper 

tail of the inflation distribution. To address this issue directly, we look at the predictions that are 

derived in equation (19) of Section II.2.  Figure 4a plots the QVAR prediction results for using 

U.S. data for models A and C, output-housing and output-equity, respectively.  These plots 

answer the following question: If we see a housing or equity boom of x-percent (measured as a 

deviation from the trend in real housing or equity prices), what happens to the 10th quantile of 
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the distribution of the deviation of log output from trend at a horizon of 4 or 12 quarters?  This is 

the quantity that Cecchetti (2008) refers to the 10-percent GDP at Risk.9 

 

The panels of Figure 4a plot the size of the boom on the horizontal axis and the change in the 

10-percent GDP at risk (the 10th quantile of the GDP gap distribution) on the horizontal axis.  

Included are estimates for 4- and 12-quarter horizons, together with shaded 90-percent 

confidence intervals. The two rows of Figure 4a differ in the quantile of the housing equation 

used to construct the predictions.  The top row reports results when the housing/equity 

equations are estimated at median, and the bottom panel shows estimates based on the 90th 

quantile for the housing/equity equation. In other words, in the context of the QVAR model in 

(8), Figure 4a reports the case where 1τ  is fixed at 0.1 (the 10th quantile of output), but the two 

rows reports prediction results for 2τ =0.5 and 2τ =0.9, respectively.  

 

To better understand the role of asset price booms, we include in Figure 4a the forecasts based 

on a simple quantile autoregression (QAR) for output alone. Take an example, a four-lag QAR 

model for output is   

 

0 1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( ) ( )t t t t t ty y y y yγ τ γ τ γ τ γ τ γ τ ε τ− − − −= + + + + + . 

 

Given the initial value of yt-p=0 (for p= 1 to 4), the 4-period and 12-period ahead forecasts can 

be computed based on the quantile estimates of γ’s. Since deviations of the QAR predictions of 

output from zero are a consequence solely of the persistence of the output-gap process, 

comparing these results with those from the QVAR gives us a sense of the importance of asset 

price. Since the estimates from the QAR model explicitly exclude the role of housing and equity, 

we refer to them as the “unconditional forecasts.” These unconditional estimates are displayed 

as the dotted or dashed horizontal lines in Figure 4a.    

 

For comparison, we also report the results obtained from a standard VAR model estimated 

using ordinary least squares. These forecasts measure shifts in the mean of the distribution of 

the output forecasts conditional on asset price booms and are plotted in Figure 4b.  A 

comparison of Figure 4a and Figure 4b shows the difference between conditional quantile 

predictions and shifts in the conditional mean. Combining information from QVAR and OLS 

                                                 
9 The concept is analogous what financial economists call “value at risk.”  See Jorion (2001). 
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forecasts, we will be able to draw conclusion about the shift in both central location and tail of 

the output and inflation distributions.    

 

Figures 4a and 4b lead to several observations. First, one of the most important things to notice 

is how different the QVAR estimates are from the unconditional ones. For instance, at a four-

quarter horizon, the confidence bands of the QVAR predictions in Figure 4a typically do not 

cover the unconditional estimates. This observation is consistent with results from Granger 

causality tests we performed on the output-housing and output-equity equations, which yield p-

values of zeros at the 10th quantile.   

 

Second, at a four-quarter horizon, the bigger the boom the higher the 10th percentile of the 

output gap distribution. For moderate to large asset booms, the output gap forecasts are 

positive. This is not an enormous surprise – when we see housing or equity booming, the 

chances are good that the boom will continue for another year.    

 

Third, at a 12-quarter horizon the pictures are different.  This is especially true when we use the 

90th quantile estimates from the housing/equity equation (the second row of Figure 4a).  Now we 

see that as the boom increases, the lower tail of the output distribution gets worse. The bigger 

the boom the more negative is the 10th percentile of the output gap distribution. As documented 

originally in Cecchetti (2008), asset price booms worsen the worst outcomes.  That is, housing 

and equity bubbles increase in GDP at Risk. 

 

Fourth, it is clear by inspection that the QVAR estimates are very different form the estimates by 

OLS and provide additional information to complement the OLS estimates. To see this, compare 

the second row of Figure 4a with Figure 4b.  Focusing on the 12-quarter horizon, the OLS 

forecasts are not statistically different from zero regardless of the size of the housing or equity 

boom.  In other words, seeing an asset price boom today does not influence the predicted mean 

of the output distribution three years ahead. On the other hand, the QVAR forecasts and the 

corresponding confidence bands (in the second row of Figure 4a) are well below zero, for any 

boom size. Thus although asset price booms will not shift the central location of output 

distribution, they very clearly change its shape. 
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Figure 4a:  QVAR Predictions for Output using U.S. data 

 
Model A: Output-Housing  

   

 
Model C: Output-Equity  

   
Figure 4a displays the QVAR prediction for the10% percentile of output in the presence of housing and equity 
booms.  Dotted blue line is the unconditional QAR forecast 4-quarter ahead. Dashed red line is the unconditional 
QAR forecast 12-quarters ahead. Solid blue line with yellow shade is the QVAR forecast 4-quarters ahead. Solid 
black line with gray shade is the QVAR forecast 12-quarters ahead.     

Figure 4b:  OLS-VAR Predictions for Output using U.S. data   
Model A: Output-Housing 

   

 
Model C: Output-Equity  

   
 
Figure 4b displays the VAR prediction for the10% percentile of output in the presence of housing and equity booms, 
calculated by OLS. Solid blue line with yellow shade is the VAR forecast 4-quarters ahead. Solid black line with gray 
shade is the VAR forecast 12-quarters ahead.  
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Figures 5a and 5b plot QVAR and OLS-VAR predictions based on the two inflation models 

estimated using the U.S. data.  Figure 5a reports results analogous to those in Figure 4a with 

one important change.  While we look at impact of asset price booms on the 10th quantile of log 

output deviations from trend, here we present results for the consequences of booms on the 

90th quantile of log price level deviations from its trend. That is, we are worried about the 90-

percent Price Level at Risk.  

 

Looking at these results we draw the following conclusions.  First, in the case of the 4-quarter-

ahead forecasts, the quantile estimates differ markedly from the unconditional forecasts. 

 

Second, booms tend to drive prices up. This effect is especially conspicuous for housing booms 

in the short run and for equity booms in the long run.  Note that the impacts of a housing boom 

and an equity boom are not symmetric: For a housing booms impact at a 4-quarter horizon is 

larger than that at a 12-quarter horizon, while for an equity booms it is just the opposite – the 

impact at longer horizons is bigger. 

 
Third, the rightward shift in the upper tail of the price-level distribution can be substantial.  If we 

observe an 8 percent housing boom, then using the 90th percentile estimates for the housing 

equation (see the lower left panel of Figure 5a) we conclude the predicted impact on the 90th 

percentile of the price distribution is almost +8 at a 4-quarter horizon and more than +5 at a 12-

quarter horizon.  For a 15 percent equity boom, the numbers are very similar though the 

horizons are reversed (see the lower right panel of Figure 5a).  

 

Fourth, comparing the QVAR inflation predictions with the OLS estimates, in almost all cases 

the upper tail of the inflation distribution responds more strongly to asset price booms than the 

mean does.  That is, the primary impact of the boom is to change the shape of the distribution, 

not shift its location.  For instance, in the context of inflation-equity relation, equity boom of any 

size has essentially zero impact on the conditional mean of the inflation distribution (Figure 5b, 

the right panel), although the upper tail is severely affected. Thus, OLS analysis may not be 

adequate when our concern is the worst outcome.  
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Figure 5a:  QVAR Predictions for Inflation using U.S. data 

 
Model B: Inflation-Housing  

    

 
Model D: Inflation-Equity  

   
 
Figure 5a displays the QVAR prediction for the 90% percentile of inflation in the presence of housing and equity 
booms.  Dotted blue line is the unconditional the QAR forecast 4-quarter ahead. Dashed red line is the unconditional 
QAR forecast 12-quarters ahead. Solid blue line with yellow shade is the QVAR forecast 4-quarters ahead. Solid 
black line with gray shade is the QVAR forecast 12-quarters ahead.     

Figure 5b:  OLS-VAR Predictions for Inflation using U.S. data   
Model B: Inflation-Housing 

    

 
Model D: Inflation-Equity  

    
 
Figure 5b displays the VAR prediction for the 90% percentile of inflation in the presence of housing and equity 
booms, calculated by OLS. Solid blue line with yellow shade is the VAR forecast 4-quarters ahead. Solid black line 
with gray shade is the VAR forecast 12-quarters ahead.  
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Before moving on to the multi-country panel estimation, we collect the results based on the U.S. 

data in Table 1. The conclusions reported are based on the QVAR models where the output (or 

inflation) equation is estimated at the 10th percentile (or 90th percentile), and the asset price 

equation (in either housing or equity) is estimated at the 90th percentile.  

 

From the summary in Table 1, we draw two conclusions:  (1) At a 4-quarter horizon, we predict 

the impact of asset booms on output to be largely positive in the sense that they reduce the 

probability of very low growth; and we predict the impact of booms on inflation to be largely 

negative in the sense that they increase the probability of very high inflation. (2) At a 12-quarter 

horizon, by which time the boom is likely to have ended in a bust, things are not generally rosy: 

in most cases asset booms increase the probability of very low growth and very high inflation 

outcomes.  

 

Table 1:  QVAR Forecast Summary, U.S. only 
τoutput = 0.1, τinflation = 0.9, τasset price = 0.9  

Model 
 

4-quarters ahead 
 

12-quarters ahead  
Output-Housing Positive and large Mixed and small 
 
Output-Equity Positive but small Negative but small 

Inflation-Housing Negative and large Negative but smaller than 4-quarters 
 
Inflation-Equity Negative and large Negative and large 

 
Table 1 summarizes the findings reported in Figures 4a and 5a. All results are based on the bivariate 
QVAR models where output equation is estimated at the 10th percentile; inflation equation is estimated 
at the 90th percentile; and the asset price (housing or equity) equation is estimated at the 90th 
percentile. An asset price effect is large if the departure of the QVAR prediction is far away from the 
corresponding QAR prediction, the effect is small if the departure is small.   

 

But overall, our results from examining U.S. data alone are quite imprecise.  Looking at Figures 

4a and 5a it is clear that the standard errors for the QVAR impulse response estimates are 

relatively big.  For example, the 90-percent confidence bands on the estimated impact of a 

housing or equity boom on output (the bottom of Figure 4) are on the order of ±1.5 percentage 

points.  Given that the point estimates at a 12-quarter horizon run are roughly -4 percent, this is 

quite large. As a result, our conclusions thus far are merely suggestive of the impact that asset 

price booms might have on the shape of the tails of the output and inflation distributions.   

 



  Measuring the Impact of Asset Price Booms Using Quantile Vector Autoregressions 
 

Cecchetti and Li  27 February 2008 
 

We believe that the imprecision in our estimates arises from the fact that over the sample period 

we study there have been very few large asset price booms and busts in the United States.  Our 

interest all along has been in the measuring the impact of asset price booms on output and 

inflation.  Almost by definition, such “bubble” events occur infrequently. The technical 

consequence of sparse data in the tails of the distribution is lower power estimates.  To address 

this shortcoming, we move on to incorporate data from other countries using the panel QVAR 

techniques introduced in Section II.3.  

 

IV. Multi-Country Panel QVAR Estimation 

 

The most natural way to expand our data set is to add more countries.  With this in mind, we 

proceed to estimate our models by applying the panel QVAR to the full data set described in 

Section III.1.  For housing, this means incorporating information from 17 countries; and for 

equity we now have data from 27 countries.  As described in Section II.3, we allow for country-

specific fixed effects, but constrain the dynamic responses to be the same across countries.10  

This constraint allows us to dramatically improve the efficiency of our estimates, reducing the 

confidence intervals of the forecasts of interest by nearly a factor of four. 
  

Table 2:  Efficiency Comparison   
U.S.-only and Panel QVAR Standard Errors in the Output-Housing Regression  

yt=γ0+γ1yt-1+γ2yt-2+γ3yt-3+γ4yt-4+γ5ht-1+γ6ht-2+γ7ht-3+γ8ht-4+ε1t 

  
τoutput = 0.1  

 
τoutput = 0.5  

 
τoutput = 0.9  

Coefficient Panel U.S.-only Panel U.S.-only Panel U.S.-only 
yt-1 0.06 0.17 0.03 0.07 0.07 0.09 
yt-2 0.07 0.23 0.04 0.09 0.09 0.13 
yt-3 0.09 0.23 0.04 0.09 0.09 0.11 
yt-4 0.07 0.13 0.03 0.07 0.07 0.09 
ht-1 0.02 0.13 0.01 0.03 0.03 0.08 
ht-2 0.03 0.25 0.02 0.04 0.04 0.13 
ht-3 0.03 0.16 0.02 0.04 0.04 0.15 
ht-4 0.02 0.10 0.01 0.03 0.02 0.09 

  
Table 2 compares the QVAR standard errors of coefficients in the output-housing equation, 
based on the U.S. data and panel data.  When computing the standard errors, the housing 
equation (i.e., the second equation in the output-housing QVAR) is estimated at the 90th 
percentile, while the output equation is estimated at the 10th, 50th and 90th percentiles.  
 

 
                                                 
10 Recall, however, that our filtering procedure means that we have removed country-specific time-varying means 
from the all of the individual time-series before estimating the model. 
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The large efficiency gains are evident from the estimated coefficients of the panel QVAR.  To 

make this point, Table 2 presents a comparison of the estimated heteroskedasticity and 

autocorrelation consistent (HAC) standard errors for coefficients in the output-housing equation 

(i.e., the first equation in the output-housing bivariate QVAR) using the U.S.-only and panel data 

sets.  Results are reported for the 10th, 50th, and 90th quantiles. 

 
Every pair-wise comparison in the table reveals an increase in precision as measured by a 

decline in the standard error of the coefficient estimate. In most cases, the precision 

improvement is substantial.  For 19 of 25 cases reported in Table 2, standard errors decrease 

by at least 50%. Note that the efficiency gain is particularly large at the lower tail. To see this, for 

the 10th output quantile, which has been the focus of much of our investigation, the shaded area 

in Table 2 reports an average decline in the standard errors of the estimated lagged housing 

coefficients of more than 80 percent.  Because of the dramatic increase in precision that comes 

from broadening our sample to seventeen countries, and the resultant increase in the power of 

any hypothesis tests we wish to perform, we are inclined to put more weight on the panel 

estimates in drawing our conclusions. 

 

Turning to the question of primary interest, Figures 6 and 7 present panel results matching the 

ones presented in Figures 4 and 5.  Again we examine the impact of an asset-price boom of a 

given size on output and inflation 4- and 12-quarters later. As the results reported in Table 2 

lead us to expect, the 90-percent confidence intervals shown by the shaded areas are quite a bit 

smaller when we use the entire panel of countries available to us.  

 

Looking in more detail, and starting with the results for output in Figure 6a, we note a series of 

important conclusions.  First, the 4-quarter effects of housing and equity booms on output are 

asymmetrical. The bottom left panel of the figure shows that at a 4-quarter horizon the 10th 

quantile of output is higher than the unconditional for any housing boom larger than 5%.  For 

instance, instead of around -2 percent, as would be implied by the unconditional forecast, the 

panel QVAR implies that a 10 percent housing boom today reduces the 10th quantile of the 

output distribution by a more than one-half of one percentage point, to about -1.4 percent.  On 

the other hand, for the case of equity, shown in the bottom right panel of Figure 6a, at a 4-

quarter horizon the 10th percentile of output is lower than the unconditional for most boom sizes. 
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Figure 6a:  Panel QVAR Predictions for Output 

 
Model A: Output-Housing 

 

 
Model C: Output-Equity  

  
Figure 6a displays the panel QVAR prediction for the10% percentile of output in the presence of housing and equity 
booms.  Dotted blue line is the unconditional QAR forecast 4-quarter ahead. Dashed red line is the unconditional 
QAR forecast 12-quarters ahead. Solid blue line with yellow shade is the QVAR forecast 4-quarters ahead. Solid 
black line with gray shade is the QVAR forecast 12-quarters ahead.     

Figure 6b:  Panel OLS-VAR Predictions for Output   
Model A: Output-Housing 

    

 
Model C: Output-Equity  

     
Figure 6b displays the panel VAR prediction for the10% percentile of output in the presence of housing and equity 
booms, calculated by OLS. Solid blue line with yellow shade is the VAR forecast 4-quarters ahead. Solid black line 
with gray shade is the VAR forecast 12-quarters ahead.         
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Second, the real payoff to the panel QVAR method comes when we look at the 12-quarter-

ahead forecasts.  Here the predictions from the QVAR are predictions differ markedly from the  

unconditional ones.  In every case, we find that the asset-price booms make things worse.  

Since the boom is likely to be followed by a bust that will almost surely come within the 3-year 

horizon of the forecast, high housing or equity prices today lead us to conclude that the 10th 

quantile of the output distribution will be much lower 12 quarters from now.  For either a 10-

percent housing boom or a 20-percent equity boom, the 10th percentile of the distribution of the 

output gap falls from -2 to nearly -3.5. 

 

Third, there are large differences between the QVAR forecasts in Figure 6a and the OLS 

forecasts reported in Figure 6b. As was the case when we examined the U.S. data alone, the 

OLS forecasts at both 4- and 12-quarter horizons are small and close to zero. This is obviously 

not the case for QVAR forecasts, which lie below zero in all cases for all boom sizes. Once 

again, the data suggest that the central location of the conditional distribution of output does not 

shift in the presence of asset price booms. Instead housing and equity booms change the shape 

of the output distribution, making the worst outcomes even worse.  

 

The panel QVAR results for inflation are summarized in Figure 7a. Looking at these, we again 

conclude that there are benefits to looking across the quantiles.  Specifically, in all cases, large 

housing and equity booms shift the 90th percentile of the inflation distribution to the right, 

increasing the probability of a significant inflation increase by much more than the unconditional 

estimates imply. The problem is worse at the shorter horizons, but clearly continues as the 

horizon increases. Again, quantile predictions in Figure 7a provide useful information which is 

impossible to obtain by the OLS prediction in Figure 7b: At the mean level of inflation, asset 

price effects are negligible; but for upper quantile of inflation, the effects are substantial. 

 

Finally, we summarize the forecasts based on the panel estimates reported in Figures 6a and 

7a in Table 3.  Comparing the panel results in Table 3 with the U.S.-only results summarized in 

Table 1, several conclusions are in order. First, as we expected, the improved precision of our 

panel QVAR estimates allow us to come to more exact conclusions than we could when we only 

used data from the United States.  Before, we were unable to conclude much about the impact 

of a housing boom on the 10th quantile of the output distribution at a 12-quarter horizon.  Now, 

we can say with some confidence that the impact is large and negative.  That is, incorporating  
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Figure 7a:  Panel QVAR Predictions for Inflation 
 

Model B: Inflation-Housing 

    

 
Model D: Inflation-Equity  

    
Figure 7a panel displays the QVAR prediction for the 90% percentile of inflation in the presence of housing and 
equity booms.  Dotted blue line is the unconditional the QAR forecast 4-quarter ahead. Dashed red line is the 
unconditional QAR forecast 12-quarters ahead. Solid blue line with yellow shade is the QVAR forecast 4-quarters 
ahead. Solid black line with gray shade is the QVAR forecast 12-quarters ahead.     

Figure 7b:  Panel OLS-VAR Predictions for Inflation   
Model B: Inflation-Housing 

     

 
Model D: Inflation-Equity  

     
 
Figure 7b displays the panel VAR prediction for the 90% percentile of inflation in the presence of housing and equity 
booms, calculated by OLS. Solid blue line with yellow shade is the VAR forecast 4-quarters ahead. Solid black line 
with gray shade is the VAR forecast 12-quarters ahead.  
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data from a broad cross-section of countries, we are able to conclude that housing booms 

worsen the worst growth outcomes, increasing GDP at risk. 

 

Second, more generally, based on panel estimates, all 12-quarter-ahead effects of both types of 

asset price boom are uniformly negative with large magnitudes. So three years ahead, asset 

prices booms pose significant risks, making the tails of the distributions of output and inflation 

even worse than they already were. This result is much stronger than that based on U.S. data.  

 

Third, notice that even at a 4-quarter horizon, panel QVAR forecasts produce more negative 

pictures than U.S.-only forecasts in Table 1.  Based on the panel QVAR analysis, in three out of 

four cases, asset prices booms make the worst outcomes more likely. The single exception is 

the impact of housing booms on output deviations from trend at a short horizon.  

 
 

Table 3:  Panel QVAR Forecast Summary  
τoutput = 0.1, τinflation = 0.9, τasset price = 0.9  

 
Model 

 
4-quarters ahead 12-quarters ahead 

 
Output-Housing Mixed and small Negative and large 
 
Output-Equity Negative but small Negative and large  

Inflation-Housing Negative and large Negative and large  
 
Inflation-Equity Negative and small Negative and large 

 
Table 3 summarizes the results reported in Figures 6a and 7a. All results are based on the panel 
bivariate QVAR models where output equation is estimated at the 10th percentile; inflation equation is 
estimated at the 90th percentile; and the asset price (housing or equity) equation is estimated at the 
90th percentile. An asset price effect is large if the departure of the QVAR prediction is far away from 
the corresponding QAR prediction, the effect is small if the departure is small.   

 

 
V. Conclusions 
 
When considering the impact of asset price booms on output and inflation, it is the worst 

outcomes that matter. Just as risk-managers in a financial institution concern themselves with 

reducing the probability of significant loss, macroeconomic policymakers worry about mitigating 

the possibility of growth falling well below trend or inflation rising well above trend.  Because of 

their focus on the conditional mean of the quantities being models, traditional time-series 
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econometric tools are ill-equipped to address the questions that are foremost in the minds of 

policymakers who adopt such a risk management perspective. 

 

In this paper, we have fashioned and applied a new set of tools designed to help address this 

deficiency. First, we have incorporated the methods of quantile regression to vector 

autoregression.  The resulting procedure allows us to investigate the dynamic impact of a 

change in a conditioning variable on the tail of the distribution of an independent variable over a 

particular horizon.  So, for example, we are able to estimate the impact of an asset price boom 

today on the lower tail of the distribution of output deviation from trend several years ahead. We 

show how to estimate quantile vector autoregressions (QVARs), how to use the QVARs for 

prediction, and how to conduct inference on these estimates and predictions. 

 

With these methods in hand, we proceed to examine the impact of housing and equity booms 

on the tails of the distribution of  (log) output deviations from trend and (log) price-level 

deviations from trend.  We conclude that in virtually every case, asset price booms worsen the 

worst outcomes significantly.  At horizons of 3 year years, both housing and equity booms lower 

the 10th percentile of the output gap distribution and raise the 90th percentile of the price-level 

gap distribution. 
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Appendix A: Data 
 
Price Data: Computed for consumer price inflation data was obtained from the International 
Financial Statistics on line and the OECD Economic Outlook No. 76, December 2004. 
 
GDP data was obtained from the International Financial Statistics CDROM (December 2004) 
and the OECD Economic Outlook No. 76, December 2004. 
 
Equity Prices are from the International Financial Statistics on line. 
 
Housing Prices: Data for Australia, Belgium, Canada, Denmark, Finland, Ireland, Netherlands, 
Norway, Portugal, Spain, Sweden, Switzerland, U.K, and U.S. are all from the BIS.  Data for 
Hong Kong are from the Hong Kong Monetary Authority, Census and Statistics Department, 
Monthly Digest of Statistics, Table 5.9 column 6.  Data for Israel are from the Israel Central 
Bureau of Statistics, on line. Data for Japan are from Goldman Sachs.  Data for New Zealand 
are from the Reserve Bank of New Zealand. 
 

Appendix B: Derivations  
 
B.l:  Distribution of single-country QVAR estimator 
 
In this appendix we derive the asymptotic distribution of the coefficient vector in the quantile 

vector autoregression in text equation (11).  We then proceed to construct the estimator for the 

covariance matrix of the estimated coefficient vector in the QVAR. 

 

Assuming the regressors are weakly stationary and that the density of the error εt conditional on 

Xt at a given quantile τ is continuous, it can be shown that the approximate first order condition 

(F.O.C.) of the first objective function in (10), the output equation, is  
 

(B.1)   
   

 which contains K equations, .  is an indicator function defined following text 

equation (4’). Similarly, the approximate F.O.C. of the second objective function in (10), the 

housing equation, is 

 

(B.2)
    

  

 
Because we wish to derive the joint asymptotic distribution of , we stack the two 
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sets of F.O.C.s in (B.1) and (B.2),  

 

(B.3)     

 
where " " denotes the Kronecker product.  It can be shown that the stacked F.O.C.s, as 

specified above, implies a moment function that fits into the GMM framework. To streamline 

notation, define the joint moment function as  . Then, 

(B.4)     

which is text equation (11). It is straightforward to show that under certain regularity conditions 

. This establishes the validity of  as a moment function. The GMM 

framework can then be used to establish asymptotic normality of the coefficient estimates. The 

resulting joint distribution of  takes the form of

(B.5)    
 

 

The expressions of  and  in (B.5) are derived as follows. As in the standard GMM setup, 

the matrix   is the expected first derivative of the moment function. It can be shown that

 

(B.6)  

 

Where 
1 1( )| (0)
t txfε τ  and 

2 2( )| (0)
t txfε τ  are conditional densities of  and , conditional on 

evaluating the regressor vector  at zero. Note that if the densities  depend 

on the set of regressors, then we refer to this as "heteroskedasticity" in the context of quantile 

regressions.11  

 

                                                 
11 Note that if the conditional densities in (B.2), the f(⋅)’s, are independent of the regressors, then the they can be 
factored out of the expectation and the β(τ)’s will all be the same and the quantile regression collapses to OLS. 
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Matrix  in (B.5) results from a Central Limit Theorem of the moment restriction,   

 

(B.7)  

So  is the asymptotic variance of the scaled sample moment condition. In the case where the 

quantile regression errors, the εit(τ)’s are serially uncorrelated,  is simply the variance of 

 given by 

 

(B.8)  

where 

 

(B.9)

 

 

 

 

 

 

 

 

where in (B.9), we use the law of iterated expectations together with the following results:  

 

(B.10)  
 

where  is the conditional joint CDF of  and , conditional on 

evaluating the regressor vector , at zeros.  
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Substituting (B.9) into (B.8), we get the final expression for the covariance matrix of the quantile 

regression coefficient estimates, 1 2
ˆˆ( ) and ( )γ τ β τ , 

 

(B.11)  

 

where F is defined in equation (B.10).  

 

However, when time series data are used, it is likely that the moment function will exhibit serial 

correlation. Ignoring this would lead to bias and inconsistency in the estimator for the 

covariance matrix of the quantile regression coefficient estimates.. To remedy this, we need to 

  as the long-run variance of the moment condition.  That is,

 

(B.12)  

 

 

 

where  is given in (B.11). Similarly, it can be shown that  (for j = 1,2,…), which captures the 

autocorrelation of the moment conditions, is  

 

(B.13) 

 

 
where  (m = 1,2 and n = 1,2) denotes the conditional joint CDF of the 

errors  and  conditional on regressor vectors tx  and sx , evaluated at (0,0).  

 

Combining (B.6) and (B.12), the joint asymptotic distribution in (B.5) becomes  

 

(B.14) 
 

 

where the population long-run variance and covariance matrices have the following 
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expressions:  

 

 

 

 

 

In practice, the above estimators of the variances and covariance matrices can be obtained by 

replacing the population moments by their sample analogs. Since expressions for ,  and 

 involve infinite sums, estimators of these matrices can be computed by employing the 

Newey-West method commonly used in conditional mean regressions. Throughout our study, 

the Bartlett kernel, with , is used to determine the bandwidth. Thus, we have:
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where the residuals  and  are computed by  

; and estimation of the conditional densities follows Koenker (2005). To be 

specific, the densities  and  are estimated as 

 

(B.16) 
 

 

for  are the optimal bandwidths given by  

where  and  are the Gaussian density and CDF respectively. See Koenker (2005) for this choice 

of optimal bandwidth.  The estimated density in (B.16) might not be positive, due to "crossing" of the 

estimated conditional quantile plane. (But in practice this problem occurs only infrequently and in the 

most extreme regions of the design space.) Thus the refined estimator of Hendricks and Koenker 

(1991) is used. In our context, that means replacing the estimated densities in (10) by their positive 

(B.15) 
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parts,  

 

(B.17) 
 

 
where  is a small tolerance number intended to avoid dividing by zero in the rare cases.12 

 

We note that the methods used here to derive the distribution of the QVAR estimator allow for 

both dependence of the distributions of error terms on the regressor vector, and serial 

correlations of the moment function. Furthermore, the estimator for the covariance matrix of the 

coefficient estimates is heteroskedasticity and autocorrelation consistent (HAC).  

 

B.2: Extension to panel QVAR  
 
To extend the techniques of Appendix B.1 to the panel case, we stack the data country by 

country and introduce the fixed effects by including a constant matrix. We restrict attention to 

balanced panel so that  for . Take the first QVAR equation, the output 

equation, as an example. For a single quantileτ , the panel regression in matrix form can be 

written as 

 

(B.18)  

 

where  is an T x 1 vector of output for country i,  is a T x K matrix,  is an T x 1 residual 

vector, and  is an T x 1 vector of ones. We write this stacked equation system more 

compactly as 
 
(B.19)  
 
where ,  is ,  is ,  is  and  is .  

 

 

                                                 
12 In principle it would be possible to implement an estimation technique in which the estimate quantiles never 
crossed.  This is topic for future research. 
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To estimate the model for J quantiles simultaneously, we further stack the model (B.19) quantile 

by quantile and constrain the fixed effect to be constant across quantiles,  

 

(B.20) 

,

 
or equivalently, 

 
(B.21)  

 

where  is an  vector of ones,  and 

. 
 
From (B.21) we see that implementing the method of Koenker and Park (1996) for panel data 

requires only that we redefine the response vector to be the JnT x 1 vector  and the 

regressor matrix to be the  matrix .  In this way, the panel 

QVAR estimation problem becomes exactly the same as the one we examine in appendix B1.  

 
To obtain the asymptotic distribution of the panel QVAR, we extend the approach used by 

Koenker (2004) in his analysis of the single equation panel model in Koenker (2004). Let  
 
(B.22)   

 

where  in which  is the conditional density at quantile  

evaluated at zero.  is the residual matrix with respect to the fixed effects in a quantile 

regression setup. Pre-multiplying the regressor matrix X by  will partial out the fixed 

effects:  
 

(B.23) 
 

Then, the joint asymptotic distribution of  and  is given by  

 

(B.24  



  Measuring the Impact of Asset Price Booms Using Quantile Vector Autoregressions 
 

Cecchetti and Li  44 February 2008 
 

where
 

 

 

where  and  are the  and  elements of the transformed matrix . A 

feasible version of the variance-covariance matrix can be constructed by substituting the 

population means by their sample analogs, for instance,  is replaced by 

.  

 
Appendix B.3: Uncertainty of the forecasts  
 
In this final appendix, we show how to construct estimates of the variance of the forecasts 

obtained from the quantile vector autoregression.  To begin, consider equation (18) of Section 

II.2. Take the two-equation four-lag QVAR in output and housing as an example. Suppose the 

VAR takes the form  

(B.25)  

 
Furthermore, suppose that output equation and housing equation are estimated at quantiles , 

 respectively. Then the estimated  and  in equation (18) are  
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and 

 

 
 

 and  are used in equation (19) to compute the k-period forecast for the -th 

quantile of output conditional on a housing boom. From (19),  is a nonlinear function of the 

coefficient matrices  and . The δ-method can be used to compute the variance and standard 

error of the forecast.  

 

But here a nontrivial technical issue is that it involves matrix differentiation. The techniques of 

matrix differentiation and their applications in econometrics are documented in Magnus and 

Neudecker (1999). Applying here, the variance of  is computed as follows. To streamline 

notation, denote  by  and let  

 

(B.28)  

 
The forecast in text equation (18) can be rewritten as  

 
(B.29)  

 
Then the variance of the forecast  in (B.29) can be computed as  

 
(B.30)  

(B.26) 

(B.27) 
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where  

(B.31)  

 

where  denotes placing the second column below the first, the third column below the 

previous two, and so on.  and  are two matrix partial derivatives.                                      

Next we provide the detailed derivation of  and . To start, let . Then,  

 

(B.32)  

 
The first differential of the column vector  can be decomposed into  

 

(B.33)  

 

or, equivalently written in vec form,  

(B.34)  

 

where the second equality uses the following fact: if A B×  is a column vector, then 
/ / /( ) ( ) ( )vec A B vec A B vec B A× = × = × .  

 
Next, compute the three right-hand-side terms in (B.34). The first term is  

(B.35)  

 

where the first order derivative in the middle of (B.35) has the expression  
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The second term in (B.34) is 

 

(B.37)  

 

The last term in (B.34) is 

  

 

where the first order derivative in the middle of (B.38) is  

 

 
 

Combining (B.35), (B.37) and (B.38), 

 

 

 

From (B.40), we get  

 

 

(B.36) 

(B.41) 

(B.40) 

(B.39) 

(B.38) 
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Finally, substituting (B.36) and (B.39) into (B.41), we get  

 

 

where  and . In practice, vector 0A and matrix 1A  can be replaced by the 

consistent estimators in (B.26) and (B.27).   

(B.42) 




