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Abstract

Uncertainty plays a key role in economics, finance, and decision sciences. Finan-

cial markets, in particular derivative markets, provide fertile ground for understanding

how perceptions of economic uncertainty and cashflow risk manifest themselves in asset

prices. We demonstrate that the variance premium, defined as the difference between

the squared VIX index and expected realized variance, captures attitudes toward un-

certainty. We show conditions under which the variance premium displays significant

time variation and return predictability. A calibrated, generalized Long-Run Risks

model generates a variance premium with time variation and return predictability that

is consistent with the data, while simultaneously matching the levels and volatilities

of the market return and risk free rate. Our evidence indicates an important role for

transient non-Gaussian shocks to fundamentals that affect agents’ views of economic

uncertainty and prices.
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1 Introduction

That idea that volatility has a role in determining asset valuations has long been a corner-

stone of finance. Volatility measures, broadly defined, are considered to be useful tools for

capturing how perceptions of uncertainty about economic fundamentals are manifested in

prices. Derivatives markets, where volatility plays a prominent role, are therefore especially

relevant for unraveling the connections between uncertainty, the dynamics of the economy,

preferences and prices. This paper focuses on a derivatives-related quantity called the vari-

ance premium, which is measured as the difference between (the square of) the CBOE’s

VIX index and the conditional expectation of realized variance. In this paper, we show

theoretically that the variance premium is intimately linked to uncertainty about economic

fundamentals and we derive conditions under which it predicts future stock returns.

We document the large and statistically significant predictive power of the variance pre-

mium for stock market returns. This finding is consistent with the work in Bollerslev and

Zhou (2007). The variance premium’s predictive power is strong at short horizons (measured

in months), in contrast to long-horizon predictors, such as the price-dividend ratio, that have

been intensively studied in the finance literature. The variance premium is therefore inter-

esting due to both its theoretical underpinnings as well as its empirical success above and

beyond that of common return predictors. We analyze whether an extension of the Long

Run Risks (LRR) model (as in Bansal and Yaron (2004)), that contains a rich set of transient

dynamics, can quantitatively account for the time variation and return predictability of the

variance premium while jointly matching ‘standard’ asset pricing moments, i.e. the level and

volatility of the equity premium and risk free rate.

It has been shown that the variance premium equals the difference between the price and

expected payoff of a trading strategy.1 This strategy’s payoff is exactly the realized variance

of returns. The variance premium is essentially always positive, i.e. the strategy’s price is

higher than its expected payoff, which suggests it provides a hedge to macroeconomic risks.

This mechanism underlies the model in this paper. In the model, market participants are

willing to pay an insurance premium for an asset whose payoff is high when return variation

is large. This is the case because large return variation is a result of big or important shocks

to the economic state. Moreover, when investors perceive that the danger of big shocks to

1See Demeterfi, Derman, Kamal, and Zou (1999), Britten-Jones and Neuberger (2000), Jiang and Tian
(2005) and Carr and Wu (2007).
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the state of the economy is high, the hedging premium increases, resulting in a large variance

premium.

We model this mechanism in an extension of the Long Run Risks model of Bansal and

Yaron (2004). As in their model, agents have a preference for early resolution of uncertainty

and therefore dislike increases in economic uncertainty.2 In particular, agents fear uncertainty

about shocks to influential state variables, such as the persistent component in long-run

consumption growth. Under these preferences, economic uncertainty is a priced risk-source

that leads to time varying risk premia. We demonstrate that time variation in economic

uncertainty and a preference for early resolution of uncertainty are required to generate a

positive variance premium that is time-varying and predicts excess stock market returns.3

While our analysis shows that the LRR model captures some qualitative features of the

variance premium, we demonstrate that it requires several important extensions in order to

quantitatively capture the large size, volatility and high skewness of the variance premium,

and importantly, its short-horizon predictive power for stock returns. Our extensions of

the baseline LRR model focus on the stochastic volatility process that governs the level of

uncertainty about shocks to immediate and long-run components of cashflows. Our specifi-

cation adds infrequent but potentially large spikes in the level of uncertainty/volatility and

infrequent jumps in the small, persistent component of consumption and dividend growth

(i.e. we introduce some non-Gaussian shocks). We show that such an extended specification

goes a long way towards quantitatively capturing moments of the variance premium and

predictability data, while remaining consistent with consumption-dividend dynamics and

standard asset pricing moments, such as the equity premium and risk free rate.

There is a long-standing literature on option pricing, which typically formulates mod-

els with a reduced-form pricing kernel or directly within a risk-neutral framework. Our

inclusion of non-Gaussian dynamics builds on some of the findings of this literature (e.g.,

Broadie, Chernov, and Johannes (2007), Chernov and Ghysels (2000), Eraker (2004), Pan

2Bansal, Khatchatrian, and Yaron (2005) provide empirical evidence supporting the presence of con-
ditional volatility in cashflows across several countries. Lettau, Ludvigson, and Wachter (2007) analyze
whether the great moderation, the decline in aggregate volatility of macro aggregates can reconcile the run-
up in valuation ratios during the late 90s. Bloom (2007) provides direct evidence linking spikes in market
return uncertainty and subsequent decline in economic activity.

3Tauchen (2005) generalizes the volatility uncertainty in Bansal and Yaron (2004) to one in which the
variance of volatility shocks is stochastic. Eraker (2007) adds jumps to the volatility specification. The focus
on the variance premium is different from these papers.
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(2002)). However, by construction, such models have limited scope for explicitly mapping

macroeconomic fundamentals and preferences into risk prices. A contribution of this paper

is to explicitly and quantitatively link information priced into a key derivatives index with

a model of preferences and macroeconomic conditions. Understanding these connections is

clearly an important challenge for macroeconomics and finance. Some recent papers linking

prices of derivatives with recursive preferences and/or long-run risks fundamentals include

Bansal, Gallant, and Tauchen (2007), Bhamra, Kuhn, and Strebulaev (2007), Chen (2008),

Benzoni, Collin-Dufresne, and Goldstein (2005), Eraker and Shaliastovich (2008), Liu, Pan,

and Wang (2005), and Tauchen (2005).

The paper continues as follows: Section 2 presents the data, defines the variance premium,

discusses its statistical properties, and then proceeds to evaluate its role in predicting future

returns. Section 3 presents a generalized LRR framework with jumps in volatility and

cashflow growth, and discusses return premia. Section 4 derives the variance premium inside

the model and provides the link between the variance premium and return predictability

within the model. Section 5 provides results from calibrating several specifications of these

models. Section 6 provides concluding remarks.

2 Definitions and Data

Our definitions of key terms are similar to those in Bollerslev and Zhou (2007) and closely

follow the related literature. We formally define the variance premium as the difference

between the risk neutral and physical expectations of the market’s total return variation.

We will focus on a one month variance premium, so the expectations are of total return

variation between the current time, t, and one month forward, t + 1. Thus, vpt,t+1, the

(one-month) variance premium at time t, is defined as EQ
t [Total Return Variation(t, t + 1)]

−Et[Total Return Variation(t, t+1)], where Q denotes the risk-neutral measure. Demeterfi,

Derman, Kamal, and Zou (1999) and Britten-Jones and Neuberger (2000) show that, in the

case that the underlying asset price is continuous, the risk neutral expectation of total return

variance can be computed by calculating the value of a portfolio of European calls on the

asset. Jiang and Tian (2005) and Carr and Wu (2007) show this result extends to the case

where the asset is a general jump-diffusion. This approach is model-free since the calculations

do not depend on any particular model of options prices. The VIX Index is calculated by
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the Chicago Board Options Exchange (CBOE) using this model-free approach to obtain the

risk-neutral expectation of total variation over the subsequent 30 days. Therefore we obtain

closing values of the VIX from the CBOE and use it as our measure of risk-neutral expected

variance. Since the VIX index is reported in annualized “vol” terms, we square it to put

it in “variance” space and divide by 12 to get a monthly quantity. Below we refer to the

resulting series as squared VIX.

As the definition of vpt,t+1 indicates, we also need conditional forecasts of total return

variation under the true data generating process or physical measure. To obtain these

forecasts we create measures of the total realized variation of the market, or realized variance,

for the months in our sample. Our measure is created by summing the squared five-minute

log returns over a whole month. For comparison, we do this for both the S&P 500 futures

and S&P 500 cash index. We obtain the high frequency data used in the construction of our

realized variance measures from TICKDATA. As discussed below, we project the realized

variance measures on a set of predictor variables and construct forecasted series for realized

variance. These forecast series are our proxy for the conditional expectation of total return

variance under the physical measure. The difference between the risk neutral expectation,

measured using the VIX, and the conditional forecasts from our projections, gives the series

of one-month variance premium estimates.

Our data series for the VIX and realized variance measures covers the period January 1990

to March 2007. The main limitation on the length of our sample comes from the VIX, which

is only published by the CBOE beginning in January of 1990. We obtain daily and monthly

returns on the value-weighted NYSE-AMEX-NASDAQ market index and the S&P 500 from

CRSP. The monthly P/E ratio series for the S&P 500 is obtained from Global Financial

Data. Our model calibrations will also require data on consumption and dividends. We

use the longest sample available (1930:2006). Per-capita consumption of non-durables and

services is taken from NIPA. The per-share dividend series for the stock market is constructed

from CRSP by aggregating dividends paid by common shares on the NYSE, AMEX, and

NASDAQ. Dividends are adjusted to account for repurchases as in Bansal, Dittmar, and

Lundblad (2005).

Table I provides summary statistics for the monthly log excess returns on both the S&P

500 and the total value-weighted market return. The excess returns are constructed by

subtracting the log 30-day T-Bill return, available from CRSP. The two series display very
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similar statistics. Both series have an approximately 0.53% mean monthly excess return

with a volatility of about 4%. The other statistics are also quite close. Thus, although the

availability of high-frequency data for the S&P 500 leads us to use it it in our empirical

analysis, our empirical inferences and theoretical model apply to the broader market.

The last four columns in Table I provide statistics for several measures of realized variance

— potential inputs for our forecasts of realized variance: the squared VIX, the futures

realized variance, cash index realized variance, and also the sum of squared daily returns

over the month. The squared VIX value for a particular month is simply the value of the

last observation for that month. The futures, cash, and daily realized variances are sums

over the whole month. We will ultimately use the futures realized variance and we display

the other two for comparison. Several issues are worth noting. First, all volatility measures

display significant deviation from normality. The mean to median ratio is large, the skewness

is positive and greater than 0, and the kurtosis is clearly much larger than 3. Bollerslev and

Zhou (2007) use the sum based on the cash index returns as their realized variance measure.

This realized variance has a smaller mean than the futures and daily measures. This smaller

mean is a result of a non-trivial autocorrelation in the five-minute returns on the cash index

and is not present in the returns on the futures. We suspect that this autocorrelation is the

effect of ‘stale’ prices at the five-minute intervals, since computation of the S&P 500 cash

index involves 500 separate prices. As the S&P 500 futures involves only one price, and has

long been one of the most liquid financial instruments available, we choose to use its realized

variance measure to proxy for the total return variation of the market.

Table II provides a comparison of conditional variance projections. Our approach is

to find a parsimonious representation, yet one that delivers significant predictability. The

last two regressions show our choice of projection for the S&P index and futures variance

measures. For these dependent variables we find that a parsimonious projection on the

lagged VIX and index realized variance achieves R2s of close to 60%. The addition of further

lags or predictor variables adds very little predictive power. The first regression in the table

provides the conditional volatility based on daily squared returns. We fit a GARCH(1,1) to

provide a comparison with approaches used in early studies of variation, which used daily

data. This regression achieves an R2 of around 40%. It is the use of high-frequency returns

and the VIX as predictor that accomplishes the increased predictive power of the first two

regressions.
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Table III provides summary statistics for various measures of the variance premium,

constructed as differences of the squared VIX and various variance forecasts. For comparison,

the first column also reports the measure used by Bollerslev and Zhou (2007). They calculate

the variance premium by subtracting from the squared VIX the previous month’s realized

variance. It is apparent from the table that the mean of the variance premium is somewhat

smaller when based on the cash index measures as opposed to the futures or daily variance

measures. Furthermore, the variance premium based on the futures measure is significantly

less volatile than the other measures. Neither effects are surprising given the results in

Table II and the discussion above regarding the cash index realized variance. The remaining

statistics, in particular the skewness and kurtosis, seem to be quite similar across the variance

premium proxies. In what follows, we use the variance premium based on the futures realized

variance. As discussed above, the liquidity of the futures contract makes it an appropriate

instrument for measuring realized variance. It is also the defacto instrument used by traders

involved in related options trading. It is important to note however that our subsequent

results are not materially effected by the use of this particular measure.

Table IV provides return predictability regressions. There are two sets of columns with

regression estimates. The first set of columns shows OLS estimates and the second set

provides estimates from robust regressions. Robust regression performs estimation using an

iterative reweighted least squares algorithm that downweights the influence of outliers on

estimates but is nearly as statistically efficient as OLS in the absence of outliers. It provides

a check that the results are not driven by outliers. The first two regressions are one-month

ahead forecasts using the variance premium as a univariate regressor, while the third forecasts

one quarter ahead. The quarterly return series is overlapping. The last two specifications

add the price-earnings ratio, which is a commonly used variable for predicting returns. As

a univariate regressor, the variance premium can account for about 1.5-4.0% of the monthly

return variation. The multivariate regressions lead to a substantial further increase in the

R2 – a feature highlighted in Bollerslev and Zhou (2007). For example, in conjunction with

the price-earnings ratio, the in-sample R2 increases to as much as 12.4%.4 It is worth noting

that the lagged variance premium seems to perform better than the immediate variance

premium. Note that in both cases, as well as the multivariate specification, the variance

premium enters with a significant positive coefficient. We will show that this sign and

4The in-sample R2 of the price-earnings ratio alone is about 3.4%. The bivariate R2s are significantly
higher than the sum of R2s from the univariate regressions. This is because of a positive correlation between
the two regressors.
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magnitude are consistent with theory. Finally, we note that the robust regression estimates

agree both in magnitude and sign with the OLS estimates and in fact, some of the R-squares

are even larger than their OLS counterparts.

A natural question that arises is whether such R2s are economically significant. Cochrane

(1999) uses a theorem of Hansen and Jagannathan (1991) to derive a relationship between

the maximum unconditional Sharpe ratio attainable using a predictive regression and the

regression R2. It says that (s∗)2 − s2
0 =

1+s2
0

1−R2 R
2, where s0 is the unconditional buy-and-

hold Sharpe Ratio and s∗ is the maximum unconditional Sharpe ratio.5 In our sample, s0

is approximately 0.157 at a monthly frequency, or 0.543 annualized. Using the univariate

regression with an R2 of 4.07%, the maximal Sharpe ratio would rise to 0.904 annualized.

With the bivariate R2 of 8.30%, the maximal Sharpe Ratio would further increase to 1.19,

more than double the unconditional ratio. In other words, the potential increases are quite

large. It is important to keep in mind that these R2s are for a monthly horizon, and that

Sharpe ratios increase roughly with the square root of the horizon. Hence an R2 of 3% at

the monthly horizon is potentially very useful. A comparison with “traditional” predictive

variables found in the literature also shows this predictability is large. For example, Camp-

bell, Lo, and MacKinlay (1997) examine the standard price-dividend ratio and stochastically

detrended short-term interest rate, two of the more successful predictive variables, and show

that in the more predictable second subsample, the predictive R2s are 1.5% and 1.9% respec-

tively at the monthly horizon. Campbell and Thompson (2007) examine a large collection

of predictive variables whose in-sample (monthly) R2s are much smaller than those reported

in Table IV, but still conclude that these variables can be useful to investors. Finally, note

that the variance related variables, i.e. the V IX2, realized variance measures, and variance

premium, all have AR(1) coefficients of 0.79 or less, unlike the price-dividend ratio or short

term interest rate, which have AR(1) coefficients much closer to 1. This means the variance

related quantities will not suffer from the large predictive regression biases associated with

extremely persistent predictive variables, such as the price-dividend ratio (e.g. Stambaugh

(1999)), and will have much better finite sample properties.

5This formula corresponds to the case when the predictive regression’s residual is homoskedastic. If the
predictive regressor also forecasts increased residual variance, the improvement in unconditional Sharpe ratio
will be less. This is clearly the case here since the predictors are closely related to volatility forecasts. Hence,
we are not using the formula to draw any conclusions about attainable Sharpe ratios, but only to show that
the R2 sizes are economically meaningful.
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3 Model Framework

The underlying environment is a discrete time endowment economy. The representative

agent’s preferences on the consumption stream are of the Epstein and Zin (1989) form,

allowing for the separation of risk aversion and the intertemporal elasticity of substitution

(IES). Thus, the agent maximizes his life-time utility, which is defined recursively as

Vt =

[
(1− δ)C

1−γ
θ

t + δ
(
Et

[
V 1−γ

t+1

]) 1
θ

] θ
1−γ

(1)

where Ct is consumption at time t, 0 < δ < 1 reflects the agent’s time preference, γ is the

coefficient of risk aversion, θ = 1−γ

1− 1
ψ

, and ψ is the intertemporal elasticity of substitution

(IES). Utility maximization is subject to the budget constraint,

Wt+1 = (Wt − Ct)Rc,t+1 , (2)

where Wt is the wealth of the agent, and Rc,t is the return on all invested wealth. As shown

in Epstein and Zin (1989), for any asset j, the first order condition yields the following Euler

condition,

Et [exp (mt+1 + rj,t+1)] = 1 (3)

where rj,t+1 is the log of the gross return on asset j, and mt+1 is the log of the intertemporal

marginal rate of substitution, which is given by θ ln δ− θ
ψ
∆ct+1 + (θ− 1)rc,t+1. Here rc,t+1 is

the ln Rc,t+1 and ∆ct+1 is the change in ln Ct.

3.1 Dynamics

For notational brevity and expositional ease, we specify the dynamics of the state vector

in the model in a rather general framework. However, we then immediately provide the

specific version of the dynamics that is our focus. The general framework follows Eraker and

Shaliastovich (2008), though in discrete time. The state vector of the economy is given by

Yt ∈ Rn and follows a VAR that is hit by both Gaussian and Poisson-driven jump shocks:

Yt+1 = µ + FYt + Gtzt+1 + Jt+1 (4)
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Here zt+1 ∼ N (0, I) is the vector of Gaussian shocks and Jt+1 is the vector of jump shocks.

We let the jumps be compound-Poisson jumps. Therefore, the i-th component of Jt+1 is

given by Jt+1,i =
∑N i

t+1

j=1 ξj
i , where N i

t+1 is the Poisson counting process for the i-th jump

component and ξj
i is the size of the jump that occurs upon the j-th increment of N i

t+1.

Thus, Jt+1,i represents the total jump in Yt+1,i between time t and t + 1. We let the N i
t+1

be independent of each other conditional on time-t information and assume that the ξj
i are

i.i.d. The intensity process for N i
t+1 is given by the i-th component of the vector λt. In other

words, λt is the vector of intensities for the Poisson counting processes.

To put the dynamics into the affine class (Duffie, Pan, and Singleton (2000)), we impose

an affine structure on Gt and λt:

GtG
′
t = h +

∑

k

HkYt,k

λt = l0 + l1Yt

where h ∈ Rn×n, Hk ∈ Rn×n, l0 ∈ Rn, and l1 ∈ Rn×n.

To handle the jumps we introduce some notation. Let ψk(uk) = E[exp(ukξk)], i.e. ψk is

the moment generating function (mgf) of the jump size ξk. The mgf for the k-th jump

component, Et[exp(ukJt+1,k)], then equals exp
(
Ψt,k(uk)

)
, where Ψt,k(uk) = λt,k(ψk(uk)− 1).

Ψt,k is called the cumulant generating function (cgf) of Jt+1,k and it is a very helpful tool

for calculating asset pricing moments. The reason is that its n-th derivative evaluated

at 0 equals the n-th central moment of Jt+1,k. It is convenient to stack the mgf’s into a

vector function. Thus, for u ∈ Rn let ψ(u) be the vector with k-th component ψk(uk) and

let Ψt(u) be defined analogously. It will also be necessary to evaluate the scalar quantity

Et[exp(u′Jt+1)], u ∈ Rn. Since the Jt+1,k are (conditionally) independent of each other, this

equals exp
(∑

k λt,k(ψk(uk)− 1)
)
, or more compactly, exp

(
λ′t(ψ(u)− 1)

)
.

3.2 Long Run Risks Model with Jumps

In the calibration section of the paper and also in some of the discussion that follows, we

focus on a particular specification of (4). This specification is a generalized LRR model that

incorporates jumps. Here we give an overview of this generalized LRR model and map it into

the general framework in (4). Further details are also provided in the calibration section.
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We specify:

Yt+1 =




∆ct+1

xt+1

σ2
t+1

∆dt+1




F =




0 1 0 0

0 ρx 0 0

0 0 ρσ 0

0 φ 0 0




The vector of Gaussian shocks is zt+1 = (zc,t+1, zx,t+1, zσ,t+1, zd,t+1) ∼ N (0, I) and Jt+1 =

(0, Jx,t+1, Jσ,t+1, 0) is the jump vector. The matrix Gt solves GtG
′
t = h + Hσσ

2
t , so that the

conditional variance-covariance matrix of the gaussian shocks is driven by the variable σ2
t .

Finally, we focus attention on a jump intensity specification of the form λt = l0+l1,σσ
2
t . Thus,

σ2
t drives variation in the intensities of the jumps.6 Since σ2

t is positive valued, positivity of

the jump intensities is implied.

This generalized LRR specification is quite flexible and nests a number of related models.

In particular, it nests the original Bansal and Yaron (2004) long-run risks model. The first

element of the state vector, ∆ct+1, is the growth rate of log consumption. As in the long-run

risks model, µc+xt is the conditional expectation of consumption growth, where xt is a small

but persistent component that captures long run risks in consumption and dividend growth.

The parameter ρx is the persistence of xt. In the dividend growth specification, φ is the

loading of ∆dt+1 on the long-run component and will be greater than 1 in the calibrations,

so that dividend growth is more sensitive to xt than is consumption growth. As mentioned

above, σ2
t controls variation in the volatility of Gaussian shocks and jump intensities. To

obtain the original long run risks model as a specific case, set l0 = l1 = 0, so there are no

jumps, and parameterize the Gaussian variance-covariance matrix via h = diag
(
[0, 0, ϕσ, 0]

)

and Hσ = diag
(
[ϕc, ϕx, 0, ϕd]

)
. In the Bansal and Yaron (2004) specification, the volatility

of σ2
t shocks is constant. Tauchen (2005) makes the volatility of σ2

t shocks stochastic via a

square-root specification. To get this type of specification, set Hσ = diag
(
[ϕc, ϕx, ϕσ, ϕd]

)

(and h = 0). Finally, as the specification above shows, we will consider jumps in both σ2
t and

xt, but not in the immediate innovations to ∆ct+1 and ∆dt+1. As will be discussed below,

these non-Gaussian (jump) shocks to these two state variables are important for establishing

both the qualitative properties of the variance premium and for the quantitative model

calibrations.

6Here l1,σ is the column multiplying σ2
t in the expression l1Yt, which means it is just the third column of

l1.
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3.3 Model Solution

We now solve for the equilibrium price process of the model economy. The solution proceeds

via the representative agent’s Euler condition (3). To price assets we must first solve for

the return on the wealth claim, rc,t+1, as it appears in the pricing kernel itself. Denote the

log of the wealth-to-consumption ratio at time t by vt. Since the wealth claim pays the

consumption stream as its dividend, this is simply the price-dividend ratio of the wealth

claim. Next, we use the Campbell and Shiller (1988) log-linearization to linearize rc,t+1

around the unconditonal mean of vt:

rc,t+1 = κ0 + κ1vt+1 − vt + ∆dt+1 (5)

This approach is also taken by Bansal and Yaron (2004), Eraker and Shaliastovich (2008),

and Bansal, Kiku, and Yaron (2007). We then conjecture that the no-bubbles solution for

the log wealth-consumption ratio is affine in the state vector:

vt = A0 + A′Yt

where A = (Ac, Ax, Aσ, Ad)
′ is a vector of pricing coefficients. Substituting vt into (5) and

then substituting (5) into the Euler equation gives the equation in terms of A, A0 and

the state variables. The expectation on the left side of this equation can be evaluated

analytically, as shown in Appendix A.1. It is also shown there that the requirement that

the Euler equation hold for any realization of Yt implies that A0 and A satisfy the following

system of equations:

0 = θ ln δ + θκ0 + θ(κ1 − 1)A0 + f

(
θ(1− 1

ψ
)ec + θκ1A

)
(6)

0 = g

(
θ(1− 1

ψ
)ec + θκ1A

)
− Aθ (7)

where ec = (1, 0, 0, 0)′ and where the functions f(u) and g(u) are defined in Appendix A.1.

Equation (6) is a scalar and (7) is an n × 1 system of equation which jointly determine A

and A0.

Closed-form expressions for the components of A are attainable for a number of specifi-

cations. Bansal and Yaron (2004) provide expressions for their specification, while Tauchen
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(2005) shows how to solve for Aσ when the volatility process is of the square-root form.

Quasi closed-form expressions are even possible in some specifications that have both jumps

and square-root volatility. However, in general, closed-form expressions for A and A0 are un-

available and the solutions must be found numerically. As the the linearization constants κ0

and κ1 are endogenous, we solve for these linearization constants jointly by adding equations

for them to the system that is solved numerically. Further details are given in Appendix

A.2.

3.3.1 Pricing Kernel

Having solved for rc,t+1, we can substitute it into mt+1 to obtain an expression for the log

pricing kernel at time t + 1:

mt+1 = θ ln δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1

= θ ln δ + (θ − 1)κ0 + (θ − 1)(κ1 − 1)A0 − (θ − 1)A′Yt − Λ′Yt+1 (8)

where Λ = (γec + (1− θ)κ1A). The innovation to the pricing kernel, conditional on the time

t information set, has the simple form:

mt+1 − Et(mt+1) = −Λ′(Yt+1 − Et(Yt+1)) = −Λ′ (Gtzt+1 + Jt+1 − Et(Jt+1)) (9)

Thus, Λ can be interpreted as the price of risk for Gaussian shocks and also the sensitivity

of the IMRS to the jump shocks. From the expression for Λ one can see that the prices

of risk are determined by the A coefficients. Since any predictive information in ∆ct and

∆dt is subsumed in xt, they have no effect on vt and therefore Ac = Ad = 0. Thus,

Λ = (γ, κ1Ax(1− θ), κ1Aσ(1− θ), 0)′.

The expression for Λ shows that the signs of the risk prices depend on the signs of the

A coefficients and (1 − θ). The signs of the A’s themselves depend only on the relation

between the preference parameters γ and ψ. Thus, it is the relation between the preference

parameters that determines the prices of all risks. When γ = 1
ψ

and θ = 1 we are in the

case of CRRA preferences, it is clear that only the transient shock to consumption zc,t+1

is priced, and prices do not separately reflect the risk of shocks to xt (“long-run risk”) or

σ2
t (uncertainty/volatility related risk). In the discussion below and in the calibrations,

we focus on the case were the agent’s risk aversion is greater than 1 and ψ > 1, which
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implies that Λx > 0 and Λσ < 0. Thus, positive shocks to long-run growth decrease the

IMRS, while positive shocks to the level of uncertainty/volatility increase the IMRS. Note

that in this case, since (1 − θ) > 0, each of the A coefficients has the same sign as the

corresponding price of risk. Ax > 0, so increases in long-run growth imply an increase in

vt, while Aσ < 0, so increases in uncertainty/volatility decrease vt. Thus, an agent that

has γ > 1 and ψ > 1 dislikes increases in the level of uncertainty/volatility (since the IMRS

increases) and associates them with decreases in prices (the wealth-consumption ratio). This

joint behavior of the IMRS and prices is important for our theoretical and quantitative

results regarding the variance premium. We note that since γ > 1
ψ
, this parametrization

of preferences is identified by Epstein and Zin (1989) as implying a preference for early

resolution of uncertainty.

For comparison, consider two cases in which risk aversion is greater than 1 but now

ψ < 1. In the first case let γ < 1
ψ

(preference for late resolution of uncertainty). In this case,

Ax < 0 and Aσ > 0, and hence a positive shock to xt (σ2
t ) lowers (raises) vt. Moreover,

(1 − θ) > 0, so the exactly the opposite is true for the IMRS. This type of configuration

leads to qualitatively counterfactual results, such as a negative variance premium.

In the second case, let γ > 1
ψ

(preference for early resolution of uncertainty). In this case,

Ax < 0 and Aσ > 0, but now (1−θ) < 0 and hence Λx > 0 and Λσ < 0. So for this parameter

configuration, the prices of risk have the same sign as for γ > 1, ψ > 1 (our preferences of

interest), but the A coefficients have the opposite sign. This configuration would cause the

model to contradict the well known “leverage effect”, the empirical result that changes in

prices and the level of volatility appear to be inversely related. Such a contradiction has

further undesirable implications for quantitatively matching the variance premium and the

shape of the option-implied volatility surface.

3.3.2 The Market Return

To study the variance premium, risk premium, and their relationship, we first need to solve

for the market return. A share in the market is modeled as a claim to a dividend with growth

process given by ∆dt+1. To solve for the price of a market share we proceed along the same

lines as for the consumption claim and solve for vm,t+1, the log price-dividend ratio of the

market, by using the Euler equation (3). To do this, log-linearize the return on the market,

13



rm,t+1, around the unconditional mean of vm,t+1:

rm,t+1 = κ0 + κ1vm,t+1 − vm,t + ∆dt+1 (10)

Then conjecture that vm,t is affine in the state variables:

vm,t = A0,m + A′
mYt

where Am = (Ac,m, Ax,m, Aσ,m, Ad,m)′ is the vector of pricing coefficients for the market.

Substituting the log-linearized return and conjecture for vm,t into the Euler equation and

evaluating the left side leads to a system of equations, analogous to (6) and (7), that must

hold for all values of Yt. The equations for Am are in terms of the solution of A and, since the

A’s determine the nature of the pricing kernel, the Am’s largely inherit their properties from

the corresponding A’s. In particular, since our reference specification implies Ac = Ad = 0,

it is also the case that Ac,m = Ad,m = 0. The solution method for A carries over almost

directly for Am. The derivation of Am and further solution details are provided in Appendix

A.3.

By substituting the expression for vm,t into the linearized return, we obtain an expression

for rm,t+1 in terms of Yt and its innovations:

rm,t+1 = r0 + (B′
rF − A′

m)Yt + B′
rGtzt+1 + B′

rJt+1 (11)

where r0 is a constant, Br = (κ1,mAm + ed), and ed is (0, 0, 0, 1)′ (the selector vector for ∆d).

Since, conditional on time t information, the components of zt+1 and Jt+1 are all inde-

pendent of each other, the conditional variance of the return is simply:

vart(rm,t+1) = B′
rGtG

′
tBr +

∑
i

B2
r (i)vart(Jt+1,i)

where B2
r denotes elementwise squaring of Br and B2

r (i) is its i-th element. Recall that the

n-th central moment of Jt+1,i is given by the n-th derivative of its cgf at 0, i.e. Ψ
(n)
t,i (0). For

the case of compound Poisson jumps, it was noted above that Ψt,i(u) = λt,iψi(u), so the
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conditional variance can be rewritten concisely as:

vart(rm,t+1) = B′
rGtG

′
tBr + B2

r
′
Ψ

(2)
t (0)

= B′
rGtG

′
tBr + B2

r
′
diag

(
ψ(2)(0)

)
λt (12)

where diag
(
ψ(2)(0)

)
denotes the matrix with ψ(2)(0) on the diagonal.

We can also derive the conditional expected return on the market by taking conditional

expectations of (11), obtaining:

Et(rm,t+1) = r0 + (B′
rF − A′

m)Yt + B′
rEt (Jt+1)

Using the cgf, we have Et (Jt+1) = Ψ
(1)
t (0), which in the compound Poisson case equals

diag
(
ψ(1)(0)

)
λt. Substituting into the expression for the conditional expectation and break-

ing up λt into l0 + l1Yt leads to the following:

Et(rm,t+1) = r̃0 +
(
B′

rF̃ − A′
m

)
Yt (13)

where F̃ =
(
F + diag

[
ψ(1)(0)

]
l1

)
and r̃0 = r0 + diag

(
ψ(1)(0)

)
is a constant.

Equation (13) shows that the conditional expectation of the market return loads on

the state vector according to (B′
rF̃ − A′

m). Since Br is a function of Am, these loadings are

effectively determined by the endogenous Am coefficients that come out of the model solution.

Thus, a state variable increases in influence as a driver of time variation in expected returns

as it’s Am coefficient increases. The sign of the Am coefficient determines the direction that

expected returns are driven by the state variable.

Consider a state variable with a relatively high loading in (B′
rF̃ − A′

m). In other words,

the variable is influential in driving expected returns. If expected returns load positively

on this state variable, then increases in the state variable will be associated with increases

in expected returns. If the variable is subject to large shocks, then expected returns will

reflect these shocks in their variation over time. In this paper we argue that a state variable

with these properties drives the intensities of jumps in σ2
t and xt. Below we show that this

driver of jump intensity is reflected strongly in the variance premium so that the variance

premium is a stronger predictor of expected returns. In our reference parametrization σ2
t

completely determines λt, the jump intensity vector. Thus, its endogenously determined
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influence on returns will reflect its importance as the driver of jump intensities as well as its

determination of the volatility of Gaussian shocks.7

Equation (13) can be derived more immediately if the model dynamics in (4) are first

demeaned. Let J̃t+1 = Jt+1 − Et(Jt+1) denote the (conditionally) demeaned compound

Poisson processes. Then the model dynamics can be rewritten in this ‘innovations’ form by

using again the cgf, Et (Jt+1) = diag
(
ψ(1)(0)

)
λt, and the identity λt = l0 + l1Yt to obtain:

Yt+1 = µ̃ + F̃ Yt + Gtzt+1 + J̃t+1 (14)

where F̃ was just defined above, and µ̃ = µ + diag
(
ψ(1)(0)

)
l0. We use this representation of

the model when we consider how the dynamics are altered by changing to the risk neutral

probability measure.8

3.3.3 Risk Premia

Appendix A.4 uses the Euler equation (3) to derive the risk-free rate, rf,t. It equals rf,0 −
(g(−Λ)− (θ − 1)A)′ Yt, where rf,0 is a constant given in the appendix. The conditional risk

premium is obtained by subtracting rf,t from (13) and equals:

Et(rm,t+1 − rf,t) = r̃0 − rf,0 +
(
B′

rF̃ − A′
m + g(−Λ)′ − (θ − 1)A′

)
Yt (15)

For the model parameterizations we consider in the calibration, rf,t has very low variabil-

ity compared to rm,t, as is the case in the data. Thus, variation in rm,t+1 − rf,t is essentially

identical to that of rm,t+1 and the loadings on the state vector for rm,t+1 are very close to

those of rm,t+1− rf,t. In particular, the level of uncertainty and jump intensity, driven by σ2
t

has a similar influential effect on expected returns and expected risk premia. On the other

7An interesting extension of our reference configuration would be to separate between λt and σ2
t . For

example, a minor extension of the model could add an additional innovation to our specification of λt, i.e.
λt = l0 + l1,σσ2

t +ϕλzλ,t. This would reduce the perfect correlation between σ2
t , λt and the resulting variance

premium. In general, the inclusion of an additional state variable to the model to drive λt is potentially
desirable. Though such a state variable should not materially change the underlying mechanisms at work
in the model, it will substantially increase the complexity of the model and it’s calibration. We believe the
reference configuration strikes a good balance between parsimony and achievement of the main objectives of
the model.

8The innovations form of the dynamics is also more intuitive to use for model calibration and for deter-
mining unconditional moments of the state vector.
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hand, in our reference configuration the long-run risk variable xt only effects the risk-free

rate and so cancels out of the market risk-premium.

4 The Variance Premium and Return Predictability

In this section we derive the variance premium and show that it effectively reveals the level of

the (latent) jump intensity. When γ > 1 and ψ > 1, as in our reference parametrization, an

increase in jump intensity causes an increase in both the variance premium and the market

risk premium. As a result, the variance premium is able to capture time variation in the risk

premium and is an effective predictor of market returns.

As defined in the section 2 above, the one period variance premium at time t, vpt,t+1, is

the difference between the representative agent’s risk neutral and physical expectations of

the market’s total return variation between time t and t+1. In continuous-time models, total

return variation is expressed as an integral of instantaneous return variation over infinitely

many periods from t to t + 1. In a discrete-time model, where t to t + 1 represents one time

period, strictly speaking the variance premium simply equals varQ
t (rm,t+1) − vart(rm,t+1).

Here varQ
t (rm,t+1) denotes the conditional variance of market returns under the risk-neutral

measure Q (we let P denote the physical measure, and where not explicitly specified, the

measure is taken to be the physical measure). If we consider dividing t to t + 1 into n

sub-periods, the variance premium would be defined as the following sum:

vpt,t+1 = EQ
t [

n−1∑
i=1

varQ

t+ i−1
n

(rm,t+ i−1
n

,t+ i
n
)]− EP

t [
n−1∑
i=1

varP
t+ i−1

n
(rm,t+ i−1

n
,t+ i

n
)] (16)

where vart+ i−1
n

(rm,t+ i−1
n

,t+ i
n
) is notation for the time t+ i−1

n
conditional variance of the market

return between t + i−1
n

and t + i
n
.

The variance premium is non-zero because of two effects discussed below. The first is

that varQ
t (rm,t+1) 6= varP

t (rm,t+1). In other words, the levels of the conditional variances at

time t are different under the physical and risk neutral measures. We term the quantity

varQ
t (rm,t+1) − varP

t (rm,t+1) the “level difference”. The second effect is that the expected

change, or drift, in the quantity vart(rm,t+1) is different under Q and P . In other words,

EQ
t [varQ

t+1(rm,t+2)] − varQ
t (rm,t+1) 6= EP

t [varP
t+1(rm,t+2)] − varP

t (rm,t+1). This is a result of

the fact that Yt has different dynamics under Q and P . We term it the “drift difference”.
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Equation (16) is effectively a sum of the level difference and differences in the drifts of

conditional variance over the sub-periods. To capture both effects in our model, we define

our vpt,t+1 as the level difference plus the drift difference over the period t to t + 1. Adding

them together results in our definition of the variance premium:

vpt,t+1 ≡ EQ
t [varQ

t (rm,t+1)]− EP
t [varP

t (rm,t+1)] (17)

Since the variance premium involves expectations under Q of functions of the state vector,

to derive vpt,t+1 we must solve for the model dynamics under the risk neutral measure.

4.1 Model Dynamics under the Risk Neutral Measure

Recall from (4) the state dynamics under the physical measure:

Yt+1 = µ + FYt + Gtzt+1 + Jt+1

The distribution of stochastic elements of the dynamics, zt+1 and Jt+1, are transformed by the

change of probability measure. To change to the risk-neutral measure, we re-weight probabil-

ities according to the value of the pricing kernel. In other words we set the Radon-Nikodym

derivative dQ
dP =

Mt+1

Et(Mt+1)
. From (9) we have

Mt+1

Et(Mt+1)
∝ exp(−Λ′(Gtzt+1 + Jt+1)). Since

zt+1 and Jt+1 are independent, we can treat their measure transformations separately. The

case of zt+1 is simple. Let ft(zt+1) denote the joint (time t conditional) density of zt+1 under

P and let fQ(zt+1) be its Q counterpart. Then ft(zt+1) ∝ exp(−1
2
z′t+1zt+1) and re-weighting

it with the the relevant part of the Radon-Nikodym derivative implies:

fQ
t (zt+1) ∝ exp(−1

2
z′t+1zt+1) exp(−Λ′Gtzt+1)

∝ exp(−1

2
(zt+1 + G′

tΛ)′(zt+1 + G′
tΛ))

where the last line follows from a “complete-the-square” argument. This shows that

zt+1
Q∼ N (−G′

tΛ, I) (18)

i.e. under Q, zt+1 is still a vector of independent normals with unit variances, but with a

shift in the mean.
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For the case of Jt+1 we could also proceed by transforming the probability density function

directly. A somewhat more general and easier way to proceed is by obtaining the cgf of Jt+1

under Q. Proposition (9.6) in Cont and Tankov (2004) shows that under Q, the Jt+1,k are

still compound Poisson processes, but with cgf given by:

ΨQ
t,k(uk) = λt,kψk(−Λk)

(
ψk(uk − Λk)

ψk(−Λk)
− 1

)
(19)

A short discussion will help to interpret this result and see how it arises. First, under Q, the

distribution of the jump size ξk is re-weighted by the probability density exp(−Λkξk)
E(exp(−Λkξk))

. Thus,

the mgf of ξk under Q is E
(
exp(ukξk)

exp(−Λkξk)
E(exp(−Λkξk))

)
= ψk(uk−Λk)

ψk(−Λk)
, which is in (19). There is

some intuition behind this re-weighting. It ‘tilts’ the distribution of the jump size ξk in a

direction depending only on the associated price of risk Λk. If Λk < 0, then exp(−Λkξk) is

larger for greater values of ξk. Hence, the distribution is transformed so that under Q more

positive jumps have higher probability. Moreover, the extent of the tilting depends on the

magnitude of the risk price. A larger risk price produces a greater transformation, while a

zero risk price implies no alteration in the jump distribution under Q. One way to assess

this transformation is to compute the mean jump size under Q:

EQ(ξk) = EP

(
ξk

exp(−Λkξk)

EP (exp(−Λkξk))

)
= EP (ξk) + cov

(
ξk,

exp(−Λkξk)

EP (exp(−Λkξk))

)

This calculation shows that the covariation of the jump size with the tilting weight determines

the difference in mean jump size between P and Q. The same computation on EQ(ξ2
k) would

indicate how the variance of the jump size changes under Q. The second implication of

(19) is that, under Q, the jump intensity is λt,kψk(−Λk)). The transformation of the jump

intensity follows the same principle as for the jump distribution. The sign of the price of

risk is important in determining whether the jump size is amplified or diminished, while the

magnitude of the risk price controls the degree of the change.

Given (19), we can now easily compute the moments of Jt+1 under Q by taking derivatives

of the Q measure cgf:

EQ
t (Jt+1,k) = ΨQ

t,k

(1)
(0) = λt,kψ

(1)
k (−Λk) (20)

varQ
t (Jt+1,k) = ΨQ

t,k

(2)
(0) = λt,kψ

(2)
k (−Λk) (21)
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Finally, we use these results to rewrite the state dynamics under Q. Let z̃t+1 = zt+1 + G′
tΛ.

Then z̃t+1
Q∼ N (0, I) and the state dynamics under Q can be rewritten as:

Yt+1 = µ + FYt −GtG
′
tΛ + Gtz̃t+1 + JQ

t+1 (22)

where JQ
t+1 denotes the vector of independent compound Poisson processes with cgf given

under Q by (19).

4.2 The Variance Premium and the Risk of Jumps

We first focus on the “level difference”, varQ
t (rm,t+1) − varP

t (rm,t+1). It follows from (11),

(18), and (21) that:

varQ
t (rm,t+1) = B′

rGtG
′
tBr + B2

r
′
ΨQ

t

(2)
(0)

= B′
rGtG

′
tBr + B2

r
′
(diag

(
ψ(2)(−Λ)

)
λt (23)

Subtracting varP
t (rm,t+1) (equation (12)) from varQ

t (rm,t+1) then gives the level difference:

varQ
t (rm,t+1)− vart(rm,t+1) = B2

r
′
diag

(
ψ(2)(−Λ)− ψ(2)(0)

)
λt (24)

Some observations are now possible. First, note that the part of conditional variance

coming from the Gaussian shocks, B′
rGtG

′
tBr cancels out in the level difference. The reason

for this is that zt+1 has the same variance under P and Q. Thus, Gaussian-induced variance

makes no contribution to the level difference since it is the same under the physical and

risk-neutral probabilities.9

Secondly, expression (24) shows that the level difference is simply proportional to the

latent jump intensity and, so long as Λ 6= 0, can be used to reveal it. For example, suppose

for simplicity that there are Poisson jumps in only one state variable, say xt. If Λx 6= 0, i.e.

xt shocks are priced, then
(
ψ

(2)
x (−Λx)− ψ

(2)
x (0)

)
6= 0. In this case, the level difference is

9This conclusion is the discrete-time analog to what is typically the case in continuous-time diffusion
models of option pricing, though it is perhaps less obvious under the continuous-time formulations. For
example, in the well-known Heston (1993) model, the variance premium for the “dt” interval [t,t+dt) is
actually 0. It is non-zero for any finite interval [t, t+δt) because of what we are calling here the drift difference
between Q and P . Later we show that in our calibration the level difference dominates quantitatively the
drift difference.
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just a multiple of the jump intensity λt and perfectly reveals its value. Since the variance

premium includes the level difference, and tends in fact to be dominated by it, its value will

also strongly reflect the latent jump intensity.10

Now consider how the level difference depends on the prices of risk and therefore indirectly

on preferences. First, as discussed earlier, in the case of CRRA preferences (γ = 1/ψ) only

the immediate shock to consumption is priced and Λx = Λσ = 0. Thus, equation (24) then

clearly shows that the level difference is 0.

Next, consider the jump in σ2
t in our reference configuration. To determine the sign of

the corresponding contribution to the level difference, we need to sign the term ψ
(2)
σ (−Λσ)−

ψ
(2)
σ (0), and based on the mgfs this term equals Et (ξ2

σ [exp(−Λσξσ)− 1]). In the model

calibrations, ξσ has a gamma distribution, which means all jump sizes are positive. It is

therefore the case that [exp(−Λσξσ)− 1] is either always positive or always negative depend-

ing on the sign of Λσ. As discussed above, for γ > 1, ψ > 1, we get Λσ < 0, and so the term’s

contribution to the level difference is positive. This is a direct outcome of the representative

agent’s aversion to increases in uncertainty/volatility. As discussed earlier, for this prefer-

ence configuration the representative agent dislikes increases in uncertainty, his risk-neutral

measure puts greater weight on states where there was a large, positive shock to σ2
t . Thus,

large shocks are more probable under Q, which implies a higher variance, so that the level

difference is positive. By comparison, if 1 < γ < 1
ψ
, then Λσ > 0 and the representative agent

downweights the probability of large shocks. The resulting level difference is then negative

and also leads, counterfactually, to vpt,t+1 < 0. Though the reasoning here is for a gamma

jump specification, it applies much more generally.

Consider also the contribution of the jumps in xt to the level difference. In the calibrations

we consider two distributions for xt jumps, a symmetric and an asymmetric one. The

symmetric distribution is just a mean-zero normal distribution. Let ξx ∼ N (0, σ2
x). Then an

easy calculation gives:

ψ(2)
x (−Λx)− ψ(2)

x (0) = exp

(
1

2
Λ2

xσ
2
x

)
Λ2

xσ
4
x + exp

(
1

2
Λ2

xσ
2
x

)
σ2

x − σ2
x (25)

10The level difference can also reveal the jump intensity when there are Poisson jumps in multiple state
variables, but the λt vector is driven by a single state variable (for example λt may be a state variable itself).
Then, if Λ 6= 0, the level difference is simply a multiple of the jump state variable and therefore makes it
observable. This is the case for our reference calibration configuration in which λt is driven by σ2

t .
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which is clearly positive so long as Λx 6= 0, regardless of its sign. This happens because

the pricing kernel is convex in shocks to xt (or in fact any priced state variable), so that it

increases more quickly with the size of a ‘bad’ shock than it decreases with the size of a ‘good’

shock. As a result, under Q the agent places a higher probability, on average, on states with

large magnitude shocks. This implies that variance is higher under the risk neutral measure

and that the level difference is positive.

The above discussion refers to the case for a symmetric distribution. Now consider

negatively skewed shocks to xt, i.e. negative jumps in xt are larger (but relatively rare)

while positive jumps are smaller (but more frequent). As discussed above, for γ > 1, ψ > 1,

we get Λx > 0, and the pricing factor exp(−Λxξx) will tilt the risk neutral probabilities

towards the negative shocks. Since negative shocks are predominantly also large shocks, this

will increase risk neutral variance even more than in the symmetric case (holding constant

the price of risk) and lead to an even more positive level difference.

4.2.1 Return Predictability

Why should the variance premium have predictive power for future returns? Formally, it

is now easy to see why the level difference, and therefore the variance premium, should

predict returns. Recall from (15) that the loading of the risk premium on the state vector

is given by
(
B′

rF̃ − A′
m + g(−Λ)′ − (θ − 1)A′

)
. For our reference configuration, the market

risk premium loads only on σ2
t , so for notational simplicity we denote this loading by βr,σ.

When γ > 1, ψ > 1, βr,σ is positive as a result of Am,σ < 0.

According to the level difference equation (24), and since in our configuration λt = l1,σσ
2
t ,

we can rewrite varQ
t (rm,t+1) − vart(rm,t+1) as βlev,σσ

2
t . As discussed above, γ > 1, ψ > 1

implies that the level difference is positive, so βlev,σ > 0.

Now, consider the predictive regression for excess market returns:

rm,t+1 − rf,t = α + βpred

(
varQ

t (rm,t+1)− vart(rm,t+1)
)

+ εt+1
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Substituting in the expressions gives

βpred =
cov

(
Et(rm+1 − rf,t) + εt+1, varQ

t (rm,t+1)− vart(rm,t+1)
)

var
(
varQ

t (rm,t+1)− vart(rm,t+1)
)

=
cov (βr,σσ

2
t , βlev,σσ

2
t )

β2
lev,σvar(σ2

t )
=

βr,σ

βlev,σ

> 0

Therefore, varQ
t (rm,t+1)− vart(rm,t+1) predicts excess returns on the market. The predictive

coefficient is positive, as in the data. The intuition is as follows. The state variable σ2
t ,

which controls the intensity of jumps, is important in determining expected excess returns.

When jump intensity is high, there is a relatively high possibility of a large negative shock

to xt (the long run growth component) or a large positive shock to σ2
t (the level of uncer-

tainty/volatility). An agent whose preferences are characterized by γ > 1, ψ > 1 is averse to

both such shocks. Therefore, the agent considers times of high jump intensity as very risky,

and they are therefore characterized by high conditional risk premia. Second, as discussed

earlier, the agent’s aversion to the large shocks makes the risk-neutral conditional variance

higher than the physical one. This difference in the variance rises with the jump intensity

leading to the positive covariation between the variance premium and risk premia.

4.3 Drift Difference

We now examine the contribution to vpt,t+1 from the “drift difference”: the difference between

the quantities (a) EQ
t [varQ

t+1(rm,t+2)]−varQ
t (rm,t+1) and (b) EP

t [varP
t+1(rm,t+2)]−varP

t (rm,t+1).

This is the difference in the “drift” of the conditional variance between the two measures. It is

simplest to look at this in the case of purely Gaussian shocks, but the principle carries through

when there are also Poisson shocks. If all shocks are Gaussian then, as mentioned earlier, we

have varQ
t (rm,t+1) = varP

t (rm,t+1). Hence, the drift difference is simply EQ
t+1[vart+1(rm,t+2)]−

EP
t+1[vart+1(rm,t+2)]. From (12) we have that, in the pure Gaussian case, vart(rm,t+1) =

B′
rGtG

′
tBr. In our reference configuration, GtG

′
t = h+Hσσ

2
t , so that vart(rm,t+1) = B′

rhBr +

B′
rHσBrσ

2
t and the drift difference is just B′

rHσBr

[
EQ

t (σ2
t+1)− EP

t (σ2
t+1)

]
, i.e. this quantity

arises from the different drift of σ2
t between Q and P . Moreover, since B′

rHσBr ≥ 0 (Hσ is

positive semi-definite), the drift difference is just a positive multiple of EQ
t (σ2

t+1)−EP
t (σ2

t+1).

Recall that the dynamics of the state vector are different under Q and P . We are now
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interested specifically in the dynamics of σ2
t under the two measures. From (22) we see that

for the reference configuration the pure Gaussian case gives:

EQ(Yt+1)− EP (Yt+1) = −GtG
′
tΛ = − (

h + Hσσ
2
t

)
Λ

Let σ2
t correspond to row i of Yt (in our reference model i = 3). Assume for simplicity, that

shocks to σ2
t are uncorrelated with the other shocks. Then in the i-th row of h + Hσσ

2
t only

the diagonal element is non-zero and the drift difference is simply:

−B′
rHσBr

[
h(i, i) + Hσ(i, i)σ2

t

]
Λσ

A few observations are worth making about this expression. First, the sign of the drift

difference depends on the sign of Λσ. When Λσ < 0, so the agent is averse to increases

in σ2
t , then the drift difference is positive. As discussed earlier, this is the case for γ > 1,

ψ > 1. However, for 1 < γ < 1
ψ
, (γ > 1 and preference for late resolution of uncertainty), the

opposite is the case and the drift difference is negative. Lastly, in the CRRA case, Λσ = 0

and the drift difference is 0.

A second important observation is that the size of the wedge in expectations increases

with the expected magnitude of shocks to σ2
t , i.e. with the conditional volatility of the

shocks. Thus, time variation in the size of the drift difference is determined by whatever

variables drive variation in the conditional volatility of shocks to σ2
t . In the reference model

this is σ2
t itself (so long as Hσ(i, i) 6= 0) and therefore the drift difference reveals the value

of σ2
t . However, this idea is true more broadly. If, for example, a separate state variable

drives the magnitude of σ2
t shocks, then it will determine variation in the drift difference.

Appendix B gives a simple (pure Gaussian) example of such a model, where a new variable,

denoted qt, determines the volatility of σ2
t shocks.

Finally, consider an economy where Hσ(i, i) = 0, i.e. the volatility of σ2
t shocks is

constant. This is the case in the Bansal and Yaron (2004) model. In this case, the drift

difference is constant. Moreover, in Bansal and Yaron (2004) all shocks are Gaussian, so the

level difference is zero. The sum of these two parts, which is the total variance premium

vpt,t+1, is the constant drift difference. Since the variance premium is constant, it cannot

have predictive power for returns in that model.

24



4.3.1 Predictability

Since the drift difference is directly related to the expected size of shocks to σ2
t , it will have

predictive power for returns under Epstein-Zin preferences. In our reference model, the drift

difference reflects the value of σ2
t . As σ2

t also drives time variation in risk premia, a projection

of excess returns on the drift difference captures this time variation. Moreover, when γ > 1,

ψ > 1, the projection coefficient is positive as both the drift difference and risk premium

increase with σ2
t .

We wish to note that predictability by the drift difference holds more generally than in

just the reference model. For example, in the model of Appendix B, the state variable qt

controls the expected magnitude of shocks to σ2
t . Hence, qt is a distinct, priced risk factor.

A projection of excess returns on the drift difference captures the component of the risk

premium attributable to qt. For γ > 1, ψ > 1, the drift difference and projection coefficient

are both positive. Thus, a similar mechanism again implies that the drift difference is

related to a (latent) variable that is associated with the level of uncertainty, imparting it

with predictive power for returns.

4.3.2 With Jumps

To conclude, we discuss the drift difference when the Poisson jumps are included. Since we

have already derived the drift difference for the Gaussian-related part of vart(rm,t+1), we now

consider only the Poisson-related part. From (12) and (23) this is B2
r
′
diag

(
ψ(2)(∗)) λt where

∗ = 0 under P and ∗ = −Λ under Q. Thus, under P the one period drift in this quantity is:

B2
r
′
diag

(
ψ(2)(0)

) [
EP

t (λt+1)− λt

]
, while under Q it is: B2

r
′
diag

(
ψ(2)(−Λ)

) [
EQ

t (λt+1)− λt

]
.

The drift difference is then just the Q-related term minus the P -related term. While we can

use the derived dynamics for Yt under Q and P to write the λt expressions more explicitly,

we stop at this point and simply note that, as in the pure Gaussian case, the choice of

preferences determines the sign of this jump-related component of the drift difference. The

main issue is the relation between EQ
t (λt) and EP

t (λt) and it parallels the discussion above

of the Gaussian case, e.g. EQ
t (λt) > EP

t (λt) when γ > 1, ψ > 1. Finally, we note that

this Poisson part of the drift difference is a linear function of the λt. Thus, it is the second

component of vpt,t+1 that is driven by the latent jump intensity.
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4.3.3 Adding Up the Parts

To get the total vpt,t+1 just add the expressions for the level difference and drift difference.

Algebraically the expression is a bit messy. However, our discussion has shown that the

mapping from preferences to the sign of each of the components is consistent, so the compo-

nents generally augment each other. We have discussed how the components reveal latent

elements of the state vector that are important drivers of conditional risk premia. Although

it is not conceptually difficult to derive algebraic expressions for the projection coefficient

of excess returns on vpt,t+1, they do not add much insight beyond our previous discussions,

which point out that they will have the right sign under the γ > 1, ψ > 1 preferences. To

learn more about the properties of the model and investigate whether the model is able to

capture quantitative properties of the data, we now turn to several model calibrations.

5 Calibration Results

5.1 Parametrization

We first discuss in more detail the parametrization of the model. We specify a gamma

distribution for the sizes of the jumps in σ2
t : ξσ ∼ Γ(νσ,

µσ

νσ
). This parametrization of the

gamma jump follows Eraker and Shaliastovich (2008). It is convenient since it implies that

E[ξσ] = µσ. The parameter νσ is called the shape parameter of the gamma distribution (the

other parameter is the ‘scale’ parameter). As νσ decreases, the right tail of the distribution

becomes thicker and the distribution becomes more asymmetric. When νσ = 1, the gamma

distribution reduces to an exponential distribution.

For the jumps in xt (the long run component in cash flows), we consider one symmetric

and one asymmetric jump distribution. The symmetric distribution is a zero-mean normal

distribution: ξx ∼ N (0, σ2
x). The asymmetric distribution is a demeaned gamma distribution:

Γ(νx,
µx

νx
) − µx. Demeaning the jump size prevents σ2

t from entering into the equation for

the expected change in xt. Otherwise, it would become a factor in the xt equation, since it

drives the jump intensity and therefore the expected number of jumps during the following

period. We choose to make xt jumps negatively skewed, i.e larger shocks tend to be negative

(but relatively infrequent), whereas smaller shocks tend to be positive (and relatively more
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common). Therefore we take the negative of the demeaned gamma distribution, i.e. ξx ∼
−Γ(νx,

µx

νx
) + µx.

It is easiest to specify the model parameters using the ‘innovations’ form of the dynamics

specified in equation (14). This is more intuitive than using (4) and also makes it clearer

whether a given set of parameters implies stationary dynamics.11 Therefore, we specify F̃

in (14) rather than F . For our specifications, the difference between them is in the equation

for σ2
t+1. This is the result of the jumps in σ2

t , which have a non-zero mean. Since σ2
t itself

drives the intensity of the jumps, F̃ implies that the true autoregressive parameter for σ2
t

is larger than the parameter ρσ in (4). We label the true autoregressive parameter ρ̃σ and

write:

F̃ =




0 1 0 0

0 ρx 0 0

0 0 ρ̃σ 0

0 φ 0 0




Furthermore, rather than parameterizing the VAR constant term µ̃ directly, we specify the

unconditional mean, E(Yt), since this is more intuitive. The mapping between the two is

simply (I − F̃ )E(Yt) = µ̃, where I is the identity matrix. Without loss of generality, we

adopt the following normalization, E[σ2
t ] = 1. This normalization makes many parameters

easier to interpret. For example, the unconditional mean of the jump intensity is then just

l0 + l1,σ. By a property of the Poisson process, this then equals the average number of jumps

in a single period.

Finally, we parameterize the variance-covariance matrix of the Gaussian shocks by speci-

fying h and Hσ. The specification is motivated by two requirements: (i) allow the conditional

volatility of the state variable shocks to have potentially different sensitivities to time vari-

ation in σ2
t (ii) allow for correlations between the shocks.

To gain intuition about our ultimate specification, we first discuss requirement (i) in

the absence of any cross-shock correlations. In this case, requirement (i) can be achieved by

specifying that for shock i: h(i, i)+Hσ(i, i)σ2
t = ϕ2

i (1−wi)E(σ2
t )+ϕ2

i wiσ
2
t and by setting the

off-diagonal elements of H to zero. Variable i’s conditional shock variance is then a weighted

average of its unconditional mean and a time-varying part driven by σ2
t . The parameter wi

is the weighting that controls the conditional shock variance’s sensitivity to changes in σ2
t .

11 However, for simulation (4) is easier. We map the explicitly specified parameters in (14) into the ones
in (4) so they can be used in the model simulations.
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Note that the mean of the conditional shock variance is simply ϕ2
i E(σ2

t ) = ϕ2
i . Now consider

the second requirement, allowing for correlations between any of the shocks. Let Ω be a

correlation matrix and let ϕ be the vector of ϕi and w be the vector of wi. Then we set:

h + Hσ2
t = diag(ϕ

√
1− w) Ω diag(ϕ

√
1− w) + diag(ϕ

√
w) Ω diag(ϕ

√
w)σ2

t

On the diagonal this is the same as h(i, i) + Hσ(i, i)σ2
t = ϕ2

i (1 − wi)E(σ2
t ) + ϕ2

i wiσ
2
t . For

off-diagonal terms, it implies that the unconditional correlation of shocks i and j is ap-

proximately Ωij, with the approximation becoming exact when wi = wj. The conditional

correlation is also approximately Ωij, with the approximation becoming precise as σ2
t moves

to extreme values.12 We highlight that, although the specification above is quite general, for

parsimony, in the calibrations below we only introduce correlation between the immediate

shocks to dividends and consumption and leave the shocks to xt and σ2
t orthogonal to all the

others.

5.2 Results

In calibrating the model we use the following guidelines. We assume a monthly decision

interval. We would like to find a specification for the long run, volatility, and jump shocks

such that (i) once time-averaged to annual data the model’s consumption and dividend

growth statistics are consistent with salient features of the consumption and dividends data

(ii) the model generates consistent unconditional moments of asset prices, such as the equity

premium and the risk free rate (iii) the model’s variance premium generates statistics as well

as return projection results that are consistent with the data.

In Table V we provide the parameter specification for the model economy described above

with jump shocks that are normally distributed. Table VI provides the data and the corre-

sponding model based statistics. In comparing the model fit to the data we provide model

based finite sample statistics. Specifically, we present the model based 5%, 50% and 95%

percentiles for the statistics of interest generated from 500 simulations each with the same

finite sample length as its data counterpart. For the consumption and dividend dynamics

we utilize the longest sample available; hence, the simulations are based on 924 monthly

12To be precise, the unconditional correlation is Ωij

(√
(1− wi)(1− wj) +√

wiwj

)
. This is very nearly

Ωij so long as |wi − wj | is not close to 1. For the calibrations, we use wc = 0.5, wd = 0.25, for which this
quantity equals 0.97× Ωcd.
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observations which are time-averaged to an annual sample of length 77 as in the annual data

(1930:2006). We provide similar statistics for the ‘standard’ asset pricing moments, such

as the mean and volatility of the market and risk free rate. Recall that for the variance

premium-related statistics the data is monthly and available only from the latter part of the

sample (1990.1-2007.3). Thus, the model’s variance premium-related statistics are based on

the last 207 monthly observations in each of the 500 simulations. Under the view that the

model is the appropriate data generating process, the data point estimates should be within

the 90% confidence interval generated by the model. Nonetheless, for completeness we also

provide HAC robust standard errors of the data statistics.

The top panel in Table VI shows that the model captures quite well several key moments

of annualized consumption and dividend growth. The data-based mean and volatility of

dividends and consumption growth fall well within the 90% confidence interval generated

by the model, and are in fact very close to the median estimates from the model. It should

be noted that the model parameters in Table V are generally close to those in Bansal and

Yaron (2004) and these results indicate that the jump components do not effect the annual

cashflow dynamics in a significant manner. Table VI also presents the model based asset

pricing implications. The middle panel, labeled returns, pertains to annual data on the

market, risk free rate and price-divided ratio. As discussed earlier, the corresponding model

statistics are time averaged annual figures. Again the model does a good job in capturing

the equity premium, the volatility of the market return and the low mean and volatility of

the risk free rate. Hence, the results in this table indicate that the jump component does not

alter the ability of the long run risk model to generate cashflow and asset pricing dynamics

consistent with the data.

The bottom panel in Table VI provides several statistics pertaining to the variance pre-

mium, all of which are given at the monthly frequency. The median of the model generated

mean variance premium is somewhat smaller than its data counterpart. However, the model’s

90% confidence interval easily includes the data point estimate of the mean variance pre-

mium. The rest of the model statistics are amazingly in line with the data estimates. In

particular, the model’s median for the volatility, skewness and kurtosis of the variance pre-

mium are essentially the same as their data counterpart. Further, the volatility and first

two autocorrelations of the conditional volatility of the market return are quite close to their

data estimates. While there is no single parameter that uniquely governs these moments,

we show below that the jump properties clearly affect these moments in a sizeable manner.
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At the outset of this paper, we highlighted the ability of the variance premium to predict

future returns. The model is able to replicate this feature of the data. It is interesting to

note that the projection coefficients have the right sign and are well within one standard

error of the data. Moreover, the R2 of these predictability regressions are quite large for

the short horizons. The model median R2 for the one-month ahead projection is about 2%

and the 90% finite sample distribution of R2 clearly includes the 1.5% R2 from the data.

Furthermore the 5.9% R2 for the 3-month ahead projection is quite close to the model’s

median R2 estimate. Overall, the results of this table indicate that this augmented long run

risk model can capture quite well the cashflow, asset pricing and variance premium moments

in the data. It should be noted that, although we do not formally estimate the model,

the number of reported statistics exceeds the number of parameters in the model so that

capturing the long list of moments in Table VI is by no means an obvious outcome. Finally, it

is important to recognize that the preference parameters used here (e.g., risk aversion of ten

and IES greater than one) are similar in magnitude to those used and estimated successfully

in other applications of the Long Run Risks model (e.g. Bansal, Kiku, and Yaron (2007)).

This provides some cross-validation of these type of preferences.

Table VII provides the parameter configuration for a model in which the jump sizes

are drawn from a gamma distribution. As discussed above this configuration allows us to

consider more non-symmetric jumps. Table VIII provides the corresponding output from

this model. Again, one can easily observe that the model produces cashflow statistics that

are consistent with their data counterparts. The market return and equity premium are

now slightly larger and match their data counterpart. In essence, it is quite difficult to

distinguish this configuration from the one given in Table VI purely along these cashflow

and return dimensions. The main fit improvement of this model relative to the one with

normal shocks is in matching the skewness and kurtosis of the variance premium. While the

median estimate were slightly too large relative to their data counterpart in the case of the

normal distribution, the model with gamma shocks gets these dimensions more precisely.

Furthermore, the skewed shock structure emanating from this specification leads to larger

R2s in variance premium’s ability to predict future returns.

Given the earlier discussion of the level and drift difference, it is interesting to note the

quantitative contribution of these two parts to the variance premium under our calibrations.

For the results in Table VI, the corresponding level difference component has a median

size and standard deviation that are approximately 75 and 82 percent of the total variance
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premium’s size and standard deviation, respectively. For Table VIII, the corresponding

percentages are 78 and 85. Hence, under both calibrations, the level difference accounts for

the bulk of the variance premium’s size and volatility, though the drift difference also makes

a nontrivial contribution.

In Table IX we conduct a three part comparative statistics exercise on the model of Table

V by shutting off the Poisson jump shocks. The first panel, labeled Model 1-A, is for a model

that shuts off only the Poisson component of σ2
t ( l1,σ = 0). The second panel, Model 1-B,

turns off only the Poisson component of xt (l1,x = 0). Finally, the third panel shuts off both

Poisson processes. We do these comparative statics in order to provide some quantitative

assessment of the role of these jump shocks, which are relatively large but infrequent. What

is interesting is that the cashflow dynamics still match quite well the consumption and

dividend data statistics. However, now the three panels’ median estimates for the market

return drop significantly to a range of about 3.6%-4.6% (from 6.5% in the case of Table

VI). This happens in spite of the fact that the median volatility of the market return drops

by only 1-2% in each case. It is also the case that in these situations the unconditional

level of the price-dividend ratio is too large. Nonetheless, one could argue that in each

panel these moments are still reasonable asset pricing moments, which many other models

fail to match. Where the largest discrepancy appears is in the variance premium related

moments. The mean and the volatility of the variance premium are quite small in the first

two panels and essentially zero in the last. Moreover, when the jump in σ2
t is shut in the

first and third panels the volatility of the conditional variance of the market return is much

below its data counterpart. In both these cases the 90% confidence interval does come close

to its corresponding data statistic. Finally, and almost by construction, the predictability

regressions in all three panels yield median R2s that are far below their data counterparts

and the predictive regression coefficients are very unstable. This shows that the variance

premium moments convey much information on the time variation in conditional cashflow

moments.

Throughout this paper we have been motivated by the connection between the variance

premium, the risk of influential shocks to the economy, and return predictability. Pre-

dictability in our model depends to a large extent on the risk of a large shock to either

uncertainty/volatility or xt+1, the small, persistent component in cash flow growth. These

large shocks are quite infrequent compared to the small Gaussian shocks that occur on a

normal basis. As evidenced by the calibration results, they have only a small effect at the
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annual level on cash flows and return volatility but are important for variation in condi-

tional asset pricing moments, particularly at horizons of a few months. These asset pricing

moments clearly show the effect of (ex-ante) risk – the possibility of an influential (large

or important) shock – though actual (ex-post) realizations may materialize much less fre-

quently. In this sense, these risks incorporate a ‘rare-events’ element to them, though it is

important to note that the jump intensities in our calibrations imply a jump realization, on

average, every year or two. In the calibration with normal jump sizes, the large shock real-

izations are symmetrically good and bad. The curvature of the utility function means that

the benefit of good shocks is outweighed by the loss due to the bad ones. In the asymmetric

case of demeaned gamma jump sizes, the skewness of the jump sizes implies that the shocks

are likely to be small and positive, but infrequently are larger, negative shocks. For both

variants of the model, there may be extended periods where large, negative shocks are not

realized, though the risk of them is real and varies through time. This is reflected in the

finite-sample R-square statistics, which correspond to a sample of the same length as the

corresponding data. Note that in Tables VI and VIII, the right tails of the R-square distri-

butions include periods where predictability by the variance premium is very high. These

right-tail samples did not experience any significant negative realizations following spikes

in the variance premium. On the other hand, the median statistics show that the negative

realizations that eventually occur greatly diminish the estimated return predictability. The

population R-squares implied by the model pricing kernel are close to these median values.

6 Conclusion

This paper shows that the variance premium is useful for measuring agents’ perceptions of

uncertainty and the risk of influential shocks to the state vector. In addition, it provides

a useful vehicle for understanding what preferences are able to map this risk into observed

asset prices. We demonstrate that a risk aversion greater than one and a preference for early

resolution of uncertainty correctly signs the variance premium and the coefficient from a

predictive regression of returns on the variance premium. In addition, we show that time

variation in economic uncertainty is a minimal requirement for qualitatively generating a

positive, time varying variance premium that predicts excess stock returns. Finally, we

show that an extended Long Run Risks model, with jumps in uncertainty and the long-

run component of cashflows, can generate many of the quantitative features of the variance

32



premium while remaining consistent with observed aggregate dynamics for dividends and

consumption, as well as standard asset pricing data such as the equity premium and risk

free rate. We find that the jump shocks are helpful in matching the standard asset pricing

data, and that they are particularly important for our ‘nonstandard’ moments related to

conditional volatility, the variance premium, and the predictive regression for market returns.

A possible direction for generating interesting transient dynamics like the ones docu-

mented here is by generalizing preferences to include features of ambiguity aversion and a

desire for robustness. As Hansen and Sargent (2006) demonstrate, a desire for robustness

can lead to interesting time-varying misspecification risk premia components. The derivative

related features of the data could be a fruitful ground for assessing the role these additional

dimensions may provide in enhancing the model’s ability to confront the data.

More generally, risk attitudes toward uncertainty play an important role in interpreting

asset markets. The Long Run Risks model has channels for several priced risk factors,

including the level of uncertainty and its rate of change. An interesting direction for future

research is determining the extent to which these risks are also important in the cross-section

of returns. Bansal, Kiku, and Yaron (2007) utilize an uncertainty factor in the cross-section of

returns within the long-run risks framework, but are constrained to identify it based solely on

cashflows. The evidence in this papers suggests that derivative markets and high frequency

measures of variation should be very useful at identifying these risk factors. Interesting

implications could therefore arise from jointly using cashflows and derivative markets to

understand the influence of uncertainty on the cross-section.

33



Appendix

A Solving the Model

A.1 Solving for A and A0

We use the Euler equation to determine A and A0. This equation must hold for the returns on

all assets, including the return on the aggregate consumption claim. Thus, set rj,t+1 = rc,t+1

in (3), and substitute in mt+1 = θ ln δ − θ
ψ
∆ct+1 + (θ − 1)rc,t+1. Then replace rc,t+1 with its

log-linearization (5) to obtain:

Et

[
exp

(
θ ln δ − θ(

1

ψ
− 1)∆ct+1 + θκ0 + θκ1vt+1 − θvt

)]
= 1

Now substitute in the conjecture vt = A0 +A′Yt to get the equation in in terms of A0 and A.

Also, replace ∆ct+1 with e′cYt+1, where ec denotes the vector that selects ∆ct+1 from Yt+1.

Collecting the constants and the terms in Yt and Yt+1 yields the following:

Et

[
exp

(
θ ln δ + θ(κ− 1)A0 + θκ0 − θA′Yt +

(
θ(1− 1

ψ
)ec + θκ1A

)′
Yt+1

)]
= 1 (A.1.1)

In order to compute the left-hand side expectation it is useful to establish the following

functional relationship:

For u ∈ Rn:

E [exp(u′Yt+1 |Yt)] = exp(f(u) + g(u)′Yt) (A.1.2)

f(u) = µ′u +
1

2
u′hu + l′0 (ψ(u)− 1) (A.1.3)

g(u) = F ′u +
1

2
[u′Hiu]i∈{1...n} + l′1 (ψ(u)− 1) (A.1.4)

and [u′Hiu]i∈{1...n} denotes the n× 1 vector with i-th component equal to u′Hiu.

Proof. Substitute for Yt+1 in the left-hand side expectation and break the resulting expres-
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sion into three terms:

Et [exp(u′Yt+1)] = Et [exp (u′(µ + FYt + GtZt+1 + Jt+1))]

= exp(u′µ + u′FYt)Et (exp(u′GtZt+1)) Et (exp(u′Jt+1))

where the second line follows from the conditional independence of the Gaussian and jump

shocks. Evaluating the two conditional expectations gives:

Et (exp(u′GtZt+1)) = exp(
1

2
u′GtG

′
tu) = exp

(
1

2
u′hu +

1

2

∑
i

u′Hiu
′Yt(i)

)

Et (exp(u′Jt+1)) = exp (λ′t(ψ(u)− 1)) = exp (l′0(ψ(u)− 1) + (l1Yt)
′(ψ(u)− 1))

Multiplying the three terms together and collecting the constants and Yt terms into the

functions f(u) and g(u), respectively, gives the result. ¥

Continuing with the derivation, use (A.1.2) to evaluate the expectation in (A.1.1). Then,

taking logs of both sides results in the following equation:

0 = θ ln δ + θκ0 + θ(κ1 − 1)A0 + f

(
θ(1− 1

ψ
)ec + θκ1A

)

+

[
g

(
θ(1− 1

ψ
)ec + θκ1A

)
− Aθ

]′
Yt (A.1.5)

This equation is a restriction that must hold for all values of Yt. This implies that the term

multiplying Yt must be identically 0 and therefore that the constant is 0 as well. The result

is the following system of n + 1 equations in A0 and A:

0 = θ ln δ + θκ0 + θ(κ1 − 1)A0 + f

(
θ(1− 1

ψ
)ec + θκ1A

)
(A.1.6)

0 = g

(
θ(1− 1

ψ
)ec + θκ1A

)
− Aθ (A.1.7)
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A.2 Numerical Solution

The log-linearization constants are given by κ1 = eE(v)

1+eE(v) and κ0 = ln
(
1 + eE(v)

) − κ1E(v).

Inverting the definition of κ1 gives the useful identity:

ln κ1 − ln(1− κ1) = E(vt) = A0 + A′E(Yt) (A.2.1)

Substituting this in for E(vt) in the definition of κ0 gives an expression for κ0 purely in terms

of κ1:

κ0 = −κ1 ln κ1 − (1− κ1) ln(1− κ1) (A.2.2)

As (A.2.1) shows, the value of κ1 depends directly on the values of A and A0 and is therefore

endogenous to the model. Moreover, from (A.1.6) and (A.1.7) we have that the values of

the A coefficients themselves depend on the log-linearization constants. Therefore, (A.2.1)

and (A.2.2) must be solved jointly with (A.1.6) and (A.1.7). One way to do this is to simply

augment the system of equations. Instead, we keep the numerically solved system the same

size using the following identity, which is easily derived from (A.2.1) and (A.2.2):

κ0 + (κ1 − 1)A0 = − ln κ1 + (1− κ1)A
′E(Yt)

We eliminate κ0 and A0 from the numerically solved system by substituting this identity

into (A.1.6) to get

0 = θ ln δ + θ (− ln κ1 + (1− κ1)A
′E(Yt)) + f

(
θ(1− 1

ψ
)ec + θκ1A

)
(A.2.3)

and solving (A.2.3) together with (A.1.7) to obtain κ1 and A. Using the identities above,

one can then solve directly for A0 and κ0 in terms of the values of κ1 and A.

A.3 Solving for the Market Return

The procedure for solving for A0,m and Am is similar to the one used to for determining A0

and A1. The Euler equation is again used to derive a system of equations whose solution

determines A0,m and Am. To this end, apply the Euler equation to the market return by

setting rj,t+1 = rm,t+1 in (3). Then making the follow substitutions into the Euler equation

to get it in terms of the Am coefficients and model primitives: (1) replace mt+1 with (8) (2)
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substitute in (10) for rm,t+1 and (3) replace vm,t with the conjectured form A0,m + A′
mYt.

After collecting terms in Yt and Yt+1 and simplifying the resulting equation is:

Et[exp(θ ln δ − (1− θ)(κ1 − 1)A0 − (1− θ)κ0 + κ0,m + (κ1,m − 1)A0,m

+ ((1− θ)A− Am)′ Yt + (ed + κ1,m − Λ)′ Yt+1)] = 1 (A.3.1)

where ed is the vector that selects ∆dt+1 from Yt+1. Evaluating the expectation using the

result in (A.1.2), taking logs, and setting the constant and the term multiplying Yt to 0,

results in the following system of equations in A0,m and Am:

0 = θ ln δ − (1− θ)(κ1 − 1)A0 − (1− θ)κ0 + κ0,m + (κ1,m − 1)A0,m + f(ed + κ1,m − Λ)

0 = g(ed + κ1,m − Λ) + (1− θ)A− Am

A.4 Risk-free Rate

To derive the risk-free rate at time t, set rj,t+1 = rf,t in the Euler equation (3). Then

substitute in for mt+1 and collect the constant terms, terms in Yt and Yt+1. To evaluate the

expectation, use the result in (A.1.2). Then, taking logs of both sides of the equation and

solving for rf,t gives:

rf,t = rf,0 − (g(−Λ)− (θ − 1)A)′ Yt (A.4.1)

where rf,0 = −θ ln δ + (1− θ) [κ0 + (κ1 − 1)A0]− f(−Λ).

B A Variance of Variance Model

The model discussed in this Appendix helps to clarify a few points made in the main text

about the drift difference and predictability by the variance premium. The model is a

simplified version of the reference model in the main text, but with the addition of a state

variable. The simplification relative to the reference model is that the Poisson shocks are shut

off (i.e. λt ≡ 0) and the Gaussian shocks are uncorrelated. We add a new state variable, qt,

that drives the volatility of innovations to σ2
t+1. In other words, qt is the conditional variance
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of shocks to σ2
t+1. The processes for these two state variables can written as:

σ2
t+1 = σ̄2 + ρσ(σ2

t − σ̄2) + q
1/2
t zσ,t+1 (B.1)

qt+1 = q̄ + ρq(qt − q̄) + ϕqzq,t+1 (B.2)

Note that this specification maps easily into the general framework in (4) and is very similar

to a model analyzed in Tauchen (2005). Solving the model for prices of risk, the mar-

ket return and return variance follows the general procedure outlined in the main text.

Under this model, we get that vt = A0 + Axxt + Aσσ
2
t + Aqqt and, importantly, that

Λ = (γ, (1− θ)κ1Ax, (1− θ)κ1Aσ, (1− θ)κ1Aq, 0)′, i.e. shocks to qt are also priced. The

price-dividend is vm,t = A0,m + Ax,mxt + Aσ,mσ2
t + Aq,mqt. The market return variance is

given by (12). Writing out all the terms in expanded form gives:

vart(rm,t+1) = σ2
r,t = (β2

r,xϕ
2
x + ϕ2

d)σ
2
t + β2

r,σqt + β2
r,qϕ

2
q (B.3)

where βr = κ1,mAm + ed exactly as in Section 3.3.2.

Since this model is a pure Gaussian model, the level difference is 0. The variance premium

is then is equal to the drift difference, which is nonzero as σ2
t and qt have different drifts

under P and Q.

EQ
t [σ2

t+1]− Et[σ
2
t+1] = −λσqt (B.4)

EQ
t [qt+1]− Et[qt+1] = −λqϕ

2
q (B.5)

It then easily follows that:

vpt,t+1 = −(β2
r,xϕ

2
x + ϕ2

d)λσqt − β2
r,σλqϕ

2
q (B.6)

From (B.6) we see that time-variation in this model’s variance premium is driven by qt, the

conditional variance of shocks to σ2
t . Since σ2

t controls the conditional variance of the other

shocks, qt is like the ‘variance of variance’. A high qt indicates high uncertainty about future

conditional variance, and this uncertainty is reflected in the variance premium.

Finally, the conditional equity premium is:

βr,xλxϕ
2
xσ

2
t + βr,σλσqt + βr,qλ

2
qϕq (B.7)
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This shows that the loading on qt is priced. When γ > 1, ψ > 1, then λσ < 0 (the agent

is averse to increases in volatility/uncertainty) and βr,σ < 0 (increases in volatility decrease

the market return). For these preferences, these last two expressions then show that there

is a positive covariation between vpt,t+1 and the conditional equity premium, i.e. vpt,t+1 will

predict stock returns. Simple algebra shows that the projection coefficient of (B.7) on (B.6)

is −βr,σ

β2
r,xϕ2

x+ϕ2
d
, which is positive for γ > 1, ψ > 1.

39



References

Bansal, Ravi, Robert F. Dittmar, and Christian Lundblad, 2005, Consumption, dividends,

and the cross-section of equity returns, Journal of Finance 60, 1639–1672.

Bansal, Ravi, A. Ronald Gallant, and George Tauchen, 2007, Rational pessimism, Rational

Exuberance, and Asset Pricing Models, Review of Economic Studies forthcoming.

Bansal, Ravi, Varoujan Khatchatrian, and Amir Yaron, 2005, Interpretable asset markets?,

European Economic Review 49, 531–560.

Bansal, Ravi, Dana Kiku, and Amir Yaron, 2007, Risks For the Long Run: Estimation and

Inference, Working paper, The Wharton School, University of Pennsylvania.

Bansal, Ravi, and Amir Yaron, 2004, Risks for the long run: A potential resolution of asset

pricing puzzles, Journal of Finance 59, 1481–1509.

Benzoni, Luca, Pierre Collin-Dufresne, and Robert S. Goldstein, 2005, Can Standard Pref-

erences Explain the Prices of Out-of-the-Money S&P 500 Put Options, Working paper,

University of Minnesota.

Bhamra, Harjoat, Lars-Alexander Kuhn, and Ilya Strebulaev, 2007, The Levered Equity

Risk Premium and Credit Spreads: A Unified Framework, Working paper, Stanford.

Bloom, Nick, 2007, The Impact of Uncertainty Shocks, Working paper, Stanford University.

Bollerslev, Tim, and Hao Zhou, 2007, Expected stock returns and variance risk premia,

Working paper, Finance and Economics Discussion Series 2007-11, Board of Governors of

the Federal Reserve System (U.S.).

Britten-Jones, M., and A. Neuberger, 2000, Option Prices, Implied Price Processes, and

Stochastic Volatility, Journal of Finance 55(2), 839–866.

Broadie, Mark, Mikhail Chernov, and Michael Johannes, 2007, Model Specification and Risk

Premiums: Evidence from Futures Options, The Journal of Finance 62, 1453–1490.

Campbell, John, and Robert Shiller, 1988, Stock Prices, Earnings, and Expected Dividends,

Journal of Finance 43, 661–676.

40



Campbell, John Y., Andrew W. Lo, and A. Craig MacKinlay, 1997, The Econometrics of

Financial Markets. (Princeton University Press Princeton, New Jersey).

Campbell, John Y., and Samuel B. Thompson, 2007, Predicting Excess Stock Returns Out

of Sample: Can Anything Beat the Historical Average?, Review of Financial Studies

forthcoming.

Carr, Peter, and Liuren Wu, 2007, Variance Risk Premia, Review of Financial Studies forth-

coming.

Chen, Hui, 2008, Macroeconomic Conditions and the Puzzles of Credit Spreads and Capital

Structure, Working paper, MIT.

Chernov, Mikhail, and Eric Ghysels, 2000, A Study Towards a Unified Approach to the Joint

Estimation of Objective and Risk Neutral Measures for the Purpose of Options Valuation,

The Journal of Financial Economics 56, 407–458.

Cochrane, John H., 1999, Portfolio advice for a multifactor world, Economic Perspectives

XXXIII(3), (Federal Reserve Bank of Chicago).

Cont, Rama, and Peter Tankov, 2004, Financial Modeling with Jump Processes. (Chapman

& Hall).

Demeterfi, K., E. Derman, M. Kamal, and J. Zou, 1999, A Guide to Volatility and Variance

Swaps, Journal of Derivatives 6, 9–32.

Duffie, D., J. Pan, and K. J. Singleton, 2000, Transform Analysis and Asset Pricing for

Affine Jump-Diffusions, Econometrica 68, 1343–1376.

Epstein, Larry G., and Stanley E. Zin, 1989, Substitution, risk aversion, and the intertem-

poral behavior of consumption and asset returns: A theoretical framework, Econometrica

57, 937–969.

Eraker, Bjorn, 2004, Do Equity Prices and Volatility Jump? Reconciling Evidence from Spot

and Option Prices, The Journal of Finance 56, 1367–1403.

Eraker, Bjorn, 2007, Affine General Equilibrium Models, Management Science forthcoming.

Eraker, Bjorn, and Ivan Shaliastovich, 2008, An Equilibrium Guide to Designing Affine

Pricing Models, Mathematical Finance forthcoming.

41



Hansen, Lars, and Ravi Jagannathan, 1991, Implications of Security Market Data for Models

of Dynamic Economies, Journal of Political Economy 99, 225–262.

Hansen, Lars, and Thomas Sargent, 2006, Fragile Beliefs and the Price of Model Uncertainty,

Working paper, .

Heston, Steven L., 1993, A Closed-Form Solution for Options with Stochastic Volatility with

Applications to Bond and Currency Options, Review of Financial Studies 6, 2, 327–343.

Jiang, George, and Yisong Tian, 2005, Model-Free Implied Volatility and Its Information

Content, Review of Financial Studies 18, 1305–1342.

Lettau, Martin, Sydney Ludvigson, and Jessica Wachter, 2007, The Declining Equity Pre-

mium: What Role Does Macroeconomic Risk Play?, Review of Financial Studies Forth-

coming.

Liu, Jun, Jun Pan, and Tan Wang, 2005, An Equilibrium Model of Rare-Event Premia and

Its Implication for Option Smirks, The Review of Financial Studies 18, 131–164.

Pan, Jun, 2002, The Jump-Risk Premia Implicit in Options: Evidence from an Integrated

Time-Series Study, The Journal of Financial Economics 63, 3–50.

Stambaugh, Robert F., 1999, Predictive Regressions, Journal of Financial Economics 54,

375–421.

Tauchen, George, 2005, Stochastic Volatility in General Equilibrium, Working paper, Duke

University.

42



Table I

Summary Statistics

Excess Returns Variances

S&P 500 VWRet VIX2 Fut2 Ind2 Daily2

Mean 0.528% 0.526% 33.30 22.17 14.74 20.69

Median 0.957% 1.023% 25.14 14.19 8.99 13.51

Std.-Dev. 4.01% 4.13% 24.13 22.44 15.30 21.95

Skewness -0.635 -0.836 2.00 2.62 2.78 2.68
Kurtosis 4.217 4.547 8.89 11.10 13.26 11.91
AR(1) -0.04 0.02 0.79 0.65 0.73 0.62

Table I presents descriptive statistics for excess returns and realized variances. The sample is monthly and
covers 1990m1 to 2007m3. VWRet is the value-weighted return on the combined NYSE-AMEX-NASDAQ.
VIX2 is the square of the VIX index divided by 12, to convert it into a monthly quantity. The value for a
particular month is the last observation of that month. Fut2 is constructed by summing the squares of the
log returns on the S&P 500 futures over 5-minute intervals during a month. Ind2 does the same for the log
returns on the S&P 500 Index. Daily2 sums squared daily returns on the S&P 500 index over a month. All
three realized variance measures are multiplied by 104 to convert them into squared percentages and make
them comparable to VIX2.
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Table II

Conditional Volatility

Dept. Variable Regressors

X1 X2 intercept β1 β2 R2

Daily2
t+1 Daily2

t MA(1) 3.70 0.82 -0.35 0.40
(t-stat) (2.76) (13.19) (-3.37)

Ind2
t+1 Ind2

t VIX2
t 0.10 0.40 0.26 0.59

(t-stat) (0.11) (3.74) (4.18)

Fut2t+1 Ind2
t VIX2

t -0.89 0.29 0.56 0.59
(t-stat) (-0.61) (2.06) (6.19)

Table II presents estimates from regressions of realized variance measures on lagged predictors. The sample
is monthly and covers 1990m1 to 2007m3. Reported t-statistics are Newey-West (HAC) corrected.
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Table III

Properties of the Variance Premium

VP(BZ) VP(Ind–forecast) VP(Daily–MA(1)) VP(Fut–forecast)

Mean 18.56 18.61 12.67 11.27

Median 14.21 15.06 7.97 8.92

Std.-Dev. 15.34 13.55 14.38 7.61

Minimum -26.05 4.54 -4.02 3.27

Skewness 2.13 2.33 2.45 2.39
Kurtosis 11.86 11.60 12.62 12.03
AR(1) 0.50 0.69 0.54 0.65

Table III presents summary statistics for various measures of the conditional variance premium. The sample is
monthly and covers 1990m1 to 2007m3. Each measure is equal to VIX2 minus a particular quantity. VP(BZ)
subtracts Ind2

t , the contemporaneous month’s realization of Ind2. This measure is used in Bollerslev and
Zhou (2007). VP(Ind-forecast) subtracts the forecast of Ind2

t+1 that comes from the second regression in
Table II. VP(Daily-MA(1)) subtracts the forecast of Daily2 that comes from the first regression in Table II.
VP(Fut-forecast) subtracts the forecast of Fut2t+1 that comes from the third regression in Table II.
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Table IV

Return Predictability by the Variance Premium

Dependent Regressors OLS Robust Reg.

X1 X2 β1 β2 R2(%) β1 β2 R2(%)

rt+1 V Pt 0.76 1.46 1.12 3.20
(t-stat) (2.18) (2.77)

rt+1 V Pt−1 1.26 4.07 1.21 3.75
(t-stat) (3.90) (2.97)

rt+3 V Pt 0.86 5.92 0.87 6.09
(t-stat) (3.19) (4.12)

rt+1 V Pt log (P/E)t 1.39 -48.67 8.30 1.81 -50.52 10.77
(t-stat) (3.00) (-3.04) (4.33) (-4.36)

rt+1 V Pt−1 log (P/E)t 2.09 -58.12 13.43 1.98 -57.30 12.61
(t-stat) (4.82) (-3.50) (4.68) (-4.85)

Table IV presents return predictability regressions. The sample is monthly and covers 1990m1 to 2007m3.
Reported t-statistics are Newey-West (HAC) corrected. P/E is the price-earnings ratio for the S&P 500. The
dependent variable is the total return (annualized and in percent) on the S&P 500 Index over the following
one and three months, as indicated. The three month returns series is overlapping. OLS denotes estimates
from an ordinary least-squares regression. Robust Reg. denotes estimates from robust regressions utilizing
a bisquare weighting function.
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Table V

Calibration – Model Parameter Configuration

Preferences δ γ ψ

0.999 10 2.0

∆ct+1 E[∆c] ϕc wc

0.0016 0.0066 0.5

xt+1 ρx ϕx wx l1,σ(x) σx

0.975 0.042× ϕc 0.43 0.75/12 2.5× ϕx

∆dt+1 E[∆d] φ ϕd wd Ωcd

0.0016 3 6.7× ϕc 0.25 0.20

σ2
t+1 ρ̃σ ϕσ l1,σ(σ) µσ νσ

0.8975 0.30 0.75/12 2.5 1.0

Table V presents the parameters for the version of the reference model with ξx ∼ N (0, σ2
x).
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Table VI

Model Calibration Results

Statistic Data Model
5% 50% 95%

Cashflow Dynamics

E[∆c] 1.88 (0.32) 0.90 1.86 2.88

σ(∆c) 2.21 (0.52) 1.94 2.34 2.95

AC1(∆c) 0.43 (0.12) 0.26 0.46 0.64

E[∆d] 1.54 (1.53) -1.58 1.74 5.65

σ(∆d) 13.69 (1.91) 11.04 13.23 15.72

AC1(∆d) 0.14 (0.14) 0.13 0.31 0.50

corr(∆c,∆d) 0.59 (0.11) 0.11 0.38 0.56

Returns

E[rm] 6.23 (1.96) 3.29 6.49 10.22

E[rf ] 0.82 (0.35) 0.52 1.08 1.53

σ(rm) 19.37 (1.94) 16.30 19.42 23.90

σ(rf ) 1.89 (0.17) 0.80 1.22 2.38

E[p− d] 3.15 (0.07) 2.98 3.05 3.13

σ(p− d) 0.31 (0.02) 0.13 0.17 0.22

skew(rm − rf ) (M) -0.43 (0.54) -0.99 -0.21 0.30

kurt(rm − rf ) (M) 9.93 (1.26) 4.08 7.12 14.70

AC1(rm − rf ) (M) 0.09 (0.06) -0.09 -0.01 0.06

Variance Premium

σ(vart(rm)) 17.18 (2.21) 6.62 23.46 73.23

AC1(vart(rm)) 0.81 (0.04) 0.66 0.82 0.92

AC2(vart(rm)) 0.64 (0.08) 0.45 0.67 0.85

E[V P ] 11.27 (0.93) 4.02 7.57 17.63

σ(V P ) 7.61 (1.08) 3.00 10.65 33.23

skew(V P ) 2.39 (0.59) 1.84 3.36 5.36

kurt(V P ) 12.03 (3.30) 6.52 15.74 38.00

β(1) 0.76 (0.35) -0.39 0.83 2.63

R2(1) 1.46 (1.52) 0.02 1.94 9.73

β(3) 0.86 (0.27) -0.27 0.76 2.09

R2(3) 5.92 (4.67) 0.04 4.21 23.80

β(6) 0.49 (0.24) -0.38 0.55 1.68

R2(6) 3.97 (4.74) 0.07 5.66 33.64

Table VI presents (a) consumption and dividend dynamics (b) asset pricing moments (c) moments pertaining
to the variance premium. For each statistic the table reports its data and model corresponding values. The
data for consumption, dividends, the market return, risk free rate, and price-dividend ratio correspond to
the period from 1930 to 2006. The data pertaining to the variance premium is based on monthly data
from 1990.1-2007.3. For the model we report finite sample statistics based on 500 simulations each with the
corresponding sample size the same as its data counterpart. For the annual data the statistics are based on
time-averaged data. The parameters for calibrating the model are given in Table V. Standard errors are
calculated using the Newey-West variance-covariance estimator with 4 lags.



Table VII

Calibration – Model Parameter Configuration

Preferences δ γ ψ

0.999 10.49 2.0

∆ct+1 E[∆c] ϕc wc

0.0017 0.0066 0.5

xt+1 ρx ϕx wx l1,σ(x) µx νx

0.975 0.042× ϕc 0.28 0.5/12 3× ϕx 1

∆dt+1 E[∆d] φ ϕd wd Ωcd

0.0017 3 6.7× ϕc 0.25 0.20

σ2
t+1 ρ̃σ ϕσ l1,σ(σ) µσ νσ

0.90 0.40 1.25/12 1.9 1.3

Table VII presents the parameters for the version of the reference model with ξx ∼ −Γ(νx, µx

νx
) + µx.
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Table VIII

Model Calibration Results

Statistic Data Model
5% 50% 95%

Cashflow Dynamics

E[∆c] 1.88 (0.32) 1.00 1.98 2.93

σ(∆c) 2.21 (0.52) 1.94 2.41 3.03

AC1(∆c) 0.43 (0.12) 0.27 0.47 0.67

E[∆d] 1.54 (1.53) -1.57 1.86 5.40

σ(∆d) 13.69 (1.91) 11.09 13.25 15.84

AC1(∆d) 0.14 (0.14) 0.12 0.30 0.49

corr(∆c,∆d) 0.59 (0.11) 0.13 0.36 0.59

Returns

E[rm] 6.23 (1.96) 3.55 6.78 10.14

E[rf ] 0.82 (0.35) 0.46 0.99 1.49

σ(rm) 19.37 (1.94) 16.64 19.32 23.50

σ(rf ) 1.89 (0.17) 0.84 1.35 2.21

E[p− d] 3.15 (0.07) 2.94 3.01 3.07

σ(p− d) 0.31 (0.02) 0.13 0.17 0.23

skew(rm − rf ) (M) -0.43 (0.54) -0.74 -0.13 0.36

kurt(rm − rf ) (M) 9.93 (1.26) 3.81 6.00 10.89

AC1(rm − rf ) (M) 0.09 (0.06) -0.09 -0.02 0.07

Variance Premium

σ(vart(rm)) 17.18 (2.21) 8.85 22.41 61.88

AC1(vart(rm)) 0.81 (0.04) 0.65 0.83 0.93

AC2(vart(rm)) 0.64 (0.08) 0.42 0.68 0.86

E[V P ] 11.27 (0.93) 3.77 7.05 16.69

σ(V P ) 7.61 (1.08) 4.06 10.28 28.39

skew(V P ) 2.39 (0.59) 1.90 2.87 4.60

kurt(V P ) 12.03 (3.30) 6.36 12.29 29.22

β(1) 0.76 (0.35) -0.11 0.94 2.59

R2(1) 1.46 (1.52) 0.01 2.17 8.82

β(3) 0.86 (0.27) -0.16 0.83 2.14

R2(3) 5.92 (4.67) 0.08 5.07 19.76

β(6) 0.49 (0.24) -0.21 0.58 1.60

R2(6) 3.97 (4.74) 0.11 5.74 30.54

Table VIII presents (a) consumption and dividend dynamics (b) asset pricing moments (c) moments pertain-
ing to the variance premium. For each statistic the table reports its data and model corresponding values.
The data for consumption, dividends, the market return, risk free rate, and price-dividend ratio correspond
to the period from 1930 to 2006. The data pertaining to the variance premium is based on monthly data
from 1990.1-2007.3. For the model we report finite sample statistics based on 500 simulations each with the
corresponding sample size the same as its data counterpart. For the annual data the statistics are based on
time-averaged data. The parameters for calibrating the model are given in Table VII. Standard errors are
calculated using the Newey-West variance-covariance estimator with 4 lags.



Table IX

Model Calibration Results

Statistic Data Model 1-A Model 1-B Model 1-C
5% 50% 95% 5% 50% 95% 5% 50% 95%

Cashflow Dynamics

E[∆c] 1.88 (0.32) 1.02 1.93 2.74 1.16 1.82 2.72 1.17 1.87 2.79

σ(∆c) 2.21 (0.52) 2.02 2.41 2.87 1.82 2.46 2.82 1.94 2.27 2.68

AC1(∆c) 0.43 (0.12) 0.31 0.47 0.63 0.21 0.43 0.59 0.24 0.43 0.60

E[∆d] 1.54 (1.53) -1.44 1.86 5.19 -1.47 1.65 4.81 -1.47 1.70 5.04

σ(∆d) 13.69 (1.91) 11.52 13.39 15.36 11.11 12.86 15.07 11.06 13.00 15.37

AC1(∆d) 0.14 (0.14) 0.11 0.30 0.46 0.09 0.27 0.44 0.13 0.29 0.45

corr(∆c,∆d) 0.59 (0.11) 0.14 0.38 0.54 0.11 0.35 0.52 0.12 0.33 0.54

Returns

E[rm] 6.23 (1.96) 1.56 4.61 8.03 0.63 3.86 7.06 0.41 3.59 6.92

E[rf ] 0.82 (0.35) 0.92 1.33 1.65 0.95 1.37 1.75 1.13 1.44 1.80

σ(rm) 19.37 (1.94) 16.59 18.73 21.05 15.52 17.78 20.65 15.70 17.84 19.70

σ(rf ) 1.89 (0.17) 0.64 0.81 1.05 0.61 0.85 1.41 0.52 0.69 0.90

E[p− d] 3.15 (0.07) 3.51 3.59 3.65 3.80 3.86 3.93 3.93 3.99 4.05

σ(p− d) 0.31 (0.02) 0.14 0.17 0.21 0.12 0.15 0.19 0.13 0.15 0.19

skew(rm − rf ) (M) -0.43 (0.54) -0.19 0.01 0.21 -0.23 0.05 0.41 -0.15 -0.10 0.15

kurt(rm − rf ) (M) 9.93 (1.26) 3.06 3.47 4.27 3.11 3.93 7.42 2.81 3.11 3.44

AC1(rm − rf ) (M) 0.09 (0.06) -0.06 0.00 0.05 -0.07 0.00 0.06 -0.06 0.00 0.06

Variance Premium

σ(vart(rm)) 17.18 (2.21) 4.64 6.22 9.44 3.40 10.51 32.21 3.45 4.76 7.15

AC1(vart(rm)) 0.81 (0.04) 0.79 0.87 0.93 0.65 0.81 0.924 0.81 0.87 0.93

AC2(vart(rm)) 0.64 (0.08) 0.63 0.75 0.86 0.43 0.66 0.84 0.64 0.75 0.87

E[V P ] 11.27 (0.93) 0.22 0.30 0.40 0.23 0.41 1.10 0.02 0.02 0.03

σ(V P ) 7.61 (1.08) 0.12 0.17 0.25 0.19 0.59 1.81 0.01 0.01 0.02

skew(V P ) 2.39 (0.59) 0.32 0.88 1.71 1.79 3.26 5.12 0.36 0.82 1.60

kurt(V P ) 12.03 (3.30) 2.35 3.33 6.72 6.79 15.22 35.98 2.34 3.26 6.39

β(1) 0.76 (0.35) -33.43 7.43 60.41 -14.94 4.31 28.52 -478.07 39.43 604.86

R2(1) 1.46 (1.52) 0.00 0.22 2.42 0.01 0.61 5.89 0.01 0.20 1.96

β(3) 0.86 (0.27) -32.28 6.19 62.27 -13.83 3.27 21.25 -485.47 39.43 604.86

R2(3) 5.92 (4.67) 0.00 0.50 7.13 0.01 1.39 10.70 0.01 0.53 5.24

β(6) 0.49 (0.24) -33.47 4.44 47.04 -10.89 2.59 16.30 -447.01 29.35 522.27

R2(6) 3.97 (4.74) 0.016 1.11 12.62 0.01 1.74 15.83 0.01 1.04 9.11

Table IX presents a three part comparative statics exercise for the model given in Table V. Each panel alters
the model in TableV by shutting off a Poisson jump process. Model 1-A sets l1,σ = 0 to shut off the Poisson
component of σ2

t . Model 1-B sets l1,x = 0 to shut off the Poisson component of xt. Model 1-C shuts off both
Poisson components: l1,σ = l1,x = 0.




