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Abstract

Most models incorporating �rm heterogeneity assume that idiosyncratic productivity follows an

AR(1) process. However, there remains substantial disagreement on the persistence parameter,

with estimates ranging from a unit root to a nearly iid component. This paper uses the information

embedded in �rms� investment decisions to estimate the productivity process: investment reacts

more to a permanent shock than to a transitory shock. I apply this methodology to a sample

drawn from Compustat, using a method of moments estimator. The estimates give an important

role to permanent shocks. I study the implications of these estimates in a general equilibrium

model of �rm dynamics. Mistaking permanent shocks for persistent shocks can lead to incorrect

inferences regarding, for instance, the e¤ect of a friction on aggregate productivity. As an example

of application of this methodology, I also study the trends and cycles in �rm-level volatility.

1 Introduction

Panel data on �rms and establishments reveal substantial idiosyncratic volatility.1 This empirical �nding

has led to the development of models of �rm dynamics with productivity heterogeneity. These models

are now common in macroeconomics, industrial organization, trade, corporate �nance, and other �elds.2

Two key inputs in these models are the variance and persistence of idiosyncratic shocks. These parame-

ters determine the risk that �rms face, their optimal policies for a given structure of adjustment costs,

�Boston University, Department of Economics, 270 Bay State Road, Boston MA 02215. Email: fgourio@bu.edu. Phone:

(617) 353 4534. I thank participants in a BU macro lunch and Je¤ Campbell for comments.
1Some key facts are: (a) sales, employment and investment are highly volatile; (b) there is a lot of turnover of jobs

and �rms; (c) productivity heterogeneity is large and persistent. As a result, at a point in time in a given industry,

gross entry and exit are both large, even if net entry is small at the industry-level. Similarly, gross job creation and gross

job destruction are large, even if net employment growth is small (see Dunne, Roberts and Samuelson (1989), Davis,

Haltiwanger and Schuh (1996), and Bartelman and Doms (2000)).
2A list which makes no attempt at exhaustivity includes (1) models of factor adjustment costs (e.g., Caballero and

Engel (1999) or Cooper and Haltiwanger (2006)); (2) models of entry, exit, and reallocation, (e.g., Hopenhayn (1992) or

Hopenhayn and Rogerson (1993)); (3) trade theory (Melitz (2003)); (4) corporate �nance (e.g. Gomes (2001), Hennessy

and Whited (2005)); (5) public �nance (e.g., Gourio and Miao (2008)). While most of these models have been used to

study steady-states or balanced growth, recent work incorporates business cycles dynamics.
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and the bene�ts of reallocation of inputs across �rms. At the macro level these parameters a¤ect total

factor productivity, and business cycle dynamics.

However, despite the importance of these parameters, there is still considerable uncertainty surround-

ing them, especially the persistence of shocks. For instance, Cooper and Ejarque (2003) or Gilchrist

and Sim (2007) estimate a serial correlation around 0.1-0.3, while Caballero and Engel (1999) or Bloom

(2007) assume unit roots. Cooper and Haltiwanger (2006), Gomes (2001) or Hennessy and Whited

(2005) fall inbetween, with a serial correlation in the 0.7-0.9 range. Given the interest in models of

industry dynamics, it seems important to obtain more precise estimates of this important parameter.

Moreover, some facts suggest that the standard AR(1) modeling device, while convenient and real-

istic, does not capture the entire story. If shocks truly were stationary, we would see �rms�sales (or

employment) oscillating around a �xed size. There is considerable anecdotal and suggestive evidence

that �rms are also subject to permanent shocks. This motivates me to introduce permanent shock in

my empirical framework.

The key idea of the paper is to introduce a novel procedure to estimate the risk faced by �rms.

The simple insight is that a �rm invests more when it expects its productivity to be high in the future.

Hence, investment data reveal the �rm�s expectations and are thus informative on the persistence of

productivity. I use a simple structural adjustment cost model of investment, and I allow for a fairly

general stochastic process for shocks, that includes permanent as well as transitory components. The

adjustment cost model shows how to use jointly data on productivity (pro�tability) and investment to

infer the dynamic properties of productivity. This procedure leads to a decomposition of productivity

shocks into a permanent shock, a transitory shock and an iid shock (i.e., measurement error). By

using more data and imposing more economic structure, this procedure should lead to more precise

estimates, while taking into account the important measurement error. This is a substantial progress

over univariate decompositions based on productivity alone.

This insight is implemented through a simulated method of moment estimator.3 The mapping

between some second moments of the data (mostly investment rates and pro�t rates) and the parameters

describing the shock process is relatively transparent. The estimation procedure is run on data drawn

from Compustat. Overall, the estimates suggest that permanent shocks are important, with the standard

deviation of the innovation estimated to be about .20.4

A natural concern is that the adjustment cost model is the wrong starting point, because of lumpiness

at the establishment level. However, our data is based on large �rms, for which investment spikes are

less apparent. As argued by Eberly, Rebelo and Vincent (2008), the adjustment cost model is a good,

parsimonious model to start with, once we allow for a more general shock process.5 Moreover, the basic

insight that a �rm invests more if it expects a more persistent shock is likely to be robust. (Finally, it

is easy to assess how much an alternative model would a¤ect the estimation procedure, by simulating

data from the alternative model and running the estimation procedure on these simulated data.)

3 It is also possible to use maximum likelihood. This is work in progress.
4This number is for the shock to the pro�t function (which is larger than the shock to the production function by a

factor of about three).
5Gilchrist and Himmelberg (1995) also �nd that the cross-equation restrictions implied by the (constant return) ad-

justment cost model are not rejected for the large and/or �nancially unconstrained �rms.

2



As an example of application, the procedure is used to measure the changes in the process of idiosyn-

cratic shocks since 1965 in the United States. Did idiosyncratic �rm-level risk increase? Is idiosyncratic

risk countercyclical? There is an ongoing debate regarding these views. Comin and Philippon (2005)

and Davis, Haltiwanger, Jarmin and Miranda (2006) debate whether idiosyncratic risk has increased or

decreased in the United States. Eisfeld and Rampini (2006) and Bloom (2008) document that �rm-level

idiosyncratic risk is usually countercyclical.

Organization of the paper

Section 2 reviews the related literature and discusses two simple examples which illustrate the impor-

tance of the persistence of shocks. Section 3 presents some simple data suggesting a role for permanent

shocks. Section 4 presents the model, estimation procedure and tests the procedure by Monte-Carlo

simulations. Section 5 presents the data and results from the estimation. Section 6 studies the implica-

tions of the estimates in a general equilibrium model of �rm dynamics. Section 7, as an application of

the methodology, studies the time variation in idiosyncratic volatility.

2 Literature Review

Productivity heterogeneity has been emphasized in the recent industrial organization and in the trade

literature (e.g., Syverson (2004), Melitz (2003)). In the typical four-digit industry, the ratio of the labor

productivity of the 25th centile producer to the 75th centile producer is about 2. The ratio of the labor

productivity of the 90th centile producer to the 10th centile producer is about 4. Using total factor

productivity (TFP) rather than labor productivity, the productivity di¤erentials are somewhat smaller,

but still large, respectively 1.4 and 2.6 Controlling for observables such as vintage or capital intensity

does not explain a large share of productivity heterogeneity.

While this heterogeneity is widely accepted, the interpretation in terms of variance and persistence of

shocks is more controversial, as noted in the introduction. Many researchers �t models with �rms �xed

e¤ects, which leads to estimates of relatively low persistence, while some researchers assume a unit root

process. The evidence based on univariate decompositions of measured productivity is problematic since

measurement error, which is likely to be important in these data, biases the estimates of persistence

down. Moreover, productivity is rarely measured directly: it must be inferred as the residual from a

production function estimation, which faces the usual endogeneity problem. Some of the estimates are

based on Simulated Method of Moments estimations, which are model-dependent. More precisely, the

source of identi�cation of the shock variances is sometimes not transparent, since the estimates often try

to �t better some other moments of interest. While my procedure su¤ers from the same limitation, the

structure is minimal (adjustment costs and decreasing returns) and the relation between data moments

and shocks is more transparent.

There is an important related IO literature, starting from the seminal contribution of Oley and Pakes

(1996). These authors show how to estimate productivity from input choices, when the productivity

process follows a univariate process. Their method does not apply to my framework since I emphasize

multivariate processes, and it is thus not possible to invert the productivity shock from the input choice

6These numbers are drawn from Syverson (2004), Table 1.
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alone. On the other hand, my estimation method relies on functional form assumptions or a linear

approximation, while their procedure is nonparametric. My objectives are more limited than Oley and

Pakes, in that I do not wish to measure productivity for each �rm: I am only after the parameters of

the general productivity process.

There is a strong analogy between my proposed methodology and the decomposition of income

into permanent and transitory shocks proposed by Blundell and Preston (1998). Blundell and Preston

use the permanent income (PIH) model to study consumption and income volatility. Under the PIH,

consumption is primarily determined by permanent income, and hence measuring consumption volatility

allows to measure the volatility of the shock to permanent income, while the volatility of income is a

mix of the volatility of permanent and transitory shocks. My paper is perhaps most closely related to

Abbring and Campbell (2006) who employ a similar insight to study �rms�exit and learning. Their

sample (Texas bars), while adapted to their question, is somewhat less interesting from a macroeconomic

perspective than Compustat.

Risk is sometimes measured using stock returns. While stock returns are likely to be a precise measure

of risk, they can o¤er no guidance regarding the persistence of shocks: stock returns are roughly iid,

whatever the persistence of the productivity (pro�tability) process. Moreover, in my model, marginal q

di¤ers from average q, hence it is not appropriate to measure Tobin�s q from stock market data. Hence

incorporating Tobin�s q data in the estimation is unattractive.

More generally, the importance of disentangling permanent and transitory income shocks is of course

a classical theme of modern macroeconomics. For instance, Quah (1989) shows that the presence of

multiple shocks can rationalize the excess sensitivity puzzle. Similarly, the investment and corporate

�nance literature has recently stressed the role of the persistence of productivity; for instance, the fact

that investment is sensitive to cash �ow is often rationalized by the persistence of cash �ow shocks. The

presence of two shocks allows, in principle, to disentangle the pure e¤ect of a cash �ow increment and

an increase in expected future pro�tability.

The persistence parameter also plays a key role in studies of reallocation. For instance, in Gourio and

Miao (2008), the productivity and welfare e¤ects of a dividend tax cut depend heavily on this parameter.

Another reason why the persistence parameter is important is that it is required to estimate adjustment

costs. Many researchers estimating adjustment costs model proceed in two steps, by �rst measuring and

�tting a process to productivity, then estimating the technological or �nancial frictions (e.g., Cooper

and Haltiwanger (2007), Fuentes, Gilchrist and Rysman (2006), or Gilchrist and Sim (2007)). To the

extent that the process �tted to productivity does not fully capture the risks faced by �rms, this would

a¤ect their estimates of adjustment costs.

2.1 The role of the persistence of shocks: two simple examples

This section illustrates the importance of the persistence of idiosyncratic shocks to productivity by

studying two simple examples where pencil-and-paper results are available.
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2.1.1 Reallocation and the persistence of shocks

Consider the following economy. There is a measure one of �rms, each of which operates the production

function f(z; k) = zk�; where z is productivity and k is capital. There is no entry or exit. Firm-level

productivity evolves according to the following �rst-order process:

log zt+1 = � log zt + �"t+1: (1)

The shock "t is independent across �rms and time and normally distributed with unit variance. The

economy is in a stationary equilibrium, so that aggregates are constant.7 Assume that there are no

adjustment costs, but that capital must be chosen one period in advance. The �rm�s objective at time

t is to maximize by choice of investment fit+jg1j=0:

Et

1X
j=0

�j
�
zt+jk

�
t+j � it+j

�
;

s:t: : kt+j+1 = (1� �)kt+j + it+j :

given an initial condition for kt: Taking �rst-order conditions yields:

�Et (zt+1) k
��1
t+1 =

1

�
� 1 + �;

i.e. the optimal decision equates the expected marginal product of capital (the left-hand side) and the

user cost of capital (the right-hand side). This can be rewritten as

log kt+1 =
1

1� � logEtzt+1 + constant, (2)

where the constant in this equation (and in all equations below) does not depend on �. Given (1), we

have logEtzt+1 = � log zt +
�2

2 , hence:

log kt+1 =
�

1� � log zt + constant.

It follows that investment is

it = kt+1 � (1� �)kt

' constant� �

1� � [log zt � (1� �) log zt�1] ;

so that the response of investment to a one-standard deviation shock "t is

@it
@"t

' constant� �

1� �:

The �rm invests more in response to a more persistent shock, because it expects the productivity to be

still high in the future.

Moreover, the size of � a¤ects reallocation and thus aggregate TFP. Total output in this economy is

Y =

Z Z
zk�dF (k; z);

7 It is straightforward to embed this model in a general equilibrium model, as in Gomes (2001) or Hopenhayn and

Rogerson (1993).
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where F is the joint cross-sectional distribution of (k; z): Simple computations show that

log Y =
�2

2(1� �)2V ar(log z) + constant.

Moreover, if one where to compute aggregate TFP as the Solow residual in this economy

TFP =
Y

K�
;

the result would be

log TFP =
�2

2(1� �)V ar(log z) + constant.

Hence, for a given cross-sectional variance of log productivity V ar(log z); aggregate output and aggregate

TFP are both increasing in the persistence of the shock �: Given the one-period time-to-build, �rms

are better able to forecast their future capital needs when shocks are more persistent. Hence, the

allocation of capital is more e¢ cient when shocks are more persistent. Many researchers study the e¤ect

of impediments to reallocation such as labor market frictions, adjustment costs, or taxes (e.g. Atkeson,

Khan and Ohanian (1993), Gourio and Miao (2008), Hopenhayn and Rogerson (1993)). In general

in these models, the aggregate e¤ects of these impediments to reallocation are highly sensitive to the

persistence of shocks.

2.1.2 Irreversibility and the persistence of shocks

As an alternative example of the importance of the persistence of shocks, consider the following model

of �rm investment subject to irreversibility. The �rm maximizes its expected discounted pro�t, subject

to the constraint that investment must be nonnegative:

V (k0 ; z0) = Et

1X
j=0

�j
�
zt+jk

�
t+j � it+j

�
;

s:t: : it+j = kt+j+1 � (1� �)kt+j � 0:

The following simple result illustrates that when the shock has a persistence which is low enough,

irreversibility does not matter.

Proposition 1 (1) Assume that fztg is iid, and let k� satisfy the equation: E(z)�k���1 = 1
� �

1 + �: Then, if k0 < k�

1�� ; the path kt = k� for t = 1; 2; ::: is optimal. Hence, we have exactly

the same outcomes as in the model without irreversibility, regardless of the realization of the shocks.

(2) Assume that flog ztg follows an AR(1) process, so that log zt+1 = � log zt + ut+1; with ut iid. Then,

if � > 0; if � < 1; and if the lowest possible value for u is small enough, the irreversibility a¤ects the

equilibrium path.

Proof. (1) is obtained by simply checking that the conjectured sequence satis�es the �rst order con-

ditions. For (2), compute the sequence (kt) that solves the problem under no irreversibility, and note

that if u is low enough it may not be feasible.

This result illustrates that a necessary condition for irreversibility to matter is that � > 0, i.e.

productivity must be forecastable. Given a positive � > 0, irreversibility may matter if � is low enough

and the support of u large enough. Clearly, the larger the �, the �more likely� it is that irreversibility

will a¤ect the equilibrium path.
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3 Suggestive Evidence for Permanent Shocks in Firm Dynam-

ics

This section discusses some simple facts that motivate the introduction of permanent shocks. Figure 1

presents the path of sales of four �rms drawn from a balanced sample of Compustat (1980-2006), which

is described in more details in Section 5. Of course, there is a wide variety of experiences amongst

�rms. It is striking, though, that many �rms are growing, and sometimes shrinking, without clear

mean reversion. In contrast, Figure 2 presents the path of sales of four �rms simulated from a standard

industry model (similar to Gomes (2001) or Gourio and Miao (2008)): �rms are subject to AR(1) shocks,

with persistence .72, and they accumulate capital in response to these shocks, subject to adjustment

costs. In this second �gure, the mean-reversion is more apparent.

An alternative way to make this simple remark is to consider the correlation of the sales at time t and

at time t+k for a panel of �rms. In the data, this correlation decreases almost linearly with k, as shown

in Figure 3. However, in a standard industry model, this correlation converges to a �nite number after a

certain number of years, as illustrated in Figure 4. This �nite number is the share of �xed heterogeneity.

This share is often assumed to be zero in the models. (If it is zero,the model predicts counterfactually

that sales today and sales �fteen years from now are not correlated at all; hence I incorporate �xed

heterogeneity in productivity, corresponding to the �xed e¤ects that are used in the estimation. I pick

the size of this �xed heterogeneity to match the heterogeneity in the data.) Thus as time elapses, the

model imply very di¤erent behavior: in the model, �rms oscillate around a �xed size, while in the data,

they appear to drift one way or another. Note that these conclusions are drawn from a balanced sample,

which likely underestimates the importance of permanent shocks, which may lead to entry or exit.

These patterns should not be surprising: many large �rms that exist today, such as Wal-Mart, Dell,

Google, etc., either did not exist, or were very small twenty years ago. Comin and Philippon (2005) also

document the large amount of turnover in industry leaders. Stationarity test reject the null hypothesis of

no unit root, as shown by Franco and Philippon (2007) who also document the importance of permanent

shocks at the �rm level using a VAR methodology. Permanent shocks lead to a �view of the world�that

is quite di¤erent from standard industry models without permanent shocks. From an economic point of

view, the question is, do new �rms matter for long-term productivity? If yes, incorporating permanent

shocks appears important.

It is also interesting that a separate literature, which tries to match the �rm size distribution,

has emphasized the importance of permanent shocks (e.g. Luttmer 2007, Gabaix 1999; see also Miao

(2005)).8

[To add: nonparametric estimates of permanent shocks a la Cochrane (1988); but short sample]

8At a fundamental level, this is based on the fact that a geometric brownian motion with a lower barrier yields a Pareto

stationary distribution, as emphasized by Gabaix (1999).
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4 Model and Estimation Method

Before turning to the full model and estimation method, I illustrate the key idea of the procedure in a

simple setup.

4.1 Methodology: a simple example

Consider the baseline quadratic adjustment cost model, with constant returns in pro�ts and in adjust-

ment costs. Hayashi�s results imply that average q equals marginal q, and that investment is an a¢ ne

(linear) function of average q:

The pro�t function is linear, i.e. �it = AitKit whereAit is a measure of pro�tability (or productivity),

i indexes �rms, and t indexes time. Assume that pro�tability is the sum of a persistent component and

an iid component:

�it
Kit

= Ait = constant+ zit|{z}
AR(1)

+ "Mit|{z}
IID

; (3)

zit = �zit�1 + �it:

The �rst-order condition for investment yields:

Iit
Kit

= constant+ �qit; (4)

where � is the adjustment cost parameter, and qit is marginal q, the expected present discounted value

of the marginal product of capital, which is approximately:9

qit ' Et
X
k�1

�k(1� �)k�1zit+k =
��zit

1� �(1� �)� ; (5)

where � is the autocorrelation of zit: Putting equations 3, 4 and 5 together, we obtain the following

moments:10

V ar

�
�it
Kit

�
= �2z + �

2
";

V ar

�
Iit
Kit

�
=

�2�2�2�2z

(1� �(1� �)�)2
;

Cov

�
Iit
Kit

;
�it
Kit

�
=

����2z
1� �(1� �)� :

Assume for simplicity that we know the structural parameters �; � and �; but that we ignore the

parameters describing the shock processes �2z; �
2
" and �: Then, the three moments allow us to identify

these three parameters: we obtain � from the slope in a regression of pro�t rate on investment:

Cov
�
Iit
Kit

; �itKit

�
V ar

�
Iit
Kit

� =
1� �(1� �)�

���
;

9The formula below neglects the reduction in future adujstment costs due to investment today.
10These moments are both cross-sectional moments and time-series moments, since we work under the assumption that

there are no �xed e¤ects.
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which intuitively corresponds to the idea that a high � implies a high response of investment to an

increase in pro�ts. Next, we use the variance of investment rates V ar
�
Iit
Kit

�
to determine �2z. Finally

we obtain �2" from the variance of pro�t rates V ar
�
�it
Kit

�
. The identi�cation is driven by the implication

of the adjustment cost model that investment does not respond to an iid shock.

This relatively transparent mapping from data moments to parameter estimates is appealing, because

it is clear which features of the data drive the estimates. Of course, if the model is wrong, the estimates

might be highly misleading. However, just like Blundell and Preston (1998) use the permanent income

model, even though it does not �t the data perfectly, it seems reasonable to use the adjustment cost

model, which provides a decent description of the data, as argued by Eberly, Rebelo and Vincent (2008).

4.2 Model

I now use a standard partial-equilibrium, adjustment cost model that is richer than the example above:

it allows for decreasing return to scale, permanent shocks to productivity, and for shocks to adjustment

costs.

Assume the pro�t function is �(z;K) = zK� where z is productivity (pro�tability) and K is the

current capital stock. This pro�t function can be derived as the maximized value of pro�ts, when

variable factors have been optimized out. As usual, the exponent � re�ects decreasing return to scale

or curvature in demand.11

The �rm accumulates capital subject to adjustment costs:

C(I;K; "AC) = K � c
�
I

K
� "AC

�
;

where c is a convex function satisfying c(0) = 0; c0(x) > 0 for x > 0 and c0(x) < 0 for x < 0. "AC is

a shock to the adjustment cost, which is assumed to be iid across �rms and across time, and normally

distributed with variance �2AC : Narrowly, the shock "
AC captures changes in the cost of adjustments,

and more broadly it captures deviation from the smooth adjustment cost model. However, note that

this formulation of adjustment costs does not encompass the foregone pro�ts emphasized by Cooper and

Haltiwanger (2006) among others.12

Productivity shocks are of course likely the most important.13 I will assume the following decompo-

sition of pro�tability z into permanent and transitory components:

log zt = log z
P
t + log z

T
t + "

M
t ;

with

log zPt = log z
P
t�1 + "

P
t ;

and

log zTt = � log zTt�1 + "
T
t ;

11Deviating from constant returns is important because the constant return model does not �t the micro data well (i.e.

marginal q is not equal to average q) and, most importantly, because it allows to have a non-stationary process for z while

keeping the pro�t rate stationary.
12 i.e., the idea that the adjustment cost is proportional to current pro�ts due to a disruption in the production process.

[Further work will investigat the robustness of the estimation to this kind of model deviations.]
13Note that these could be �demand� shocks as well as �supply shocks� (Foster, Haltiwanger, and Syverson (2008)).

9



with � < 1: Here, "Mt ; "
T
t ; and "Pt are all iid across �rms and time, and normally distributed with

variances �2M ; �
2
T ; and �

2
P : These shocks are further independent of each other. "

M can be interpreted

as measurement error in pro�ts (or a pro�t windfall). The two other shocks determine the importance of

permanent shocks and of transitory shocks. The only di¤erence between the two is the long-run e¤ect:

a permanent shock will lead to a permanent increase in the capital stock and hence, through capital

deepening, a further increase in sales and pro�ts. In contrast, a transitory shock has no long-run e¤ect

and the �rm returns after a while to its initial size.

The �rm�s problem is to maximize its value by choice of investment:

V (K0; z
P
0 ; z

T
0 ) = max

fIt;Kt+1g1t=0
E0

1X
t=0

�t
�
ztK

�
t � It �Ktc

�
It
Kt

� "ACt
��

; (6)

s:t: : Kt+1 = (1� �)Kt + It;

K0 given, law of motions for shocks.

The Bellman equation is:

V (K; zp; zt; "ac; "m) = max
I

8<: zpzte
"mK� � I �Kc

�
I
K � "

AC
�

+�E"0p;"0t;"0ac;"0mV (K
0; z0p; z

0
t; "

0
ac; "

0
m)

9=;
s:t: : K 0 = (1� �)K + I;

z0p = zpe
"0p and z0t = z�t e

"0t :

However, given that both "m and "ac are iid, this can be rewritten in a simpler way as:

V (K; zp; zt) = E"m (zp; zte
"mK�) + E"AC max

I

�
�I �Kc

�
I

K
� "ac

�
+ �E"0p;"0tV (K

0; z0p; z
0
t)

�
s:t: : K 0 = (1� �)K + I;

z0p = zpe
"0p and z0t = z�t e

"0t :

This can be further simpli�ed given the assumption that zp is permanent, because V is homogeneous in

(z1��;K): The solution to the Bellman equation leads to the following policy functions:

I = I(K; zp; zt; "ac);

K 0 = K 0(K; zp; zt; "ac);

� = �(K; zp; zt; "m):

Note how pro�ts are a¤ected by "m but not by "ac, and inversely investment is a¤ected by "ac but not

by "m: This is the source of identi�cation of these shocks. Taking �rst-order condition in (6) yields the

standard q�theory result:

qt = 1 + c
0
�
It
Kt

� "ac
�
; (7)

where qt is marginal q, i.e. the multiplier on the capital accumulation constraint. Moreover,

qt = �(1� �)Et (qt+1) + ��Et
�
zt+1K

��1
t+1

�
(8)

+�Et
�
�c(It+1=Kt+1 � "ACt+1) + It+1=Kt+1c

0(It+1=Kt+1 � "ACt+1)
�
;
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which shows that marginal q is related to the present discounted value of marginal product of capital,

plus terms re�ecting changes in adjustment costs. As an illustration, when the adjustment costs terms

can be neglected or cancel out, we have

qt = �Et

1X
j=1

�j(1� �)jzt+jK��1
t+j ; (9)

which clearly shows that marginal q re�ects the �rm�s long-term expectation of its marginal product of

capital. Marginal q is unobservable, but the �rst-order condition (7) shows that investment is related

to marginal q:

4.3 Solution method and Impulse Responses

The model has no closed-form solutions, hence we need to solve it numerically. Because the model has

many state variables and shocks, and must be solved repeatedly for the estimation, it seems reasonable as

a �rst approach to use a linear solution method. First, make the model stationary by constructing �trend-

adjusted�variables kt = Kt=z
1

1��
P;t�1; and it = It=z

1
1��
P;t�1:Next, rewrite the �rst-order conditions using these

detrended variables, and �nd the associated nonstochastic steady-state (i.e. set "T = "M = "AC = 0).

Finally, write a linear approximation to the �rst-order conditions around the steady-state. This yields a

linear rational expectations model which can be easily solved by the method of undetermined coe¢ cients.

More precisely, the policy rule are:

bkt+1 = a0bkt + a1 log zTt + a2"ACt + a3"
P
t ;bit = e0bkt + e1 log zTt + e2"ACt + e3"
P
t ;bqt = b0bkt + b1 log zTt + b2"ACt + b3"
P
t ;b�t = �bkt + log zTt + "Mt + "Pt ;

where the coe¢ cients a0s, b0s and e0s can all be easily found using a quadratic equation. Once the model

is solved in terms of detrended variables, it is easy to �nd the path for the level variables Kt; It; �t. To

illustrate the workings of the model, Figure 5 shows the responses of the model to a permanent shock

"P ; a transitory shock "T ; an adjustment cost shock "AC , and an iid shock "M : 14 In response to a

permanent shock, investment increases by a large amount, and capital (size) goes up permanently. A

transitory shock leads to a temporary increase in size which is reverted in the long-run. An iid shock to

pro�t has no e¤ect on anything but pro�ts. Finally, an adjustment cost shock a¤ects investment, but

not today�s pro�ts. Moreover, the pro�t rate increases as the capital decreases (as opposed to temporary

positive productivity shock).

14For these �gures, I assume that adjustment cost is quadratic: c(x; ") =  
2
(x���")2; and I set the following parameter

values:  = 1; � = 0:20; � = 0:57; � = :93; � = 0:8: Because this is a linear solution, the shock variances do not a¤ect

the decisions of the �rm (there is certainty equivalence). The linear solution also makes it relatively easy to implement a

maximum likelihood estimator (see below), and is appealing since identi�cation is driven by second-order moments, which

are easier to understand.
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4.4 Identi�cation

The intuition for the identi�cation is mostly straightforward. The shock "ACt captures changes in

investment that are uncorrelated with current or future pro�ts. The shock "Mt captures changes in

pro�ts that are uncorrelated with current (and future) investment. The shocks "Tt and "
P
t a¤ect both

pro�ts and investment, "Pt however has more persistent e¤ect and is the only one to a¤ect the �rm size

even in the long run. This suggests that in order to estimate the variance of these shocks as well as �, it is

necessary to use either a long-run measure of �rm size. Given the other parameters, the adjustment cost

parameter � is identi�ed o¤ the serial correlation of investment, or the correlation between investment

and pro�ts.

4.5 Estimation method

The �rst estimation method involves picking parameter to minimize the discrepancy between data

moments and model moments.15 The model moments are obtained by simulating the model. (In the

case of the linear solution method, it is possible to solve exactly for the moments.) This is attractive,

especially in the linear case because the identi�cation is relatively transparent when the moments are

well-chosen. In our case, the autocorrelation of the investment rate is a¤ected by the adjustment cost

parameter; the variance of the investment rate is a¤ected by the variance of the permanent and transitory

shocks; the variance of the pro�t rate is a¤ected by all the shocks to pro�ts; and the covariance between

pro�t and investment determines the split between permanent/transitory shocks on the one hand, and iid

shocks on the other hand. To be able to distinguish between permanent and transitory shocks, I added

more moments: �rst, autocovariances of investment rates and pro�t rates, and �nally the covariance

between pro�t rate and the 3-year growth rate. This last moment behaves very di¤erently depending

on the persistence of the shock.

To summarize, the ten moments used are:

V ar

�
Iit
Kit

�
; V ar

�
�it
Kit

�
; Cov

�
Iit
Kit

;
�it
Kit

�
;

Cov

�
Iit
Kit

;
Iit�1
Kit�1

�
; Cov

�
Iit
Kit

;
Iit�2
Kit�2

�
; Cov

�
Iit
Kit

;
Iit�3
Kit�3

�
;

Cov

�
�it
Kit

;
�it�1
Kit�1

�
; Cov

�
�it
Kit

;
�it�2
Kit�2

�
; Cov

�
�it
Kit

;
�it�3
Kit�3

�
;

Cov

�
log

Kit

Kit�3
;
�it�3
Kit�3

�
:

This allows me to estimate 6 parameters �; �P ; �T ; �; �AC ; �M : I do not estimate the other parameters.

The parameters � and � are picked to match the unconditional means of the investment rate and the

pro�t rate: marginal Tobin q is one in steady-state, and this condition together with � pins down the

pro�t rate. This leads to � = 0:57. The depreciation rate pins down the mean investment rate; matching

the mean requires � = 0:20: Finally, I set � = 0:93 a priori, corresponding to a 7% annual discount rate.

In all the reported results I used the identity matrix to weight the moments. The standard errors

15See Cooper and Haltiwanger (2006) for an application of this methodology.
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are computed using the SMM formula. The data standard errors were computed by GMM using the

pooled data, allowing for arbitrary time series correlation within each �rm.16

It seems attractive to use �long-run moments�in the estimation, e.g. the variance ratio emphasized

by Cochrane (1988), to better distinguish temporary vs. permanent shocks. The short sample makes

these moments hard to use, and they require to balance the panel, which is why I have so far abstracted

from them.

4.6 Evaluation of the Estimator: Monte-Carlo Evidence

A natural concern is that this estimation method may not allow to identify all the parameters of the

productivity shock process, namely �p; �t; �; and �m: More precisely, for � = 0, �t and �m are not

separately identi�ed, and for � = 1, �t and �p are not separately identi�ed. In general, for � close to

zero (resp. close to one), it will be very hard to distinguish the transitory shock from the i.i.d. shock

(resp. the permanent shock). The standard solution, which I adopt, is to restrict � to an interval [�,�]

with �> 0 and � < 1: In practice, I set �= :4 and � = :9:

Even then, one may be worried that identi�cation will not be very well behaved. To assess the

performance of the estimator, I use a monte-carlo method. I simulate 200 panels of arti�cial data from

the model.17 I then estimate the implied parameters. Table 1 presents the mean and standard deviation

of estimates, compared to the true values. The �rst three rows show the performance of the estimator

when �t = 0; so that productivity shocks are only iid or permanent. The next three rows study the case

when �p = 0: there are only iid or AR(1) shocks. Finally, the last three rows presents the results for

the general model.

Overall the estimator seems to work well. In all cases, the mean estimate is close to the truth. The

standard deviation of the estimates is low for all parameters for the �rst two models (A and B), and

for all but one of the parameters (�) in case C. Clearly, identi�cation of � is nontrivial.18 However, the

important point for us is that even though � is hard to estimate precisely, this does not contaminate

the other estimates (�m; �p; �t) which appear to be quite accurate.

5 Empirical Results

First I discuss the data moments used in the estimation, then I present the results from the SMM

estimation.
16For the unbalanced data, the standard errors are computed assuming a perfect time series correlation within each

�rm. This seems to be conservative.
17These are balanced panels with N = 503 and T = 27:
18 It may well be possible to improve the performance of the estimator by adding or selecting more the moments.

Alternatively, MLE might alleviate somewhat this �weak identi�cation�problem:
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� �p �t � �m �ac

A:Permanent shocks only Truth 3 .10 � � .15 .10

Mean Est. 2.9965 .0997 � � .1503 .1000

SE Est. .0962 .0032 � � .0059 .0006

B: AR(1) shocks only Truth 3 � .15 .75 .15 .10

Mean Est. 3.0051 � .1515 .7414 .1485 .0999

SE Est. 0.2207 � .0084 .0318 .0053 .0006

C: Full model Truth 3 .05 .15 .65 .10 .10

Mean Est. 3.0114 .0492 .1504 .6480 .0981 .1000

SE Est. .1549 .0043 .0084 .0787 .0111 .0006

Table 1: Test of the estimator: Monte-Carlo simulations. For each model (A,B or C), I simulated 200

balanced panels of arti�cial data using the "true" parameters (N=503, T=27). The SMM estimator is

then used to estimate the structural parameters. The table report the mean and standard deviation,

across the 200 panels, of the estimates. The three models are (A) the model with no transitory shocks,

(B) the model with no permanent shocks, (C) the model with both kind of shocks.

�I �� �I� �1I �2I �3I �1� �2� �3� �
�
log K

K�3
; ��3K�3

�
Balanced .12 .44 .32 .56 .39 .35 .84 .73 .66 .19

Unbalanced .19 .61 .25 .45 .23 .11 .72 .56 .48 .26

Table 2: Data moments. The table reports the standard deviation and autocorrelations of the investment

rate and pro�t rate as well as the correlation between the pro�t rate and the 3 year average growth rate

of capital.

5.1 Data

The data are drawn from Compustat. I use two datasets: �rst, a balanced panel of �rms (1980-2006),

which is more comparable to the existing literature. For these data, N = 503 and T = 27: Second, I

use an unbalanced panel with N = 24701 and T = 42 (1965-2006). I use only data for investment I

(item 30), capital K (item 8), and pro�ts � (item 13). The investment rate is computed as I=K and

the pro�t rate as �=K. I drop outliers (i.e. �rms which have in a given year a pro�t rate above 4 or less

than �:5, or an investment rate above 1:5).

The main moments that I will be interested are reported in Table 2. The unbalanced panel has,

unsurprisingly, more volatility, but the moments are otherwise similar: pro�tability is highly persistent,

while investment is only mildly persistent. Thee estimates pool the time-series and cross-section data,

and assume no �xed e¤ects.
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Balanced � �p �t � �m �ac

Permanent shocks only 4.785 .141 � � .435 .111

se .137 .017 � � .012 .003

AR(1) shocks only 5.135 � .403 .89 .216 .113

se .129 � .038 .031 .015 .004

Full model 5.114 .117 .451 .63 .00 .112

se .142 .024 .017 .041 na .004

Table 3: Estimates using the SMM estimator for the balanced panel. N=503,T=27. Three models are

estimated separately: (1) permanent shocks but no AR1 shocks; (2) AR1 shocks but no permanent

shocks; (3) both shocks.

Unbalanced Sample � �p �t � �m �ac

Permanent shocks only 2.404 .245 � � .754 .175

se .020 .001 � � .003 .001

AR(1) shocks only 2.587 � .641 .84 .464 .178

se .023 � .004 .002 .006 .001

Full model 2.583 .203 .782 .49 .00 .177

se .023 .0023 .014 .020 na .001

Table 4: Estimates using the SMM estimator for the unbalanced panel. Three models are estimated

separately: (1) permanent shocks but no AR1 shocks; (2) transitory shocks but no permanent shocks;

(3) both shocks.

5.2 Estimates based on pooled data

Tables 3 and 4 report the parameter estimates for the three variants of the model: (i) permanent shocks

but no AR(1) shocks, i.e. � = �t = 0; (ii) no permanent shocks, i.e �p = 0, (iii) the full model with

both kind of shocks. The results are presented both for the unbalanced and for the balanced panel. The

adjustment cost parameter is always estimated to be relatively low (i.e. � is rather high). Of course,

our estimate is not directly comparable to most of the results of the literature, which either assume

constant return to scale or use average q to measure Tobin�s q:

When � = �t = 0 (�rst row of each table), the estimated permanent shocks are large, and the iid

shock is large too.19 When we estimate only an AR(1) process, the persistence is very high, close to 0.9,

but if we allow for both transitory and permanent shocks, the persistence is quite low, and the iid shock

becomes insigni�cant. The results are similar for the unbalanced sample, except that volatility is a bit

larger as expected since all the variables are more volatile. (The adjustment cost appears to be larger

for the unbalanced sample.) Overall, these estimates suggest that permanent shocks are important.

19Note,when interpreting this table, that the estimated z is the true z elevated to the power 1
1�� : pro�ts (and output)

amplify the variation of productivity through labor adjustment. As a result, the intrisic shock to productivity is 1
1�� = 3

times less volatile.
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6 Implications of the new estimates in a general equilibrium

model

In this section, I study a general equilibrium model with ex-ante identical �rms which are ex-post

heterogeneous due to productivity shocks. The model is used to show how the new estimates obtained

in Section 5 a¤ect some results of the literature. More precisely, industry equilibrium models are typically

used to assess the e¤ect of frictions on aggregate outcomes such as TFP. The model allows me to conduct

the following experiment: assume that the estimates of Section 5 are the truth, but that the economist

falsely �ts a model without permanent shocks, and then uses his results to assess the e¤ect of removing

a friction. By how much will his answers be wrong?

6.1 Model setup

The partial equilibrium adjustment cost model used in the estimation is embedded here in a general

equilibrium model. This model can easily be modi�ed to accommodate di¤erent adjustment cost struc-

tures and/or �nancing constraints, as in Cooper and Haltiwanger (2006), Gomes (2001) or Gourio and

Miao (2008). The model has a continuum a �rm and a representative household. The representative

household has preferences

E

1X
t=0

�tU(ct);

where U is an increasing and concave function. Labor supply is inelastic, equal to N . The model

features no aggregate shocks. By a law of large numbers, idiosyncratic shocks wash out, and aggregate

quantities and prices are constant over time. Hence, in a stationary steady-state, �rms discount future

payo¤s at rate �.

Each �rm operates a Cobb-Douglas technology with decreasing return to scale:

Y = zK�N�;

where z is the idiosyncratic productivity of the �rm. The �rm can adjust each period labor in a

frictionless market, however investment in capital goods is subject to adjustment costs. It is assumed

that the productivity log z is the sum of three components:

log z = log zp + log zt + log zm;

where log zm is iid across �rms and time and N(0; �2m); log zt follows a stationary Markov process with

transition function Q, and log zp follows a normal unit root process:

log z0p = log zp + �+ �p"
0
p;

where a prime (0) denotes next period value, � is a trend, and "p is iid across �rms and time and

N(0; �2p):
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The value W of a �rm with current capital K; and current productivity values zp; zt; zm is given by

the following Bellman equation:

W (K; zp; zt; zm) = max
N;I

�
zmzpztK

�N� � wN � I � �(I;K) + �(1� �)EW (K 0; z0p; z
0
t; z

0
m) + ��K

	
;

s:t: : K 0 = (1� �)K + I;

zm iid with cdf H(:);

zt Markov with transition function Q(:; :);

zp satis�es: log z0p = log zp + �+ �p"
0
p; with "

0
p iid N(0; 1):

There is an exogenous rate of exit �. We need to introduce exit since otherwise, in the presence of

permanent shocks, the �rm distribution is not well de�ned. It is possible to make exit endogenous, but

to keep the model as simple and as close to the literature as possible, we simply assume a constant rate

of exit. If the �rm exits, it can sell its capital.20

The function � represents adjustment costs. � is assumed to be homogeneous of degree one in (I;K).

Again to keep the model close to the literature, we abstract here from �adjustment cost shocks�. We

can compute the optimal labor demand, output supply and pro�t function by maximizing out labor:

N = N(zm; zp; zt;K;w) =

�
zmzpztK

��

w

� 1
1��

;

Y = Y (zm; zp; zt;K;w) = A1 � (zmzpzt)
1

1�� �K �
1�� ;

� = �(zm; zp; zt;K;w) = A2 � (zmzpzt)
1

1�� �K �
1�� ;

where A1 =
�
�
w

� �
1�� and A2 = A1(1� �): This is of the form used in the estimation in Section 5, up to

a rede�nition of � and of z:

We now can simplify the Bellman equation by exploiting two standard �tricks�: �rst, zm is iid and

thus does not need to be included in the state vector; hence we can rewrite the Bellman equation as

V (K; zp; zt;w) = max
I

�
E

�
z

1
1��
m

�
(zpzt)

1
1�� K

�
1��A2(w)� I � �(I;K) + �(1� �)EV (K 0; z0p; z

0
t) + ��K

�
;

s:t: : K 0 = (1� �)K + I: (10)

The optimal solution yields the policy functions:

K 0 = g(K; zp; zt;w); (11)

I = h(K; zp; zt;w):

(Note that we use here implicitly the fact that I and K 0 do not depend on zm.) The second trick

that we use is the homogeneity of the objective function. More precisely, de�ne k = K

z
1

1����
p

; and the

investment rate � = I
K ; then it is easy to verify the following guess:

V (K; zp; zt) = z
1

1����
p j(k; zt);

20This assumption is relatively innocuous.
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where j satis�es the following functional equation:

j(k; zt;w) = A2(w)E

�
z

1
1��
m

�
z

1
1��
t k

�
1��

+max
�

�
� (�+ � (�; 1)) k + �(1� �)E

�
e
�+�p"

0
p

1���� j(k0; z0t;w)

�
+ ��k

�
(12)

s:t: :

k0 =
K 0

z
0 1
1����
p

=
K 0

K

K

z
1

1����
p

z
1

1����
p

z
0 1
1����
p

= (1� � + �) ke
����p"0p
1���� :

This is a substantial improvement over the previous equation because (1) the state variables are now

bounded (while before zp and K were unbounded) and (2) there are only two states instead of three. We

have now a dynamic programing problem with two states which can be solved using standard numerical

techniques. (See the appendix for details on the numerical solution.)

To �nd aggregates, we need to keep track of the measure of �rms with state K; zp; zt: This measure

satis�es the following law of motion: for any (measurable) sets A;B;C;

�0(A�B � C)

= (1� �)
Z
1g(K;zp;zt)2A � Pr(zp exp(�+ �p"0p) 2 B)�Q(zt; C)� �(dK; dzp; dzt)

+M � �(zp; zt)1Kin2A; (13)

where M is the mass of new entrant each period, g is the policy function from (11), � is the distribution

of entrants over the two shocks zp and zt, and Kin is the initial capital of entrants.21

A stationary equilibrium is de�ned as a value function W and policy function g, a distribution �;

mass of entrant M , and wage w such that:

(1) the value function W and policy function g solve (10);

(2) the distribution � is self-preserving, i.e. �0 = � in equation (13);

(3) the labor market clears:Z Z Z Z
n(K; zp; zt; zm;w)H(dzm)�(dK; dzp; dzt) = N ;

(4) the free entry condition holds:Z Z
W (Kin; zp; zt)d�(zp; zt) = cin;

where cin is the entry cost (in units of goods).

As a result, the goods market clears:

C +

Z Z Z Z
(I(K; zp; zt;w) + � (I(K; zp; zt;w);K))�(dK; dzp; dzt) +M (cin +Kin)

=

Z Z Z Z
Y (K; zp; zt; zm;w)H(dzm)�(dK; dzp; dzt): (14)

To solve for the equilibrium, we follow Hopenhayn and Rogerson (1993) and Gomes (2001): �rst, we

�nd a wage such that the free entry condition holds; next, we �nd the equilibrium number of entrants

which is consistent with labor market clearing.22

21Because we will assume that the adjustment cost is a function of the I=K ratio, we cannot assume that �rms start

with zero initial capital.
22The goods market clearing condition de�nes the equilibrium consumption C.
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Parameter Meaning Value

� Share of capital .2

� Share of labor .65

� Persistence of zt .5

�t Std Dev innovation zt .15

�p Std Dev innovation zp .07

�m Std Dev iid shock .15

 Adj cost parameter 1
3

� Discount factor .93

cin entry cost 1

� Depreciation of capital 0.20

� Exogenous exit rate 0.05

Table 5: Calibration of the general equilibrium model.

This model is thus a relatively straightforward elaboration of Gomes (2001), Gourio and Miao (2008)

or Hopenhayn and Rogerson (1993), but incorporates a much richer shock structure. An advantage of

this framework is that it is easy to modify the adjustment costs, and thus to assess the robustness of

the results.

6.2 Model Calibration and Policy Functions

First, I present brie�y the model�s calibration and key feature. Next, I consider the experiments of

changing the adjustment cost frictions. The parameters are chosen to match the estimation results

(when possible). They are summarized in Table 5. The parameters � and � are picked to be consistent

with (a) the standard labor share of .65 and (b) the curvature coe¢ cient of �
1�� = :57.23 The shock

processes are directly given by the estimates of the unbalanced panel.24 Finally, the adjustment cost

parameter is taken to be 1/3, corresponding to � � 3: The entry cost is normalized to 1: The initial

capital is assumed to be the nonstochastic steady-state, and �rms enter with zp = 1 and zt uniformly

distributed. Note that we do not need to specify the utility function U:

The policy functions are depicted in Figure 14. The investment rate � = I=K is decreasing in k,

and is increasing in zt: This re�ects the adjustment of capital towards its desired value, which is not

instantaneous due to the adjustment cost.25 Note that a positive permanent shock has the e¤ect of

lowering k, since K is a state variable, which increases investment. Because of permanent shocks, the

size distribution is very skewed.

23 Implicitely, we assume that pure pro�ts (which equal to the entry cost in present value) are counted as capital income

in the NIPA.
24Except for �m, but this does not seem to matter signi�cantly.
25The value function is simply an increasing and concave function of k, and is increasing in zt:
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6.3 Model Experiment (Preliminary)

We consider the following experiment. Assume this model is the truth, and we want to know the e¤ect

of a reduction in the adjustment cost parameter from  = 1
3 to  = 0. An economist �ts an AR(1)

process with �rm �xed e¤ects, using a balanced panel:

log �it = �i + b logKit + zit; (15)

zit = �zit�1 + �"it: (16)

For simplicity, assume that the economist knows the correct curvature parameter b = �
1�� . (Not

knowing b raises additional issues.) Simulations reveal that this economist would estimate � ' :7 and

� ' :75: (These numbers are found by simulating data from the �true�model and estimating ??-16 as

the economist would do.)

With these numbers in hand, the economist would predict that reducing adjustment costs from the

low level of  = 1
3 down to 0 would increase average labor productivity (equal to the wage) by 3.48%.

However, the true e¤ect is 3.98%, which is markedly bigger. Hence, not knowing the correct process for

productivity shocks would lead to a signi�cant error, even if the economist knew exactly the rest of the

structure of the economy. These errors are likely to be even larger in some cases, when the persistence

matters more, e.g. when adjustment costs are larger or there are additional frictions. (It is easy to

construct an example in a model with �xed cost where a �rm which faces a temporary shock would

never adjust, while a �rm facing a permanent shock would adjust.) This cautionary tale thus suggests

that the persistence may matter signi�cantly.

7 Application: the time variation in idiosyncratic volatility

As an example of application of the methodology, this section studies the variation of idiosyncratic risk

over the past 40 years in the United States. This exercise is interesting in the light of two debates. First,

some authors argue that idiosyncratic volatility has increased over time (Comin and Philippon, 2005).

Figures 6 and 7 reproduce �ndings of Comin and Philippon that idiosyncratic volatility has trended up

in Compustat over this period. (These �ndings are somewhat sensitive to the sample used.) This is true

in the Compustat sample but does not appear to be true in larger Census universes (Davis, Haltiwanger,

and Miranda, 2006). Second, several authors have documented that �rm-level idiosyncratic risk may be

countercyclical (e.g. Bloom 2008, Eisfeldt and Rampini 2007).

The procedure that we used before by pooling cross-section and time-series data can be applied

year-by-year, using only cross-sectional moments. Under the assumption that �rms realize immediately

the new process that they face, we can use purely cross-sectional moments. We can then estimate

year-by-year the parameters of the shock process.

Figures 8 and 9 present the evolution of the moments that we use to estimate the model. The

evolution of the shock process that we will �nd is directly due to the evolution of these moments: the

variance of pro�t rates has almost steadily increased, while the variance of investment rates increased

in the 1970s before falling back. The serial correlation of investment has increased, while the serial

20



correlation of pro�t is mostly trendless. Interestingly, several of these moments show sharp variations

in some of the recession years (1981, 2001 in particular).26 To illustrate the possible cyclicality of these

moments, �gures 10 and 11 plot hp-�ltered log real GDP (annual data) together with the (un�ltered)

moments and reports the correlation. The only moment which appears to be signi�cant cyclical is the

covariance between pro�ts and average growth over the next three years, which is signi�cantly negative.

These time-varying moments lead to time-varying parameters. I present here only the results of the

models A and B (i.e. permanent shock but no AR1 shock and AR1 shock but no permanent shock),

which are easier to interpret. Figure 12 gives the results for model A and �gure 13 gives the results for

model B.

We can see that in both cases, the estimated adjustment cost parameter � increases signi�cantly over

time, re�ecting a decline in adjustment costs. This seems to be driven, in part, by the decrease in the

variance of investment, and in part by the changing correlation between investments and pro�ts. The

permanent shock and the iid shock to pro�ts both become large, but they appear to have some important

short-run movements as well. The adjustment cost shock increases then falls back, and appears to track

the variance of investment.

In the AR1 shock model, the persistence parameter � is trendless. The adjustment cost shock has

again a hump-shaped pattern. Both iid and transitory shocks increase over time.

These exercises con�rm that in this sample, volatility has increased, and we can trace it down to,

essentially, an increase in the variance of permanent shocks (or the highly persistent shock, in the case

of the AR1 model). The evidence of reduction of adjustment costs is interesting. Regarding business

cycles, there is also a potentially interesting cyclical pattern in the permanent shock: the correlation

between GDP and the standard deviation of the permanent shock is �0:56: This corroborates the view

of Bloom (2008), and Eisfeldt and Rampini (2007), that idiosyncratic shocks are countercyclical. Of

course, annual data are not ideal to study business cycles.

8 Concluding remarks

The shock process is an important, and rather understudied, input into models of �rm heterogeneity. The

procedure proposed in this paper allows to use investment decisions to infer the persistence of the shock

process. The estimates suggest that permanent shocks are important. This calls for more theoretical

and quantitative work incorporating permanent shocks into the models, and possibly modeling their

sources. For instance, there is little work which integrates the �rm size distribution and investment

dynamics. Because there is also a substantial component of productivity with a low serial correlation,

it also seems important to assess if the results of the literature also hold when productivity is the sum

of a permanent and an iid component, rather than an AR(1) component.

26The fact that the correlation between investment and pro�ts is more negative in recessions seems at odds with �nancial

constraints.
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9 Data Appendix

To be written.

10 Computational Appendix

This appendix sketches the solution method used to solve the general equilibrium model.

(1) Pick the parameters. The process for zt is approximated by a Markov chain using Tauchen�s

method. (I used 6 points.) The (normal) process for "p is approximated with a �nite distribution. (I

used 5 points.) We pick a grid for k. (I used 100 equally spaced points.) Finally we pick a grid for �,

the investment rate. (I used 100 points.)

(2) Guess a wage w.

(3) Iterate until convergence on the Bellman equation, which now has a discrete state and action

space:

j(k; zt) = A2(w)E
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(4) Check the free entry condition:X
zt;zp

�(zt; zp)zp
1

1���� j(kin; zt) = cin:
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If it does not hold with the required precision, adjust the wage w and go back to (3).

(5) Compute the policy function �(k; zt):

(6) Simulate a large panel of �rms, assuming N �rms, with �N randomly picked disappearing each

period and replaced by �N new �rms. Compute the aggregate labor demand of these �rms.

(7) Pick the number of �rms in the economy M to scale the labor demand to N:
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Figure 1: Examples of paths of sales for four �rms in the Compustat sample.
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Figure 2: Examples of paths of sales for four �rms simulated from a model of industry dynamics.
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Figure 3: Correlation of log Sales in year t and in year t+ k, for k = 1:::26, in the data.
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Figure 4: Correlation of log Sales in year t and in year t+k, for k = 1:::26, in an industry model similar

to Gomes (2001).
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Figure 5: Impulse responses to the four shocks. The �rst row depicts the response to a permanent shock

to productivity "P at time t = 5: The second, third and fourth rows depict the responses to a transitory

shock "T ; an adjustment cost shock "AC , and an iid pro�t shock "M :
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Figure 6: This �gure plots the median across �rm of the time-series volatility of sales, investment rate

and pro�t rate. The time-series volatility is computed at each date through a 11 year centered window.

Sample: unbalanced.
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Figure 7: This �gure plots the median across �rm of the time-series volatility of sales, investment rate

and pro�t rate. The time-series volatility is computed at each date through a 11 year centered window.

Sample: all of Compustat except missing data on sales (resp. investment rate, pro�t rate).
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Figure 8: This �gure plots, for each date (1965 to 2003) the estimated standard deviation of investment

rate, of pro�t rate, the autocorrelation of the pro�t rate and of the investment rate, as well as the

correlation between the investment rate and the pro�t rate, and the covariance between the current

pro�t rate and the next 3y growth rate of capital.
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Figure 9: This �gure plots, for each date (1965 to 2003) the estimated autocorrelation of the pro�t rate

(2 lags and 3 lags) and autocorrelation of the investment rate (2 lags and 3 lags).
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Figure 10: This �gure plots, for each date (1965 to 2003) the estimated standard deviation of the

investment rate, of the pro�t rate, and the correlation between the investment rate and the pro�t rate.

The green line is real GDP (hp �ltered). The correlation between each series and GDP is displayed on

each graph.
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Figure 11: This �gure plots, for each date (1965 to 2003) the estimated autocorrelation of the pro�t

rate, autocorrelation of the investment rate, and the covariance between the pro�t rate and 3y future

capital growth. The green line is real GDP (hp �ltered). The correlation between each series and GDP

is displayed on each graph.
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Figure 12: Estimated parameters: case of time-varying parameters (section 7). In each year, I repeat

the estimation exercise using the cross-sectional moments of that year. Estimates from the model with

permanent shocks but no AR1 shocks.
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Figure 13: Estimated parameters: case of time-varying parameters (section 7). In each year, I repeat

the estimation exercise using the cross-sectional moments of that year. Estimates from the model with

AR1 shocks but no permanent shocks.
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Figure 14: This �gure plots the policy function in the GE model of Section 6: this is the investment rate

I/K, which a function of k (capital scaled by the permanent shcok) and zt, the temporary productivity.
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