Introduction Theory Empirics

Natural Hazards, Growth and Risk-Transfer

An Empirical Comparison between Risk-Transfer-Mechanisms in Europe and the USA

Paul A. Raschky

University of Innsbruck Visiting Scholar - The Wharton School

May 8th 2008

∢ ≣ ▶

2002 flooding in Germany and Austria

- A low penetration of flood insurance coverage (among private homeowners) (\approx 10%)
- Governments (ad-hoc, catastrophe fund) incapable of providing sufficient relief
 - Austria: pprox 50% of damages covered by federal relief
 - Austria: average time span between damage and transfer of funds: 85 days
- Provision of federal relief is influenced by discretionary decisions by politicians *Rubber-boots-policies*
 - Germany: "Schroeder-Rule" financed by postponing a tax reform.
 - Austria: Reduction of public spending in other areas.

4 E b

Public discussion about implementing alternative (ex-ante) insurance systems

- Imperfections on market for flood insurance
- Various forms of existing mandatory insurance schemes
- Proposition: Ex-ante risk transfer mechanisms (e.g. mandatory insurance) are more efficient than ex-post policies (e.g. ad hoc governmental relief) (Kunreuther & Pauly 2006)
- "Case study evidence" Limitation on demand side (e.g. claim processing)
- Empirical evidence missing

< ∃ > _

Outline

- Panel-econometric analysis of the effects of floods on income
- Compare the effects of existing societal risk-transfer mechanisms against flood

Europe	USA
212 NUTS II - regions	3,085 counties
Mandatory Insurance	U.S. NFIP
Ad-hoc governmental intervention	Ad-hoc governmental intervention

• Presentation of results structured by sample

∢ ≣ ▶

Summary of Results

- Floods have a negative impact on income in flood year
- Floods have a positive impact on income in the year after the flood
- Mitigating effects of ex-ante risk-transfer mechanisms in the flood year (Europe & USA)
- Negative effects of ad-hoc governmental intervention in flood year (Europe & USA)
- NFIP counties follow a less volatile growth path in years following a flood (USA)

< ∃ >

Natural Hazards and Economic Development

Impact on Economic Growth

- + (Skidmore & Toya 2002)
 - Destruction of old (less productive) technology
 - Increase in total factor productivity
- - (Rasmussen 2004 Caribbean)

≣ ▶

Drawbacks of existing empirical studies

• Space:

- Analysis so far: Country-level
- Comparing a flood with the same spatial extent in the USA and Austria
- Assuming same absorptive capacity (e.g. infrastructure)
- \Rightarrow "The smaller, the better" regional units
 - Time:
 - Analysis so far: Long-run
 - Effect of x of disasters over n years
 - Omitted variables that account for dynamics over time (e.g. economic freedom, degree of federalism)
 - Higher frequency of disasters in the future? (IPCC 2007)
- \Rightarrow Analysis of short-run effects

∢ ≣ ▶

Disasters in an endogenous growth model

- Solow growth model and
- Economics of disaster management (Tol & Leek 1999)
- Derivation of panel-econometric growth function (Islam 1995)
- Negative effect of disaster
- Mitigating effect of risk-transfer (depending on level of coverage)
- Costs of risk-transfer (depending on coverage)

- 199 European regions (NUTSII) (EU15 + CZ, H, N, PL & CH)
- Yearly data 1980-2004
- European Regional Database, Cambridge Econometrics
- Eurostat
- 3,050 U.S. counties
- Yearly data 1970-2003
- Regional Economic Information System, BEA, U.S. Department of Commerce

< ∃ →

Hazard data

1. Historical flood events:

- Europe:
 - Major flood events
 - EM-DAT, CRED Brussels
- U.S.A:
 - Flood events on county level (Damage: >\$ 50.000)
 - Sheldus database, University of South Carolina

< ∃ →

Flood dummy:

- Incomplete Content of Content
- Oisaster damages are endogenous
- Second strate the second strate the second strate second s
- Iffects of an average flood

≣ ▶

2. Flood hazard distribution: (Robustness test)

- Magnitude of flood might differ between regions
- Controlling for regional exposure
- GIS-data on flood areas
- Calculation of regional (NUTSII or county) mean
- Cross section data! Interaction term
- Worldbank and Columbia University (Dilley et. al. 2005)

Risk-Transfer mechanisms

1. Ex-ante Risk-transfer mechanism

Variable	Benefits	Costs	Variation
Europe:			_
Mandatory insurance	+	n.a.	Countries
U.S.A:			
National Flood Insurance			
Program (NFIP)	+	-	Counties & Years

< ≣ >

æ

Risk-Transfer mechanisms

- 2. Ex-post discretionary political decisions
 - No (comprehensive) data on governmental relief on regional level available
 - Rubber-boots-policies:
 - Discretionary, "unbureaucratic" financial assistance
 - Generosity is higher in election years
 - \approx 50% of FEMA's disaster payments are politcally motivated (Garrett & Sobel 2003)

Election years as empirical proxy for discretionary federal disaster relief

< ∃ >

Risk-Transfer mechanisms

2. Ex-post discretionary political decisions

Variable	Benefits	Costs	Variation
Europe: Federal Election years	+	not directly in subsequent years	Country & Year
U.S.A: Federal Election years	+	not directly in subsequent years	Year
Presidential Election years	+	not directly in subsequent years	Year

≪ ≣ ≯

э

Empirical strategy: Europe

- Presence of lagged (endogenous) dependent variable (lny_{i,t-1})
- Large number of N (counties, regions) vs. small number of T
- \Rightarrow Dynamic panel models
- Lags of $Flood_{it}$, $Flood * Insurance_{it}$ as additional instruments for $(\ln y_{i,t-1})$
- Judson & Owen 1999: $T = 24 \Rightarrow$ One-step GMM-Diff estimator (Arellano & Bond 1991)

◆夏≯

Effects of flood events regional GDP in Europe, GMM-DIFF-estimator, 1980-2004

Dependent Variable Iny _{it}	1.1	1.2	1.3	1.4
$\ln y_{i,t-1}$	0.438***	0.438***	0.442***	0.437***
, .	(9.14)	(9.20)	(9.44)	(9.11)
Ins _{it}	0.182***	0.180***	0.181***	0.188***
12	(6.42)	(6.37)	(6.33)	(6.57)
Agricultureit	-0.097***	-0.096***	-0.096***	-0.098***
0 11	(-5.71)	(-5.71)	(-5.44)	(-5.55)
Service _{it}	0.136**	0.137**	0.160**	0.154**
12	(2.14)	(2.12)	(2.27)	(2.34)
Floodit	-0.004*	. ,	. ,	-0.006**
11	(-1.78)			(-2.36)
Flood; + 1	. ,	-0.000		. ,
7,1-1		(-0.08)		
(Flood * Exposure).		()	-0.001***	
((-3.09)	
(Flood * Insurance):			()	0.007*
((1.75)
Year FE	Yes	Yes	Yes	Yes
Number of obs.	4,277	4,277	4,277	4,277
Number of Instruments	194	194	184	205
$Prob > Chi^2$	0.000	0.000	0.000	0.000
Sargan	0.208	0.147	0.191	0.264
AR(1)	0.000	0.000	0.000	0.000
AR(2)	0.244	0.246	0.246	0.242
····(=)	0.244	0.2 10	0.270	0.2 72

▲御▶▲臣▶▲臣▶ 臣 のへで

Marginal effects of flooding and risk-transfer mechanisms European regions

	Flood _{it}	Flood _{i,t-1}	Flood * Exp _{it}	Flood _{it}
Marginal effect of	M.E.	M.E.	M.E.	M.E.
flood disasters	(Std.Err.)	(Std.Err.)	(Std.Err.)	(Std.Err.)
In regions without	-0.004*	-0.000	-0.001^{***}	-0.006**
risk-transfer	(0.002)	(0.002)	(0.000)	(0.003)
In regions with				0.000
risk-transfer				(0.003)

注▶ ★注≯ -

э

Marginal effects of flooding and election years in European regions

	Flood _{it}	Flood _{it}	Flood _{i,t-1}
Marginal effect of	M.E.	M.E.	M.E.
flood disasters	(Std.Err.)	(Std.Err.)	(Std.Err.)
In years without federal	-0.004*	-0.003*	0.004**
elections	(0.002)	(0.003)	(0.002)
In years with federal		-0.007**	-0.009***
elections		(0.003)	(0.003)

ヨト 米ヨト

æ

Empirical strategy: USA

- Presence of lagged (endogenous) dependent variable (lny_{i,t-1})
- Large number of N (counties, regions) vs. small number of T
- \Rightarrow Dynamic panel models
- Lags of $Flood_{it}$, $Flood * Insurance_{it}$ as additional instruments for $(\ln y_{i,t-1})$
- Judson & Owen 1999: $T = 30 \Rightarrow$ First-Difference estimator Anderson & Hsiao (1981)

◆夏≯

Empirical strategy: USA

- Income and Participation decision NFIP subject to reversed causality
- Endogenous treatment (Heckman 1978)
 - Probit regression on participation decision for every year
 - 2 Calculation of inverse Mill's ratio
 - **③** Mill's ratio as additional instrument for NFIP and Interaction term

< 三→ □

Results

The effects of floods on personal income in U.S. counties

Dependent Variable	FE	IV-FE	AH-FD
Iny _{it}	3.1	3.2	3.3
$\ln y_{i,t-1}$	0.658***	0.801***	0.127***
.,	(0.006)	(0.007)	(0.047)
In(Agric. Inc.it)	0.025***	0.023***	0.035***
	(0.001)	(0.001)	(0.001)
In(Pop. density) _{it}	0.013***	-0.002	0.047
	(0.002)	(0.002)	(0.030)
BEA Corr.	0.012***	0.015***	0.009***
	(0.001)	(0.001)	(0.002)
Flood _{it}	-0.005***	-0.005***	-0.004***
	(0.001)	(0.001)	(0.001)
(Flood * Insurance) _{it}	0.003***	0.002***	0.010***
	(0.001)	(0.001)	(0.003)
(NFIP) _{it}	0.002**	0.002**	-0.096***
	(0.001)	(0.001)	(0.007)
County FE	Yes	Yes	No
Year FE	Yes	Yes	Yes
Number of obs.	92,407	86.444	67,350
Prob >Chi ²	0.000	0.000	0.000
R ²	0.984		
Number of Instruments		38	34
Hansen J-Stat		0.662	0.213
Kleinbergen-Paap-Stat		0.000	0.000
1 st Stage F-Stat. Iny _{i.t-1}		121.83***	116.03***
1 st Stage F-Stat. (NFIP);+			178.00***
1 st Stage F-Stat. (Flood * Ins.) _{it}		1	, 845.43***

注入 不注入 …

Ξ.

Marginal effects of floodings and the NFIP in U.S. counties

	Flood _{it}	Flood _{i,t-1}	Flood * Exp _{it}	Flood _{it}
Marginal effect of	M.E.	M.E.	M.E.	M.E.
flood disasters	(Std.Err.)	(Std.Err.)	(Std.Err.)	(Std.Err.)
In regions without	-0.004***	0.007***	-0.001***	-0.005**
risk-transfer	(0.001)	(0.001)	(0.000)	(0.001)
In regions with				0.002***
risk-transfer				(0.001)

< 臣 > < 臣 > □

æ

Deviation from growth-path by risk-transfer system over time (U.S. sample)

Ξ.

Future Research

- Dynamic-Spatial-Panel estimates Effects of a flood in neighboring regions
- Decompose benefits into:
 - Pre-disaster: Incentives for prevention
 - Post-disaster: More efficient relief
- Costs of ex-ante risk-transfer mechanisms Cross section (Diff-in-Diff)

< ∃ →

Introduc	ction
Th	heory Results
Emp	pirics

paul.raschky@uibk.ac.at http://www.uibk.ac.at/publicfinance/

∢ ≣ ≯

э