GUY CARPENTER

John A. Major, ASA, MAAA <u>NBER Insurance Project Workshop</u> - May 8, 2008

On a connection between Froot-Stein and optimal dividends models

john.major@guycarp.com

Marsh & McLennan Companies

Objective

- "A credible, recognized capability to estimate and assess the shareholder value of risk in an insurance company."
- Collapse 2-D (risk, reward) to 1-D (reward)
- The "M-curve"

The M-curve (Froot, Venter, Major 2005) Shareholder value of the firm M as function of wealth W

GUY CARPENTER

Froot et al. model

Recursive definition of M-curve (Bellman Equation)

take money out
or put money in

$$M(W_t) = \max_{U} \begin{cases} M(W_t - \Delta D) + \Delta D, \\ M(W_t + \Delta C) - (1 + \kappa) \cdot \Delta C, \\ e^{-r \cdot \Delta t} \cdot E[M(W_{t+\Delta t}) | W_t, U] \end{cases}$$
or let it ride
with your best RM and capital strategy

The optimal dividends literature

- Still focused on analytical solutions (not ready for application)
- NO attempt to justify w.r.t. financial economics
 - *Little* explanation of relationship to M&M (just invoke DDM)
 - NO explanation of relationship to frictions, etc.

Simplest continuous-time example (circa 1960)

$$dW_{t} = \mu \cdot dt - \sigma \cdot dB_{t} - dD_{t}$$

Brownian Motion

GUY CARPENTER

8

My contribution

Represent evolution of W suitable for insurance

- Risk as jump-diffusion process
- Include XOL as risk management
- Develop software for numerical solution
 - -Fast enough, accurate enough
- Establish credibility by publishing in a *finance* journal

More sophisticated example (numerical solution only)

- Risk
 - Compound Poisson representing cats
 - Ratings "cliff"
 - Expected profit above
 - Expected loss below (but c/b lucky)
- Risk management
 - Available reinsurance: 1-XS-3 XOL layer
 - Premium 4.4x actuarial value
 - -Can buy and pay portion 0-100% (decision variable "U")
- Questions
 - Market value?
 - Optimal capital level?
 - -When, how much to use reinsurance?
- Solve at various levels of external capital cost factor κ

Solution (no ext. capital)

Franchise value M-W climbs rapidly around cliff, then levels off. Constant above W=15.4

Purchase reinsurance when W between 8, 10. Above, not worth it; below, not effective enough

Optimal capital = 15.4; dividend above that, retain earnings below. If W<2, go out of business.

Dividend back to left edge

GUY CARPENTER

Big picture: stacking all the M-Curves together

Big picture: stacking the capital and reinsurance strategies

14

Big Picture: Capital and Reinsurance Strategy

* Reinsurance purchase contours start at 0.1 on outside and increase by 0.1 at each inward step.

GUY CARPENTER

Experience to date

- 10s of models, 1000s of solutions
- Submitted to finance journals
 - -J. Finance, rejected in 5 days
 - -J. Risk & Insurance, sent back for revisions
- Sophisticated, paying customer
 - correct treatment of valuation rate (r) very important