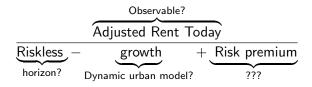
Illiquid Housing as Self-Insurance: The Case of Long-Term Care

> Tom Davidoff UC Berkeley


May 6, 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Overview

- 1. Important links: housing \Leftrightarrow old age actuarial products
- 2. Long Term Care Insurance Market
- 3. Illiquid home equity reduces demand for LTCI
 - Theoretically
 - Empirically
 - Simple correlation
 - quasi-experiment
- 4. Extension: 3-way interactions among:
 - Reverse mortgage
 - LTCI
 - Annuities
- 5. Conclusions:
 - Housing liquidity affects insurance demand
 - Insurance needs may affect housing and RM demand

Right Price for Housing?

- Risk premium
 - Big part of wealth so very positive?
 - But cash out infrequent, even in old age
 - Negative? Hedging demand (SS)

Age profile of owner housing From Annie Fang Yang

Figure 4: Housing consumption

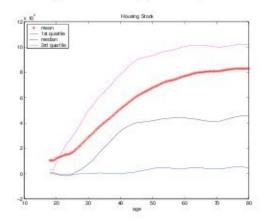


Figure 5: Housing consumption (quartiles)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Optimal Demand for Assets in General?

- Housing a dominant asset, correlated with labor income
- Need to know assets' covariance with a home's
 - Dividend
 - How do you measure dividend changes?

•
$$\frac{\partial^2 u(c_t,h_t)}{\partial c_t \partial h_t}$$
?

- Terminal value
 - $\blacktriangleright~\approx$ 50% of retirees die without selling
 - HRS retiree homeowners: $\frac{Equity}{Value} = 89\%$
 - Why not a bigger RM/HEL market? Not today

Today's Asset: Long Term Care Insurance

A major missing market

- Risk of \approx \$50,000/year
- ▶ 10-15% covered in HRS
- Up there with:
 - Reverse mortgage
 - Annuities
- Maybe these markets interact
 - Need to understand end of life to understand housing risks

Today: vice-versa

Why so little LTCI?

Existing Literature

- Moral hazard/adverse selection? (no, Finkelstein-McGarry)
- Medicaid + thin annuity market (Pauly, others)
 - But the rich? (Ameriks et al)
- Some other ideas (Lakdawala-Philipson: demographics)

Today: another explanation

Home Equity as self-Insurance

Similar: Chetty and Szeidl, Shore and Sinai

5 ω ശ utility 4 N 0 -200 -100 100 200 0

max(log(w-x)+1, log(w-x+h)) w = 250; h = 500

w-x

(日) (同) (日) (日)

э

Extending the analogy to LTCI

Does LTC trigger home sale per picture?

Home sale is highly correlated with LTCI See Venti & Wise; Walker, ...

	Lives in a Nursing Home in 2004?			
	No	Yes		
		Homeownership rate		
2004 Insurance				
Medicaid	76%	37%		
Private LTCI	95%	40%		
Neither	90%	30%		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

LTCI Demand with Illiquid Home Equity

Formalities: assumptions

Massive disutility to moving unless sick

- Sell if sick
- Don't sell if healthy
- Not a terrible approximation of HRS data
- No mortgage debt available
- One period to avoid thinking about savings decisions

- See extension for dynamic problem
- No bequest motive
- Stochastic taste for Medicaid care quality m
- Owners i = 1, Renters i = 0

Expected utility

$$U = \underbrace{u(w - t\pi, h, i)}_{\text{healthy: pay and stay}} + \underbrace{F(m*)v(w + t - x + hp)}_{\text{sick, hate medicaid, get insurance, sell}} + \underbrace{\int_{m*}^{\infty} [z(w + t, hp) + m] f(m)dm}_{\text{sick, ok w/ Medicaid, use for insurance, home?}}$$

٠

►
$$u_{11}, v'', z_{12} \leq 0$$

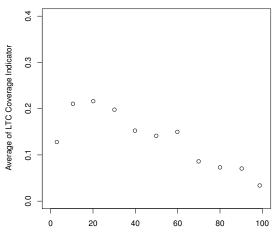
Comparative statics on quantity of insurance t

- Homeowners: $\frac{dt}{dp} < 0$ if
 - small $\frac{f(m*)}{F(m*)}$:
 - Medicaid effect hard to sign
 - utility under LTCI sufficiently risk averse
- Homeowners: $\frac{dt}{dh} < 0$ if also u_{12} not too negative

- Homeowners: Not easy to show $\frac{d^2t}{dpdh} < 0$.
- Renters: no clear effect of *p*.

If Anyone Is Curious

The first order condition for insurance can be written:


$$-\pi u_1(w - t\pi, h + [1 - i]p, i) + F(m*)v'(w + hp + t) + [1 - F(m*)]z_1(w + t, hp) = 0.$$
(1)

Differentiating (1), we have the following comparative statics for owners:

$$\frac{dt}{d\rho} = -h \frac{F(m*)\nu'' + [1 - F(m*)] z_{12} + f(m*) [\nu' - z_2] [\nu' - z_1]}{\pi^2 u_{11} + F(m*)\nu'' + [1 - F(m*)] z_{11} + f(m*) [\nu' - z_1]^2},$$
(2)

$$\frac{dt}{dh} = -\frac{-\pi u_{12} + \rho \left[F(m*)v'' + [1 - F(m*)]z_{12} + f(m*)[v' - z_2] \left[v' - z_1\right]\right]}{\pi^2 u_{11} + F(m*)v'' + [1 - F(m*)]z_{11} + f(m*)[v' - z_1]^2}.$$
(3)

First pass at empirical analysis HRS/AHEAD 2004 Wave

Home Equity as a Percentage of all Wealth

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

Empirical Challenges

- Want to show $\frac{\partial u^{Self} u^{LTCI}}{\partial hor p} > 0$
- Observe max(u^{Med} , u^{LTCI} , u^{Self}) == u^{LTCI}
- Spurious correlation problem:
 - Medicaid offers coverage
 - Medicaid treats home equity kindly
 - $\blacktriangleright \Rightarrow \mathsf{Medicaid}{\succ}\mathsf{LTCI} \text{ for high home equity}$
 - Home equity share correlated with poor

Empirical Test of Model

- OLS gives result (big vs small $\frac{h}{w}$) but idenitfied?
- Owners: $\frac{\partial t}{\partial p} < 0$.
- Renters: No such prediction
- Test via "triple difference" in
 - 1. LTCI coverage indicator
 - 2. by housing tenure
 - 3. by exposure to price changes
- Example:

Expect small difference: small Δp

ΔLTCI (Dubuque Owners - Dubuque Renters)

$$-\Delta$$
 LTCI (LA Owners - LA Renters)

Expect large difference: large Δp

Empirical Specification

 $\Delta LTCI_i =$

 $f\left(\beta_1H_i+\beta_2g_m+\beta_3H_ig_m+x_i\gamma_0+g_mx_{i1}\gamma_1+\gamma_2g_s+\gamma_3g_sH_i+\epsilon_i\right).$

Ordered Probit (some 1-way linear probability)

$$\Delta LTCI = \begin{cases} -1 & \text{Drop Coverage} \\ 0 & \text{Keep Coverage} \\ 0 & \text{Stay Without} \\ 1 & \text{Add Coverage} \end{cases}$$

- ▶ g_m: metropolitan growth
- ▶ g_s: state growth
 - State Medicaid policy
- Interactions with x_i
 - Only losers rent in Dubuque, not in LA?

Interpretation: a caveat

- Can't separate home equity from wealth
- Data: wealth highly positive
 - So we can interpret a negative coefficient per model?
 - Difficult to know where Medicaid wealth effect stops
 - And housing wealth is different from non- under Medicaid

Available interpretation: housing wealth crowds out LTC

HRS

- LTCI indicator 1998 and 2004
- Metro area (restricted)
- Own home?
- $\blacktriangleright~\#$ kids, wealth, marital status, income, education, health, \ldots
 - Important fact: no controls or interactions significant ...

- Except drinks per day (!?)
- Merge with OFHEO growth 1998-2004 (state, msa)

Summary Statistics

Variable (symbol)	Obs	Mean	Std. Dev.	Min	Max
Henry on Lar	0.000	05	0.4	0	7
Home value	2,823	.95	.84	0	
Own home (H)	2,823	.86	.34	0	1
Metropolitan appreciation 1998-2004 (gm)	2,823	1.45	.22	1.14	2.27
g _s	2,823	1.49	.22	1.21	1.95
Δ LTCI	2,823	.024	.33	-1	1
Add LTCI	2,493	.08	.27	0	1
Drop LTCI	330	.37	.48	0	1
Total assets	2,823	3.15	4.51	-1.73	43.92
Household Income	2,823	.40	.59	0	13.68
Age	2,823	71.40	6.18	62	92
Married?	2,823	.65	.48	0	1
No. Children	2,753	3.29	2.10	0	13
Yrs. Education	2,816	12.05	3.20	0	17
Female	2,823	.59	.49	0	1
Depression measure	2,693	1.22	1.63	0	8
Categorical self-assessment of health	2,823	2.66	1.013	1	5
Drinks per day	2,823	1.24	2.26	0	7
Smoke?	2,823	.10	.31	0	1

Main Ordered Probit Results

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
g _m (metropolitan growth)	0.984	1.399	-0.022	1.861	0.501	1.324	-0.540
	(0.256)**	(0.442)**	(2.489)	(0.915)*	(0.383)	(0.627)*	(0.249)*
Own	1.978	1.776	1.265	3.565	0.554		
	(0.553)**	(0.557)**	(0.708)	(1.416)*	(0.879)		
$Own \times g_m$	-1.220	-1.887	-1.584	-2.181	-0.263		
	(0.369)**	(0.580)**	(0.704)*	(0.958)*	(0.579)		
gs		-0.488	-0.407			-0.596	0.348
		(0.429)	(0.538)			(0.607)	(0.231)
Own $\times g_s$		0.784	0.758				
		(0.538)	(0.631)				
Observations	2,823	2,823	2,622	1,060	984	355	2,267
Controls	No	No	Yes	No	No	Yes	Yes
Controls $\times g_m$	No	No	Yes	No	No	No	No
Lower cut pt.	11	24	-3.37	1.28	88	.30	-3.38
	(.38)	(.39)	(10)	(1.33)	(.57)	(1.18)	(.62)
Upper cut pt.	3.11	2.99	11	4.35	2.53	3.93	15
	(.39)	(.40)	(3.69)	(1.34)	(2.54)	(1.19)	(.61)
Subset	Full	Full	Full	"Rich"	Single	Rent	Ówn

Results Support Home Equity Crowd Out

- Owners more likely to increase LTCI ...
- ...But less so where large growth
- ► Not because of state growth ⇒ Medicaid home equity policy (2)
- Not other stuff corr. w/ renter (3)
- Strong effect above median wealth, income (4) Medicaid??

- No effect among singles Medicaid? (5)
- Weird: significant + effect of g_m for renters (6)
- But also for owners (7)
- se's clustered at metropolitan level
 - Low correlation within couples !?

Some Other Results

One-Way Linear Probability

	(1)	(2)	(3)	(4)	(5)	(6)
	Àdd	Drop	Àdd	Drop	Àdd	Drop
g _m	0.118	-0.618	0.844	-0.362	0.009	-0.460
	(0.059)*	(0.278)*	(0.282)**	(0.380)	(0.058)	(0.508)
Own	0.291	-1.253	1.379	-0.769	0.081	0.254
	(0.103)**	(0.453)**	(0.379)**	(0.690)	(0.099)	(0.748)
$Own \times g_m$	-0.171	Ò.720 ´	-0.956	Ò.371	-0.033	-0.236
	(0.071)*	(0.313)*	(0.285)**	(0.402)	(0.066)	(0.533)
Constant	-0.130	1.455	-1.089	0.954 ⁽	0.014	1.214
	(0.084)	(0.402)**	(0.370)**	(0.653)	(0.085)	(0.712)
Observations	2,493	330	873	187	898	86
R-squared	0.01	0.03	0.02	0.02	0.01	0.10
Controls	No	No	No	No	No	No
Subset	Full	Full	Rich	Rich	Single	Single

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Results stand up
- Very small sample for Rich Drop
- Still nothing for singles

Extension: Add annuities

Different Paper: "Housing, Health, and Annuities"

- Annuities: great idea if bequest motive not strong
- Except they're illiquid and badly priced
- Emerging literature: fix both problems with LTCI combo
- What about housing?
 - ► Annuities: \$ today → \$ future(when old, likely sick)
 - LTCI: likewise
 - Home Equity: likewise
- Simulations:
 - No illiquid housing
 - Annuities better with LTCI
 - and vice-versa
 - Illiquid housing
 - Annuities subtract value only if combined with LTCI
 - Full LTCI bad, worse with annuities

Simulation setup

Caplin et al (Brown Finkelstein, ...) 4 health states

- Healthy (hate moving)
- Slightly ill (moving ok)
- LTCI (moving ok)
- Dead (NA)
- Expected utility

$$\sum_{t=62}^{101} \sum_{s=1}^{3} [1+\delta]^{62-t} q_{st} \left[\frac{\alpha h_{st}^{1-\gamma} + [1-\alpha] c_{st}^{1-\gamma}}{1-\gamma} - L(s) \times M_{st} \right]$$

.

Maximize w/ or w/out RM, fair LTCI, fair annuity

Simulation Calibration

Symbol	Meaning	Value(s)
α	housing share	.25
δ	discount rate	.03
r	interest rate	.03
γ	Curvature	2, 4
q _{st}	Health and survival prob.	per Robinson

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Numerical Results

Disutilit	y of	Liquid	Price	Risk	Mtg	Annuitized	LTCI	
Bankrupt	Move	Assets	Growth	Aversion	(\$)	(\$)	(%)	Value
-99	-99	100	0	2	200	0	0	0
-99	-99	100	0	2	200	0	100	94
-99	-99	100	0	2	200	50	0	6
-99	-99	100	0	2	200	50	100	160
-99	-99	100	0	2	0	0	0	0
-99	-99	100	0	2	0	0	50	4
-99	-99	100	0	2	0	0	100	-5
-99	-99	100	0	2	0	10	0	2
-99	-99	100	0	2	0	10	50	5
-99	-99	100	0	2	0	10	100	-6
-99	-99	100	0	2	0	50	0	11
-99	-99	100	0	2	0	50	50	4
-99	-99	100	0	2	0	50	100	-17
-99	-9	100	0	2	0	0	0	0
-99	-9	100	0	2	0	0	100	128
-99	-9	100	0	2	0	50	0	6
-99	-9	100	0	2	0	50	100	120
-99	-99	200	0	2	0	0	0	0
-99	-99	200	0	2	0	0	100	98
-99	-99	200	0	2	0	50	0	9
-99	-99	200	0	2	0	50	100	145
-99	-99	100	0	4	0	0	0	0
-99	-99	100	0	4	0	0	100	-5
-99	-99	100	0	4	0	50	0	11
-99	-99	100	0	4	0	50	100	-17

Conclusions

- Home Equity is crucial at T
 - Reverse mortgage an important market
- Optimal retirement product extremely complicated
 - Bundling Annuities and LTCI may not work well

- ► C-S/S-S "consumption commitments" a big deal
- Optimal life cycle behavior hard to characterize
 - For economists, too