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Abstract

Stockout events are a common feature of retail markets. When stockouts change
the set of available products, observed sales provide a biased estimate of demand. If
a product sells out, actual demand may be greater than observed sales, leading to a
negative bias in demand estimates. At the same time, sales of substitute products may
increase. Such events generate variation in choice sets, which is an important source
of identification in the IO literature. In this paper, we develop a simple procedure
that allows for variation in choice sets within a “market” over time using panel data.
This allows for consistent estimation of demand even when stockouts imply that the
set of available options varies endogenously. We estimate demand in the presence of
stockouts using data from vending machines, which track sales and product availability.
When the corrected estimates are compared with naive estimates, the size of the bias
due to ignoring stockouts is shown to be large.
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1 Introduction

Retail and service markets account for 30% of GDP and 48% of employment in the US,
yet most economic models assume that retail settings are unimportant for understanding
consumer demand and firms’ decisions. Specifically, most methods of demand analysis rely on
the assumption that all products are available to all consumers. While many industries, such
as automobiles and computer chips, have been successfully analyzed under this assumption
(Berry, Levinsohn, and Pakes 1995), research into many retail markets suggests that retail
settings are characterized by important deviations from this model. Specifically, “stock-
outs” of products, or periods where products are unavailable are common in many settings.
Furthermore, both producers and consumers identify product availability as an important
consideration in these markets. When the goods in question are perishable or seasonal, or
generally lack inter-temporal substitutability, management of inventory is not an ancillary
concern; it is the primary problem that firms address. When stockouts change the set of
available products, observed sales provide a biased estimate of demand for two reasons. The
first source of bias is the censoring of demand estimates. If a product sells out, the actual
demand for a product may be greater than the observed sales, leading to a negative bias
in demand estimates. At the same time, during periods of reduced availability of other
products, sales of available products may increase. This forced substitution overstates the
true demand for these goods.

The current class of discrete choice models prevalent in the IO literature is able to address
variation in the choice sets facing consumers across markets. In fact, variation in choice sets
across markets is an important source of identification in these models. In this paper, we
develop a simple procedure that allows for variation in choice sets within a “market” over
time using panel data. This allows for consistent estimation of demand even when stockouts
imply that the set of available options varies endogenously.

If the choice set facing the consumer were observed when each choice was made, correcting
demand estimates would be simple. However, in many real world applications inventories are
only observed periodically. This presents an additional challenge for estimation, because the
regime under which choices took place must be estimated in addition to parameters. Thank-
fully, this is a well understood missing data problem and the EM algorithm of Dempster,
Laird, and Rubin (1977) applies.

The dataset that we use tracks the sales of snack foods in vending machines located
on the campus of Arizona State University (ASU). Wireless observations of the sales and
product availability, along with numerous and repeated observations of stock-outs, make this
dataset well-adapted to the analysis of product availability.

When the corrected estimates are compared with the naive estimates, the size of the bias
is shown to be large, and the welfare implications of stockouts would be substantially mis-
measured with naive estimates. This paper focuses only on the static analysis of demand in
the presence of reduced product availability. It does not consider either dynamic interactions
or the problem of the retailer.
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2 Relationship to Literature

The differentiated products literature in IO has been primarily focused on two methodolog-
ical problems. The first is the endogeneity of prices (Berry 1994), and the second is the
determination of accurate substitution patterns. Berry, Levinsohn, and Pakes (1995) use
unobserved product quality and unobserved tastes for product characteristics to more flexi-
bly (and accurately) predict substitution patterns. The fundamental source of identification
in these models comes through variation in choice sets across markets (typically through the
price). Nevo (2001) uses a similar model to study a retail environment in his analysis of
the market for Ready to Eat (RTE) Cereal. Further work (Petrin 2002, Berry, Levinsohn,
and Pakes 2004) has focused on using interactions of consumer observables and product
characteristics to better estimate substitution patterns. Berry, Levinsohn, and Pakes (2004)
extend this idea even further and use second choice data from surveys in which consumers
are asked which product they would have purchased if their original choice was unavailable.
This paper’s approach is a bit different because consumer level stated second choice data
are unobserved, and substitution patterns are instead inferred from revealed substitution
by exploiting short-run variations in the set of available choices. Recently, there have been
several attempts made to present a fully bayesian model of discrete choice consumer demand
among them Musalem, Bradlow, and Raju (2006). While this paper uses a common Bayesian
technique to address missing data, it is not a fully Bayesian model.

There is also a substantial literature in IO on the dynamics of price and inventory.
Previous studies have looked at the effect of coupons and sales on future demand in terms of
“consumer inventories” (durable goods) (Nevo and Hendel 2007b, Nevo and Hendel 2007a,
Nevo and Wolfram 2002). And other studies have looked at the dynamic interaction between
retailer inventories (and the cost of holding them) and the markups extracted by the retailer
(Aguirregabiria 1999). While retailer inventories are explicitly modeled in the example we
examine, these sorts of dynamics are not an issue because the retailer does not have the
ability to dynamically alter the control (price or product mix). In fact, vending is a useful
industry to study product availability precisely because we need not worry about these other
dynamic effects.

Stock-outs are frequently analyzed in the context of optimal inventory policies in oper-
ations research. In fact, an empirical analysis of stock-out based substitution has been ad-
dressed using vending data before by Anupindi, Dada, and Gupta (1998) (henceforth ADG).
ADG use an eight-product soft-drink machine and observe the inventory at the beginning
of each day. The authors assume that products are sold at a constant Poisson distributed
rate (cans per hour). The sales rates of the products are treated as independent from one
another, and eight Poisson parameters are estimated. When a stock-out occurs, a new set
of parameters is estimated with the restriction that the new set of parameters are at least
as great as the original parameters. This means that each choice set requires its own set
of parameters (and observed sales). If a Poisson rate was not fitted for a particular choice
set, then only bounds can be inferred from the model. Estimating too many parameters is
avoided by assuming that consumers leave the machine if their first two choices are unavail-
able. ADG did not observe the stock-out time and used E-M techniques (Dempster, Laird,
and Rubin 1977) to estimate the Poisson model in the presence of missing choice set data.

2



This paper aims to connect these two literatures, by using modern differentiated product
estimation techniques to obtain accurate estimates of substitution patterns while reducing
the parameter space and applying missing data techniques to correct these estimates for
stockout based substitution.

2.1 Inventory Systems

When talking about inventory systems we use the standard dichotomy established by Hadley
and Whitman (1963). The first type of inventory system is called a “perpetual” data system.
In this system, product availability is known and recorded when each purchase is made. Thus
for every purchase, the retailer knows exactly how many units of each product are available.
This system is also known as “real-time” inventory.1

The other type of inventory system is known as a “periodic” inventory system. In this
system, inventory is measured only at the beginning of each period. After the initial measure-
ment, sales take place, but inventory is not measured again until the next period. Periodic
inventory systems are problematic in analyses of stock-outs, because inventory (and thus
the consumer’s choice set) is not recorded with each transaction. While real-time inven-
tory systems are becoming more common in retailing environments thanks to innovations in
information technology, most retailers still do not have access to real-time inventory data.
However, periodic inventory systems can be used to approximate perpetual data. As the size
of the sampling period becomes sufficiently small, periodic data approaches perpetual data.
In the limit where the inventory is sampled between each transaction, this is equivalent to
having real-time data. These two points become very important in the estimation section.

Sampling inventory more frequently helps to mitigate limitations of the periodic inventory
system. However, the methodological goal of this paper is to provide consistent estimates of
demand not only for perpetual inventory systems but for periodic ones as well.

3 Model

A typical starting point in discrete choice models is to begin by writing down a consumer’s
utility function. However, instead of doing that we consider what the observed data look
like, and try to write down an expression for the likelihood. Assume that the observed
data are broken up into time periods t = 1, 2, . . . , T and that products are denoted by the
subscript j = 1, 2, . . . , J . For each product, denote yjt as the quantity sold of the product j
in period t. It is important to note that the precise order of sales may be unobserved, with
only aggregate data available for each period t.

We assume that in each period t, and there are Mt potential consumers.2 This is a typical
assumption in the differentiated products literature (Mt is often based on census data such
as in Berry, Levinsohn, and Pakes (1995) or Nevo (2001)). In this section we assume that
the set of available products at is constant within a period. We relax this assumption in the
next section.

1Note that if sales are recorded in the order they happen, this would be sufficient to construct an almost
“perpetual” inventory system (assuming consumers do not hold goods for long before purchasing an item).

2This assumption can be relaxed later.
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Assumption 1. (Discrete Choice) Each of the Mt consumers in period t must either choose

some product j ∈ at or the outside good j = 0.

Assumption 2. (Independence of Consumers) Each consumer’s preferences are independent

of other consumer’s preferences (and choices) and each set of preferences is the realization

of an i.i.d. draw from some stable population distribution (perhaps conditional on some xt)

Assumption 1 states that each of the Mt consumers face a choice: they may buy exactly
one product j in the set at of products available in their market, or they may choose to
buy nothing at all. If Mt is known, then so is the number of consumers who did not buy a
product. The outside good is denoted y0t = Mt −

∑
j∈at

yjt.
Assumption 2 is not a new assumption to this literature either. It implies that consumer

preferences are independent of one another. This may seem contrary to the nature of stock-
outs but it isn’t. Stockouts highlight the important distinction between the primitives, the
underlying (latent) preferences of consumers, and the observable purchase decisions. As-
sumption 2 requires that preferences are i.i.d. draws from the distribution of preferences,
while the observed decisions are realizations not only of preferences, but also of choice sets,
which can be dependent on the preferences (and decisions) of other consumers. In analyses
where stockouts are not directly addressed these are often conflated.

Assumption 2 also means that the population of consumer preferences we’re sampling
from cannot change within a period of observation. If such a change were to happen we
can only make inferences about the overall mixture, not its components. For example, if we
observed data on sales from 4-8pm, and at 5pm the population of consumers changes, then
we can’t necessarily draw conclusions about the different preferences of the two consumer
groups, but we can estimate the overall distribution of preferences in the population. This
sort of heterogeneity can be addressed in our approach (as part of the observable xt), but
not within a single period of observation. This does not mean that there is no room for
unobservable heterogeneity–consumer preferences can be explained by a distribution–but
conditional on an (θ, xt), that distribution must be the same.3

For simplicity, let yt = [y0t, y1t, y2t, . . . , yJt]. Then for each market, the data provide
information on (yt, Mt, at, xt) where xt is some set of exogenous explanatory variables. By
using Assumptions 1 and 2 we can consider the probability that a consumer in market t
purchases product j as a function of the set of available products, the exogenous variables,
and some unknown parameters θ. This probability is given by

pjt = pj(θ, at, xt) (1)

The key implication of assumptions 1 and 2 is that pjt is constant within a period and does not
depend on the realizations of other consumers’ choices yijt. Another immediate implication

3This is not a new limitation for the discrete choice literature, but it is more salient when we try to
use the discrete choice approach for obtaining high frequency estimates of consumer demand. Previous
studies have relied on annual or quarterly data. In these sorts of datasets it is pretty clear that for each
observation, short-term heterogeneity in the population gets “averaged out” in the overall distribution of
consumer preferences.
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is that we can reorder the unobserved purchase decisions of individual consumers within a
period t. Now, we apply assumption 2 again and the fact that Mt is known to write the
likelihood function as a multinomial with parameters n = Mt, and p = [p1t, p2t, . . .]

f(yt|θ, Mt, at, xt) =

(
Mt!

y0t!y1t!y2t! . . . yJt!

)
py0t

0t py1t

1t . . . pyJt

Jt

= C(Mt,yt)p
y0t

0t py1t

1t . . . pyJt

Jt

∝ py0t

0t py1t

1t . . . pyJt

Jt (2)

Thus f(·) defines a relative measure of how likely it is that we saw the observed data yt given
the parameter θ. An important simplification arises from the fact that the combinatorial
term C(Mt,yt) depends only on the data, and does not vary with the parameter θ. We add
a third assumption that is also quite standard in this literature.

Assumption 3. (Independence of Periods/Locations) Each period t is independent of other

periods, such that for a given θ, pj(θ, at, xt) is the same function across t and depends only

on at the set of available products (as well as the exogenous variables xt).

One way to look at this is an identification condition on pj(θ, at, xt), that it is fixed and
completely characterized by its parameters.4 This assumption now lets us consider the joint
likelihood of several periods as the product of f(yt|θ,Mt) over all periods t = 1, 2, . . . , T . In
the shorthand notation below, boldface denotes vectors over all periods t. Thus we define
y = [y1,y2, . . . ,yT], M = [M1, . . . ,MT ], a = [a1, . . . , aT ], and x = [x1, . . . , xT ].

L(y|θ,M, a,x) =
∏
∀t

C(Mt,yt)p
y0t

0t py1t

1t . . . pyJt

Jt

∝
∏
∀t

∏
∀j∈at

p
yjt

jt (θ, at, xt)

l(y|θ,M, a,x) ∝
∑
∀t

∑
∀j∈at

yjt ln pj(θ, at, xt) (3)

Given a function p(·) known up to a set of parameters θ we can now consider estimat-
ing this model by maximum-likelihood type procedures. With this in mind we provide a
straightforward result for sufficient statistics required in estimation.

Theorem 1. If pjt is a deterministic function of the set of available products and the un-

known parameters (and some observable exogenous xt), and at is constant across a period t,

then for some at = a, qa,x =
∑

t:at=a,xt=x yt is a sufficient statistic for the contribution of

Ta,x = {t : at = a, xt = x}’s contribution to the likelihood.

4A formal identification condition requires that the set of pj(θ, at, xt)’s are uniquely generated by a θ.
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Proof:

Since (at, xt) are fixed within the period t we have:

l(y|θ,M, a,x) ∝
∑
∀t

∑
∀j∈at

yjt ln pj(θ, at, xt)

=
∑
∀(a,x)

∑
∀t:(at,xt)=(a,x)

∑
∀j∈at

yjt ln pj(θ, a, x)

=
∑
∀(a,x)

∑
∀j∈a

ln pj(θ, a, x)
∑

∀t:(at,xt)=(a,x)

yjt

=
∑
∀(a,x)

∑
∀j∈a

qj,a,x ln pj(θ, a, x) (4)

Corollary to Theorem 1. Since the likelihood is additively separable in the sufficient statis-

tics qa, the sums qa can be broken up in an arbitrary way, including one sale at a time, as

it will not affect the likelihood so long as the sales are of the same (a, x) regime. It is also

clear that within an (a, x) regime the order of sales does not affect the sufficient statistic qa,x

4 Adjusting for Stockouts

4.1 Perpetual Inventory

We now consider the case where availability is observed for all sales (the case of perpetual
inventory) and relax the assumption that at (the set of available products) is constant across a
time period. Instead suppose a stockout occurs in the middle of a period t. Since inventory
is observed, the “period” can be divided into two smaller periods of constant availability
(before and after the stockout) which we denote (at, a

′
t). This case is illustrated in figure 1.

We now know which sales to assign to the pre-stockout regime and which sales to assign to
the post-stockout regime (since we observe inventory always). We can see this by introducing
the subscript l which denotes a single consumer. Though we might not observe the order in
which the consumers make purchases, perpetual inventory implies that (yl, al, xl) is known.5

If we return to our likelihood equation we see that it remains unchanged when we consider

5Technically we also have that xl = xt, that the observables don’t vary across individuals, which can be
relaxed with micro data, and perhaps otherwise, but is beyond the scope of this paper.
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a′
t

at

Observation Stockout

yjt
qa,x qa′,x

Observation

Figure 1: For perpetual inventory, sufficient statistics are directly observed.

a′
t

at

Observation ObservationStockout

yjt
(qa,x + qa′,x)

Figure 2: For periodic inventory, sufficient statistics are unobserved.

single consumers instead of time periods (Corollary 1).

l(y|θ,M, a,x) ∝
∑
∀t

 ∑
∀j∈at

ln pj(θ, at, xt)
∑

∀l:(al,xl)=(at,xt)

yjl +
∑
∀j∈a′t

ln pj(θ, a
′
t, x)

∑
∀l:(al,xl)=(a′t,x)

yjl


l(y|θ,M, a,x) ∝

∑
∀(a,x)

∑
∀j∈a

ln pj(θ, a, x)
∑

∀l:(al,xl)=(a,x)

yjl

=
∑
∀(a,x)

∑
∀j∈a

qj,(a,x) ln pj(θ, a, x) (5)

The sufficient statistic representation makes it clear that all we need to observe are the
aggregate sales of each product qj,a,x for a given (a, x) regime. In other words, so long as the
sales are attributed to the correct choice set, we can hope to estimate p(·).

4.2 Periodic Inventory

As has already been discussed, many retail environments observe inventories periodically.
This presents additional challenges when investigating stockouts, because thus far we’ve
relied on the fact that the choice set a was observed when each sale was made. Now if a
stockout takes place in period t, the availability is known only at the beginning and the end
of the period. Like in the perpetual case, we could denote the set of available choices at the
beginning of period t by at, and the set remaining at the end of t by a′t. What we’d like to
do is assign the sales in period t to each (at, a

′
t) regime, but because inventory is observed

only periodically, we can’t. As illustrated in figure 2, we do not observe which sales occurred
during at and which during a′t. Instead we observe only the sum, yjt = qat,xt + qa′

t,xt .
A natural division for the dataset is to label each period t as a period of fully observed
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availability, t ∈ Tobs or a period where availability is only partially observed, t ∈ Tmis. For
periods where availability is fully observed (complete data), at is known and is constant
across the period t. For periods where availability is partially observed (incomplete data),
we only know that at at the beginning and the end of the period, and that it takes on values
in some sequence of availability sets [as, a

′
s].

6 More formally, we can break up the dataset
along this partition:

Tobs = {t : at = as}
Tmis = {t : at = [as, a

′
s]}

We can break up the observed sales yt along the same partition where yobs = {yt : t ∈ Tobs}
and ymis = {yt : t ∈ Tmis}. We recall that (3) gave us the nice property that the log-
likelihood function was linear in periods, t. This lets us rearrange terms so that we can
partition the log-likelihood into the complete and incomplete data contributions:

l(y|θ,M) ∝
∑

∀t

∑
∀j∈Jt

yjt ln pjt(·) (6)

=
∑

∀t∈Tobs

∑
∀j∈Jt

yjt,obs ln pj(θ, at, xt)︸ ︷︷ ︸ +
∑

∀t∈Tmis

∑
∀j∈Jt

yjt,mis ln pjt︸ ︷︷ ︸ (7)

= lobs(yobs|θ,M) + lmis(ymis|θ,M) (8)

It’s easy to see that the first term lobs(·) is just the complete data contribution to the log-
likelihood, and it doesn’t differ at all from the case with perpetual inventory or no stockouts.
In fact, computing qa,x for that segment of the dataset is straightforward, and proceeds just
like the perpetual inventory case. The second term lmis(·) is more difficult to deal with,
because we do not observe the set of available products and the choice probabilities from
(1) can no longer be written as pjt = pj(θ, at, xt). Another way to look at this is to see that
in this scenario that the sufficient statistic qa,x is no longer known, since sales occur that
cannot be matched to a single a regime. This is what’s known as a missing data problem.

The question becomes, “Precisely which data are missing?” One might be inclined to
treat the sales yt as observed and the availability regimes (and pj(θ, at, xt)) as unobserved,
however, the correct approach is to consider the sufficient statistics and realize that while
yt, at, a

′
t are observed qmis,a,x are not. In other words, the sales under each availability

regime are missing (though we know their sum). In fact, in most discrete choice problems,
we can think about individual purchases as being missing data.7 We don’t usually worry
about the missing data problem in that context, because while the individual purchases are
not directly observable from aggregate data, the sufficient statistics are.8 However, in the
case of stockouts with periodic inventory, not only are individual purchases not observed,

6It is clear that perpetual inventory represents the special case where all t ∈ Tobs and Tmis = ∅.
7This issue is addressed in the case of aggregate data (but without stockouts) by Musalem, Bradlow, and

Raju (2006).
8An important exception is when we have micro data, then sufficient statistics vary with consumer

observables xt, and the identities of consumers matter.
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but neither are the sufficient statistics.

Incorporating Missing Data

One way to deal with a missing data problem is to to ignore lmis(·) and just do estimation
on the lobs(·) part. This is akin to throwing away the observations ymis and just doing
estimation when the set of available products is fully observed. There’s a large literature on
when this strategy leads to consistent estimates (Rubin 1976) . In the multinomial case, so
long as discarding the data doesn’t affect the distribution of the sufficient statistics, ignoring
the missing data should only lead to a loss of efficiency, not inconsistency.

However, it is easy to see that the sufficient statistics are affected by discarding the
missing data, with the following example: Consider the product that stocks out. If it has
capacity ω, then if the data are observed we know that q < ω, and if the data are discarded
we know that q = ω. Thus the sufficient statistic clearly depends on the “missingness”
of the data. Therefore, by ignoring the missing data, we would expect to systematically
underestimate demand for products which stock out.

Another approach is to replace lmis(·) with some consistent estimator that is computable.
One can replace lmis(·) with its expectation by integrating it out over all possible values of
the missing data. The typical notation here is:

Q(θ) = lobs(yobs, θ) + E[lmis(ymis, θ)]

It’s now possible to maximize Q(θ) by choosing the best θ via ML. By iterating back and
forth between computing the expectation of lmis(·) and maximizing Q(θ), our estimate will
eventually iterate to a fixed point. This is the well-known EM Algorithm. Dempster, Laird,
and Rubin (1977) prove several properties about EM, namely that it consistently converges
to the ML value, and that it does so monotonically (so that each iteration between computing
the expectation of the missing data contribution and the complete data likelihood increases
the likelihood function). We typically superscript EM iterations with k. To compute the
next iteration of the EM algorithm (k + 1), we use the estimate of θ from the kth iteration,
θk, to evaluate the expectation of missing data’s contribution to the log-likelihood.

The EM algorithm has a long history in the context of multinomial likelihoods (Hartley
1958), because computing the expected contribution of the missing data is straightforward.
Once again, the fact that the log-likelihood is linear in the data yjt and the sufficient statistics
qa,x, simplifies the computation dramatically.

E[lmis(ymis(θ
k,yobs)|θk−1] = E

 ∑
∀t∈Tmis

∑
a∈{at,a′t}

∑
∀j∈a

yjt,mis ln pj(θ, a, xt)|θk


=

∑
∀t∈Tmis

∑
at∈{at,a′t}

∑
∀j∈a

E(yjt,mis|θk) ln pj(θ, a, xt) (9)

The previous equation shows that in order to evaluate the likelihood, we do not need to
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integrate out over all possible values of the missing data, instead linearity implies we can
simply plug in the expected sufficient statistic. We can also define the augmented dataset,
yaug(θ

k) = [ŷmis(θ
k),yobs], and see that the adjusted likelihood function is the same as the

likelihood function which treats the augmented dataset as the complete data (again via
linearity). Therefore it is possible to estimate the parameters θ by maximum likelihood.

θ̂k+1 = arg max
θ

Q(θ)

= arg max
θ

lobs(yobs, θ) + E[lmis(ymis, θ)]

= arg max
θ

T∑
t=1

l(θ|yaug(θ
k)) (10)

(This is the M-Step.)
At this point, we must derive an expression for the expectation of the missing data. We

consider the case where in period t product k stocks out, and assume that Mt potential
consumers are in our market in period t so that mt ≤ Mt of them face choice set at and
Mt−mt of them face choice set a′t. For notational convenience we let αt = mt

Mt
be the fraction

of consumers not affected by the stockout. It becomes clear that for some product j 6= l that
conditional on yjt the overall sales observed for that time period, the sales are distributed
binomially across the two regimes.9 In fact the number of sales before and after the stockout
(for a single period) are:

qj,a,xt,t ∼ Bin

(
yjt,

αtpj(θ, at, xt)

αtpj(θ, a, xt) + (1− αt)pj(θ, a′, xt)

)
E[qj,a,xt,t] = yjt

αtpj(θ, at, xt)

αtpj(θ, a, xt) + (1− αt)pj(θ, a′, xt)
(11)

E[qj,a′,xt,t] = yjt − E[qj,a,xt ] (12)

The last two expressions represent the contribution of the period t to the sufficient statis-
tic qa.x. Given values of θ, and αt it is easy to compute these expectations. We’ve already
discussed using how to update θk iteratively, so all that remains is to address αt. We don’t
know the true value of αt, and there are typically three ways to handle this. The standard
E-M approach is to specify a distribution for αt and integrate it out. Another approach is to
add an additional step to our iterative procedure where we draw αt from its marginal distri-
bution, and treat it as data for the E- and M-steps (this is akin to a Gibbs Sampler/MCMC).
The third approach is to treat αt not as missing data, but rather as a parameter to be es-
timated, and choose the value of αt which best improves the likelihood. All three of these
methods are going to have tradeoffs between how many E-M iterations are required for
convergence and how long each iteration takes.10

9It is important to highlight that this is not an assumption. This follows representationally, from As-
sumptions 1-3 and our underlying multinomial DGP.

10For a fully Bayesian MCMC approach (such as the Gibbs Sampler) we won’t actually reach a fixed point
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The standard E-M approach is to integrate out the αt’s. Notice this is much easier
than integrating the entire likelihood, we only need to integrate to compute the (single
dimensional) expectation in (11). In order to do this we must specify a distribution for αt.
Consider mt is the number of consumers facing choice set at which must be determined by
the product l that stocks out. We can look at this as the number of consumers before ql,a,xt

bernoulli trials are successful given it must be less than Mt consumers. This is the definition
of the conditional negative binomial.11 Therefore we can write,

αt

Mt

= mt ∼
NegBin(ql,a,xt , pl(θ, a, xt))

NegBinCDF (Mt, pl(θ, a, xt))
= w (mt|ql,a,xt , Mt, pl(θ, a, xt))

Since this is a discrete distribution we can compute the expectation over all mt ≤ Mt

using the w(αt|(·)) as p.m.f. weights by taking the sum

E[qj,a,xt ] =
Mt∑

mt=0

yjt
mtpj(θ, at, xt)

mtpj(θ, a, xt) + (1−mt)pj(θ, a′, xt)
w(mt|(·)) (13)

(This is the E-Step.)12

The other way to handle αt is to exploit the duality in the Bayesian world between
parameters and missing data to estimate αt. We can consider the partial likelihood of each
period lt(·), and choose the αt which maximizes it’s contribution to the likelihood function.
This is particularly convenient because αt does not effect the partial likelihood of other
periods ls(·) for s 6= t, likewise αt only enters the E[yjt] and combinatorial terms of the
likelihood, and never any terms involving θ. That means we can divide our parameter space
and condition out on αt when searching for θ and vice versa. Even though there are many
αt’s to find now (one for each period with missing data), the computational burden is not
that bad because it is sufficient to do several hundred single dimensional optimizations which
is orders of magnitude easier than a single large dimensional optimization problem. This
algorithm typically takes more time per iteration than the E-step estimator above, but fewer
iterations to achieve convergence. When such separation of parameter space is possible this
is a variant of the EM algorithm often referred to as ECM (Liu and Rubin 1994), and has
natural analogues to fully Bayesian (MCMC) approaches.
(This is the C-Step).13

By alternating between imputing the missing data (E-Step) and maximizing the (log)likelihood
function (M-Step) it is possible to obtain estimates for parameters (θ, α) which increase like-
lihood monotonically until reaching a fixed point.

but rather a stationary distribution.
11This is once again not an assumption on the process but rather a consequence of the multinomial DGP.
12The multiple stockout case proceeds analogously, although it relies on the multivariate generalization

of the negative binomial, the negative multinomial, and involves more than one sum. The approach can
be extended to deal with many unobserved stockouts, the technical details of which are presented in the
Appendix.

13This was explored in response to a comment Jack Porter made about a previous version.
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5 Estimation

5.1 Parametrizations

All that remains is to specify a functional form for pj(α, at, xt). In this section we’ll present
several familiar choices and how they can be adapted into our framework. In any discrete
model, when n is large and p is small the poisson model becomes a good approximation for
the sales process of any individual product. The simplest approach would be to parameterize
pj(·) in an semi-nonparametric way:

pj(θ, at, xt) = λj,at

Then, the ML estimate is essentially the mean conditional on (at, xt). This is more or less
the approach that Anupindi, Dada, and Gupta (1998) take. The advantage is that it avoids
placing strong parametric restrictions on substitution patterns, and the M-Step is easy. The
disadvantage is that it requires estimating J additional parameters for each choice set at

that is observed. It also means that forecasting is difficult for at’s that are not observed in
the data or are rarely observed. It highlights issues of identification which we will address
later.

A typical solution in the differentiated products literature to handling these sorts of
problems is to write down a random coefficients logit form for choice probabilities. This still
has considerable flexibility for representing substitution patterns, but avoids estimating an
unrestricted covariance matrix. What’s also nice is that this family of models is consistent
with random utility maximization (RUM). If we assume that consumer i has the following
utility for product j in market t and they choose a product to solve:

arg max
j

uijt(θ)

uijt(θ) = δjt(θ1) + µijt(θ2) + εijt

Where δj is the mean utility for product j, µij is the individual specific taste, and εijt is
the idiosynchratic logit error. It is standard to partition the parameter space θ = [θ1, θ2]
between the linear (mean utility) and non-linear (random taste) parameters. This functional
specification produces the individual choice probability, and the aggregate choice probability

Pr(k|θ, at, xt) =
exp[δk(θ1) + µik(θ2)]

1 +
∑

j∈at
exp[δj(θ1) + µij(θ2)]

This is exactly the differentiated products structure found in many IO models (Berry
1994, Berry, Levinsohn, and Pakes 1995). These models have some very nice properties. The
first is that any RUM can be approximated arbitrarily well by this “logit” form (McFadden
and Train 2000). This also means that the logit (µij = 0) and nested logit models can be
nested in the above framework. For the nested logit, µijt =

∑
g σgζjgνig, where ζjg = 1 if
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product j is in category g and 0 otherwise, and νig is standard normal. For the random
coefficients logit of BLP, µijt =

∑
l σlxjlνil, where xjl represents the lth characteristic of

product j and ν is standard normal. In both models, the unknown parameters are the
σ’s. This representation makes it clear that the nested logit is a special case of the random
coefficients logit.

The second advantage of these parametrizations is that it is easy to predict choice prob-
abilities as the set of available products changes. If a product stocks out, we simply adjust
the at in the denominator and recompute. A similar technique was used by Berry, Levin-
sohn, and Pakes (1995) to predict the effects of closing the Oldsmobile division and by Petrin
(2002) to predict the effects of introducing the minivan. The parsimonious way of addressing
changing choice sets is one of the primary advantages of these sorts of parameterizations,
particularly in the investigation of stockouts.

When there is sufficient variation in the choice set, Nevo (2000a) shows that product
dummies may be used to parameterize the δjt’s. When we include product dummies it
allows us to rewrite the δ’s as:

δjt = Xjβ + ξj︸ ︷︷ ︸ +ξt + ∆ξjt

= dj +ξt + ∆ξjt (14)

where dj functions as the product “fixed-effect”. If we have enough observations, we can
also include market specific effects to capture the ξt. This changes the interpretation of
the structural error ξ, which is traditionally the unobservable quality of the good. The
remaining error term ∆ξjt is the market specific deviation from the mean utility. Nevo
(2000a) points out that the primary advantage is that we no longer need to worry about the
price endogeneity and choice of instruments inside our optimization routine, while the mean
tastes for characteristics β (along with the ξj’s) can be captured by a second-stage regression
of dj on Xj.

This highlights some important consequences for our study of stockouts. We expect
products which stock out to have higher than average ξjt’s. Therefore, if we discard data
from periods where stockouts occur, this is akin to violating the moment condition on ∆ξjt

as we are more likely to discard data from the right side of the distribution than the left.14

Likewise, if we estimate assuming full availability, stocked out products should have large
negative ∆ξjt’s (since they have no sales at all), which once again violates the moment
condition on ∆ξjt.

5.2 Heterogeneity

Thus far, we’ve done everything conditional on xt. In one sense, this is useful to show that our
result holds for the case of conditional likelihood, but it is also of practical significance to our
applied problem. Since periods in our dataset are short, it is likely that choice probabilities
may vary substantially over periods. Over long periods of time (such as annual aggregate

14This correlation may not be as strong as one might expect because stockouts are also correlated with
low inventory, which should be uncorrelated (perhaps even slightly negatively) with ∆ξjt.
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data) these variations get averaged out. The distribution of tastes over a long period is
essentially the combination of many short-term taste distributions. We only observe what
we estimate, so usually that is the long run distribution. With high frequency data we are
no longer so limited and can address this additional heterogeneity by conditioning on xt. We
might think that xt includes information such as the time of day, day of the week, or location
identifiers. Depending on how finely data are observed, not accounting for this additional
heterogeneity may place a priori unreasonable restrictions on data.

We can model this dependence on xt in several ways. One is to treat p(·|xt) as a different
function for each xt. In other words we could think about each location having its own
distribution of tastes, and parameters θ. We could also imagine a scenario where all markets
faced the same distribution of consumers, but that distribution varied depending on the day
of the week. In this approach xt can be thought of as the demographic covariates used in
the differentiated products literature (Petrin 2002, Nevo 2000a), or as consumer level micro-
data (Berry, Levinsohn, and Pakes 2004), but need not be limited as such. Another way we
could think about the xt are as characteristics of consumers. Some of the parameters in θ
might be fixed over xt’s while others depend on xt. A good example might be to think that
the correlation of tastes is constant across all populations but the mean levels are different.
When we present the estimates we explore several different such dimensions of heterogeneity.

The other approach we can take is to parameterize M , based on information similar to the
information we’ve incorporated in the xt’s. Thus instead of letting the choice probabilities
vary, we could let the number of consumers passing by the machine vary. This becomes
helpful because M is going to be the driving force behind substitution to the outside good.
It also allows for a common shock across periods without affecting the choice probabilities. In
markets with retail data, this can be extremely useful as a way of adjusting for seasonality,
holidays, or other events which might have an affect on the effective size of the market.
Parameterizing M has a long history in the literature (Berry 1992). In practice, it’s pretty
easy, and can be considered as a (C-Step). At each iteration we simply find the parameter
values for M which maximize the likelihood conditional on the (θ, α). We don’t worry
about simultaneity because the likelihood factors in M . Once again this approach begins to
resemble a fully Bayesian MCMC approach. We present some specifications for M with the
estimates.

5.3 Identification of Discrete Choice Models

In this section we address non-parametric and parametric identification of the choice proba-
bilities pj(θ, at, xt), while still continuing to assume the underlying d.g.p. is multinomial. The
goal is not to provide formal identification results, but rather to provide a clear exposition
so that the applied researcher can better understand the practical aspects of identification
in the discrete choice context. For the quite general formal results, the standard reference is
Matzkin (1992).15

15Athey and Imbens (2006) provide some related identification results for the fully Bayesian MCMC
estimator for these sorts of models. As already discussed our approach could be computed using such an
MCMC approach as well.
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Nonparametric identification is easily addressed by our qa,x sufficient statistic representa-
tion. For a given (a, x), the sufficient statistics must be observable, moreover the efficiency
is roughly going to go as

√
na,x where na,x are the total number of consumers facing (a, x).

Unless every (a, x) pair in the domain is observed (and with a substantial number of con-
sumers) the conditional mean (semi-nonparametric) representation of our pj(θ, at, xt)’s will
most likely not be nonparametrically identified.

Typically we use the random coefficients parameterization presented above, so we’re more
worried about whether that is going to be parametrically identified. One approach might
be to assume a smooth functional form for pj(·) and then use delta method arguments to
do a change of variables to the parameterized version, but a heuristic sufficient statistics
based argument may be easier to understand (and hopefully more useful) for the applied
researcher.

The typical source of identification in the differentiated products literature is by long run
variation in the choice set. For this to be useful as a source of identification, these variations
must be exogenous to the model. Thus we could think about each “observation” as being
the qa,x sufficient statistics we’ve presented in this paper. The way to think about these
models is to compute the effective number of qa,x “observations” and compare them to the
parameters we’re hoping to explain. We can see this by constructing a matrix of observables
which describes each qa,x. In many discrete choice models these may be characteristics,
product dummies, time dummies, of the available products. For nonlinear effects, (tastes for
example), interaction terms should also be included. If we want to see if we can estimate all
of those parameters, we could think about determining whether or not our “data” matrix is
of full-column rank. We also see that many of our observations will have the same descriptive
variables, and thus will be linearly dependent. Once again the qa,x representation makes this
quite clear, as we don’t have additional observations but rather our additional observations
get added into the sum of qa,x (which may improve efficiency but not allow us to identify
additional parameters). Stockouts are useful, particularly when trying to identify product
dummies, because they provide linearly independent observations of qa,x. If we only ever
observe a change from choice set a → a′ (suppose the only product that ever stocks out is
Snickers), then we only have two effective “observations”. If we observe lots of stockouts
and different choice sets, then we have the potential to observe J × (J − 1) “observations”.

In Berry, Levinsohn, and Pakes (1995) and related literature the choice set is not a
collection of products but rather a collection of bundles of characteristics. Thus their at

is not the set of available products j = 1, . . . , J as it is in our model, but rather the set
of available characteristics at = {∀j ∈ t : zj} (including price), for each product. This is
important because the primary source of identification comes from variations in one of the
characteristics, price, across time and markets. When price changes from one period to the
next, this represents a change in the at, albeit usually only along a single dimension of zj.
Other sources of variation in the choice set involve changes in product characteristics as
they vary from year to year (mileage, HP, etc.). The third source of choice set variation is
when new goods are introduced, and an entirely new zj is provided to consumers. A possible
disadvantage to applying the technique of BLP to other industries is that there may not
be sufficient variation in the characteristics of products from one year to the next, or that
variation (changes in characteristics and product mix) is often endogenously determined by
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the participants.
Our model presents a different way to interpret variation in choice sets. In our context

at doesn’t vary with long term product mix, or potentially endogenous pricing decisions,
but rather as products stock out. When products stock out they are no longer in the set
of available products at. This variation is potentially more useful because our new choice
set does not necessarily look like the old choice set with a single dimension of zj altered.
Instead, we add and remove entire zj’s similar to the new products case. This is particularly
helpful, because it allows us to observe substitution not on a single characteristic at a time,
but jointly over several characteristics. Moreover, when stockouts happen one at a time,
we know which joint distribution to attribute those changes to. Using long-term variation,
product mixes vary roughly simultaneously from model year to model year.

Additionally, this variation is 100% exogenous as we’ve written down our model, because
firms take changes in consumer’s choice sets as given, and so do consumers. This might
not seem obvious at first, but because choice sets are realizations of stochastic choices of
consumers, and consumers choices depend only on the set of available products, stockouts
are random events. While firms can restock the machine (or even change the product mix
to prevent future stockouts), this does not change the fact that any particular stockout is
exogenous to the model.

Finally, one of the most common applications of these sorts of models is to predict substi-
tution probabilities. It should be clear that the best way to predict substitution probabilities
is to observe them. Stockouts provide not only a chance to observe substitution probabil-
ities, but also an opportunity to observe them repeatedly and across different dimensions
than previous approaches have been able to.

5.4 Computation

So far, the M-step has been presented in the context of maximum likelihood (ML), or in the
case where random coefficients are used maximum simulated likelihood (MSL). The algo-
rithm for these approaches would be to simulate consumers, compute the choice probabilities,
and evaluate the likelihood.

It is important to recognize that by using the EM algorithm or one of its variants we are
not locked into ML estimation. A typical approach to the demand side in a differentiated
products setting is to iterate on the contraction mapping from Berry, Levinsohn, and Pakes
(1995). This is particularly effective because it solves for the unique set of optimal δ’s mono-
tonically without computing anything other than choice probabilities. More importantly the
fit is exact and unique. A further advantage of GMM approaches over ML is the ability to
incorporate additional (structural) moments along with the demand side.16

A GMM approach using demand-side moments can be used in lieu of ML estimation
in the M-step. In fact, the Generalized EM algorithm (GEM) Dempster, Laird, and Rubin
(1977) says that any approach which improves the log-likelihood at each EM iteration (rather
than fully maximizing the likelihood of the augmented dataset) will converge to the correct

16Draganska and Jain (2004) develop a method for incorporating supply side information in the ML
framework which appears to be agreeable with the missing data procedure we’ve provided.
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value. In other words it is sufficient that θ is any sequence which obeys:

l
(
θ(k+1),yaug(θ

(k))
)
≥ l

(
θk,yaug(θ

(k−1))
)

(15)

should lead to consistent EM corrected estimates.
Therefore, we can replace the ML estimator in the M-step, with the easier to compute

GMM estimator from Berry, Levinsohn, and Pakes (1995) as long as we verify that the
condition (15) holds at each step, it is perfectly acceptable to use δ’s obtained from the
contraction mapping of BLP rather than obtaining ML estimates. Typically the contraction
mapping in Berry, Levinsohn, and Pakes (1995) is written as

δ
(n+1)
j = δ

(n)
j + ln(sj)− ln pj(θ, at, xt)

However, E[ln pj(θ, at, xt)] is not linear in the missing data, and computing could be tricky.
This is easily remedied as the standard computational trick is to use the exponentiated δ’s
in the contraction mapping and then we have that:

exp(δ
(n+1)
j ) = exp(δ

(n)
j )

qj

q̂j,at,xt(θ)

While optimizing the likelihood function can be expensive (particularly if simulation is
required), evaluating is relatively cheap. Once this condition fails to hold, a switch to ML
estimates should be made just to check convergence, but in most cases an additional ML
iteration does not improve the overall likelihood.17

A useful way to think about what the EM adjustment does is to note that there are
some missing data regarding which products are available. Without knowledge that matches
sales to the sets of available products, the values for δ are incorrect. The EM algorithm uses
observable information about the substitution patterns to replace unknown δ’s with more
accurate estimates, and then recomputes estimates for the parameters. All other algorithms
(GMM, ML, MH, Gibbs Sampling) are simply ways to get to the maximum. For the results
we report later, we use GMM. Details for the exact moment conditions used are contained
in the Appendix.

17This is a result of the exact fit of the δ’s in the BLP moments, and the fact that we don’t include
supply side moments. If supply side moments are included we don’t expect ML and GMM to give the same
estimates. In this scenario, the EM-GMM estimates are probably appropriate. The problem is that we aren’t
aware of a broad theoretical result for incorporating missing data in moment condition models as Dempster,
Laird, and Rubin (1977) do for ML.
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6 Industry Description, Data, and Reduced-form Results

6.1 The Vending Industry

The vending industry is well suited to studying the effects of product availability in many
respects. For one, product availability is well defined. Products are either in-stock or not
(there are no extra candy bars in the back, on the wrong shelf, or in some other customer’s
hands). Likewise, products are on a mostly equal footing (no special displays, promotions,
etc.). The product mix, and layout of machines is uniform across all of the machines in the
sample and for the most part remains constant over time. Thus most of the variation in the
choice set comes from stockouts, which are a result of stochastic consumer demand rather
than the possibly endogenous firm decisions to set prices and introduce new brands.18

Typically a location seeking vending service requests sealed bids from several vending
companies for contracts that apply for several years. The bids often take the form of a two-
part tariff, which is comprised of a lump-sum transfer and a commission paid to the owner
of the property on which the vending machine is located. A typical commission ranges
from 10 − 25% of gross sales. Delivery, installation, and refilling of the machines are the
responsibility of the vending company. The vending company chooses the interval at which
to service and restock the machine, and also collects cash at that interval. The vending
company is also responsible for any repairs or damage to the machines. The vending client
will often specify the number and location of machine. Sometimes the client specifies a
minimum number of machines and locations, and several optional machines and locations.

Vending operators may own several “routes” each administered by a driver. Drivers
are often paid partly on commission so that they maintain, clean, and repair machines as
necessary. Drivers often have a thousand dollars worth of product on their truck, and a few
thousand dollars in coins and small bills by the end of the day. These issues have motivated
advances in data collection, which enable operators to not only monitor their employees,
but also to transparently provide commissions to their clients and make better restocking
decisions.

In order to measure the effects of stock-outs, we use data from 58 vending machines on
the campus of Arizona State University (ASU). This is a proprietary dataset acquired from
North County Vending with the help of Audit Systems Corp (later InOne Technologies, now
Streamware Inc.). The data were collected from February-June 2003, which corresponds
with the spring term at ASU.

Each of these machines collects Digital Exchange (DEX) data. DEX is the vending
industry standard data format, and was originally developed for handheld devices in the
early 1990’s. In a DEX dataset, the machine records the number and price of all of the
products vended. The data are typically transferred to a hand-held device by the route
driver while he services and restocks the machine. This device is then synchronized with a
computer at the end of each day. In our dataset, (thought not typically) additional inventory
observations are made between service visits, because DEX data are wirelessly transmitted
several times each day. As of 2003, the ASU route was the only route to be fully wireless

18In this sense, our setup is substantially simpler than that of Nevo (2001) or Berry, Levinsohn, and Pakes
(1995) where new brands and prices are substantial sources of identification.
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enabled.

6.2 Data Description

The dataset consists of snack and coffee machines; we focus on the snack machines in this
study. Throughout the period of observation, the machines stock around 70 different prod-
ucts, including chips, crackers, candy bars, packaged donuts, gum, and mints. Some products
are present only for a few weeks, or only in a few machines. Of these products, some of them
are non-food items 19 or have insubstantial sales (usually less than a dozen total over all
machines). In the examples we present, we exclude these items in addition to excluding gum
and mints, based on the assumption that these products are substantially different from
more typical snack foods, and rarely experience stockouts. Including gum and mints does
not substantially change our results. It is important to note that not every product appears
in every machine. The 50 products in the dataset are listed in Tables 1 and 2.

Typically, sales are only observed when vending machines are refilled. Thus in order to
have data before and after a change in product availability occurs, “perpetual” data collection
would be required. The data from Arizona State University are interesting because periodic
wireless readings of the inventory data are observed each day (often several times). This
provides two distinct advantages: the observation of the machine is no longer linked to the
restocking of the machine,20 and the machine’s inventory is sampled more frequently. These
help to mitigate the limitations of the periodic inventory system. The methodological goal
of this paper is to provide consistent estimates of demand not only for perpetual inventory
systems but for periodic ones as well.

In addition to the sales, prices, and inventory of each product, we also observe product
names, which we link to the nutritional information for each product in the dataset. For
products with more than one serving per bag, the characteristics correspond to the entire
contents of the bag. This is somewhat similar to the approach taken by Nevo (2000a) for
RTE cereal.

The retail prices observed in the vending machine are constant over time and across
broad groups of products as shown in Tables 1 and 2. Baked goods typically vend for
$1.00, chips for $0.90, cookies for $0.75, candy bars for $0.65, and gum and mints for $0.60.
This makes for a simpler and less complicated framework for static models of demand. As
compared to typical studies of retail demand and inventories (which often utilize supermarket
scanner data), there are no promotions or dynamic price changes (Aguirregabiria 1999). This
presents a bit of a problem, because for the most part prices do not vary within a particular
product category. This means that once most product characteristics (and certainly product
or category dummies) are included, price effects are not identified. The method we present
will work fine in cases where a price coefficient is identified, but in our particular empirical

19While often sold alongside of snacks in vending machines, condoms are poor substitutes for potato chips,
and are not included in our sample.

20This is not exactly true. While a wireless observation can be made without restocking the machine, the
wireless readings are also available to the vending company, and thus decisions to refill are endogenous. For
a static analysis of stock-outs that is not concerned with the retailer’s dynamic restocking problem, this is
not problematic.
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example this is not the case.
The dataset also contains stockout information and marginal cost data (the wholesale

price paid by the firm) for each product. The stockout percentage is the percentage of time
in which a product is observed to have stocked-out. We report both an upper and a lower
bound for this estimate. The lower bound assumes that the product stocked out at the very
end of the 4-hour period we observe, and the upper bound assumes that it stocked out at the
very beginning of the 4-hour period of observation. The marginal cost data are consistent
with available wholesale prices for the region. There is slight variation in the marginal costs
of certain products, which may correspond to infrequent re-pricing by the wholesaler. The
median wholesale prices for each products are listed in Tables 1 and 2. By examining Tables
1 and 2, several trends become apparent. There is a lot of variation in the markups of
the products. Markups are lowest on branded candy bars (about 50%), and markups are
highest on the Big GrabTMchips (about 70%). The product with the highest markup is the
Peter Pan crackers, which have an average markup of nearly 82%. Table 3 reports regression
estimates from a regression of markup on the percentage of the time a product is stocked
out. The result shows what one might expect; namely that products with high markups are
less likely to stock out than products with lower markups. This is also true when product
category is adjusted for.

Other costs of holding inventory are also observed, including the spoilage and number
of products removed from machines. Spoilage does not constitute more than 3% of most
products sold. The notable exceptions are the Hostess products, which are baked goods
and have a shorter shelf life (approximately 2 weeks) than most products, which may last
several months before spoiling. For this static analysis of demand, we assume that the costs
associated with spoilage are negligible.

6.3 Reduced-form Results

Before applying the estimation procedure described above to the dataset, first consider a
simple reduced form analysis of stockouts. Table 4 reports the results of a regression of
stockout rates on starting inventory levels. We report results for Probit and OLS with and
without product fixed effects. What we find is not surprising, namely that an additional
unit of inventory at the beginning of a service period reduces the chance of a stockout in
that product by about 1%. A full column of potato chips usually contains 14 units. This
means that the OLS (fixed effects) probability of witnessing a stockout from a full machine
in 3-day period is .242 − .008 ∗ 14 = 13%. For a machine with a starting inventory of only
two units, the predicted chances of a stockout are one in four.

In table 5, we compute the average hourly profits for each four hour wireless time period.
Then, we regress that on the number of products stocked out. The first specification (Column
1) estimates the hourly cost to be about $0.05 per product stocked out. Since the number of
products stocked out across the entire machine might not matter as much as the number of
products stocked out in each category, we include category by category stockouts in Column
4. These estimate the costs per stockout at around $0.11 per Big Grab bag of chips to $0.55
per bag snack. Column 2 examines the effect of a stockout in the category with the most
stockouts and estimates this effect to be about $0.66 per hour. Columns 3 and 5 also include
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indicators for the number of products stocked out in the category with the most stockouts.
All of these regressions are clearly endogenous, and may be picking up many other factors,
but they suggest some empirical trends that can be explained by the full model. Namely,
stockouts decrease hourly profits as consumers substitute to the outside good, and multiple
stockouts among similar products causes consumers to substitute to the outside good even
faster.

7 Empirical Results

For the discrete choice model, several different specifications are addressed. The logit, nested
logit, and random coefficients logit models are estimated with the assumption that the
missing data are ignored. The nested logit and random coefficients model are also estimated
with the proposed correction for missing data. Finally, the random coefficients model is
also estimated under the assumption of full product availability. An aside, that should be
pointed out is that there is no missing data corrected logit model. The IIA property of the
logit model implies that the missing data is perfectly ignorable. In fact, removing a product
from the product mix and re-estimating is a typical specification test for the standard logit
model.

There are a number of ways in which we could condition on observable characteristics.
We could run everything machine-by-machine, or pool the data from different machines.
[Add discussion of the trade-offs of different conditioning decisions in estimation, and results
of robustness tests...] The results that follow pool across machines case, the linear term is a
product dummy (dj) and Mt is modelled as a machine fixed effect. We include all observable
characteristics in the nonlinear part.

Table 7 reports the corrected values of many of the product dummies (the dj’s) under
each of the different models.21 As most products experience stock-outs, the correction for
stock-out events tends to increase the estimate of the dj’s for each product. Naturally, if
a product experiences stock-outs only when other products are stocked-out, this correction
can go the other way (i.e., the bias from forced substitution exceeds the bias from censoring),
as we see in the case of Peter Pan Crackers. (More on this to come....)

The estimated values of the non-linear paramaters (σ’s), and the results of the second-
stage regression of the dj’s on characteristics (including the R2 from this regression) are
reported in Table 6. Getting the δjt’s and hence dj’s corrected means substantially dif-
ferent estimates from the ignore missing data and full availability case for the mean taste
parameters.

Tables 8, 9, 10, 11 and 12 are all currently from the same representative machine. We
are re-running some of these with more to come soon.

Tables 13 and 14 present robustness tests and comparisons of different specifications for
the heterogeneity across machines and time periods. Table 13 examines heterogeneity where
estimates are conditional xt, and Table 14 presents the effects of parametrizing M . In each
table the mean square error (MSE) is computed and the percentage of variation explained
as compared to an unrestricted model is also reported. The interpretation is meant to be

21A few dj ’s were excluded just to keep the table intact, but they follow the same pattern.
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similar to an R2 which obviously doesn’t exist for this model.

8 Counterfactual Experiments

These estimates are now used to predict the effect that stockouts have on the profits of the
vending operator. For simplicity, the model was estimated using data from a single snack
machine located in Alumni Hall on the campus of Arizona State University. This machine was
chosen because it was relatively high sales volume, and was not located particularly close to
the other machines in the dataset. Two different availability regimes were compared, under
the first availability regime (labeled A), it was assumed that the product most likely to
stockout from each category was stocked out. Under the second availability regime (labeled
B), three popular types of chips: Big Grab Doritos, Big Grab Rold Gold Pretzels, and
Big Grab Sunchips Harvest Cheddar were assumed to have stocked out. By comparing these
availability regimes with a full availability regime, it is possible to computed expected loss to
the producer in (p−c) terms. Furthermore, it is estimated that approximately 382 consumers
“consider” a purchase from the vending machine each hour22 though many choose to purchase
no product at all. Simulations are performed to obtain estimated sales under regime A and
B, and they are compared to simulations of sales at the full machine using the specifications
for demand in A,B, and the full machine. Table 11 reports the expected lost profits when
compared to the full machine with the same specification for demand. The results in Table
11 indicate that the specification which assumes full availability always predicts the lowest
profit loss, and the EM corrected model predicts the most, and twice as much as the full
availability specification. When these quantities are compared with accounting data on the
amount of cash collected from the machine (about $150/week) the loss from stockouts is
substantial. Table 12 examines stockout regime B under different numbers of consumers, in
an attempt to demonstrate the different curvature of the cost of stockouts. (It is important
to remember that many consumers still prefer the outside good).

Tables 13 and 14 examine the variation in the marketsize Mt and the observed sales qjt,
to provide some insight as to how to model heterogeneity in our empirical example. We
used a nonparametric approach (conditional means) to predict each cell in the dataset. We
reported the mean-squared-error of the predictions, as well as the adjusted (for parameters
and degrees of freedom) R2 and the implicit number of parameters involved in using that
approach. We found that simply accounting for the time of day, or day of week with 6 or
7 dummy variables respectively did an excellent job explaining the overall variation in the
size of the market. This indicates that the overall size of the market varies more across time
than across machine locations.

Likewise, the inclusion of product dummies accounted for nearly 99% of the variation in
the observed sales. Controlling for machine location, or time specific effects added complexity
without improving the result. This indicates that sales of individual products depend mostly
on the product’s identity, and much less on which machine it is in or what time of day it is.
This indicates that we can probably pool our high frequency data across time (and locations)
without worrying about ignoring some important source of heterogeneity.

22between 12pm-4pm on weekdays
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9 Conclusion

This paper has demonstrated that failing to account for product availability correctly can
lead to biased estimates of demand, and that these biased estimates can lead to economically
meaningful results when trying to measure the welfare costs of stockouts. Rather than
examining the effect of changing market structure (entry, exit, new goods, mergers, etc.) on
market equilibrium outcomes, we seek to understand the effect that temporary changes to
the consumer’s choice set have on producer profits (and our estimators). The differentiated
products literature in Industrial Organization has used long term variations in the choice set
as an important source of identification for substitution patterns, this paper demonstrates
that it is also possible to incorporate data from short term variations in the choice set to
identify substitution patterns, even when the changes to the choice set are not fully observed.
Finally, the welfare impact of stockouts in vending machines has been shown to have a
substantial effect on firm profits indicating that product availability may be an important
strategic and operational concern facing firms and driving investment decisions.
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A Estimation Details and the Case of Multiple Stockouts

A.1 Estimation Details

Following the specification described in Nevo (2000b) the observables are broken into two
categories. The first category, X1, contains the the price, and the product dummies. The
second category, X2, contains a constant, the price, and the product characteristics (calo-
ries, sugar, etc.). This way the product dummies are able to absorb ξj (the unobserved
characteristics), while the substitution patterns are driven by random tastes for the product
characteristics. Now consider the mean utility (linear part) as:

δjt = x1jβ − αpjt + ξj + ξt + ∆ξjt

δjt = dj + ξt − αpjt + ∆ξjt (16)

The nonlinear part of the utility (random part) is represented by µijt as defined below:

µijt =
∑

k

x2jktσkνikt + εijt. (17)

By combining (16) and (17) we obtain the overall utility for each consumer as:

uijt = δjt + µijt. (18)

The marketshares for the random coefficients logit take on the form (Berry, Levinsohn,
and Pakes 1995)

sjt =

∫
δjt +

∑
k x2jktσkνikt

1 +
∑

j δjt +
∑

k x2jktσkνikt

f(ν)dν (19)

Unfortunately this integral does not have a closed form, therefore it must be approximated
using a simulation estimator (Berry, Levinsohn, and Pakes 1995) by taking ns draws of the
νik variables where ns = 1000.

ŝjt(δ; ·) =
1

ns

ns∑
i=1

sijt =
1

ns

ns∑
i=1

δjt +
∑

k x2jktσkνikt

1 +
∑

j(δjt +
∑

k x2jktσkνikt)
(20)

Now define the vector of predicted marketshares as Ŝt(δ; ·) = [ŝ1t, ŝ2t, . . . ŝJt] and the
vector of observed marketshares as S.

δh+1
t = δh

t + ln[St]− ln[Ŝt(δ
h; ·)] (21)

Berry, Levinsohn, and Pakes (1995) show that the mean values δjt can be computed by

iterating the contraction mapping on the vectors St, Ŝt(δ
h; ·), δh

t until ‖δh+1
t − δh

t ‖ < ε or the
difference between the mean utility levels is arbitrarily small.
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After estimating the mean utility levels, the error term (which defines the moment con-
ditions) is simply:

ξ = δ(St; θ)− dj + αpjt = ω(θ). (22)

Here the subscript on the ξ error term is left intentionally ambiguous, and the possible ways
of defining this error term are discussed in the estimation section.

The parameters can no longer be obtained by least squares regression, so a nonlinear
search must be performed instead. We use a two-step instrumental variables GMM procedure
(Hansen 1982) as is typical in these models, with Z as instruments and weighting matrix
A = I in the first step and A = E[Z ′ωω′Z] in the second step. The minimization problem
becomes:

θ̂ = min
θ

ω(θ)′ZA−1Z ′ω(θ) (23)

A.2 Multiple Unobserved Stockouts

Addressing the case of multiple unobserved stockouts is quite similar to the single stockout
case. The rest of the estimation procedure proceeds just as it did in the case of a single
unobserved stockout, with the exception of the E-step (where the missing data is imputed).
Conditional on the imputed values for the missing data, the M-step remains unchanged.

Let’s suppose that we have two products which stockout in period t. We’ll label those
products B and A, if we do not observe the timing of the stockouts, then there are four
possible inventory regimes. The inventory regime with full availability, the regime with only
A stocked out, the regime with only B stocked out, and the regime where both A and B
are stocked out. We denote these availability sets (a0, aA, aB, aAB). Now if for product j
we observe yjt sales in period t then the expected number of sales to have occurred in each
regime is:

E[qjti] = yjt
αipj(θ, ai, xt)∑
∀l αlpj(θ, al, xt)

The only unknown element to compute that expectation is the α’s. The approach is the
same as before (to integrate them out). The only problem is that for a single stockout α was
two dimensional and could be represented by a single parameter (since the other was just
1−α). Now α is four dimensional (three parameters). For the n stockout case, there are 2n

values of α to impute, which implies 2n − 1 parameters.
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E[qjti] =
∑

∀αA,αB ,αAB ,α0:α0+αA+αB+αAB=1

yjt
αipj(θ, ai, xt)∑
∀l αlpj(θ, al, xt)

g(αA, αB, αAB, α0|θ, yjt)

E[qjti] =
∑

∀αi:
∑

αi=1

yjt
αipj(θ, ai, xt)∑
∀l αlpj(θ, al, xt)

g(α̂|θ, yjt)

where α̂l = [α0, αA, αB, . . . , αAB, . . .] is a vector of the appropriate 2n α values.
All that remains is to write down the joint distribution g(α̂|θ, yjt). We show how to

construct the joint density g(·) for the two stockout case, but it should be clear that this
approach can be easily extended to construct the joint density for the n stockout case. There
are two possible sequences of availability regimes R : a0 → aA → aAB or S : a0 → aB →
aAB. We can affix a probability to each sequence (with some abuse of notation), we define
zR = Pr(a0 → aA → aAB) and zS = Pr(a0 → aB → aAB). It happens here that zA = 1− zB

but everything we’ve written can be extended to n stockouts.
Now let’s condition on the assumption that event R actually took place, we write mA,R,t =

αA,RMt for convenience, we’ll drop the t subscripts and focus only on a single time period.
Then we write m0,R = α0,RM , mA,R = αA,RM mAB,R = αAB,RM and as the number of
consumers that would have faced regimes a0, aA, aAB respectively if event R had occurred.
We also need to define the beginning of period inventories ωt = [ωAt, ωBt, . . .]. Once again
for convenience we drop t subscripts. With everything now defined, we can write down the
probabilities conditional on R.

Pr(M0,R = m0,R, MA,R = mA,R, MAB,R = mAB,R|XA = ωA, XB = ωB)

= Pr(m0,R|XA = ωA, XB = xB,0) · Pr(mA,R|XB,A = ωB − xB,0) · Pr(mAB,R = M − mA,R − m0,R)

There are three parts. The third part is trivial, the probability is one so long as M ≥
mA,R + m0,R and zero otherwise. The second is the negative binomial, and the first is the

negative multinomial. We can rewrite as follows:

Pr(m0,R, mA,R, mAB,R, R) = Pr(m0,R|XA = ωA, XB = xB,0) · Pr(mA,R|XB,A = ωB − xB,0)

Pr(m0,S , mB,S , mAB,S , S) = Pr(m0,S |XB = ωB , XA = xA,0) · Pr(mB,S |XA,B = ωA − xA,0)

Because R and S have be constructed as mutually exclusive events we can add their

probabilities.

h(m0, mA, mAB , mB) = Pr(m0,R|XA = ωA, XB = xB,0) · Pr(mA,R|XB,A = ωB − xB,0)

+ Pr(m0,S |XB = ωB , XA = xA,0) · Pr(mB,S |XA,B = ωA − xA,0)
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We also require that h(·) = 0 if both mA, mB > 0. Now we consider the other case S,

and put the two together. We’ve now constructed an unnormalized density for the joint

distribution h(·). To normalize we simply sum over all possible values (since the distribution

is discrete). Note that the density must equal zero if mA, mB > 0.

H(m0, mA, mAB , mB) =

M∑
m0,R=0

M−m0,R∑
mA,R=0

Pr(m0,R|XA = ωA, XB = xB,0) · Pr(mA,R|XB,A = ωB − xB,0)

+
M∑

m0,S=0

M−m0,S∑
mB,S=0

Pr(m0,S |XB = ωB , XA = xA,0) · Pr(mB,S |XA,B = ωA − xA,0)

=
M∑

m0=0

M−m0∑
mA=0

M−m0∑
mB=0

M−mA−mB∑
mAB=0

Pr(m0,R|XA = ωA, XB = xB,0) · Pr(mA,R|XB,A = ωB − xB,0)

+ Pr(m0,S |XB = ωB , XA = xA,0) · Pr(mB,S |XA,B = ωA − xA,0)

Now we can define g(·) as:

g(α0, αA, αAB, αB) =
h(m0,mA,mAB,mB)
H(m0,mA,mAB,mB)

Finally we can construct the expectation:

E[qjti] =
M∑

m0=0

M−m0∑
mA=0

M−m0∑
mB=0

M−mA−mB∑
mAB=0

yjt
αipj(θ, ai, xt)∑
∀l αlpj(θ, al, xt)

g(α0, αA, αAB, αB)

A.2.1 Negative Multiomial

The negative multinomial is simply the multinomial generalization of the negative binomial.

This entire family of distributions (binomial, multinomial, geometric, negative binomial,

negative multinomial, etc.) are all just derived distributions for the Bernoulli process. We

have results for multinomials, and geometrics, etc. because they frequently occur in applied

problems, and these standard results are often incorporated in textbooks, statistical packages

and the like. The negative multinomial is a bit less common, and results are not as well

known.

By definition the negative multinomial tells us:
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Pr(N = n|X1 = x1, X2 = x2) =

(
n− 1

X1, X2

)
px1

1 px2
2

When X1, X2, . . . , Xn ∼ Mult(p1, . . . , pn).

We are currently researching the PMF and/or characteristic function for this distribution.

A.2.2 Computation

The expectation will have on the order of O(2n · Mt) elements, where n is the number of

stockouts, and Mt is the overall number of consumers in that period. In the ASU vending

data we have that n ≤ 4 always, and less than 1% of observations had n = 2 (and only a few

observations with more). For n ≤ 10 and Mt ≤ 1000 which might constitute a reasonable

upper bound for retail environments with daily data observations, there are about one million

points, which still takes less than a second to compute on a (pretty old) Pentium 4.
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Product Category Sales %Time SO %Time SO p c Share Markup
(Lower) (Upper)

Gma Oatmeal Raisin Snack 14805 2.38 3.05 0.75 0.23 2.64 69.33
Chips Ahoy Snack 13466 0.95 1.15 0.75 0.25 2.4 66.67
Knotts Raspberry Snack 10053 0.31 0.37 0.75 0.19 1.79 74.67
Gma Choc Chip Snack 8788 2.93 3.78 0.75 0.22 1.56 70.67
Nutter Butter Bites Snack 8137 0.17 0.30 0.75 0.25 1.45 66.67
Gma Mini cookie Snack 5210 19.76 20.38 0.75 0.21 0.93 72
Nutter Butter Snack 1494 0.51 0.51 0.75 0.27 0.27 64
Rold Gold Grab 22271 5.60 7.46 0.9 0.27 3.96 70
Sunchip Harvest Grab 21563 5.89 7.59 0.9 0.25 3.84 72.22
Dorito Nacho Grab 19624 4.82 7.06 0.90 0.27 3.49 70
Cheeto Crunchy Grab 19188 5.25 6.94 0.90 0.34 3.42 62.22
Gardettos Snkns Grab 18005 4.86 6.51 0.75 0.23 3.21 69.33
Ruffles Cheddar Grab 15062 5.11 6.19 0.90 0.27 2.68 70
Frito Corn Chip Grab 10887 3.17 4.28 0.90 0.25 1.94 72.22
Lays Potato Chip Grab 9573 3.33 4.00 0.90 0.17 1.7 81.11
Munchies Grab 8730 5.28 6.80 0.90 0.25 1.55 72.22
Hot Munchies Grab 5993 2.58 3.83 0.75 0.25 1.07 66.67
Dorito Guacamole Grab 4588 3.18 3.91 0.90 0.28 0.82 68.89
Frito Chilli Cheese Grab 3772 4.14 5.03 0.90 0.28 0.67 68.89
Frito Jalepeno Grab 2011 12.35 14.47 0.90 0.28 0.36 68.89
Lays Baked Potato Grab 749 0.89 1.34 0.90 0.49 0.13 45.56
Gardettos Grab 710 1.60 3.53 0.75 0.3 0.13 60
KC Masterpiece Grab 406 4.34 4.75 0.90 0.28 0.07 68.89
Ruffles Baked Cheddar Grab 400 12.00 16.70 0.90 0.28 0.07 68.89
Kettle Jalepeno Grab 395 7.64 9.14 0.90 0.28 0.07 68.89
Cool Ranch Grab 129 13.23 15.93 0.90 0.28 0.02 68.89

Table 1: Summary of Products and Markups
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Product Category Sales %Time SO %Time SO p c Share Markup
(Lower) (Upper)

Snickers Candy (1) 46721 1.32 1.68 0.75 0.33 8.32 56
Twix Caramel Candy (1) 34250 1.08 1.46 0.75 0.33 6.1 56
M&M Peanut Candy (1) 26503 1.97 2.54 0.75 0.33 4.72 56
Reese’s Cup Candy (1) 13213 1.14 1.54 0.75 0.33 2.35 56
Kit Kat Candy (1) 12101 0.93 1.11 0.75 0.33 2.15 56
M&M Candy (1) 11856 1.30 1.73 0.75 0.33 2.11 56
Caramel Crunch Candy (1) 11581 0.47 0.83 0.75 0.33 2.06 56
Hershey Almond Candy (1) 10122 0.89 1.13 0.75 0.33 1.8 56
Crunch Nestle Candy (1) 340 0.00 0.00 0.75 0.33 0.06 56
Starbursts Candy (2) 17734 1.08 1.44 0.75 0.33 3.16 56
Kar Nut Sweet & Salty Candy (2) 16800 2.13 2.79 0.75 0.22 2.99 70.67
Skittles Candy (2) 10130 1.37 2.04 0.75 0.34 1.8 54.67
Snackwell Candy (2) 9770 0.79 0.87 0.75 0.28 1.74 62.67
Oreo Candy (2) 6304 0.23 0.24 0.75 0.22 1.12 70.67
Payday Candy (2) 5373 0.00 0.00 0.75 0.35 0.96 53.33
Peter Pan (Crck) Candy (2) 4734 6.34 10.08 0.75 0.12 0.84 84
Peanuts Candy (2) 4707 1.10 1.21 0.75 0.26 0.84 65.33
Poptart Pastry 20703 4.20 5.30 1.00 0.35 3.69 65
Banana Nut Pastry 15793 9.57 12.25 1.00 0.4 2.81 60
Choc Donuts Pastry 15511 14.89 18.34 1.00 0.46 2.76 54
Ding Dong Pastry 15468 15.00 19.63 1.00 0.49 2.75 51
Rice Krispies Pastry 11300 1.94 2.40 1.00 0.31 2.01 69
Pastry Pastry 3744 11.39 15.60 1.00 0.46 0.67 54
Choc Croissant Pastry 216 36.19 36.82 1.00 0.38 0.04 62

Table 2: Summary of Products and Markups (cont.)

Markup Markup

% Stockout -0.15 -0.24
(SE) (0.097) (0.12)

Constant 66.34
Snacks 70.87
Grab 71.71

Candy (1) 58.2
Candy (2) 65.36

Pastry 66.98
R2 .0337 0.7877

Table 3: Regression of Markup on Stockout Rates
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Probit Probit OLS OLS

Constant -0.368 -1.408 0.251 0.242
Inventory -0.059 -0.0226 -0.087 -0.008
dy
dx

-0.011 -0.004 - -
Product FE - x - x
R2 0.059 0.2323 0.035 0.240

Table 4: Regression of Stockout Rates on Starting Inventory Levels

Profit/Hr 1 2 3 4 5

Constant 1.341 1.391 1.437 1.419 1.283
Stockouts -0.058 -0.022 -0.069
(SE) (0.013) (0.017) (0.016)
Category Max SO -0.177

(0.054)
Cat Max =2 -0.663 -0.841

(0.177) (0.172)
Cat Max =3 -0.227 -0.628

(0.268) (0.255)
Cat Max > 3 -0.786 0.057

(0.304) (0.255)
Snack SO -0.548

(0.186)
Grab SO -0.112

(0.051)
Candy (1) SO -0.113

(0.102)
Candy (2) SO -0.329

(0.188)
Pastry SO -0.467

(0.069)

Table 5: Reduced Form Results for Cost of Stockouts
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Full Avail Ignore Missing EM Nested-Full Nested-Ignore
constant -6.7827 -7.4048 -8.0697 -7.4166 -6.7879
calories 18.5995 10.4468 29.3495 10.5818 18.6389
fat -17.2939 -9.9623 -27.4792 -10.0885 -17.3325
carbs -6.607 -4.1476 -10.167 -4.1512 -6.6224
sugar 0.6727 1.0333 0.6035 1.0273 0.6866
salt -1.0614 -0.0828 -1.9868 -0.0676 -1.0417
chocolate -0.1417 -0.0087 -0.2671 -0.0056 -0.1381
cheese 0.2185 0.2055 0.3032 0.2051 0.222
σcalories 0.0139 0.0771 0.081
σfat 0.1359 0.22 0.24
σcarbs 0.0283 0.0736 0.0563
σsugar 0.0797 0.2041 0.1923
σsalt 0.1637 0.0399 0.0224
σchoc 0.0734 0.0666 0.0521
σcheese 0.049 0.1407 0.181
R2 of Characteristics for dj 0.2193 0.192 0.2075 0.2194 0.1958
# Obs 155,184 61,844 147,923 155,184 61,844

Table 6: Parameter Estimates
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Ignore Full Avail Nested Full Avail Nested Ignore EM Rand Coeff
Snickers 1.28 1.09 1.10 1.28 1.28
M&M Peanut 1.11 0.99 0.99 1.11 1.11
Hershey Almond 0.96 0.88 0.88 0.96 0.96
Kit Kat 0.97 0.89 0.89 0.98 0.98
Reese’s Cup 1.00 0.91 0.91 1.00 1.00
Twix Caramel 1.18 1.03 1.03 1.18 1.18
Dorito Nacho 1.03 0.92 0.92 1.03 1.03
Sunchip Harvest 1.08 0.95 0.95 1.08 1.08
Cheeto Crunchy 1.09 0.95 0.95 1.09 1.09
Rold Gold 1.07 0.95 0.95 1.07 1.07
Ruffles Cheddar 1.02 0.92 0.92 1.02 1.02
Pastry 1.06 0.93 0.94 1.06 1.06
Poptart 1.08 0.95 0.95 1.08 1.08
Rice Krispies 0.97 0.89 0.89 0.97 0.97
Gma Oatmeal Raisin 1.00 0.91 0.91 1.00 1.00
Nutter Butter Bites 0.93 0.87 0.87 0.93 0.93
Knotts Raspberry 0.94 0.87 0.87 0.94 0.94
Chips Ahoy 0.97 0.90 0.90 0.97 0.97
Gardettos Snkns 0.92 0.88 0.88 0.93 0.93
Snackwell 0.93 0.87 0.87 0.93 0.93
Payday 0.78 0.77 0.77 0.78 0.78
Peter Pan (Crck) 0.80 0.81 0.81 0.80 0.80
Oreo 0.89 0.84 0.84 0.89 0.89
M&M 1.00 0.91 0.91 1.00 1.00
Crunch Nestle 0.96 0.87 0.87 0.96 0.96
Lays Potato Chip 0.95 0.88 0.88 0.95 0.95
Ding Dong 1.07 0.92 0.92 1.07 1.07
Banana Nut 1.05 0.92 0.92 1.06 1.06
Choc Donuts 1.08 0.92 0.92 1.08 1.08
Kar Nut Sweet & Salty 1.04 0.93 0.93 1.04 1.04
Frito Corn Chip 0.96 0.89 0.89 0.96 0.96
Caramel Crunch 0.95 0.88 0.88 0.95 0.95
Starbursts 1.02 0.93 0.93 1.02 1.02
Gma Mini cookie 1.21 0.81 0.81 1.21 1.21
Munchies 1.00 0.91 0.91 1.00 1.00
Lays Baked Potato 1.09 0.89 0.89 1.10 1.10
Skittles 1.03 0.94 0.94 1.03 1.03
Frito Jalepeno 0.89 0.85 0.85 0.89 0.89
Gma Choc Chip 1.05 0.94 0.94 1.06 1.06

Table 7: Estimates of dj’s
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Best Substitute For Logit EM Nested Logit
Dorito Nacho Snickers Rold Gold Pretzels
Frito Corn Chips Snickers Rold Gold Pretzels
Grandmas Choc Chip Snickers Grandma’s Oatmeal Raisin
Twix Snickers Snickers
M&M Peanut Snickers Snickers
Hostess Donuts Snickers Strawberry Poptart

Table 8: Substitution Patterns

Best Substitute For BLP EM-BLP
Dorito Nacho Cheeto Crunchy Dorito Guacamole
Frito Corn Chips Cheeto Crunchy Cheeto Crunchy
Grandmas Choc Chip Grandma’s Choc Grandma’s Choc
Twix Snickers Snickers
M&M Peanut Snickers M&M Plain
Hostess Donuts Hostess Ban Nut Muffin Hostess Ding Dong

Table 9: Substitution Patterns (cont.)
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Observed Sales Predicted Sales
Category Product SO % All Full Only Full Avail Adjusted

Snack Gma Choc Chip 0% 6.7 6.8 6.7 6.7
Chips Ahoy Ss 0.63% 7.7 6.5 7.6 7.7
Knotts Raspberry 0.85% 5.1 5.5 5.1 5.4
Gma Oatmeal Raisin 0% 4 4.8 4.1 4.6
Nuter Butter Bites 2.3% 2.2 2.4 2 2.3

Grab BG Dorito Nacho 5.55% 3.6 6 3.7 6.2
Sunchip Harvest 7.54% 6.3 5.1 6.2 7.1
Rold Gold 1.42% 5.1 5.1 5.1 5.1
Cheeto Crunchy 2.33% 4.7 4.9 4.7 4.6
Dorito Guacamole 2.33% 4.1 4.4 4.1 4
Ruffles Cheddar 11.6% 4 4.4 4 4.9
Munchies 0% 5 4.1 4.9 4.8
Other Grab 21 23.2 22 19.7

Candy (1) Snickers 0.42% 7.9 10.8 8.1 8.2
Twix Carmel 0.42% 10.1 9.9 10 10
M&M Peanuts 0% 6.3 5.3 6.2 6.2
Big Kit Kat 0% 3.6 4.2 3.6 3.7
M&M 0% 3.2 3.7 3.2 3.2
Other Candy (1) 8 7.2 7.9 8

Candy (2) Peanuts 0% 4.3 4.7 4.2 4.3
Skittles 0.85% 5.3 4 5.2 5.3
Kar Nut Sweet & Salty 7.58% 4 3.3 4 4.3
Starbursts 0% 2.6 3.1 2.6 2.7
Oreo Cookie 0% 3.6 3.5 3.5 3.5

Pastry Donuts Chocolate 15.08% 3.6 5.2 3.5 6.3
Hostess Pastry 14.84% 4.7 5 4.6 5.4
Ding Dong 0% 4.5 4.6 4.5 4.5
Banana Nut 2.54% 3.8 4 3.8 4
Poptart 5.59% 3.2 4 3.2 4.2

Table 10: Observed and Predicted Average Weekly Sales for Representative Machine

Regime A -PS Regime B-PS

Full Availability 0.32 0.46
Ignore Missing Data 0.64 0.81

EM Adjusted 0.69 0.98

Table 11: Expected Hourly Profit Loss of Stockouts
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Logit Nested Logit EM Nested BLP EM BLP
1 0.02 0.02 0.03 0.03 0.02
100 3.41 2.82 3.11 3.29 3.27
500 17.12 18.21 19.33 19.67 20.43
1000 36.15 43.23 49.44 44.23 50.21

Table 12: Losses from Typical Stockout Patterns

MSE Adj R2 # Parameters

Prod 0.615 0.989 50
Prod, DoW 0.612 0.98 350
Prod, ToD 0.611 0.974 298
Prod,Dow,Tod 0.606 0.959 2044
Mach,Prod 0.606 0.959 1978
Mach,Prod,DoW 0.598 0.934 11692
Mach,Prod,ToD 0.592 0.915 13645
Mach,Prod,Dow,Tod 0.566 0.824 74420

Table 13: Heterogeneity of qjt

MSE Adj R2 # Parameters

DoW 77.211 0.996 7
ToD 77.257 0.997 6
Dow,ToD 77.034 0.991 42
Machine 73.138 0.893 50
Mach DoW 72.364 0.873 350
Mach,ToD 72.805 0.884 300
Mach,Dow,ToD 71.019 0.827 2100

Table 14: Heterogeneity of Mt
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