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Abstract

Standard inference in cointegrating models is fragile for two distinct reasons. First,

even though cointegration concerns low-frequency variability, inference relies on higher

frequency variability in the data; second, inference assumes an I(1) model for the

common trends which may not accurately describe the data’s persistence. This paper

discusses efficient inference about the cointegrating vector in a bivariate model that is

robust to both sources of misspecification. A small of number of weighted averages are

used to summarize the data’s low-frequency variability. These weighted averages have

an asymptotic multivariate normal distribution, and cointegration imposes restrictions

on the associated covariance matrix. Under the null hypothesis, the common trend is

modeled by a flexible limiting Gaussian process that includes the I(1), local-to-unity,

and fractional model as special cases. The flexibility in the trend process introduces

a large number of nuisance parameters. An upper bound on power for tests is pre-

sented, and this upper bound is computed for tests that control size for the flexible

trend specification, and several special cases. A simple test motivated by the analysis

in Wright (2000) almost achieves the power bound under the flexible common trend

specification, so the test is approximately optimal.
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1 Introduction

Many economic time series are individually highly persistent, but some linear combination

might be much less persistent–this is the fundamental insight of cointegration. Accordingly,

a suite of practical methods have been developed for conducting inference about cointegrating

vectors, the coefficients that lead to this reduction in persistence. In their standard form,

these methods assume that the persistence is the result of a common I(1) stochastic trend,

and that the error correction term, the non-persistent linear combination of the variables,

is I(0).1 This I(1)/I(0) dichotomy drives standard cointegration analysis, but may lead to

fragile inference for two distinct reasons. First, the persistence reduction associated with

moving from an I(1) to an I(0) process might be implausible in many applications. Second,

standard methods rely critically on particular properties of the I(1) process about which

there may be uncertainty that cannot be resolved by examination of the data. This paper

studies efficient inference methods for the cointegrating vector in a bivariate framework that

address both these complications.

Consider first the issue that in the standard asymptotic reasoning, the error correction

term and the stochastic trend are of different orders of persistence: apart from a scaling

factor, the asymptotic behavior of I(0) processes is no different from i.i.d. random variables

in the sense that both satisfy a functional central limit theorem, while I(1) processes are

just like random walks in this sense. In practice, the dividing line between an persistent

and non-persistent process is far less clear. Because cointegration is inherently about the

low-frequency behavior of time series, persistence and non-persistence might more usefully

be defined in terms of low frequency variability. Of course, this in turn requires a dividing

line to define “low-frequencies”, but natural definitions typically follow from the phenomenon

under study. For example, in macroeconomics, long-run or low-frequency variability typically

refers to frequencies lower than the business cycle, which are reasonably characterized by

periodicities greater than 8 years. Thus, a macroeconomic time series might usefully be

defined as I(0) or “non-persistent” if it behaves like an i.i.d. process over frequencies with

periods longer than 8 years, and otherwise it is “persistent”. Müller and Watson (2006) use

this idea to study univariate properties of economic time series, but the reasoning is equally

1See, for instance, Johansen (1988), Phillips and Hansen (1990), Saikkonen (1991), Park (1992) and Stock

and Watson (1993).
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(or more) compelling for cointegration.

As shown by Müller and Watson (2006), low-frequency variability can be summarized

by a small number of weighted averages of the data, where the weights are low frequency

trigonometric series. For example, only q = 12 weighted averages are needed to capture

variability lower than the business cycle for time series that span 50 years (postwar data)

regardless of the sampling frequency (months, quarters, weeks, etc.). Section 2 thus con-

siders the behavior of these weighted averages as the sample size T grows large, but with q

held fixed.2 As in Bierens (1997), the weighted averages have a multivariate normal limiting

distribution, and cointegration imposes restrictions on the covariance matrix of this distribu-

tion. Asymptotically, inference about the cointegrating vector thus becomes inference about

the covariance matrix of a multivariate normal random vector.

An alternative to this low-frequency transformation approach is to model the persistence

in the error correction term directly. A well developed body of work has pursued this

approach in the fractional integration framework, where the error correction term is allowed

to have long memory.3 See, for instance, Jeganathan (1999), Kim and Phillips (2000),

Robinson and Hualde (2003), Robinson and Marinucci (2003) and Velasco (2003). We believe

the low-frequency transformation approach to be attractive beyond its statistical convenience

because it explicitly acknowledges the relative scarcity of low-frequency information, it is

robust to dynamic properties beyond the chosen frequency band, it does not require hard-

to-interpret bandwidth choices, it is stable under aggregation, and it arguably gives the

concept of “persistence” of an economic time series a straightforward interpretation.

The second important issue in cointegration analysis involves the uncertain nature of the

common stochastic trend. Elliott (1998) provided a dramatic demonstration of the fragility

of standard cointegration methods by demonstrating that they fail to control size when the

common stochastic trend is not I(1), but rather is “local-to-unity” in the sense of Bobkoski

(1983), Cavanagh (1985), Chan and Wei (1987) and Phillips (1987).4 The development of

valid tests for a local-to-unity stochastic trend is complicated by the fact that the local-to-

unity nuisance parameter cannot be consistently estimated. Cavanagh, Elliott, and Stock

2As discussed in further detail in Müller and Watson (2006), also Bierens (1997), Phillips (1998) and

Müller (2006) consider time series inference based on a finite number of weighted averages.
3Canjels (1997) investigates the same idea with a local-to-unity specification of the error correction term.
4Also see Elliott and Stock (1994) and Jeganathan (1997).
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(1995) propose several procedures to adjust critical values from standard tests to control size

over a range of values of the local-to-unity parameter, and their general approach has been

used by several other researchers; Campbell and Yogo (2006) provides a recent example.

Stock and Watson (1996) and Jansson and Moreira (2006) go further and develop inference

procedures with specific optimality properties in the local-to-unity model. In the fractional

cointegration literature, the common stochastic trend is modelled as fractionally integrated,

although the problem is different from the local-to-unity case as the fractional parameter

can be consistently estimated under standard asymptotics. Yet, Müller and Watson (2006)

demonstrate that at least based on below business cycle variation in the data, it is a hopeless

endeavor to try to consistently discriminate between, say, local-to-unity and fractionally

integrated stochastic trends.

As demonstrated by Wright (2000), it is nevertheless possible to conduct inference about

the cointegrating vector without knowledge about the precise nature of the common stochas-

tic trend. Wright’s idea is to use the I(0) property of the error correction term as the iden-

tifying property of the true cointegrating vector, so that inference about the cointegrating

vector can be conducted using a stationarity test of the model’s putative error correction

term. Because the non-I(0) data are not used in the analysis, Wright’s procedures are robust

in the sense that they control size under any model for the non-I(0) data. But, it is unknown

under what circumstances, if any, Wright’s procedures are efficient.

Section 2 of this paper provides a formulation of the bivariate cointegrated model in

which the common stochastic trend follows a flexible limiting Gaussian process that includes

the I(1), local-to-unity, and fractional/long-memory models as special cases. The model also

allows more general time lags between the I(0) component and stochastic trend than stan-

dard formulations of the cointegrated model. Throughout the paper, inference procedures

are studied in the context of this general formulation of the cointegrated model. This may

be viewed as a response to Granger’s (1993) call to think of the persistence of macro time

series as the result of a wide range of possible data generating processes beyond the I(1)

model, and to abandon attempts to identify the exact nature of the persistence process from

the data.

The price to pay for this generality is that it introduces a potentially large number of

nuisance parameters that complicate the derivation of efficient inference procedures. The

nuisance parameters characterize the properties of the stochastic trend, the relationship be-
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tween the stochastic trend and the model’s I(0) component, and the mapping from the

stochastic trend and I(0) component to the data. None of these nuisance parameters can

be consistently estimated in the low-frequency framework introduced above because their

only effect is on the covariance matrix of the limiting distribution of the weighted averages.

Invariance considerations discussed in Section 3 makes a subset of these parameters irrele-

vant for the testing problem, but potentially many nuisance parameters remain. The main

problem of this paper is thus to deal with this difficulty, and Sections 4 and 6 take up this

issue.

Section 4 presents a general result concerning an upper bound on the power of tests

when the null hypothesis involves a vector of nuisance parameters. This result, together

with a numerical analysis described in Section 6, makes it possible to compute low upper

power bounds (approximate “least upper power bounds”) for tests concerning the values of

cointegrating vectors. These bounds are computed for an alternative with the standard I(1)

stochastic trend, but under the constraint that the tests control size over a wide range of

stochastic trend processes, ranging from the standard I(1) model to a highly flexible model.

These power bounds are useful for at least two purposes. First, differences in the power

bounds (interpreted as differences in least upper bounds) associated with restrictions on the

trend process (for example, restricting the general stochastic trend process to be I(1)) quan-

tify the information in the restriction about the value of the cointegrating vector. Second,

and most importantly, they provide a bound on the power envelope for any asymptotically

valid test. In particular, the bounds allow us to assess the relative efficiency of a low-

frequency version of Wright’s (2000) test that is introduced in Section 5. As it turns out, the

power of this test essentially coincides with the power bound for the highly flexible version of

the common trend process, and is close to the bound for several restricted, but still flexible

common trend processes. Thus Wright’s test–that is ignoring the non-I(0) data–yields

an essentially efficient test in absence of strong a priori knowledge about the nature of the

persistence.
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2 Model

2.1 Time Domain Representation of the Model

Consider a bivariate model where pt, t = 1, ..., T , denotes the 2× 1 vector of variables under
study. This section begins with a time domain representation of the cointegrated model that

differs from the standard model by allowing a flexible process for the common trend and

flexible time lags in the relation between the trend and the model’s I(0) component. The

low-frequency components of the model, which form the basis for inference, are discussed in

the next subsection.

It is convenient to transform pt so that one of its elements is I(0) under the null hy-

pothesis. Thus, let β denote the cointegrating vector with value β0 under the null, and let

yt = β00pt denote the linear combination of the variables that is I(0) under the null hypoth-

esis, that is, yt is the null model’s error correction term. Let xt = δ0pt where δ is linearly

independent of β0, so that xt is not I(0) under the null. The variables yt and xt are the

transformations of pt that will be used in the analysis. While yt is determined (up to scale)

by the null hypothesis, xt is not: different values of δ yield different definitions of xt. Typical

applications of cointegration do not lead to a natural definition of xt, so that most extant

inference procedures are invariant (or asymptotically invariant) to the transformations in-

duced by different values of δ. Restrictions associated with invariant tests are discussed in

detail in the next section, but for the purposes of the analysis in this section, assume that

yt and xt are known linear combinations of the data with the property that yt is I(0) under

the null.

It is convenient to represent (yt, xt) in terms of a common stochastic trend vt, and an

I(0) variable zt:

yt = λyvvt + λyzzt

xt = λxvvt + λxzzt
(1)

In this representation, the restriction that yt is I(0) corresponds to the restriction λyv = 0.

All of the test statistics discussed in this paper are invariant to adding constants to the ob-

servations, so that constant terms are suppressed. We also abstract from linear deterministic

trends, but note that these could be incorporated in the model using modifications like those

used in Müller and Watson (2006).
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In the usual cointegration framework, the common stochastic trend vt is an I(1) process in

the sense that T−1/2v[sT ] ⇒
R s
0
dWv(r), where ’⇒’ means weak convergence,Wv is a standard

Wiener process, here and below the convergence is with respect to the Skorohod metric on

the space of cadlag functions on the unit interval, and all limits are taken as T → ∞.
Because the scales of vt and zt are not separately identified from the λ coefficients in (1),

the limits of vt and zt are represented in terms of scale normalized random processes. Local-

to-unity generalizations such as those considered in Elliott (1998) assume that T−1/2v[sT ] ⇒R s
0
e−c(s−r)dWv(r).

5 We will use a similar, but more general representation of the process for

or vt. Specifically, we assume the asymptotic representation

T−δvv[sT ] ⇒
Z s

−∞
g(s, r)dWv(r) (2)

where T−δv is a scale factor and g(s, r) is sufficiently well behaved to ensure that there exists

a cadlag version of the process
R s
−∞ g(s, r)dWv(r).

6 Special cases of this general specification

are the I(1) model (which correspond to g(s, r) = 1[r ≥ 0] and δv = 1/2), the stationary

local-to-unity model (which correspond to g(s, r) = e−c(s−r), c > 0 and δv = 1/2), the type-I

fractional model with parameter d (where δv = d+1/2, g(s, r) = C(d)((s− r)d− (−r)d) for
r ≤ 0, g(s, r) = C(d)(s− r)d for r > 0 and C(d) =

³
1

2d+1
+
R∞
0

£
(1 + λ)d − λd

¤2
dλ
´−1/2

, see

Marinucci and Robinson (1999)), and the general stationary model (which corresponds to

the restriction that g(s, r) = eg(s− r) for some function eg). The generalization (2) produces
processes with flexible low-frequency covariance properties and allows processes that are more

or less persistent than the I(1) process, but in less restricted ways than the local-to-unity or

fractional models.

We assume that zt is I(0) in the sense that its partial sums satisfy

T−1/2
[sT ]X
t=1

zt ⇒Wz(s) = ρWv(s) + (1− ρ2)1/2Wε(s) (3)

whereWε is a standard Wiener process that is independent ofWv(s) and −1 ≤ ρ ≤ 1 governs
the long-run correlation between the innovations in the trend vt and the I(0) term zt.

5This convergence requires vt to be modelled as a double array process, but we do not indicate this

explicity here and below to ease notation.
6For the local-to-unity process, this is a well known result, and a straightforward application of Kol-

mogorov’s Continuity Theorem shows that this is the case for the processes considered in Sections 5 and 6

below.
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Time lags in the relation between the error correction term and the common

stochastic trend

With the exception of the more general stochastic trend process, (1), (2), and (3) are a

standard representation of a cointegrated system. We digress here to offer an additional

generalization of the standard representation.

The algebraic motivation for the generalization is simple enough. In (3), notice that the

index for Wv is s and not, for example, s+ φ. The standard asymptotic representation thus

imposes a negligible time lag (as a fraction of the sample size) between innovations in the

stochastic trend and the I(0) component. Yet, to take a concrete example, one can imagine

macroeconomic processes in which a recession (interpreted as an I(0) variation in the data)

is associated with trend variation many years in the future, caused for example by human

capital accumulation or other endogenous growth forces. This suggests that it is useful to

allow for more general time lags between zt and vt.

There are several ways to accomplish this. One flexible way represents Wv(s) as

Wv(s) =
nκX
i=1

κiWv,i(s) (4)

where Wv,i are independent standard Wiener processes and where κi are constants that

satisfy
Pnκ

i=1 κ
2
i = 1. The process for vt remains as (2), while the process for the partial sums

of zt are replaced with

T−1/2
[sT ]X
t=1

zt ⇒Wz(s) = ρ
nκX
i=1

κiWv,i(s+ φi) + (1− ρ2)1/2Wε(s) (5)

where φi are non-zero constants. The limiting univariate stochastic processes for vt and zt

are as before, but different choices for the parameters nκ, κi, and φi produce flexible time

lags in their cross covariances while preserving joint normality.

2.2 Low-Frequency Representation of the Model

Cointegration is a restriction on the low-frequency behavior of time series, and as discussed

in the introduction, we therefore focus on the low-frequency behavior of (yt, xt). This low-

frequency variability is summarized by a small number, q, of weighted averages of the data,
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where the weights are low-frequency trigonometric series. Specifically, we use weights asso-

ciated with the cosine transformation, where the weights associated with the j0th weighted

average are Ψj(s) =
√
2 cos(jπs). For any sequence {at}Tt=1, the j0th weighted average will

be denoted by

ATj =

Z 1

0

Ψj(s)a[sT ]+1ds = ιjTT
−1

TX
t=1

Ψj(
t−1/2
T
)at (6)

where ιjT =
2T
jπ
sin( jπ

2T
)→ 1 for all fixed j.

As demonstrated by Müller and Watson (2006), the weighted averages ATj, j = 0, · · · , q,
essentially capture the variability in the sequence corresponding to frequencies below qπ/T .

Using this notation, the vectors XT = (XT1, . . . , XTq)
0 and YT = (YT1, . . . , YTq)

0 summarize

the variability in the data corresponding to frequencies lower than qπ/T , where the compo-

nent corresponding to j = 0 is excluded to make the results invariant to adding constants

to the data. With q = 12, (YT , XT ) capture variability lower than the business cycle (peri-

odicities greater than 8 years) for time series that span 50 years (postwar data) regardless

of the sampling frequency (months, quarters, weeks, etc.) This motivates us to consider the

behavior of these vectors as T →∞, but with q held fixed.

The large sample behavior of XTj and YTj follows from the behavior of ZTj and VTj.

Using the assumed limits (2) and (3), the definition of the cosine transformation (6), the

continuous mapping theorem, and integration by parts for the terms involving ZTj, one

obtains "
T 1/2(ZT1, . . . , ZTq)

0

T−δv−1(VT1, . . . , VTq)0

#
⇒
"
Z

V

#
=

"
(Z1, . . . , Zq)

0

(V1 . . . , Vq)
0

#
(7)

where

Zj =
1R
0

Ψj(λ)dWz(λ) and Vj =
1R
−∞

µ
1R

r∨0
Ψl(λ)g(λ, r)dλ

¶
dWv(r).

so that

E[ZlZj] =
1R
0

Ψl(λ)Ψj(λ)dλ = 1

E[ZlVj] = ρ
nκX
i=1

κ2i
1R
−∞

Ψl(r − φi)

µ
1R

r∨0
Ψj(λ)g(λ, r)dλ

¶
dr (8)

E[VlVj] =
1R
−∞

µ
1R

r∨0
Ψl(λ)g(λ, r)dλ

¶µ
1R

r∨0
Ψj(λ)g(λ, r)dλ

¶
dr (9)
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for l, j = 1, · · · , q, and thus"
Z

V

#
∼ N (0,Σ(Z,V )) where Σ(Z,V ) =

"
Iq Σzv

Σvz Σvv

#
.

Defining lyv = T−δv−1/2λyv, lyz = λyz, lxv = λxv and lxz = T−δv−1/2λxz, with (lyv, lyz, lxv, lxz)

held fixed as T →∞,"
T 1/2YT

T−δv−1XT

#
⇒
"
(Y1, . . . , Yq)

0

(X1, . . . , Xq)
0

#
=

"
Y

X

#
=

"
lyvV + lyzZ

lxvV + lxzZ

#
(10)

follows directly from (1) and (7). Invariance considerations discussed in the next section

make it useful to reparametrize the model in terms of the scalar b and γ = (γ1, γ2, γ3), where

b = lyv/lyz, γ1 = lyz, γ2 = lxz/lyz, and γ3 = lxv − lxzlyv/lyz, so that"
Y

X

#
=

"
γ1Iq 0

γ1γ2Iq γ3Iq

#"
Z + bV

V

#
∼ N(0,Σ(Y,X)). (11)

The null hypothesis that yt is I(0) implies that b = 0, but imposes no restrictions on

γ1, γ3 ∈ R\{0} and γ2 ∈ R. Using this notation, Σ(Y,X) can be written as

Σ(Y,X) =

"
γ1Iq 0

γ1γ2Iq γ3Iq

#
Σ(b)

"
γ1Iq 0

γ1γ2Iq γ3Iq

#0
(12)

where Σ(b) =

"
Iq + b(Σzv + Σvz) + b2Σvv Σzv + bΣvv

Σvz + bΣvv Σvv

#
.

The covariance matrix Σ(Y,X) depends on b, with b = 0 under the null, the three di-

mensional parameter γ which determines the mapping from the canonical I(0) and trend

variables (Z, V ) to the observations (Y,X), and a parameter, say, θ that determines Σvv

and Σvz via (8) and (9). The parameter vector θ includes (ρ, {κi, φi}) and any additional
parameters that characterize the function g(s, r). The hypothesis testing problem H0 : b = 0

corresponds to a restriction on the covariance matrix of a multivariate normal distribution,

where the covariance matrix also depends on a set of nuisance parameters (γ, θ). The nui-

sance parameters complicate the testing problem and are discussed in the following two

sections. In the next section, we argue that invariance considerations lead naturally to tests

that do not depend on γ. Section 4 takes up the problem associated with the nuisance
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parameters θ. Before launching into that discussion, it is useful get some insight into how θ

affects the structure of Σ(Y,X) by considering two extreme cases.

The first case is the standard cointegration model: g(s, r) = 1[r ≥ 0], so that the trend
follows an I(1) process, and there are no time lags (so that zt is as in (3)). In this case

Σvv is a diagonal matrix with ith diagonal element proportional to i
−2, so that the elements

of V are independent but severely heteroskedastic with lower frequency components having

higher variances (reflecting the familiar spectral analysis intuition that autocorrelation is

transformed into heteroskedasticity). The i, jth element of Σvz is equal to 0 when i and j are

both even or odd, and proportional to ρ/(i2−j2) otherwise, so that many of the elements of V
and Z are independent. In this formulation, the covariance matrix is completely determined

by the parameter ρ, so that θ contains only one element.

In the second case, suppose g(s, r) is unrestricted, so a highly flexible model for the trend

is allowed, although again without time lags. The following lemma shows that when there

are no a priori restrictions on g(s, r), the only restriction on Σ(V,Z) is that Σzz = Iq.

Lemma 1 For any 2q× 2q positive definite matrix Σ∗ with upper left q× q block equal to Iq

there exists a version of model (2) and (3) with ρ = 1 such that Σ(Z,V ) = Σ∗.

Proof. See Appendix.

Lemma 1 implies that when there are no a priori restrictions on g(s, r) there is no loss in

generality in choosing θ as the q2 + q(q + 1)/2 parameters that directly determine Σvv and

Σzv.

3 Invariance

Because
R 1
0
Ψj(r)dr = 0 for j = 1, ..., q, the low-frequency transformations (YT ,XT ) are

invariant to transformations (yt, xt)→ (yt+cy, xt+cx) for arbitrary constants cx and cy. This

section considers invariance to the scale of the variables (YT , XT ) and to the transformations

of the original data pt that determine xt. More precisely, we consider tests that are invariant

to the group of transformations"
YT

XT

#
→
"

ayyYT

axyYT + axxXT

#
(13)
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where ayy and axx are non-zero. This is equivalent to transforming (yt, xt) in an analogous

fashion, that is, it allows arbitrary linear transformations of (yt, xt) that maintain the re-

striction that the first element is I(0) under the null hypothesis. It is straightforward to

check that the (2q − 3)× 1 vector

QT = (
YT,1
YT,q

, · · · , YT,q−1
YT,q

,
XT,1 − XT,q

YT,q
YT,1

XT,q−1 − XT,q

YT,q
YT,q−1

, · · · ,
XT,q−2 − XT,q

YT,q
YT,q−2

XT,q−1 − XT,q

YT,q
YT,q−1

)0 (14)

is a maximal invariant of (13), and by (10) and the continuous mapping theorem,

QT ⇒ Q = (
Y1
Yq
, · · · , Yq−1

Yq
,

X1 − Xq

Yq
Y1

Xq−1 − Xq

Yq
Xq

, · · · ,
Xq−2 − Xq

Yq
Yq−2

Xq−1 − Xq

Yq
Yq−1

)0. (15)

By Theorem 6.2.1 of Lehmann and Romano (2005), any test that is invariant to (13) can

be written as a function of the maximal invariant QT . The following Lemma provides an

expression for the density of the limiting random vector Q.

Lemma 2 Let fθ(·, ·) be the density of (Z + bV, V ), and suppose Σ(b) is full rank. The

probability density of Q is equal to

C

Z ∞

−∞

Z ∞

−∞

Z ∞

−∞
|γ1γ3|−q+1fθ(γ−11 Y, γ−13 (X − γ2Y ))dγ1dγ2dγ3

= C 0A−1/2Y (Y 0Σ(b)−22Y )
q−3/2

h
(
p
AXAY −AXY )

1−q + (
p
AXAY +AXY )

1−q
i

where the constants C and C 0 do not depend on (Y,X), AX = (X
0Σ(b)−22X)(Y

0Σ(b)−22Y ) −
(Y 0Σ(b)−22X)

2, AY = (Y
0Σ(b)−11Y )(Y

0Σ(b)−22Y )−(Y 0Σ(b)−12Y )
2 and AXY = (Y

0Σ(b)−12Y )(X
0Σ(b)−22Y )−

(Y 0Σ(b)−12X)(Y
0Σ(b)−22Y ) with Σ(b)−ij the j, lth q × q block of Σ(b)−1 for j, l = 1, 2.

Proof. See Appendix.

The lemma shows that the density of Q does not depend on γ, so that the restriction

to invariant tests takes care of this nuisance parameter. Furthermore, Lemma 2 provides a

closed-form formula for the density of Q as a function of Y and X, which simplifies the the

construction and analysis of efficient tests in the following sections.

Returning to the testing problem, recall that covariance matrix Σ(Y,X) depends on three

sets of parameters (b, γ, θ), where b is the parameter of interest (with b = 0 under the null)

and (γ, θ) are nuisance parameters. This section has argued that invariance considerations

make the nuisance parameters in γ irrelevant for the testing problem. The next section

discusses complications associated with the nuisance parameters that make up θ.
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4 Power Bounds

4.1 A general result about power bounds

The basic version of the hypothesis testing problem that we are facing is a familiar one: Let

U denote a single observation of dimension k × 1. (In our problem, Q will play the role of

U .) Under the null hypothesis U has probability density fθ(u) with respect to the measure

μ, where θ is a vector of nuisance parameters.7 (In our problem, fθ(u) is the density of Q

derived in Lemma 2 above, that depends on θ through the matrix Σ(b), and μ is Lebesgue

measure on R2q−3.) Under the alternative, U has known density h(u). (Specific choices for

h(u) for our problem are discussed below.) Thus, the null and alternative hypothesis are

H0 : The density of U is fθ(u), θ ∈ Θ

H1 : The density of U is h(u),
(16)

and (possibly randomized) tests are measurable functions ϕ : Rk 7→ [0, 1], where ϕ(u) is

the probability of rejecting the null hypothesis when observing U = u, so that size and

power are given by supθ∈Θ
R
ϕ(u)fθ(u)dμ(u) and

R
ϕ(u)h(u)dμ(u), respectively. The aim is

to construct an efficient test ϕ∗. Unfortunately, there does not exist a general method to

construct such an efficient test ϕ∗ in the presence of the nuisance parameter θ.

We suggest a practical approach to this problem. We derive a set of upper bounds on the

power of tests of (16), and then use numerical methods to choose a low upper bound from

this set. The resulting upper bound may be used in two ways. First, when the dimension of

θ is small, we develop an algorithm to numerically identify a test that has only marginally

smaller power than the power bound. For practical purposes, this test is optimal. Second,

we use the upper power bound to assess the efficiency of an ad hoc test that is known to

control size over θ ∈ Θ. If the ad hoc test’s power is close to the power bound, then again,

one has identified an approximately optimal test.

A standard device for problems such as (16) is to consider a Neyman-Pearson test for a

related problem in which the null hypothesis is replaced with a mixture

HΛ : The density of U is

Z
fθ(u)dΛ(θ)

7And we assume fθ(u) to be jointly Borel-measurable in θ and u.
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where Λ is a probability distribution for θ. The following lemma shows that the Neyman-

Pearson test for HΛ versus H1 provides an upper power bound for tests of H0 versus H1.

Lemma 3 Let ϕΛ be the best level α test of HΛ against H1. Then for any level α test ϕ of

H0 against H1,
R
ϕΛ(u)h(u)dμ(u) ≥

R
ϕ(u)h(u)dμ(u).

Proof. Since ϕ is a level α test of H0,
R
fθ(u)dμ(u) ≤ α for all θ ∈ Θ. Therefore,R R

fθ(u)dμ(u)dΛ(θ) =
R R

fθ(u)dΛ(θ)dμ(u) ≤ α (where the change in the order of integra-

tion is allowed by Fubini’s Theorem), so that ϕ is also a level α test of HΛ against H1. The

result follows by the definition of a best test.

This result is closely related to Theorem 3.8.1 of Lehmann and Romano (2005) that

provides conditions under which a least upper bound on the power for tests H0 versus H1

is associated with a “least favorable distribution” for θ, and that using this distribution

for Λ produces the least upper power bound. The least favorable distribution Λ∗ has the

characteristic that the resulting ϕΛ∗ is a level α test for testingH0 versusH1. Said differently,

if ϕΛ∗ is the best level α test of HΛ∗ against H1 and is also a level α test for testing

H0 versus H1, then ϕ∗ = ϕΛ∗, that is ϕΛ∗ is the most powerful level α test of H0 versus

H1. Unfortunately, while the test associated with the least favorable distribution solves

the testing problem (16), there is no general and constructive method for finding the least

favorable distribution Λ∗ (and it does not always exist).

With this in mind, Lemma 3 is stated so that Λ is not necessarily the least favorable

distribution. That is, the bound in Lemma 3 holds for any distribution Λ. The goal of the

numerical analysis carried out below is to choose Λ to approximate the least upper bound.

Importantly, though, even if one cannot identify the least favorable distribution, Lemma 3

shows that the power of ϕΛ provides a valid bound for the power of any test of H0 versus

H1, for any Λ.

4.2 Bounds on the asymptotic weighted average power of invariant

tests of cointegration

The preceding subsection has discussed a general upper bound for the exact small sample

power of tests against a single alternative hypothesis. We now discuss in detail how this
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result is useful for the problem of deriving bounds on the asymptotic power of low-frequency

tests of cointegration, i.e. tests of the null hypothesis H0 : b = 0.

As discussed in Section 4, the requirement that tests are invariant to the transformations

(13) implies that they can be written as functions of the maximal invariant QT defined in

(14). Let the (measurable) function ϕT : R2q−3 7→ [0, 1] be a test, where ϕT (QT ) denotes

the rejection probability of the test given observations QT . Denote by RPT (ϕT ;M, b, θ) the

overall rejection probability of the test faced with data from model M with θ ∈ Θ and

b ∈ R, that is RPT (ϕT ;M, b, θ) = EϕT (QT ), where the expectation is with respect to the

data generating process of model M with parameter values θ and b. As discussed in Section

2.2, possible models M are the classical I(1) stochastic trend model, where θ = ρ, the local-

to-unity generalization with θ = (ρ, c), etc. Lemma 2 implies that the distribution of the

limiting random vector Q depends on (b, θ), and so will the asymptotic power of invariant

tests in general. Thus there does not exist an asymptotically uniformly most powerful test

for the hypothesis testing problem

H0 : b = 0 and M =M0, θ ∈ Θ0 against H1 : b 6= 0 and M =M1, θ ∈ Θ1 (17)

over (b, θ) in general.

We solve this difficulty by comparing the weighted average power of tests with some

weighting function Γ over (b, θ). Formally, let

WAPT (ϕT ) =

Z
RPT (ϕT ;M1, b, θ)dΓ(b, θ) (18)

where Γ is an integrable weighting function on R×Θ1, andΘ1 denotes the nuisance parameter

space of θ in model M1. The choice of M1 and Γ govern for what kind of alternatives a test

ϕT with large WAPT (ϕT ) is a good test, and we discuss specific choices below.

We defined our models in Section 2 in terms of their asymptotic properties; accordingly,

we are interested in tests which control asymptotic size over θ ∈ Θ0 for some modelM =M0,

i.e. tests ϕT for which

sup
θ∈Θ0

lim sup
T→∞

RPT (ϕT ;M0, 0, θ) ≤ α for all models satisfying (15). (19)

Tests that satisfy (19) are restricted to control asymptotic size for all data generating pro-

cesses that lead to the weak limit (15), which is a potentially smaller set of tests than, say,
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the class of tests that satisfy supθ∈Θ0 lim supT→∞RPT (ϕT ;M0, 0, θ) ≤ α under additional as-

sumptions on the distributions of vt and zt. The restriction to tests satisfying (19) is enough

to yield a tight link between properties of tests for the hypothesis testing problem (17),

which is inherently asymptotic in nature, and exact small sample hypothesis tests studied

in Lemma 2 above.

Theorem 1 Let the probability distributions Λ : Θ0 7→ R and Γ : R × Θ1 7→ R be such

that Σ(0) and Σ(b) are full rank almost surely under Λ in model M0, and under Γ in model

M1, respectively, and denote by fQ(M, b, θ) the probability density of Q in model M and

parameters (b, θ) defined in Lemma 2. Consider the exact small sample hypothesis problem

H0 : Q has density fQ(M0, 0, θ) for θ ∈ Θ0

H1 : Q has density h ≡ R fQ(M1, b, θ)dΓ(b, θ).
(20)

(i) Any almost everywhere continuous test ϕ of size α of (20) is an asymptotically valid

test of (17), i.e. satisfies (19), and limT→∞WAPT (ϕ) =
R
ϕhdQ.

(ii) Let ϕΛ be the level α likelihood ratio test of HΛ : Q has density
R
fQ(M0, 0, θ)dΛ(θ)

against H1 in (20). Then for any test ϕT of (17) satisfying (19),

lim sup
T→∞

WAPT (ϕT ) ≤
Z

ϕΛhdQ.

Proof. See Appendix.

Theorem 1 is useful, as it shows that an understanding of the single null distribu-

tion/single alternative distribution hypothesis testing problem (20) concerning the limiting

random vector Q has immediate implications for the hypothesis testing problem of interest

(17): Part (i) implies that most size α tests of interest of (20) also control asymptotic size

in (17), and have the same weighted average power. Part (ii) shows that power bounds con-

structed as in Lemma 3 for the hypothesis problem (20) also yield bounds on the asymptotic

weighted average power in the class of tests of (17) which control size in the sense of (19).

Tests for the problem (20) and their power are relatively easily computed, at least as long as

Λ and Γ are discrete distributions, since by Lemma 2, the likelihood ratio statistic becomes

the ratio of weighted averages of the quadratic forms in the jointly Gaussian vectors (Y,X).

We employ the result of Theorem 1 in two ways: First, write ϕΛ = 1[τΛ(Q) > kΛ],

where τΛ(Q) is the likelihood ratio statistic and kΛ is the level α critical value for testing HΛ
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against H1. Suppose that a marginal adjustment in the critical value leads to a level α test

for (20), that is, suppose that ϕc
Λ = 1[τΛ(Q) > kΛ+ ε] is of size α in (20), where ε is a small

number. If the power of ϕΛ is a continuous function of the critical value, then the power

of ϕc
Λ will be only marginally lower than ϕΛ. If this is the case, then ϕΛ is approximately

the least upper bound, and ϕc
Λ is an approximately optimal test for (20). By Theorem 1

(i), these properties of ϕΛ and ϕc
Λ immediately translate into the corresponding asymptotic

size and weighted average power bound properties in the hypothesis test of interest (17).

Pursuing this strategy requires verifying that ϕc
Λ has rejection probability of at most α for

all θ ∈ Θ0 in (20). This is a feasible numerical task when the dimension of θ is small, but is

computationally intractable if the dimension of θ is large.

Second, suppose there exists a size α ad hoc test of (20). If one is able to identify a

distribution Λ for which the power of ϕΛ is only marginally higher than the power of the

ad hoc test for a weighted average power specification of interest, then the ad hoc test is

essentially optimal, as no test can have substantially higher asymptotic weighted average

power. In our problem, the low-frequency version of Wright’s (2000) turns out to be such

an ad hoc test.

5 An ad hoc similar invariant test

We study a version of the test suggested in Wright (2000). Wright was motivated by Elliott’s

(1998) critique of standard cointegration inference methods which showed that procedures

that utilized an I(1) model for the stochastic trend could have serious size distortions when

the stochastic trend instead follows a local-to-unity process. Wright’s proposal was to ignore

the information in xt, and investigate the null hypothesis by testing whether the putative

error correction term yt is I(0). By ignoring xt, Wright simplified the testing problem by

eliminating the nuisance parameters θ, making Elliott’s critique moot. While this resulted

in obvious benefits, the costs–the resulting loss in power–are not obvious. These costs are

quantified in the next section.

Wright’s (2000) employs the locally optimal Nyblom (1989)/Kwiatkowski, Phillips, Schmidt,

and Shin (1992) stationarity test against “local-level model” alternatives to test the I(0)

property of the putative error correction term. We implement Wright’s suggestion using

the low-frequency stationarity test developed in Müller and Watson (2006), which is the
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low-frequency analogue of Elliott and Müller’s (2006) point-optimal test in the local-level

model. We will refer to this test as the JW (“Jonathan Wright”) test. Specifically, the test

is the efficient scale invariant test of

H0 : Y = γ1Z ∼ N(0, γ21Iq) against

H1 : Y = γ1(Z + b̄V ) ∼ N(0, γ21(Iq + b̄(Σzv + Σvz) + b̄2Σvv))
(21)

where V is the low frequency transformation of the I(1) model without time shift, i.e. V is

based on model (2) and (3) with g(s, r) = 1[r ≥ 0] and the implemented using b̄ = 8. A

straightforward calculation using (8) shows that Σzv +Σvz = 0 for all ρ and q in this model,

so that the resulting test is uniformly most powerful for (21) over ρ.

Following Müller and Watson (2006), the resulting test statistic, written as a function of

observables YT , is

JW =

Ã
qX

l=1

Y 2
T,l

!
/

Ã
qX

l=1

Y 2
T,l

1 + b̄2/(πl)2

!
(22)

and the null hypothesis is rejected for large values of JW. Table 1 provides asymptotically

justified 1%, 5% and 10% critical values for q = 6, · · · , 18. It is straightforward to see that
the JW test is invariant to the group transformations (13) (YT → ayyYT because of scale

invariance and XT → axyYT + axxXT because the test statistic does not depend on XT )

and that the test is similar (the asymptotic distribution of the test statistic under the null

hypothesis does not depend on θ for any null model M0, because the test statistics does not

depend on XT ). Thus the test will serve as an asymptotically valid invariant test of (17),

and its asymptotic weighted average power obviously is a lower bound on the asymptotic

weighted average power of any efficient test of (17). At the same time, the JW test is ad hoc

because it ignores the potentially valuable information contained in XT .

6 Practical issues

6.1 Specification of the alternative hypothesis

In the following computations, we limit the analysis to alternatives in which vt is I(1) without

time shifts, so that the modelM1 in (17) is (2) and (3) with g(s, r) = 1[r ≥ 0]. This is partly
out of practical considerations: while there is a wide range of potentially interesting g(s, r)
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and timing specifications, the computations for any particular specification are involved, and

these computational complications limit the number of alternatives we can usefully consider.

At the same time, one might consider the classical I(1) model as an important benchmark

against which it is interesting to maximize power–not necessarily because this is the only

possible model under the alternative, but because a test that performs well against this

alternative presumably has reasonable power properties for a range of empirically relevant

models. It is important to stress that this specification of the alternative hypothesis has no

bearing of the range of models that we allow under the null hypothesis, which we discuss

below. We will compute power bounds on efficient tests of an I(1) alternative that control

size over a wide range of models of persistence, so our approach might be called robust

cointegration testing.

Even with the alternative model of persistence specified, there remains the issue that

asymptotic power of tests of (17) depends on the values of b and ρ. For these two parameters,

we consider alternatives with b = b1 and ρ = ρ1 for a range of values for b1 and ρ1, so that

Γ in (18) is degenerate with all mass at (b1, ρ1); the asymptotic power bounds derived via

Theorem 1 then serve as bounds on the asymptotic power envelope over these values of b

and ρ. Invariance reduces the dimension the problem somewhat, as the power of optimal

tests may be seen from Lemma 2 to depend on b and ρ only through |b|, |ρ|, and the sign of
ρb.8

6.2 Parameterization of Σ(Y,X) under the null hypothesis

The covariance matrix Σ(Y,X) under the null hypothesis depends on the model M0 for the

stochastic trend, such as the I(1) model, the local-to-unity model, etc., and the param-

eters that characterize the common trend’s weight function g(s, r) and the parameters

(ρ, {κi, φi}nφi=1) that govern the interaction between the I(0) process and the trend. We

consider seven models M0 associated with different sets of parameters θ ∈ Θ0. These seven

models are associated with three specifications of g(s, r) and two specifications of {κi, φi}nφi=1,
which results in six specifications. The seventh specification leaves g(s, r) unrestricted, which

by Lemma 1 amounts to leaving Σvz and Σvv unrestricted.

8Invariance means that the test is invariant to, for example, multiplying vt by −1 for all t. This changes
the sign of b and ρ, but does not change the sign of bρ.
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The three restricted models for g(s, r) are the I(1), local-to-unity, and stationary models.

The I(1) model has g(s, r) = 1[r ≥ 0]. The local-to-unity model has

g(s, r) =

(
ec(s−r), c < 0

1[r ≥ 0]ec(s−r), c ≥ 0
where, as shown in Müller and Watson (2006), Σ(Y,X) is continuous at c = 0 despite the

discontinuity in g(s, r). The stationary model has g(s, r) = eg(s− r), where the function eg is
parameterized as the step function

eg(x) = ngX
i=1

eθi1 ∙ i− 1
ng + 1

≤ x

1 + x
<

i

ng + 1

¸
. (23)

The steps in eg(x) occur at the points i
ng+1−i so that more flexibility is allowed for small

values of x (half of the points are associated with values of x less than 1, for example), and

the specification (23) sets eg(x) = 0 for x > ng. In the numerical analysis, we choose ng = 40.

The time lags are chosen as φ = (−m+1
m

, −m+2
m

, ..., −1
m
, 0, 1

m
, ...m−2

m
, m−1

m
)0 where m = (nκ−

1)/2, which allows for a grid of time lags between −1 and 1. The values of κi are restricted
only by Σnκ

i=1κ
2
i = 1. The numerical analysis uses nκ = 1, which corresponds to the standard

model with no time lags, and nκ = 39, which allows considerable flexibility in the timing

relationship between zt and vt.

The final parameter, ρ, is allowed to take on any value between 0 and 1, where the

restriction to non-negative values is without loss of generality because of the invariance of

the testing problem.

6.3 Computing upper power bounds

By Theorem 1, bounds on the power in the exact small sample hypothesis problem involving

Q with an appropriate single alternative hypothesis also yield bounds on the asymptotic

weighted average power of asymptotically valid invariant tests of (17). The classic results

concerning the least favorable distribution for the nuisance parameter θ ∈ Θ for the generic

hypothesis problem (16) discussed in Section 4.1 then suggests the problem that we would

ideally like to solve: find Λ, a probability distribution on Θ, such that the optimal level

α test for HΛ versus H1 is also a level α test for H0 versus H1. The resulting test is an

optimal test of H0 versus H1, and the resulting power provides a least upper power bound
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for tests of H0 versus H1. Finding the distribution Λ that solves this problem is a formidable

numerical task in problems such as ours. For example, for any particular value of θ, the

covariance matrices Σvz and Σvv must be computed via (8) and (9), and the test’s rejection

frequency under the null and alternative must be computed using a numerical method such as

Monte Carlo integration. Because the rejection frequency under the null hypothesis must be

controlled uniformly over θ ∈ Θ0, this is a daunting computational task. Using an algorithm

described in the appendix (which is related to the one developed in Sriananthakumar and

King (2006)), we compute an approximate solution to this problem when the dimension of

θ is small. However, the dimension of θ can be very large in our problem–with q = 12, the

model with g(s, r) unconstrained leads to θ of dimension 222–and finding the least upper

power bound becomes a numerically intractable problem.

This motivates us to suggest a computationally practical method for computing a low (as

oppose to least) upper power bound. The method restricts Λ so that it has non-zero mass

on a single point, say θ∗ which is chosen so that the null distribution of (Y,X) is close to

the distribution under the alternative. To be specific, let Σ1 denote the covariance matrix of

(Y,X) from (12) under a specific I(1) alternative as described in Section 5.1 above (that is,

for specific values of b = b1 and ρ = ρ1, and, say, γ1 = γ3 = 1 and γ2 = 0), and let Σ0(θ, γ)

be the covariance matrix of (Y,X) under modelM0 of the null hypothesis, which depends on

γ ∈ R3 and θ ∈ Θ0. Denote the Kulback-Leibler divergence between the 2q× 1 distributions
N(0,Σ1) and N(0,Σ0) as K[Σ1,Σ0] =

1
2
(ln(|Σ1|/|Σ0|) + tr(Σ−10 Σ1)− 2q). The value of θ∗ is

chosen to numerically solve

min
θ∈Θ0,γ∈R3

K[Σ1,Σ0(θ, γ)], (24)

that is, θ∗ numerically minimizes the Kullback-Leibler divergence (or KLIC) between the

distribution of specific alternative distribution (Y,X) and the null density as a function of

θ and γ. While the minimization problem is over a large number of parameters–recall that

θ contains as many as 222 parameters–the objective function is quickly computed and well

behaved, so that numerical minimization is feasible.9

While this power is not a least upper power bound of tests of H0 versus H1, Lemma 3

9And as discussed in Section 4, the validity of the power bound from Theorem 1 based on the (degenerate)

distribution Λ that puts all mass on the numerical minimizer in no way depends on a claim that is is the

actual global minimizer.
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implies that it produces an upper power bound, and the numerical results in the next section

suggest that it is close the least upper power bound in the models where the least upper

bound can be directly approximated. In many other cases it is close to the power of the

JW test, so again it is close the least upper power bound (as the least upper bound cannot

be below the power of the JW test). Thus, the power bound associated with this restricted

problem proves to be a practical and useful approximation to the least upper power bound

in this problem.

7 Results

Table 2 summarizes the power bounds for 5% level tests with q = 12, where panel A shows

results for the alternative with |b1| = 7, panel B shows results for |b1| = 14, and each panel
includes results for |ρ1| = 0.0, 0.5, and 0.9. The first set of entries in each table correspond
to power bounds constructed using θ∗, the KLIC minimized value of θ. When ρ1 6= 0, power
depends on the sign of ρ1b1, and power bounds are shown for positive and negative values of

this product. For example, from panel A, when ρ1 = 0 the power bound computed using θ
∗is

0.49 in the I(1) null model with no time lags; power falls to 0.44 in the I(1) model that allows

for time lags, and continues to fall for more flexible trend specifications. In the unrestricted

g(s, r) model, the power bound is 0.36. The second set of entries in each panel show power

bounds computed using the numerical approximations to the least favorable distributions

for θ. As discussed in the appendix, these upper bounds are constructed so that they are no

more than 2.5 percentage points above the actual least upper bounds (ignoring Monte Carlo

integration error), and thus roughly correspond to the power of optimal tests for testing H0

versus H1. Results are shown for the I(1) and local-to-unity models only. These models have

one (ρ) and two (ρ, c) nuisance parameters, respectively, so that the computational algorithm

described in the appendix can successfully be implemented. For the other specifications of

the stochastic trend the number of nuisance parameters is large, and this makes it intractable

to compute the least upper power bound.

The point optimal tests depend on the sign of ρ1b1, and a researcher might be uncertain

about this sign. Thus, it is interesting to examine tests designed to maximize weighted

average power over alternatives with positive and negative values of ρ1b1 (so that Γ in

Theorem 1 has point mass at (ρ1, b1) and at (ρ1,−b1)). Of course, the optimal test will
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depend on the relative weights given to these two alternatives. The third section of the

tables shows power bounds for tests designed to maximize the minimum power over these

two alternatives. For the cases considered in the Table, this always leads to a test with equal

power against both these alternatives.

Glancing at the numbers in the tables, four results stand out. First, as noted by Stock

and Watson (1996), Jansson and Moreira (2006), and others, the local-to-unity model shows

asymmetric power functions when ρ1 6= 0. For example in the local-to-unity model with

|ρ1| = 0.9 and |b1| = 7, the power bound is 0.48 for alternatives with ρ1b1 > 0, but increases
to 0.95 when ρ1b1 < 0. This asymmetry is not present in the I(1) model and also disappears

for flexible versions of the null (the unrestricted model or stationary model with time lags).

Second, in all models except the I(1) null, the power bound associated with the two-sided test

is essentially identical to the minimum of the point optimal tests corresponding to ρ1b1 < 0

or ρ1b1 > 0. That is, in terms of the minimum power associated with the two cases, the

power bounds suggest that there is essentially no loss from using the two-sided test. The

third result is that the power bounds associated with the KLIC minimized value of θ are

only slightly larger than the (approximate) least upper power bounds computed for the I(1)

and local-to-unity models. Evidently then, in these cases the KLIC minimizers provide a

good approximation to the least upper power bound.

Finally, the most important result in the table involves a comparison the power bounds

to the power of the JW test. Recall that the JW test ignores XT , uses only the data in

YT , and tests whether YT is I(0) against the local-level model alternative. The JW test is

invariant and similar for H0 versus H1 so that its power cannot exceed the power bounds

shown in the tables. Furthermore, its power does not depend on the value of ρ1, so there is

a single power value for the JW test for the alternatives considered in panel A, and single

value for the alternatives in panel B. From (22), the JW test depends on b̄, the value of b

under the alternative, and results are presented for JW tests computed using the values of

b1 in panels A and B (denoted JWenv), and for the JW test computed using b̄ = 8. The

power of the infeasible test JWenv is the power envelope of scale invariant tests of (21), while

choosing b̄ = 8 produces a single feasible test (with critical values for the test statistic shown

in Table 1). The power of the JW and JWenv tests are shown at the top of the panels. These

numbers are very close, which indicates that there is only a small loss in power associated

with not knowing b under the alternative. Comparing the power of the JW test to the
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power bound for null model with an unrestricted stochastic trend (the column labeled UNR)

indicates that the JW test is, for all practical purposes, an optimal test. That is, the JW test

is (essentially) efficient among the class of invariant tests that control size uniformly over

g(s, r) in the unrestricted model. Moreover, when ρ1 is small, their are only small potential

power gains associated with the restriction that g(s, r) is stationarity or, when time lags

are allowed, that g(s, r) decays exponentially as in the local-to-unity models. Indeed, the

difference between the power bounds shown in the table and the power of the JW test is

large only when the null is highly restricted (such as the I(1) model), or |ρ1| is large and
ρ1b1 < 0 (such as the stationary null model with no time lags and |ρ1| = 0.9), and even

then, the test JW is often close to admissible in the sense that the two-sided tests only have

marginally higher power.

8 Conclusions

This paper studies inference about the cointegrating vector in a bivariate framework that

uses a flexible model for the common stochastic trend (incorporating the I(1), local-to-unity,

and fraction model as special cases) and that allows considerable flexibility in the timing of

interactions of the trend and error correction term. Inference is carried out using the low-

frequency transformations of the data suggested by Müller and Watson (2006) in a study of

univariate models. This paper develops a general method for computing upper bounds on

the power of asymptotically valid tests. The method is used to derive bounds on the power

of tests that control size over flexible stochastic trend specifications, and which maximize

power against alternatives with the usual I(1) trend. We find that a low-frequency version

of Wright’s (2000) test almost achieves this upper bound on power.

The implication for applied work is that, at least in a bivariate framework, approximately

efficient robust inference about the cointegrating vector may be carried out using this test.

The test is robust in two ways. First, it is robust to arbitrary autocorrelation properties

in the error correction term above a pre-specified low-frequency band. Second, it is robust

to the precise nature of persistence, as its rejection probability under the null hypothesis

does not depend on the nature of the stochastic trend. Thus, in absence of precise a prior

information about the nature of the stochastic trend, the test is essentially efficient, as no

test exists with substantially higher power.
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The test is straightforward to implement: Section 5 above provides a simple version of the

associated test statistic and tabulates asymptotically justified critical values. As in Wright

(2000), confidence sets for the cointegrating vector are then easily obtained be inverting the

test.

A Appendix

A.1 Proof of Lemma 1

We first establish a preliminary result.

Lemma 4 For any 0 ≤ r < 1, the functions Ψl : [0, r] 7→ R with Ψl(s) =
√
2 cos(πls),

l = 1, · · · , 2q are linearly independent.
Proof. Choose any real constants cj, j = 1, · · · , 2q, so that P2q

j=1 cjΨj(s) = 0 for all

s ∈ [0, r]. Then also P2q
j=1 cjΨ

(k)
j (0) = 0 for all k > 0, where Ψ

(k)
j (0) is the kth (right)

derivative of Ψj(s) at s = 0. A direct calculation shows Ψ
(k)
j (0) = −(−1)k/2

√
2(πj)k for

even k. It is not hard to see that the 2q × 2q matrix with j,lth element −(−1)k/2(πj)k is
nonsingular, so that

P2q
j=1 cjΨ

(k)
j (0) = 0 can only hold for cj = 0, j = 1, · · · , 2q.

To begin the proof to Lemma 1 write

Σ∗ =

Ã
Iq Σ12

Σ21 Σ22

!
and note that since Σ∗ is positive definite, so is Iq−Σ12Σ−122 Σ21. Therefore, there exists ε > 0
such that with Z̃l =

R 1−ε
0

Ψl(r)dWv(r), E[Z̃Z̃
0]− Σ12Σ

−1
22 Σ21 is positive definite.

Let Ψ̃q+1(s) be the scaled residuals of continuous time projection of 1[s ≤ 1− ε]Ψq+1(s)

on {1[s ≤ 1 − ε]Ψl(s)}ql=1 on the unit interval, and let Ψ̃q+j(s), j = 2, · · · , q be the scaled
residuals of continuous time projection of 1[s ≤ 1 − ε]Ψq+j(s) on {1[s ≤ 1 − ε]Ψl(s)}ql=1
and {1[s ≤ 1 − ε]Ψ̃q+l(s)}j−1l=1 . By Lemma 4, Ψ̃j(s), j = q + 1, · · · , 2q, are not identically
zero, and we can choose their scale to make them orthonormal. Let ζ l =

R 1
0
Ψ̃q+l(r)dWv(r),

l = 1, · · · , q, so that by construction, (Z̃ 0, ζ 0)0 ∼ N (0, diag(E[Z̃Z̃ 0], Iq)). Because the 2q× 2q
matrix

Σ̃ =

Ã
E[Z̃Z̃ 0] Σ12

Σ21 Σ22

!
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is positive definite there exist q2+ q(q+1)/2 numbers pl,j, l = 1, · · · , q, j = 1, · · · , q+ l, for

which

Ṽl =

qX
j=1

pl,jZ̃j +
lX

j=1

pl,q+jζj for l = 1, · · · , q

is distributed (Z̃ 0, Ṽ 0)0 ∼ N (0, Σ̃). Note that by construction, (Z 0, Ṽ 0)0 ∼ N (0,Σ∗), since
(Z − Z̃) and (Z̃ 0, Ṽ 0)0 are independent. By the linearity of Ito-integrals, we can rewrite

Ṽl =

Z 1

0

f̃l(r)dWv(r)

where f̃l(r) = 0 for r > 1− ε and

f̃l(r) =

qX
j=1

pl,jΨj(r) +
lX

j=1

pl,q+jΨ̃q+l(r)

for r ∈ [0, 1 − ε]. Since Ψl(s) = (−1)lΨl(1 − s) for all l ≥ 1, Lemma 4 implies that the
q × q matrix H(r) =

R 1
r
Ψ(s)Ψ(s)0ds is nonsingular for all r ≤ 1 − ε. Now set g(s, r) = 0

for r ∈ (−∞, 0) ∪ (1 − ε, 1] and g(s, r) = Ψ(s)0H(r)−1f̃(r) for r ∈ [0, 1 − ε]. Then for

0 ≤ s < t ≤ 1, we have with ψ(s) = dΨ(s)/ds

E[|
Z t

0

g(t, r)dWv(r)−
Z s

0

g(s, r)dWv(r)|4]

= 3[

Z s

0

(g(t, r)− g(s, r))2dr +

Z t

s

g(t, r)2dr]2

≤ 3[( sup
0≤r≤1

||H(r)−1||2||f̃(r)||2)(||Ψ(s)−Ψ(t)||2 + (t− s) sup
0≤r≤1

||Ψ(r)||2)]2

≤ 3( sup
0≤r≤1

||H(r)−1||4||f̃(r)||4)( sup
0≤r≤1

||ψ(r)||2 + sup
0≤r≤1

||Ψ(r)||2)2(t− s)2

where the last inequality follows from Ψ(t)−Ψ(s) =
R 1
0
(t− s)ψ(s+ λ(t− s))dλ, so that by

Kolmogorov’s continuity theorem, there exists a continuous (and thus cadlag) version of the

stochastic process
R s
0
Ψ(s)0H(r)−1f̃(r)dWv(r). Furthermore, V =

R 1
0

R 1
r
Ψ(s)g(s, r)ds dWv(r) =R 1−ε

0

R 1
r
Ψ(s)Ψ(s)0H(r)−1f̃(r)ds dWv(r) = Ṽ almost surely.

A.2 Proof of Lemma 2

Note that Q is a maximal invariant of the group of transformations"
Y

X

#
→
"

ayyY

axyY + axxX

#
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for non-zero ayy and axx, and arbitrary axy. This group of transformation induces a corre-

sponding group on the parameter space

(b, γ1, γ2, γ3, θ)→ (b, ayyγ1, axyγ1 + axxγ2, axxγ3, θ). (25)

By Theorem 6.3.2 of Lehmann and Romano (2005), the distribution of Q only depends on

the parameters through a maximal invariant of (25), so the distribution of Q does not depend

on γ1, γ2 and γ3. We might thus set γ1 = γ3 = 1 and γ2 = 0. The 2q × 1 vector

(Q0, Yq,
Xq

Yq
, Xq−1 − Xq

Yq
Yq−1)0

is a one-to-one mapping from (Y,X), so that its density in terms of fθ is easily computed.

The first result now follows by computing the marginal density of Q.

Furthermore, by a change of variableZ ∞

−∞

Z ∞

−∞

Z ∞

−∞
|γ1γ3|−q+1fθ(γ−11 Y, γ−13 (X − γ2Y ))dγ1dγ2dγ3

=

Z ∞

−∞

Z ∞

−∞

Z ∞

−∞
|s1|q−1|s3|q−2fθ(s1Y, s3X + s2Y )ds2ds1ds3.

Since f is the density of a multivariate normal with covariance matrix Σ(b), we find

−2 ln fθ(s1Y, s3X + s2Y ) + C

= s21(Y
0Σ(b)−11Y ) + 2s1s3(Y

0Σ(b)−12X) + s23(X
0Σ(b)−22X)

+2s2[s1(Y
0Σ(b)−12Y ) + s3(X

0Σ(b)−22Y )] + s22(Y
0Σ(b)−22Y )

where C is a generic constant that does not depend on Y and X. By ‘completing the square’

for s2, we thus findZ ∞

−∞
|s1|q−1|s3|q−2fθ(s1Y, s3X + s2Y )ds2

= C(Y 0Σ−i,22Y )
−1/2 exp[−1

2
(Y 0Σ−i,22Y )

−1(AXs
2
3 +AY s

2
1 + 2AXY s1s3)].

But Z ∞

−∞

Z ∞

−∞
|s1|q−1|s3|q−2 exp[−12(Y 0Σ−i,22Y )

−1(AXs
2
3 +AY s

2
1 + 2AXY s1s3)]ds1ds3

= CE[|S1|q−1|S2|q−2]
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where S1 and S2 are bivariate normal with variances AY (Y
0Σ−i,22Y )/(AYAX − A2XY ) and

AX(Y
0Σ−i,22Y )/(AYAX − A2XY ), respectively, and correlation coefficient AXY /

√
AYAX . The

result now follows from Nabeya’s (1951) formula for the absolute moments of a bivariate

normal and some rearranging.

A.3 Proof of Theorem 1

(i) Since ϕ is a bounded and almost everywhere continuous function, and the limiting dis-

tribution of Q is absolutely continuous, QT ⇒ Q implies Eϕ(QT )→ Eϕ(Q).

(ii) Let F1,T be the distribution of QT under the alternative model M1, where b and θ

are drawn according to Γ, so that for any bounded and continuous function ϑ : R2q−3 7→ R,R
ϑdF1,T →

R
ϑdF1,∞ =

R
ϑhdQ. Define for some K̄ > 0 the indicator function B of the set

B = {x ∈ R2q−3 : LR(x) ≤ K̄}, where LR = R fQ(M0, 0, θ)dΛ(θ)/h. Define the distribution

F0,∞ as
R
ϑdF0,∞ =

R
ϑ
R
fQ(M0, 0, θ)dΛ(θ)dQ, and let F0,T be the probability distribution

defined via Z
ϑdF0,T =

Z
BdF0,∞

R
ϑB LR dF1,TR B LR dF1,T

+

Z
ϑ(1− B)dF0,∞.

Note that
R
ϑdF0,T →

R BϑLR dF1,∞+
R
ϑ(1−B)dF0,∞ =

R
ϑdF0,∞, where the convergence

follows because B and BϑLR are bounded and almost everywhere continuous functions, and
the limiting distribution F1,∞ is absolutely continuous. The distribution F0,T hence con-

verges weakly to the distribution of a limiting random vector Q under the null model M0,

where θ ∈ Θ0 is drawn according to Λ. Thus, (19) implies that lim supT→∞
R
ϕTdF0,T ≤ α.

By the Neyman-Pearson Lemma, for any T , the most powerful test to discriminate be-

tween the distributions F0,T and F1,T , conditional on QT ∈ B, is given by a test that

rejects for small values of LR. But the test ϕΛ also rejects for small values of LR, and

satisfies lim supT→∞
R
ϕΛdF0,T ≤ α by applying part (i) of the Theorem. Thus, even

with perfect discrimination between F0,T and F1,T for QT ∈ B, lim supT→∞WAPT (ϕT ) ≤
lim supT→∞(WAPT (ϕΛ) +

R
(1 − B)dF1,T ) =

R
ϑhdQ +

R
(1 − B)dF1,∞, at least as long

K̄ > 1/kΛ. The result now follows after observing that
R
(1 − B)dF1,∞ can be made ar-

bitrarily small by choosing K̄ large.

27



A.4 Algorithm for approximating the least favorable distribution,

least upper power bound, and optimal test

By Theorem 1, it suffices to consider exact small sample hypothesis testing problem con-

cerning Q, i.e. (20). For some integer N > 0, let θ̄N = (θ1, · · · , θN) and p̄N = (p1, · · · , pN),
where θi ∈ Θ0 and pi ≥ 0 for all i, and

PN
i=1 pi = 1. For x ∈ R2q−3, define the test ϕ(θ̄, p̄, k)

as

ϕ(θ̄, p̄, k)(x) = 1[
h(x)PN

i=1 pifQ(M0, 0, θi)(x)
> k]

where we write h(x) and fQ(M0, 0, θi)(x) for the densities h and fQ(M0, 0, θi) evaluated at x.

Introduce the notation Π0(θ̄, p̄, k; θ) =
R
ϕ(θ̄, p̄, k)fQ(M0, 0, θ)dQ for the rejection probability

of the test ϕ(θ̄, p̄, k) under the null hypothesis with θ ∈ Θ0, and Π1(θ̄, p̄, k) =
R
ϕ(θ̄, p̄, k)hdQ

for its rejection probability under the alternative. The algorithm requires repeated evalua-

tions of Π0(θ̄, p̄, k; θ) and Π1(θ̄, p̄, k). By Lemma 2, it is possible to express fQ(M, b, θ)(Q) in

terms of the 2q×1 mean zero multivariate normal (Y 0,X 0)0 with covariance matrix (12), and

by Lemma 2, the density of Q does not depend on the value of γ. We thus choose γ1 = γ3 = 1

and γ2 = 0 without loss of generality. Let ξj, j = 1, · · · , n be independent pseudo random
vectors with distribution ξj ∼ N(0, I2q). We numerically approximate Π0(θ̄, p̄, k; θ) by

Π̂0(θ̄, p̄, k; θ) =
1

n

nX
j=1

ΥL

Ã
h(Q̂j(θ))PN

i=1 pifQ(M0, 0, θi)(Q̂j(θ))
, k

!

where for some L > 0, ΥL : R2 7→ R is defined as Υ(x, k) = xL/(kL + xL) and Q̂j(θ) is

defined as Q in (15) with Y and X replaced by the first q and last q elements of the 2q × 1
vector C(θ)ξj, with C(θ) the Cholesky decomposition of Σ(Y,X) of model M0 with parameter

θ and b = 0.Define Π̂1(θ̄, p̄, k) analogously. The pseudo random vectors ξj, j = 1, · · · , n,
are only drawn once in the evaluation of Π̂0(θ̄, p̄, k; θ) and Π̂1(θ̄, p̄, k) at different arguments.

Note that as L → ∞, Υ(x, k) → 1[x > k], so that for L large, Π̂0(θ̄, p̄, k; θ) approximates

the standard Monte Carlo approximation for the rejection probability of ϕ(θ̄, p̄, k). The

advantage of choosing L < ∞ is that Π̂0(θ̄, p̄, k; θ) and Π̂1(θ̄, p̄, k) become smooth and dif-

ferentiable functions of their arguments, which greatly simplifies numerical maximizations.

The computations in Table 2 were performed with n =25,000 and L = 9.

The output of the algorithm is an approximate discrete least favorable distribution Λ∗,

described by (θ̄
∗
, p̄∗), where Λ∗ puts mass p∗i on the points θ∗i for i = 1, · · · , N∗. The
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distribution Λ∗ is approximately least favorable in the sense that the level α likelihood ratio

test ϕ(θ̄
∗
, p̄∗, k∗Λ) of HΛ∗ : Q has density

R
fQ(M0, 0, θ)dΛ

∗(θ) against H1 has (approximately)

εΠ > 0 more power than the critical value adjusted test ϕ(θ̄
∗
, p̄∗, k∗0) of H0 against H1 of size

smaller or equal to α. By construction, the (approximate) power bound Π̂1(θ̄
∗
, p̄∗, k∗) is no

more than εΠ above the least upper power bound, and the valid level α test ϕ(θ̄
∗
, p̄∗, k∗0) of

H0 against H1 has power that is at most εΠ below the power bound. We set εΠ = 0.025 in

the computations for Π̂1(θ̄
∗
, p̄∗, k∗) of Table 2.

The algorithm consists of two main subroutines, say SR I and SR II. SR I takes (θ̄, p̄)

as given and either identifies (θ̄, p̄) as yielding Λ∗, or returns θ̂ ∈ Θ0. SR I performs the

following computations:

1. Solve for the real number kΛ that satisfies
PN

i=1 piΠ̂0(θ̄, p̄, kΛ; θi) = α, so that the test

ϕ(θ̄, p̄, kΛ) is (approximately) the level α likelihood ratio test of HΛ : Q has densityR
fQ(M0, 0, θ)dΛ(θ), where Λ is a discrete distribution that puts mass pi on the points

θi.

2. Compute Π̂1(θ̄, p̄, kΛ), and solve for k
c
Λ > kΛ such that Π̂1(θ̄, p̄, kΛ)− Π̂1(θ̄, p̄, k

c
Λ) = εΠ.

3. Numerically maximize Π̂0(θ̄, p̄, k
c
Λ; θ) over θ. Denote the argmax by θ̂. If Π̂0(θ̄, p̄, k

c
Λ; θ̂) ≤

α, then the test ϕ(θ̄, p̄, kcΛ) is a valid level α test of H0 against H1, and its power

Π̂1(θ̄, p̄, k
c
Λ) differs by only εΠ from the power upper bound Π̂1(θ̄, p̄, kΛ), so that Λ

∗ is

identified. If Π̂0(θ̄, p̄, k
c
Λ; θ̂) ≥ α, return θ̂.

SR II takes θ̄ = (θ1, · · · , θN) as given, and returns a new set (θ̄n, p̄n) with θ̄n = (θn1 , · · · , θnNn)

and p̄ = (pn1 , · · · , pnNn), with Nn possibly different from N , and proceeds by the following

steps:

1. Numerically identify a preliminary p̄p = (pp1, · · · , ppN) with ppi ≥ 0 for all i andPN
i=1 p

p
i = 1 and real number k

p such that

Π̂0(θ̄, p̄
p, kp; θi) ≤ α and pi(Π̂0(θ̄, p̄

p, kp; θi)− α) = 0 for i = 1, · · · , N. (26)

TheN×1 vector p̄p is (a numerical approximation of) the least favorable distribution in
the level α hypothesis testing problem of Hθ̄ against H1, where under Hθ̄, the density

of Q is known to be one of fQ(M0, 0, θi), i = 1, · · · , N , and ppi describes the least
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favorable probability that Q has density fQ(M0, 0, θi). By Theorem 3.8.1 of Lehmann

and Romano (2005), the resulting test ϕ(θ̄, p̄p, kp) has the two properties that (i)

Π0(θ̄, p̄
p, kp; θi) ≤ α for i = 1, · · · , N and (ii) Π0(θ̄, p̄

p, kp; θi) < α only if ppi = 0. It

is numerically convenient to use these properties of the least favorable distribution

directly in the numerical approximation, leading to (26).

2. Collect the nonzero elements in p̄p in a new Nn-dimensional vector p̄n, and collect the

corresponding elements of θ̄
p
in θ̄

n
.

Overall the algorithm iterates between the two blocks as follows:

1. Set j = 0, and initialize by letting N(0) = p̄(0) = 1 and θ̄(0) = θ∗, where θ∗ is the

numerical minimizer of the Kulback-Leibler divergence problem (24).

2. Call SR I with (θ̄, p̄) = (θ̄(j), p̄(j)). If SR I identifies (θ̄(j), p̄(j)) as describing Λ∗, the

algorithm stops.

3. Otherwise, call SR II with θ̄ = (θ̄(j), θ̂), where θ̂ is the value returned by SR I in the

last call.

4. Increase j by one, set (θ̄(j), p̄(j)) = (θ̄
n
, p̄n), where (θ̄

n
, p̄n) are the values returned by

the last call of SR II, and go to Step 2.

In words, the algorithm may be described as follows: SR I determines whether the

discrete distribution Λ(j) described by the current nodes (θ̄(j), p̄(j)) already represents Λ
∗ by

searching for a value of θ that induces a too large rejection probability (in the sense that a

small adjustment of the critical of the level α test ϕΛ(j)
of HΛ(j) against H1 is not enough to

yield a test of size α of H0 against H1). If a large rejection probability can be found, then

the value θ̂ which induces this overrejection describes a density fQ(M0, 0, θ̂) which is ”too

similar” to the density h under H1. The value θ̂ should therefore be included in the list of

nodes. SR II appropriately reweighs the probability masses in this new list of nodes, and

eliminates superfluous nodes. Then SR I is again called to check whether the new list of

nodes yields Λ∗, etc.

The first step of SR II looks computationally daunting, but this is not so: given that θ̄ is

fixed, one can compute the (N+1)Nn numbers h(Q̂j(θl)) and fQ(M0, 0, θi)(Q̂j(θl)) for i, l =
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1, · · · , N and j = 1, · · · , n once and then use those directly to solve (26). Furthermore, since
Π̂0(θ̄, p̄, k; θ) is differentiable with respect to its arguments, (26) can be well approximated

by the minimization of a suitably defined, differentiable objective function, so that gradient

methods can be employed. The computationally most demanding aspect of the algorithm

is Step 3 of SR I. One can again use gradient methods in the maximization, but there is

of course no guarantee that the problem is globally concave in θ. For the computations

in Table 2, we used 100 different starting values for θ in Step 3 of SR I, and at most 200

gradient steps. The starting values for c in the local-to-unity model where chosen on the

interval (−3, 100), and values for (ρ, c) that lead to a condition number of Σ(Y,X) above 105
were excluded from the numerical maximization in Step 3 of SR I.
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Table 1: Critical Values for the JW Statistic 
 

Size q 
10% 5% 1% 

  6    2.48    2.89    4.01  
  7    2.21    2.52    3.37  
  8    2.02    2.27    2.97  
  9    1.87    2.09    2.65  
 10    1.76    1.95    2.44  
 11    1.68    1.84    2.26  
 12    1.61    1.75    2.13  
 13    1.55    1.68    2.02  
 14    1.51    1.62    1.92  
 15    1.47    1.57    1.85  
 16    1.43    1.53    1.78  
 17    1.40    1.49    1.72  
 18    1.38    1.46    1.67  

 
Note: The table shows asymptotic critical for the JW statistic computed using b = 8.



Table 2: Power Bounds for Cointegrating Coefficient Tests 
H1: b = b1, ρ = ρ1, vt ~ I(1) 

 
A. |b1| = 7  (Power of JW Test = 0.36, Power of JWenv Test = 0.36) 

 Restrictions on Nuisance Parameters in Null Model 
 I(1) I(1) – TL LTU LTU - TL STA STA – TL UNR 

(i) KLIC Minimized Point Optimal Tests 
|ρ1| = 0.0 0.49 0.44 0.49 0.39 0.41 0.37 0.36 
|ρ1| = 0.5 0.64  0.64 0.59  0.59 0.51  0.65 0.42  0.46 0.39  0.52 0.39  0.38 0.36  0.36
|ρ1| = 0.9 0.95  0.95 0.93  0.93 0.48  0.95 0.47  0.92 0.43  0.89 0.43  0.42 0.36  0.36

(ii) Approximate Least Favorable Distribution Point Optimal Tests 
|ρ1| = 0.0 0.49  0.49     
|ρ1| = 0.5 0.64  0.64  0.51  0.64     
|ρ1| = 0.9 0.94  0.94  0.48  0.94     

(iii) 2-Sided Tests   
|ρ1| = 0.0 0.49 0.44 0.49 0.39 0.41 0.37 0.36 
|ρ1| = 0.5 0.55 0.54 0.51 0.42 0.39 0.38 0.36 
|ρ1| = 0.9 0.90 0.88 0.48 0.47 0.43 0.42 0.36 
 
 

B. |b1| = 14   (Power of JW Test = 0.62, Power of JWenv Test = 0.63) 
 Restrictions on Nuisance Parameters in Null Model 
 I(1) I(1) – TL LTU LTU - TL STA STA – TL UNR 

(i) KLIC Minimized Point Optimal Tests 
|ρ1| = 0.0 0.81 0.79 0.79 0.66 0.69 0.65 0.64 
|ρ1| = 0.5 0.90  0.90 0.88  0.88 0.76  0.91 0.70  0.68 0.67  0.80 0.67  0.67 0.64  0.64
|ρ1| = 0.9 1.00  1.00 1.00  1.00 0.74  1.00 0.73  0.88 0.72  0.98 0.71  0.71 0.65  0.66

(ii) Approximate Least Favorable Distribution Point Optimal Tests 
|ρ1| = 0.0 0.81  0.77     
|ρ1| = 0.5 0.90  0.90  0.74  0.88     
|ρ1| = 0.9 1.00  1.00  0.71  1.00     

(iii) 2-Sided Tests   
|ρ1| = 0.0 0.81 0.79 0.79 0.66 0.69 0.64 0.64 
|ρ1| = 0.5 0.86 0.85 0.76 0.67 0.67 0.66 0.64 
|ρ1| = 0.9 1.00 0.99 0.74 0.73 0.72 0.71 0.65 
 
Notes: Entries are power bounds for 5% tests. See the text for a description of the tests. 
The restrictions on the null model are: the I(1) model without time lags (labeled I(1)), the 
I(1) model with time lags (I(1)-TL), the local-to-unity model with and without time lags 
(LTU and LTU-TL, respectively), the stationary model with and without time lags (STA 
and STA-TL, respectively), and the unrestricted model (UNR). Cells containing two 
entries show power for the alternative ρ1b1 > 0 and ρ1b1 < 0, respectively. 




