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Abstract

The purpose of this paper is to provide theoretical justification for some existing methods

of constructing confidence intervals for the sum of coefficients in autoregressive models.

We show that the methods of Stock (1991), Andrews (1993), and Hansen (1999) provide

asymptotically valid confidence intervals, whereas the subsampling method of Romano and

Wolf (2001) does not. In addition, we generalize the three valid methods to a larger class

of statistics. We also clarify the difference between uniform and point-wise asymptotic

approximations, and show that a point-wise convergence of coverage probabilities for all

values of the parameter does not guarantee the validity of the confidence set.

Key Words: autoregressive process, confidence set, local to unity asymptotics, uniform

convergence

1 Introduction.

Over the past fifteen years, there has been a considerable amount of theoretical and

applied work on the problem of constructing a confidence interval for the autoregres-

sive coefficient in an autoregression of order one (AR(1)), or more generally for the

sum of the coefficients in an autoregression of order p (AR(p)). From an empirical

perspective, the problem is important because the sum of the AR coefficients mea-

sures the persistence of a shock to a process. Some recent empirical papers involving

confidence intervals for the autoregressive coefficient ρ (or sum of the coefficients)

include Murray and Papell (2002), Imbs, Mumtaz, Ravn, and Rey (2005) (exchange
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rate dynamics), Rapach and Wohar (2004) (real interest rates), and O’Reilly and

Whelan (2005) (inflation). From a theoretical perspective, the problem is of interest

because the finite-sample distribution of the OLS estimator of the AR(1) coefficient

is biased, its limiting distribution (and its rate) changes near ρ = 1, and there is no

known pivotal statistic.

Several methods have been proposed for constructing confidence intervals for ρ.

Stock (1991) proposed inverting the Dickey-Fuller (1979) t-statistic when ρ is in a

1/T neighborhood of one (local to unity). Andrews (1993) suggested inverting the

finite sample distribution of the OLS estimator of ρ under the assumption of normal-

ity. Hansen (1999) introduced the “grid bootstrap” method, which is conceptually

similar to Andrews’ method except that Hansen inverted the t-statistic and used the

bootstrap to approximate the exact distribution on a grid of values of ρ. Romano

and Wolf (2001) proposed a subsampling method, in which the distribution of the

statistics in subsamples is used to approximate the sampling distribution. Yet, as

these authors recognize, all of these methods have limitations, and none of the ex-

isting proofs actually prove that the confidence intervals are asymptotically correct

under standard weak assumptions on the errors.2

In this paper we focus on confidence sets that in large samples have correct cov-

erage uniformly over the parameter space. We refer to these as “valid” confidence

intervals. For a confidence set C to be asymptotically valid, the following condition

must hold: limT→∞ infρ Pρ(ρ ∈ C) ≥ 1 − α, where the infimum is taken over the

parameter space (for example, |ρ| ≤ 1). That is, the notion of “validity” in this paper

is closely related to the concept of “global uniform validity”.

The distinction between uniform validity and point-wise validity(that is, infρ limT→∞ Pρ(ρ ∈
C) ≥ 1 − α ) is not of practical importance in many econometric applications, but

2Through simulations, Andrews (1991) showed that the method seems to be robust to non-normal

errors, but did not prove that it can be used in a general AR model. Stock (1991) proved the validity

of his method in the local-to-unity neighborhood, but there is no proof that this method can be used

when ρ is fixed and less than one. Hansen (1999) proved that his grid bootstrap provides point-wise

asymptotically correct approximations under both classical and local to unity asymptotics. Romano

and Wolf (2001) prove point-wise validity for |ρ| < 1 and for ρ = 1.
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it is here. For example, consider the pretest confidence set, constructed as the OLS

estimator ±1.96 standard errors if the Dickey-Fuller t-statistic is less than -ln T , and

which equals one otherwise. This set satisfies the point-wise convergence criterion

but not the uniform criterion because the procedure places point mass on one for

all values of ρ in a 1/T neighborhood of one. For this set, the asymptotic coverage

rate is actually zero, that is, there are (sequences of) parameter values for which the

probability of being in the set tends to zero, no matter how large the sample size.

Lack of uniformity is one way to understand the poor performance of standard con-

fidence intervals in the AR(1) model discussed by Nankervis and Savin (1985, 1988)

and Rayner (1990).

The purpose of this paper is to prove the uniform validity or invalidity of a variety

of methods for the construction of confidence intervals for ρ. The proofs use recently

developed tools involving the strong invariance principal and stochastic process the-

ory. We show that the methods of Stock (1991), Andrews (1993), and Hansen (1999),

when based on inverting the t-statistic, provide asymptotically valid confidence inter-

vals in the uniform sense stated above, but the subsampling method of Romano and

Wolf (2001) does not(even though it possesses a point-wise validity). In addition to

these main results, we generalize the three valid methods to a larger class of statistics.

The paper proceeds as follows. The next section introduces the concept of uniform

asymptotic approximation and relates it to the construction of asymptotically correct

confidence sets. It also sets up the theoretical framework for proving validity of the

three methods. Sections 3-6 consider the AR (1) model with an intercept and/or

a linear time trend. Section 3 provides large sample justification for the method

proposed by Andrews (1993). Section 4 proves that the local to unity asymptotic

approach (Stock (1991)) provides a uniform approximation even for values of the

AR coefficient far from the unit root. Section 5 gives a theoretical justification of

Hansen’s (1999) grid bootstrap. In section 6 we show why the Romano and Wolf

(2001) subsampling method should not be used for making inferences in an AR model.

Section 7 extends the results to AR(p) processes with at most one root close to the

unit circle. The Appendix contains proofs of results from Sections 2 - 6.
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Since the proofs are long and technically involved, we place some details of the

proofs and the proofs of the results from Section 7 in the Supplementary Appendix,

which can be found on the author’s web-site.3 The Supplementary Appendix also

contains a simulation study assessing the finite sample properties of the discussed

procedures.

2 Uniform approximation.

Assume that we have a sample Y = (y1, ..., yT ) of size T from an AR(1) process with

an intercept:

yj = c + xj; xj = ρxj−1 + εj, j = 1, ..., T, x0 = 0. (1)

The autoregressive coefficient ρ can take on any values in the open interval Θ =

(−1, 1). Model (1) is often used in practice to describe the behavior of inflation or

the logarithm of exchange rate. In Section 7 we show that the results can be extended

to more general autoregressive processes. We make the following assumptions about

the error terms:

Assumptions A. Let (εj,Fj) be a martingale - difference sequence with E(ε2
j |Fj−1) =

1 and supj E(|εj|r|Fj−1) < ∞ a.s. for some 2 < r ≤ 4.

We are interested in constructing a confidence set for the parameter ρ. Below is

the classical definition of a confidence set (Lehmann (1997), p.90).

Definition A subset C(Y ) of the parameter space Θ is said to be a confidence set

at a confidence level 1− α if infρ∈Θ Pρ{ρ ∈ C(Y )} ≥ 1− α.

Definition A subset C(Y ) of the parameter space Θ is said to be an asymptotic

confidence set at a confidence level 1 − α (or is said to have a uniform asymptotic

coverage probability 1− α) if

lim inf
T→∞

inf
ρ∈Θ

Pρ{ρ ∈ C(Y )} ≥ 1− α. (2)

The requirement of uniform convergence (2) is much stronger than a requirement

3http://www.people.fas.harvard.edu/ mikouch/paper-1/appendix.pdf
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of point-wise convergence of coverage probabilities

lim
T→∞

Pρ{ρ ∈ C(Y )} ≥ 1− α for every ρ ∈ Θ. (3)

The convergence (3) says that for every value of the parameter space and for any

given accuracy we can find a large enough sample size providing the required accuracy

of coverage at this value. However, convergence at some values of the parameter can

be much slower than at others. Condition (3) does not guarantee that there is a

sample size providing the required accuracy for all values of the parameter. That is,

even for a huge sample size we might find a part of the parameter space where the

required accuracy has not been achieved. Since a priori we cannot guarantee that our

parameter does not belong to this part of the parameter space, we are always at risk

of having poor coverage probability.

This paper deals with methods based on the classical idea of inverting tests

(Lehmann (1997), p.90). Let A(ρ0) be an acceptance region of an asymptotic level -

α test for testing H0 : ρ = ρ0. A set C(Y ) is constructed as a set of parameter values

for which the corresponding simple hypothesis is accepted C(Y ) = {ρ : Y ∈ A(ρ)}.
Let the testing procedure for a test of the hypothesis H0 : ρ = ρ0 be based on

a test statistic ϕ(Y, T, ρ0) and critical values c1(T, ρ0) and c2(T, ρ0). A set C(Y ) is

defined as

C(Y ) = {ρ ∈ Θ : c1(T, ρ) ≤ ϕ(Y, T, ρ) ≤ c2(T, ρ)}. (4)

We state all results for two - tailed tests, but they are equally as applicable for one -

tailed tests.

Let FT,ρ(x) = Pρ{ϕ(Y, T, ρ) ≤ x} be a distribution function of the statistic

ϕ(Y, T, ρ) given that the true AR parameter is equal to ρ. Let qF
α (T, ρ) denote an α -

quantile of the distribution FT,ρ(x), that is, FT,ρ(q
F
α (T, ρ)) = α. If c1(T, ρ) = qF

α/2(T, ρ)

and c2(T, ρ) = qF
1−α/2(T, ρ), then a set C(Y ) defined by (4) is a confidence set at the

confidence level 1 − α. In practice, the finite sample distribution FT,ρ(x) is usu-

ally unknown. However, if there is a family of distributions that provides a uniform

asymptotic approximation of FT,ρ(x), then it can be used to construct an asymptotic

confidence set.
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Lemma 1 Let GT,ρ(x) be a family of distribution functions uniformly approximating

the family of distributions FT,ρ(x) as T increases:

lim
T→∞

sup
ρ∈Θ

sup
x
|FT,ρ(x)−GT,ρ(x)| = 0.

Suppose, that a set C(Y ) is defined by (4) with c1(T, ρ) = qG
α/2(T, ρ) and c2(T, ρ) =

qG
1−α/2(T, ρ), where qG

α (T, ρ) is the α - quantile of the distribution GT,ρ(x). Then C(Y )

is an asymptotic confidence set at the confidence level 1− α.

Remark 1 Having a uniformly approximating family of distributions is a sufficient,

but not necessary condition for constructing an asymptotic confidence set. The real

line R is an asymptotic confidence set at any level. However, this set is useless from

the practical point of view, since it has zero power. The confidence set constructed in

Lemma 1 using a uniform approximation is not conservative. In particular,

lim
T→∞

inf
ρ∈Θ

Pρ{ρ ∈ C(Y )} = lim
T→∞

sup
ρ∈Θ

Pρ{ρ ∈ C(Y )} = 1− α.

The main goal of this paper is to prove that the three methods widely used in

practice: Andrews’ parametric grid bootstrap, Stock’s method based on the local to

unity asymptotic approach and Hansen’s grid bootstrap provide asymptotic confi-

dence sets via constructing uniformly approximating families of distributions. The

rest of the section describes a joint theoretical framework for the proofs of all three

methods.

2.1 Class of Test Statistics

Let yµ
j be the demeaned process of yj, that is, yµ

j = yj − 1
T

∑T
i=1 yi−1. We consider a

wide class of test statistics based on a pair of statistics

(S(T, ρ), R(T, ρ)) =

(
1√

g(T, ρ)

T∑
j=1

yµ
j−1(yj − ρyj−1),

1

g(T, ρ)

T∑
j=1

(yµ
j−1)

2

)
,

where g(T, ρ) is a normalization function. We define g(T, ρ) = Eρ

(∑T
j=1(y

µ
j−1)

2
)

.

We should note that statistics (S, R) are invariant with respect to values of c.
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Most of the results of the paper also hold for slightly explosive processes. Let us

introduce a sequence of sets ΘT = [−1 − θ/T, 1 + θ/T ] of possible values of the AR

coefficient when a sample size equals T , here θ > 0.

Definition Let H be the class of functions φ(s, r, T, ρ) : R × R+ × N × Θ1 → R

satisfying two conditions:

1) for every C > 0 there exist constants MC and T1 such that for all s, s1 ∈ R, r >

C, r1 > C, T > T1, ρ ∈ ΘT we have |φ(s, r, T, ρ)−φ(s1, r1, T, ρ)| < MC(|s−s1|+|r−r1|);
2) for every 0 < C1 < C2 < ∞ there exists a constant A > 0 such that ∂φ(s,r,T,ρ)

∂s
> A

for all T , ρ ∈ ΘT and C1 < r < C2.

Definition The class H of test statistics under consideration is given by the

following set H = {ϕ(Y, T, ρ) = φ(S(T, ρ), R(T, ρ), T, ρ) : φ(s, r, T, ρ) ∈ H}.
The class H is quite wide. For instance, it includes the conventional t-statistic t =

S√
R
, and an appropriately normalized OLS estimate of the autoregressive coefficient

√
g(T, ρ)(ρ̂OLS − ρ) = S

R
.

Selecting the proper test statistic is a difficult task. More powerful testing proce-

dures tend to produce more accurate confidence sets. It is well-known that even in

model (1) without an intercept and with normal errors, the uniformly most powerful

test for the simple hypothesis H0 : ρ = ρ0 does not exist (Dufour and King (1991),

Elliott, Rothenberg and Stock (1996)). The class H contains all test statistics used to

create the power envelope considered in Elliott, Rothenberg and Stock (1996). Our

class of test statistics allows different test statistics for testing different values of ρ.

The idea goes back to Elliott and Stock (2001), who suggested inverting a sequence

of point optimal tests. They showed that the confidence intervals constructed from

inverting a sequence of point optimal tests have quite similar power properties to

inverting near optimal tests for a unit root.

2.2 Stationary and near unity regions

Let a set C(Y ) be defined by (4), where the test statistic is given by ϕ(Y, T, ρ) =

φ(S,R, T, ρ) and the critical value functions c1(T, ρ) and c2(T, ρ) are calculated using

one of the three methods mentioned above. In all three methods c1(T, ρ) and c2(T, ρ)
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are quantiles of the distribution of an approximating statistic φ(S1(T, ρ), R1(T, ρ), T, ρ).

In Andrews’ method the approximating pair of statistics (S1(T, ρ), R1(T, ρ)) = (SN , RN)

is calculated using an AR(1) process with normal errors. In Stock’s method we cal-

culate the limiting distribution (Sc, Rc) of the pair (S(T, ρ), R(T, ρ)) when the limit is

taken along a sequence of models with ρT = exp{c/T}. The we use (S1(T, ρ), R1(T, ρ)) =

(Sc(T,ρ), Rc(T,ρ)) as the approximating pair. Hansen’s grid bootstrap approximates the

distribution of (S, R) by the distribution of a pair of bootstrapped statistics (S∗, R∗).

We want to show that the distribution of the statistic ϕ1(T, ρ) = φ(S1, R1, T, ρ) ap-

proximates the unknown finite sample distribution of the statistic ϕ(T, ρ) = φ(S,R, T, ρ)

uniformly over ρ:

lim
T→∞

sup
ρ∈ΘT

sup
x
|P{ϕ(T, ρ) < x} − P{ϕ1(T, ρ) < x}| = 0. (5)

There are two different asymptotic approaches developed for autoregressive pro-

cesses. These approaches describe strikingly different asymptotic behavior depending

on how close the parameter ρ is to unit root.

The classical approach is based on the Central Limit Theorem and the Law of

Large Numbers. If |ρ| < 1 is fixed then

√
1− ρ2

T

T∑
j=1

xj−1εj ⇒ N(0, 1) and
1− ρ2

T

T∑
j=1

x2
j−1 →p 1 as T →∞. (6)

Park (2003) and Giraitis and Phillips (2006) generalized this result for sequences of

processes for which the autoregressive coefficient ρT converges to the unit root as the

sample size increases with speed slower than 1/T .

The second asymptotic approach, local to unity asymptotics, was developed by

Bobkoski (1983), Cavanagh (1985), Chan and Wei (1987), and Phillips (1987). If the

autoregressive coefficient is local to unity , i.e. is defined by a sequence ρT = 1+c/T for

some fixed c < 0, then as the sample size increases we have the following convergence:
(

1

T

T∑
j=1

xj−1εj,
1

T 2

T∑
j=1

x2
j−1

)
⇒

(∫ 1

0

Jc(x)dw(x),

∫ 1

0

J2
c (x)dx

)
, (7)

where the process Jc is an Ornstein - Uhlenbeck process defined by Jc(x) =
∫ x

0
e(x−y)cdw(y),

and w(y) is a Brownian motion.
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Along with the different behaviors of the autoregressive coefficient, both asymp-

totics require different normalizations of the sums. The classical asymptotic approach

employs the normalization ( 1√
T
, 1

T
), whereas the local to unity asymptotic approach

uses ( 1
T
, 1

T 2 ). The proposed normalization

(
1√

g(T,ρ)
, 1

g(T,ρ)

)
joins the two in the same

framework. For any fixed |ρ| < 1, our normalization is asymptotically proportional to

( 1√
T
, 1

T
), and for ρT = 1 + c/T it is asymptotically proportional to ( 1

T
, 1

T 2 ). For fixed

|ρ| < 1 the statistic S(T, ρ) has an asymptotically standard normal distribution, and

R(T, ρ) converges to 1 in probability. Along the sequence ρT = 1 + c/T the statistics

(S(T, ρT ), R(T, ρT )) converge weakly to a pair of non-normal distributions.

In order to receive the uniform approximation (5) we divide the parameter space

ΘT into two overlapping regions, the “stationary” and the “near unity” regions. The

stationary region is separated from the unit root by a neighborhood contracting at a

speed slower than 1/T . The near unity area shrinks toward the unit root at an even

slower speed.

The pair (S, R) and an approximating pair (S1, R1) follow the classical asymptotic

behavior in the stationary region. Namely, statistics S and S1 weakly converge to the

standard normal distribution, whereas statistics R and R1 converge in probability to

one. The convergence in both cases is uniform over the stationary region.

Approximating in the near unity region is a more delicate task. We will be able

to construct pairs (S, R) and (S1, R1) on a common probability space in such a way

that the distance between them converges to zero in probability uniformly over the

near unity region.

The general framework of the proofs of uniformity for the three methods is for-

malized in the lemma below:

Lemma 2 Let (S(T, ρ), R(T, ρ)) and (S1(T, ρ), R1(T, ρ)) be two pairs of random func-

tions. Assume that there exists a sequence of overlapping sets AT and BT such that

AT

⋃BT = ΘT . Let the following conditions be satisfied:

1. We can define variables (S(T, ρ), R(T, ρ)) and (S1(T, ρ), R1(T, ρ)) on a common
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probability space in such a way that for every ε > 0

lim
T→∞

sup
ρ∈AT

P {|S(T, ρ)− S1(T, ρ)|+ |R(T, ρ)−R1(T, ρ)| > ε} = 0;

2. There exists a continuous distribution function F (x) that does not depend on either

T or ρ, such that S and S1 both converge in distribution to F (x) uniformly over BT :

lim
T→∞

sup
ρ∈BT

sup
x
|P{S(T, ρ) < x} − F (x)| = lim

T→∞
sup
ρ∈BT

sup
x
|P{S1(T, ρ) < x} − F (x)| = 0.

3. As the sample size increases, R and R1 both converge uniformly over BT to the

same constant K that does not depend on ρ :

lim
T→∞

sup
ρ∈BT

P{|R(T, ρ)−K| > ε} = lim
T→∞

sup
ρ∈BT

P{|R1(T, ρ)−K| > ε} = 0 ∀ε > 0.

4. For every ε > 0 there exists C > 0 such that supT supρ∈ΘT
P{R1(T, ρ) < C} < ε;

that is, R1 is separated from zero uniformly over ΘT . We also assume that ER1 =

ER = K.

5. The pair of variables (S1, R1) possesses a continuous distribution uniformly over

ρ in the following way: for every ε > 0 there exists a constant M > 0 such that for

all δ1 < ε, δ2 < ε, |b−K| > 2ε and all ρ ∈ ΘT and T we have:

Pρ{(S1(T, ρ), R1(T, ρ)) ∈ [a− δ1, a + δ1]× [b− δ2, b + δ2]} ≤ Mδ1δ2;

Pρ{S1(T, ρ) ∈ [a− δ1, a + δ1]} ≤ Mδ1.

Then for every statistic ϕ(T, ρ) = φ(S, R, T, ρ) ∈ H its distribution is uniformly

approximated by the distribution of ϕ1(T, ρ) = φ(S1, R1, T, ρ). Thus, convergence (5)

holds. If c1(T, ρ) and c2(T, ρ) are the quantiles of the distribution of ϕ1(T, ρ), the set

C(Y ) defined by (4) is an asymptotic confidence set.

The approximation in the near unity region is stated in Condition 1. The asymp-

totic behavior of the pairs (S,R) and (S1, R1) in the stationary region is described

in Conditions 2 and 3. The statistic R is allowed to appear in the denominator of a

test statistic. For example, the t-statistic can be written as t = S√
R
. Condition 4 is

imposed in order to guarantee that 1
R

is uniformly bounded. Condition 5 is a tech-

nical one. It requires the distribution of S1 to be uniformly continuous and the joint

distribution of (S1, R1) to be uniformly continuous in the area where R1 is separated

from its stationary limit K.
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2.3 Estimation of variance.

Now we relax the assumption of the previous sections that the conditional variance

of errors is known.

Let Ỹ = (ỹ1, ..., ỹT ) be a sample from an AR(1) process defined by an equation

ỹj = c + x̃j; x̃j = ρx̃j−1 + ε̃j, j = 0, ..., T, x̃0 = 0. (8)

Error terms satisfy a set of Assumptions A1 stated below.

Assumptions A1. Let(ε̃j,Fj) be a martingale difference sequence with E(ε̃2
j |Fj−1) =

σ2 and supj E(|ε̃j|r|Fj−1) < ∞ a.s. for some 2 < r ≤ 4.

Note that if the variance of error terms σ2 is known, then the process yj = ỹj/σ

is a process described by (1) with errors satisfying the set of Assumptions A.

Let êj = ỹµ
j − ρ̂OLS ỹµ

j−1 be the OLS residuals. Let us define an estimator of σ2 to

be a sample variance of OLS residuals: σ̂2 = 1
T

∑T
j=1 ê2

j . Despite of the fact that the

estimator ρ̂OLS of the AR coefficient is biased toward zero, the estimator σ̂2 of error

term variance is uniformly consistent.

Let us define statistics (S̃, R̃) in the following way

(S̃, R̃) = (
1√

g(T, ρ)σ̂2

T∑
j=1

ỹµ
j−1ε̃j,

1

g(T, ρ)σ̂2

T∑
j=1

(
ỹµ

j−1

)2
).

Lemma 3 Let us consider a model (8) with error terms satisfying the set of Assump-

tions A1, then limT→∞ supρ∈ΘT
P

{∣∣∣bσ2

σ2 − 1
∣∣∣ > ε

}
= 0 for every ε > 0.

Any statistic ϕ(Ỹ , T, ρ) = φ(S̃, R̃, T, ρ) , where φ belongs to the class H, is uni-

formly approximated by the corresponding statistic φ(S,R, T, ρ), where the pair (S,R)

is defined for the process yj = ỹj/σ with the unit variance of error terms.

The proof of Lemma 3 is put to the Supplementary Appendix.

3 Validity of Andrews’ method.

This section proves the validity of the method proposed by Andrews (1993). Let us

consider an AR(1) model with normal errors:

zj = ρzj−1 + ej, ej ∼ iid N(0, 1), z0 = 0. (9)
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The finite sample distribution of the pair of statistics

(
1√

g(T, ρ)

T∑
j=1

zµ
j−1ej,

1

g(T, ρ)

T∑
j=1

(zµ
j−1)

2

)
= (SN , RN), (10)

is fully defined for every T and ρ and can be calculated by numerical integration or

by simulations. The distribution of the statistic ϕ1 = φ(SN , RN , T, ρ) is also fully

defined and can be simulated.

Assume that we have a sample Y = (y1, ..., yT ) from process (1), with independent

standard normal error terms εt. Then set C(Y ), defined by equation (4) where c1(T, ρ)

and c2(T, ρ) equal to the α/2 and 1− α/2 quantiles of the finite sample distribution

of the statistic ϕ1, is a confidence set for the parameter ρ at confidence level 1 − α.

Andrews (1993) proposed the procedure described above for the test statistic equal

to the OLS estimator of ρ, but the procedure can be generalized for any ϕ ∈ H.

The described procedure is exact only for the AR(1) model with normal errors.

Andrews (1993) performed simulations showing that the method is robust to non-

normal errors. We prove that the method produces asymptotically uniform confidence

sets if applied to model (1) without normality assumptions.

Theorem 1 Let Y be a sample from an AR(1) process with an intercept defined by

(1) with error terms satisfying the set of Assumptions A. We consider a test statistic

ϕ(Y, T, ρ) = φ(S,R, T, ρ) belonging to the class H. Let C(Y ) be a set defined by

equation (4) with c1(T, ρ) and c2(T, ρ) being the α/2 and 1 − α/2 quantiles of the

finite sample distribution of the statistic ϕ1 = φ(SN , RN , T, ρ), where (SN , RN) are

statistics defined by (10) for model (9) with normal errors. Then C(Y ) has a uniform

asymptotic coverage probability equal to 1− α.

Remark 2 The statement of Theorem 1 can be extended to an AR(1) process with

a linear trend, yj = a + bj + xj, where xj is defined in (1). Let yτ
j be the detrended

process of yj, that is, yτ
j = yj − y −

PT
i=1(yi−y)iPT

i=1(i−T+1
2

)2
(j − T+1

2
). We consider a pair of

statistics

(Sτ (T, ρ), Rτ (T, ρ)) =

(
1√

gτ (T, ρ)

T∑
j=1

yτ
j−1(yj − ρyj−1),

1

gτ (T, ρ)

T∑
j=1

(yτ
j−1)

2

)
,
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where gτ (T, ρ) = E
(∑T

j=1(y
τ
j−1)

2
)

. Then if Assumptions A are satisfied, the fi-

nite sample distribution of the statistic ϕ = φ(Sτ , Rτ , T, ρ) is uniformly approxi-

mated by the finite sample distribution of the statistic ϕ1 = φ(Sτ,N , Rτ,N , T, ρ). Here

(Sτ,N , Rτ,N) is a pair of corresponding detrended statistics in a model with normal

errors.

The proof of Theorem 1 follows the plan proposed in Lemma 2. Let

AT = {ρ ∈ ΘT : |1− ρ|T α < 1 or |1 + ρ|T α < 1} (11)

for some 0 < α < 1 be a near unity region. Let the stationary region be defined by

the set

BT = {ρ ∈ ΘT : −ρT ≤ ρ ≤ ρT} , where ρT = 1− log(T )

T
. (12)

The sets AT and BT are overlapping and cover the whole ΘT .

Giraitis and Phillips (2006) showed that the convergence in (6) holds uniformly

over BT . Conditions 2 and 3 of Lemma 2 are direct corollaries from Lemmas 2.1

and 2.2 in Giraitis and Phillips (2006). The fact that the statistic RN is uniformly

separated from zero (Condition 4) follows from Theorem 2 in Székely and Bakirov

(2003).

Our main efforts are devoted to checking Condition 1. Our proof uses the Strong

Invariance Principle. We define statistics (S, R) and (SN , RN) on a common prob-

ability space in such a way that the distance between them converges to zero in

probability uniformly over set AT .

Let (εj,Fj) be a martingale difference sequence of error terms satisfying the set

of Assumptions A. We consider partial sums Sj =
∑j

i=1 εi and the normalized partial

sum process ηT (t) = 1√
T
S[tT ]. Using Skorohod’s embedding scheme we can enlarge

the initial probability space and construct a sequence of Brownian motions wT on it

in such a way that for every ε > 0 we have

sup
0≤t≤1

|ηT (t)− wT (t)| = o(T−1/2+1/r+ε) a.s. (13)

For more details, please refer to Lemma 2 in the Supplementary Appendix.
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We should note that since r > 2, the distance between the processes in (13)

converges to zero with the speed of T raised to a negative power. The normalized

process of partial sums for variables with a finite moment of higher order can be

better approximated by a Brownian motion.

Let us define error terms by the following equality
eT,j√

T
= wT (j/T )−wT ((j−1)/T ).

The error terms eT,j are constructed on the same probability space as εt, and have

the standard normal distribution.

In the following analysis we work only with positive AR coefficients ρ ∈ A+
T . The

proof for negative AR coefficients is similar. Let us define zT,j(ρ) = ρzT,j−1(ρ) +

eT,j. Then for every ρ the distribution of {zj}T
j=1 is the same as the distribution

of {zT,j(ρ)}T
j=1. In what follows we ignore the difference between them. The lemma

below shows that many statistics for the constructed processes will be uniformly close

to one another.

Lemma 4 For every ε > 0 we have

a) supρ∈Θ+
T

supj=1,...,T

∣∣∣ xj√
T
− zj√

T

∣∣∣ = o(T−1/2+1/r+ε) a.s.;

b) supρ∈Θ+
T

supj=1,...,T

∣∣∣ xj√
T

∣∣∣ = O(1) a.s. ;

c)
∣∣∣ 1√

T

∑T
j=1 ηT (j/T )εj − 1√

T

∑T
j=1 wT (j/T )eT,j

∣∣∣ = o(T−1/2+1/r+ε) a.s.;

d) supρ∈Θ+
T

1
(1−ρ)T+1

∣∣∣ 1
T

∑T
j=1 xj−1εj − 1

T

∑T
j=1 zj−1eT,j

∣∣∣ = o(T−1/2+1/r+ε) a.s.;

e) supρ∈Θ+
T

∣∣∣ 1
T 2

∑T
j=1 x2

j−1 − 1
T 2

∑T
j=1 z2

j−1

∣∣∣ = o(T−1/2+1/r+ε) a.s.;

f) supρ∈Θ+
T

∣∣∣ 1
T 3/2+k

∑T
j=1 xj−1j

k − 1
T 3/2+k

∑T
j=1 zj−1j

k
∣∣∣ = o(T−1/2+1/r+ε) a.s.;

g) supρ∈A+
T
|S(T, ρ)− SN(T, ρ)| = o(T 3/2+1/r−2α+ε) a.s.;

h) supρ∈A+
T
|R(T, ρ)−RN(T, ρ)| = o(T 1/2+1/r−α+ε) a.s.

Statements g) and h) of Lemma 4 imply the validity of Condition 1 of Lemma 2 for

the pairs (S,R) and (SN , RN).

We should note that statements a) through f) hold for the whole parameter space,

whereas g) and h) are stated for a local neighborhood of ρ = 1 only. Parts a) - f) use

the local to unity normalization, which is too strong for our purposes. In g) and h)

we received the right normalization at the price of a lower convergence speed. Since

r > 2 there is always some 0 < α < 1 such that we have T in a negative power on
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the right-hand side of statements g) and h).

4 Validity of Stock’s method

Stock (1991) proposed to construct a confidence set for the largest autoregressive root

by using local to unity asymptotic approximation. He used a t-statistic for testing

H0 : ρ = 1. However, this test statistic, unlike the t-statistic for testing the true

ρ, does not belong to the class H. Hansen (1999) showed in simulations that the

version of the procedure proposed by Stock (1991) breaks down for values of ρ far

from the unit root. In this section we prove the validity of a modification of the

method proposed by Stock (1991) for constructing confidence intervals with the help

of local to unity asymptotics.

It is well known from Bobkoski (1983), Cavanagh (1985), Chan and Wei (1987),

Phillips (1987), and Stock (1991) that the asymptotic behavior of a t-statistic when

the AR coefficient is local to unity is completely different from that for a fixed |ρ| < 1.

If the autoregressive coefficient is local to unity , i.e. is defined by a sequence ρT =

exp{c/T} for some fixed c < 0, then as the sample size increases we have convergence

(7).

Phillips (1987) proved that

(√−2c

∫ 1

0

Jc(x)dw(x), (−2c)

∫ 1

0

J2
c (x)dx

)
⇒ (N(0, 1), 1) as c → −∞. (14)

That is, we receive a classical normal approximation as a limiting case when c tends

to negative infinity.

Let us consider a pair of statistics

(Sc, Rc) =

(
1√
g(c)

∫ 1

0

Jµ
c (x)dw(x),

1

g(c)

∫ 1

0

(Jµ
c (x))2 dx

)
,

where Jµ
c (x) = Jc(x) − ∫ 1

0
Jc(r)dr, and g(c) = E

∫ 1

0
(Jµ

c (x))2dx. We also define a

function c(T, ρ) = T log(ρ). Stock’s method suggests constructing an asymptotic

confidence set as defined in (4) with c1(T, ρ) and c2(T, ρ) being α/2 and 1 − α/2
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quantiles of the distribution of the statistic ϕ1 = φ(Sc(T,ρ), Rc(T,ρ), T, ρ). An advan-

tage of Stock’s method is that the critical values depend on the one dimensional

local parameter c and can be tabulated for commonly used levels of confidence and

commonly used statistics.

Based on the construction the set C(Y ) has correct local to unity asymptotic

coverage. Namely,

lim
T→∞

Pρ=exp{c/T} {ρ ∈ C(Y )} = 1− α, ∀c ≤ 0.

The convergence (14) suggests that the method may work well for the values of the

parameter ρ in the stationary region. However, until now there has been no proof of

the uniform validity of Stock’s method. We present this proof below.

Theorem 2 Let Y be an AR(1) process with an intercept defined by model (1) with

error terms satisfying the set of Assumptions A. Assume that the statistic ϕ(Y, T, ρ) =

φ(S,R, T, ρ) belongs to the class H. Let C(Y ) be a set defined by equation (4) with

c1(T, ρ) and c2(T, ρ) being α/2 and 1−α/2 quantiles of the distribution of the statistic

ϕ1 = φ(Sc(T,ρ), Rc(T,ρ), T, ρ). Then the set C(Y ) has an (uniform) asymptotic coverage

probability 1− α.

Remark 3 The statement of Theorem 2 can be extended to an AR(1) process with a

linear trend. Let

(Sτ,c, Rτ,c) =

(
1√
gτ (c)

∫ 1

0

Jτ
c (x)dw(x),

1

gτ (c)

∫ 1

0

(Jτ
c (x))2dx

)
,

where Jτ
c (x) = Jc(x)−∫ 1

0
(4−6r)Jc(r)dr−x

∫ 1

0
(12r−6)Jc(r)dr, gτ (c) = E

∫ 1

0
(Jτ

c (x))2dx.

If Assumptions A are satisfied, the finite sample distribution of the statistic ϕ =

φ(Sτ , Rτ , T, ρ) is uniformly approximated by the distribution of the statistic ϕ1 =

φ(Sτ,c(T,ρ), Rτ,c(T,ρ), T, ρ).

As we already proved in Theorem 1, the distribution of the statistic φ(SN , RN , T, ρ)

provides a uniform approximation for the distribution of the statistic φ(S, R, T, ρ). In

order to prove Theorem 2, it is enough to show that the distribution of the variable
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φ(Sc(T,ρ), Rc(T,ρ), T, ρ) uniformly approximates the distribution of φ(SN , RN , T, ρ). It

is easy to check all the conditions of Lemma 2 applied to pairs (Sc(T,ρ), Rc(T,ρ)) and

(SN , RN). The only non-trivial part is the validity of Condition 1, which is discussed

below.

Let us consider a standard Brownian motion w(t) and define the normal error

terms by the following equality:
eT,j√

T
= w

(
j
T

) − w
(

j−1
T

)
. Then the AR(1) process

zT,t(ρ) generated by eT,j has the following form:

zT,j(ρ)√
T

=

j∑
j=0

ρj−i

(
w

(
i

T

)
− w

(
i− 1

T

))
=

∫ j
T

0

elog(ρ)(j−[Ts]−1)dw(s).

Many statistics of interest can be represented as stochastic integrals. For example,

1√
g(T, ρ)

T∑
j=1

zj−1ej =

∫ 1

0

∫ t

0

f1(t, s, T, ρ)dw(s)dw(t),

where f1(t, s, T, ρ) = T√
g(T,ρ)

elog(ρ)([Tt]−[Ts]−1)I{s ≤ [Tt]
T
}. Its local to unity analogs

has a similar form:

1√
g(c(T, ρ))

∫ 1

0

Jc(t)dw(t) =

∫ 1

0

∫ t

0

f2(t, s, T, ρ)dw(s)dw(t),

where f2(t, s, T, ρ) = 1√
g(c(T,ρ))

elog(ρ)T (t−s).

The lemma below says that the described statistics of interest are uniformly close

to each other in the L2 metric:

Lemma 5 Let a set AT be defined in (11). Then we have:

a) limT→∞ supρ∈AT
E

(
1√

g(T,ρ)

∑T
j=1 zj−1ej − 1√

g(c(T,ρ))

∫ 1

0
Jc(t)dw(t)

)2

= 0;

b) limT→∞ supρ∈AT
E

(
1

g(T,ρ)

∑T
j=1 z2

j−1 − 1
g(c(T,ρ))

∫ 1

0
(Jc(t))

2 dt
)2

= 0;

c) limT→∞ supρ∈AT
E

(
1√

g(T,ρ)
√

T

∑T
j=1 zj−1 − 1√

g(c(T,ρ))

∫ 1

0
Jc(t)dt

)2

= 0;

d) limT→∞ supρ∈AT
E

(
SN − Sc(T,ρ)

)2
= 0;

e) limT→∞ supρ∈AT
E

(
RN −Rc(T,ρ)

)2
= 0.

5 Validity of Hansen’s method

The grid bootstrap was proposed by Hansen (1999) for AR(p) processes. This section

considers a special case for the AR(1) model. The discussion of the general case will
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be presented in Section 7.

Let us consider a bootstrapped sample

y∗t = ρy∗t−1 + e∗t , y∗0 = 0, e∗t ∼ i.i.d. FT ,

where FT is a distribution function, that can depend on Y . Let a pair of statistics

(S∗(T, ρ), R∗(T, ρ)) be defined by

(S∗, R∗) =

(
1√

g(T, ρ)

T∑
t=1

yµ,∗
t−1e

∗
t ,

1

g(T, ρ)

T∑
t=1

(yµ,∗
t−1)

2

)
.

The grid bootstrap set C(Y ) is described by equation (4), where ϕ = φ(S, R, T, ρ),

with c1(T, ρ) and c2(T, ρ) being α/2 and 1− α/2 quantiles of the distribution of the

statistic ϕ1 = φ(S∗, R∗, T, ρ).

Hansen (1999) proposed that ϕ be a t-statistic and FT be the cdf of the residuals.

He proved that the distribution of ϕ1 provides an asymptotic approximation of the

distribution of ϕ for any fixed |ρ| < 1 and along a sequence of models with the local

to unity AR coefficient ρT = exp{c/T}. We prove that the grid bootstrap provides

uniform approximation and constructs asymptotic confidence sets. We also generalize

the procedure in two ways. First of all, we can use any test statistic from the class

H. Secondly, we allow for different specifications of the distribution function FT . In

particular, we can consider a parametric grid bootstrap, a non-parametric error based

grid bootstrap and a non-parametric residual based grid bootstrap.

The sample Y is fully defined by the realized error terms ΣT = {εj}T
j=1 and the

unknown true AR coefficient ρ. Assume that we are testing the hypothesis H0 : ρ =

ρ0. Suppose that the distribution FT = FT (Y, ρ0) can depend on the sample Y and

the null value ρ0. Thus we can consider FT = FT (ΣT , ρ, ρ0) as being a function of the

realized error terms, the unknown true coefficient ρ and the null value ρ0.

Definition Let Lr(K, M, θ) be a class of sequences of distributions FT satisfying

the following 3 conditions:

1) µ1(FT ) = 0;

2) µ2(FT ) = σ2
T , where |σ2

T − 1| ≤ MT−θ;

3) supT |µ|r(FT ) < K.
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Here µj(F ) is j-th central moment of distribution F , and |µ|j(F ) is j-th absolute

moment of distribution F .

Theorem 3 Let Y be an AR(1) process defined by equation (1) with error terms sat-

isfying the set of Assumptions A. Assume that the statistic ϕ(Y, T, ρ) = φ(S, R, T, ρ)

belongs to the class H. Then the following three statements hold:

1) limT→∞ supρ∈ΘT
supFT∈Lr(K,M,θ) supx

∣∣Pρ{ϕ < x} − P ∗
ρ {ϕ1 < x}

∣∣ = 0.

2) If for almost all realizations of error terms Σ = {ε1, ..., εj, ...} there exist

constants K(Σ) > 0,M(Σ) > 0 and θ > 0 such that for all ρ ∈ ΘT we have

FT (ΣT , ρ, ρ) ∈ Lr(K, M, θ), then

lim
T→∞

sup
ρ∈ΘT

sup
x

∣∣Pρ{ϕ < x} − P ∗
ρ {ϕ1 < x|ΣT}

∣∣ = 0 a.s.

That is, the bootstrap provides a uniform asymptotic approximation for almost all

realizations of error terms.

3) Let the assumption from the second statement be satisfied. Let C(Y ) be a set

defined by equation (4) with c1(T, ρ|Y ) and c2(T, ρ|Y ) being α/2 and 1−α/2 quantiles

of the distribution of the statistic ϕ1 = φ(S∗, R∗) given the realization of Y . Then the

set C(Y ) has asymptotic coverage probability 1− α.

In the rest of the section we discuss different choices of the bootstrap error dis-

tribution FT . If FT is taken from a parametric family, then the bootstrap is called

parametric. We should note that Andrews’ (1993) method is a version of the para-

metric grid bootstrap.

There are at least two ways of performing non-parametric grid bootstrap. The

most intuitive one is to resample bootstrap errors from the residuals of the regression

model (1). That is, let {êj}T
j=1 be residuals based on the sample Y : êj = yj −

1
T

∑T
i=1 yi − ρ̂yµ

j−1. The residual based bootstrap obtains error terms by resampling

from {êj}T
j=1 with repetition. That is, F res

T (x) = 1
T

∑T
j=1 I{êj ≤ x}. The distribution

function F res
T depends on the sample Y , but does not depend on the null hypothesis

tested.

The second way of performing non-parametric grid bootstrap is to impose the

null while finding the error terms. Suppose, that we are testing the null hypothesis
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H0 : ρ = ρ0. Let us generate the sequence of error terms under the null ej(ρ0) =

yj−ρ0yj−1. Note that if the null is true, then we have the true realization of unknown

errors ej(ρ) = εj. We recenter the errors ẽj(ρ0) = ej(ρ0)− 1
T

∑T
i=1 ei(ρ0), and resample

bootstrap errors from the centered errors: F err
T (x, ρ0) = 1

T

∑T
j=1 I{ẽj(ρ0) ≤ x}. We

call this form of bootstrap error based. The distribution produced depends on the

null value tested, and on the sample F err
T (x|Y, ρ0) = F err

T (x|ΣT , ρ, ρ0).

The lemma below states that the two non-parametric bootstrap procedures pro-

duce asymptotic confidence sets.

Lemma 6 Assume that {yt}T
t=1 is a sample from an AR(1) process defined by (1)

with errors satisfying the set of Assumptions A. Let F res
T (x|ΣT , ρ) be an empirical

distribution function for the residual based bootstrap and F err
T (x|ΣT , ρ, ρ0) be an em-

pirical distribution function for the error based bootstrap. Then for every realization

of errors Σ there exist constants K(Σ) > 0,M(Σ) > 0 and θ > 0 such that for all

ρ ∈ ΘT we have F res
T (x|Σ, ρ) ∈ Lr(K,M, θ),and F err

T (x|Σ, ρ, ρ) ∈ Lr(K, M, θ).

Remark 4 Results of this section also hold for an AR (1) process with a linear trend,

if all statistics are calculated for the detrended process in place of the demeaned.

6 Why the Subsampling Procedure Fails

In order to construct a uniformly asymptotically valid confidence set it is sufficient

to have a uniform asymptotic approximation. The subsampling procedure proposed

by Romano and Wolf (2001) is aimed at constructing asymptotic confidence sets for

the AR coefficient. They proved that the procedure is point-wise asymptotically

correct. However, the sets provided by subsampling are not uniformly asymptotically

correct. We are able to construct a sequence of AR(1) models with the AR coefficient

depending on the sample size, such that the coverage probability of the set constructed

by subsampling converges to a number lower than the declared coverage probability.

Let us consider a sample {zj}T
j=1 from the AR(1) process with intercept a and with

i.i.d. normal innovations. If |ρ| < 1, the initial variable z0 is normally distributed
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with mean a
1−ρ

and variance 1
1−ρ2 . When ρ = 1, the initial value is an arbitrary

constant. We base our inferences on the t-statistic t(T, ρ) calculated from the sample

of size T :

t(T, ρ) =
ρ̂(T )− ρ

σ(ρ̂(T ))
=

∑T
j=1 ejz

µ
j−1√∑T

j=1(z
µ
j−1)

2

.

Let b = bT be a block size when the sample size is equal to T . We consider the

subsample of size b starting from the observation j, that is, {zj, zj+1, ..., zj+b−1}, and

calculate the estimate ρ̂j(b), and the t-statistic using ρ̂(T ) as the null value:

t̂j(b) =
ρ̂j(b)− ρ̂(T )

σ(ρ̂j(b))
=

∑j+b−1
i=j eiz

µ
i−1√∑j+b−1

i=j (zµ
i−1)

2

− (ρ̂(T )− ρ)

√√√√
j+b−1∑

i=j

(zµ
i−1)

2.

Romano and Wolf (2001) argue that the unknown distribution of the t-statistic

t(T, ρ) could be well approximated by the empirical distribution function LT,b(x) =

1
T−b+1

∑T−b+1
j=1 I{t̂j(b) ≤ x}. Let qL

α(T, b) be the α- quantile of the distribution LT,b(x),

then

C(T, b) = [ρ̂(T )− qL
1−α/2(T, b)σ(ρ̂(T )), ρ̂(T )− qL

α/2(T, b)σ(ρ̂(T ))]

is the proposed equitailed confidence interval. Romano and Wolf (2001) proved that

if bT → ∞ and bT

T
→ 0 as T → ∞, then for every ρ ∈ [0, 1] the coverage probability

of the interval C(T, b) converges to 1− α, as the sample size increases.

Below we prove that subsampling is not a uniform procedure.

Theorem 4 Let bT be a sequence of natural numbers such that bT →∞, and bT

T
→ 0

as T →∞. For any c < 0 set ρT = 1 + c/bT , then

lim
T→∞

PρT
{ρT ∈ C(T, bT )} < 1− α.

Corollary 1 The interval constructed by using subsampling is not an asymptotically

uniform confidence set for the unrestricted parameter space Θ = (0, 1).

Romano and Wolf (2001) motivated their procedure by pointing out that the

subsamples are generated from the same population as the whole sample, and as a

result the autoregressive coefficients for the sample and the subsamples are the same.
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This fact, according to them, should make quantiles of the distribution LT,b(x) close

to the quantiles of the unknown distribution of the t-statistic t(T, ρ).

However, the quality of approximations depends not only on the value of the

autoregressive parameter ρ, but also on the sample size. Park (2003) notes that, the

bigger sample you have, the wider is the range of ρ for which the normal approximation

works well. The main idea of the proof of Theorem 4 lies in constructing a sequence

of the coefficients ρT slowly converging to the unit root, such that the original sample

size T is large enough and the limiting normal approximation is achieved, whereas the

size of subsamples bT is small and should be handled by the local to unity asymptotic

approach.

One may be uncomfortable with this counterexample, which involves choosing ρ

in response to the block size. In practice the block size is often data-driven. For

example, we can choose the block size on the basis of the estimated persistence ρ̂(T ).

This is the so called block size calibration method suggested by Romano and Wolf

(2001, section 5.2). If the confidence interval is constructed by inverting hypothesis

tests, we can choose different block sizes for different null hypotheses. In either case,

the econometrician has the opportunity to choose bT in response to the estimated or

hypothesized value of ρ. However, even this flexibility in choosing the block size does

not save the method.

Assume that we can choose the block size such that bmin,T ≤ bT (ρ) ≤ bmax,T with

bmin,T → ∞ and bmax,T /T → 0. Let us consider ρT = 1 + c/bmax,T and bT = bT (ρT ).

Since (1 − ρT )T → ∞, the distribution of the test statistic calculated for the whole

sample could be handled by the classical asymptotics. Let (1 − ρTn)bTn → γ be a

converging subsequence of the sequence {(1− ρT )bT}∞T=1. The distribution of the

subsampled test statistics along this subsequence converges to the local to unity

limiting distribution with the local to unity parameter γ, which is closer to 0 than c

is. As a result, it is easy to show that

lim sup
T→∞

PρT
{ρT ∈ C(T, bT )} < 1− α.

It is evident from the proof that similar results could be received for more general
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AR(1) model with a linear trend. 4

We should note that the result of Theorem 4 is true only for equi-tailed sub-

sampling intervals. Symmetric subsampling intervals would have asymptotically uni-

formly correct coverage, but will be asymptotically uniformly conservative, i.e. the

limit of the maximal coverage is higher than the declared level (see Andrews and

Guggenberger (2005a)).

6.1 Small sample performance.

In this subsection we assess the extent to which the asymptotic results established in

the paper are reflected in finite samples.

Romano and Wolf (2001) provided some Monte-Carlo simulations supporting sub-

sampling. The main drawback of their results is that they considered a very restricted

set of values of the AR coefficient, in particular, ρ ∈ {1, 0.99, 0.95, 0.9, 0.6}. They

found that the subsampling works well for ρ = 1 and values of ρ very close to the

unit root. Our asymptotic results predict that the subsampling intervals would have

a good coverage for the unit root, but undercover for intermediate values of ρ, that

is, for values which could be considered “stationary” for the whole sample, but “close

to the unit root” for subsamples. Unfortunately, Romano and Wolf (2001) performed

simulations for only one such value of the AR coefficient ρ = 0.6 (they used sample

sizes T = 120 and T = 240). For ρ = 0.6 their 95% equitailed confidence intervals

have a coverage probability of 77% , which is even worse than the coverage of the

interval based on the normal approximation at this point.

Figure 1 shows a finite sample coverage of equitailed subsampling confidence inter-

vals for a wide range of the AR coefficient in an AR(1) model with a linear time trend

and normal errors. The sample size considered is T = 120. Subsampling intervals are

constructed for block sizes b = 5, 8, 12, 26 (the grid suggested in Romano and Wolf

4Recently, Andrews and Guggenberger (2005b) independently showed that the subsampling may

fail to provide asymptotically correct tests if used in a model where the limiting distribution of a

test statistic is discontinuous in the true parameter. They consider inferences about autoregressive

coefficient as one of examples.
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(2001)).
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Figure 1. Coverage of equitailed interval constructed using local to unity asymptotics

(Stock (1991)) and subsampling intervals with nominal level 95%. AR(1) model with a

linear time trend, normal errors. Sample size = 120. Number of simulations =5000.

As expected, subsampling intervals undercover for all block sizes for quite a wide

range of ρ. However, the extent of the problem is not as extreme as predicted by the

asymptotic results of Andrews and Guggenberger (2005a). Results of additional sim-

ulations that can be found in the Supplementary Appendix show that the properties

of subsampling intervals worsen as the sample size increases.

The method using local to unity asymptotics performs consistently well. In sim-

ulations we constructed three intervals advertised in this paper (Andrews’s, Stock’s

and Hansen’s). They all have coverage laying within simulation accuracy from the

declared level over the whole parameter space. We depict only one of them, since all

three lines are essentially indistinguishable. A more extensive simulation study can

be found in the Supplementary Appendix on the author’s web page.
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7 AR(p) models.

This section extends the methods discussed in the previous sections to more empiri-

cally relevant AR(p) models. The proofs of all results from Section 7 have been placed

in the Supplementary Appendix.

In this section we consider an AR(p) model with at most one root close to the

unit circle. That is, we restrict all other roots to lay outside a circle strictly wider

than the unit circle. Our aim is to make asymptotically uniformly correct inferences

about the persistence of the series. There is a long discussion about the choice of a

persistence measure in Andrews and Chen (1994). They provide arguments in favor

of using the sum of the AR coefficients as opposed to the largest root. We concentrate

our attention on the sum of the AR coefficients.

Let us consider an AR(p) model in ADF form:

yt = ρyt−1 +

p−1∑
j=1

αj∆yt−j + εt, (15)

where error terms satisfy Assumptions B.

Assumptions B. Let {εt}∞t=1 be i.i.d. error terms with zero mean Eεt=0, unit

variance Eε2
t = 1 and a finite forth moment Eε4

t < ∞.

The process (15) can be described by equation a(L)yt = εt, where a(L) = 1 −
ρL −∑p−1

j=1 αj(1 − L)Lj. Let us have the following representation of the polynomial

a(L) = (1 − µ1L) · · · · · (1 − µpL), where |µ1| ≤ |µ2| ≤ · · · ≤ |µp| < 1. Let us fix

0 < δ < 1. For every ρ ∈ (0, 1) we define a set Rρ to be a set of all possible values of

the nuisance parameter α = (α1, ..., αp−1) for which |µp−1| < δ. It is easy to see the

relationship between the sum of the AR coefficients, ρ, and the inverse roots {µi}p
i=1:

1 − ρ = (1 − µ1) · · · · · (1 − µp). The case when ρ is close to one corresponds to µp

being close to one. If ρ = 1, the process (15) has a unit root.

The main aim of this section is to construct an asymptotically uniformly correct

confidence set for the parameter ρ. The procedure should work uniformly well for

strictly stationary cases as well as in the situations when ρ is arbitrary close to 1.

As before, the construction of a confidence set involves inverting a sequence of tests
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H0 : ρ = ρ0.

We should note that a vector α = (α1, ..., αp−1) is a nuisance parameter for the

hypothesis H0 : ρ = ρ0. To test that the sum of the AR coefficients is equal to ρ0

we calculate the conventional t-statistic t(ρ0, Y ) for this hypothesis in the regression

model (15). We also calculate α̂(ρ0), an estimate of the nuisance parameter α, as the

OLS estimator in the regression model with the null hypothesis imposed:

yt − ρ0yt−1 =

p−1∑
j=1

αj∆yt−j + εt. (16)

That is, we regress yt−ρ0yt−1 on ∆yt−1, ..., ∆yt−p+1. Then we compare the calculated

t-statistic t(ρ0, Y ) with a critical value function q(ρ0, T, α̂(ρ0)), depending on the

tested value ρ0 of the parameter of interest, on the estimated nuisance parameter,

and on the sample size.

The confidence set for the parameter ρ is constructed as a set of values for which

the corresponding hypothesis is accepted

C(y1, ..., yT ) = {ρ0 : q1(ρ0, T, α̂(ρ0)) ≤ t(ρ0, Y ) ≤ q2(ρ0, T, α̂(ρ0))}. (17)

We consider two sets of critical value functions: the one received by parametric grid

bootstrap, which is a generalization of Andrews’ (1993) method, and those received

by Hansen’s (1999) non-parametric grid bootstrap. In the parametric grid bootstrap

the critical value functions are quantiles of the distribution of the t-statistic t(ρ0, Z)

in the model

zt = ρ0zt−1 +

p−1∑
j=1

α̂j(ρ0)∆zt−j + et, (18)

with errors et being independently normally distributed. In the non-parametric grid

bootstrap we simulate critical value functions as quantiles of the distribution of the

t-statistic in model (18) with i.i.d. error terms distributed according to a distribution

function FT . Below we prove the uniform asymptotic validity of both procedures.

7.1 Parametric grid bootstrap

When we have an AR(1) process with normal errors, the parametric grid bootstrap

(Andrews’ method) provides an exact confidence interval for the autoregressive coef-
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ficient ρ. The approximating distributions in AR(p) models employ the estimates of

the nuisance parameter, rather than the true value of the nuisance parameter. As a

result, the generalization of the method to AR(p) is not an exact method even if the

error terms are normally distributed. We prove that the parametric grid bootstrap

provides a uniform approximation of the unknown distribution of the t-statistic in an

AR(p) model with normal errors as long as the estimate of the nuisance parameter is

uniformly consistent.

Let statistics S and R be defined by

(S(Y, ρ, α, T ), R(Y, ρ, α, T )) = (G(ρ, α)−1/2Ỹ ′ε,G(ρ, α)−1/2Ỹ ′Ỹ G(ρ, α)−1/2),

where Ỹt = (yt−1, ∆yt−1, ..., ∆yt−p+1), Ỹ = (Ỹ ′
1 , ..., Ỹ

′
T )′, ε = (ε1, ...εT )′, and G(ρ, α) =

diag
(∑T

t=1 V ar(yt),
∑T

t=1 V ar(∆yt), ...,
∑T

t=1 V ar(∆yt)
)

. Then the t-statistic for test-

ing the hypothesis of the sum of AR coefficients being equal to ρ is

t(Y, ρ, α, T ) = l′1R
−1(Y, ρ, α, T )S(Y, ρ, α, T )/

√
l′1R−1(Y, ρ, α, T )l1,

where l1 = (1, 0, ..., 0).

Lemma 7 Let us have two AR(p) processes: the process Y = (y1, ..., yT ) defined by

(15) and the process Z = (z1, ..., zT ) defined by zt = ρzt−1+
∑p−1

j=1 α̂j∆zt−j+εt. Assume

that error terms εj are the same for both processes and have i.i.d. standard normal

distribution. Assume that the estimate α̂ uniformly converges to α as the sample size

increases

lim
T→∞

sup
ρ∈[0,1)

sup
α∈Rρ

Pρ {‖α− α̂‖ > ε} = 0 for every ε > 0, (19)

where ‖α− β‖ = maxi |αi − βi|. Then

lim
T→∞

sup
ρ∈[0,1)

sup
α∈Rρ

Pρ {|t(y, ρ, α, T )− t(z, ρ, α̂, T )| > ε} = 0.

Hansen (1999) suggested to estimate the nuisance parameters by the OLS impos-

ing the null. Lemma 8 states that the proposed estimates are uniformly consistent.

Lemma 8 Assume that we have an AR(p) process defined by equation (15) with error

terms satisfying the set of Assumptions B.
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Let us define Yt(ρ) = yt − ρyt−1, and Xt = (∆yt−1, .., ∆yt−p+1). Let α̂ be an OLS

estimate in the regression of Yt(ρ) on Xt. Then α̂ is a uniformly consistent estimate

of α, that is, convergence (19) holds.

To prove that the parametric grid bootstrap is an asymptotically uniformly valid

procedure for constructing confidence sets in models with non-normal errors, we em-

ploy the same idea as in Section 2. We divide the set of values of ρ into two overlapping

subsets. One of the two subsets is increasing, while the second is contracting toward

the unit root with a speed slower than 1/T . The standard normal distribution pro-

vides a uniform approximation of the unknown distribution of the t-statistic over the

first subset. We are able to construct two AR(p) processes with the same AR coef-

ficients (one with normal errors, the other with errors εj) on a common probability

space in such a way that the t-statistics for both processes are close to each other

uniformly over the near unity set. As a result, the distribution of the t-statistic in an

AR(p) model is uniformly approximated by the distribution of the t-statistic in an

AR(p) model with the same AR coefficients but with normal errors. The validity of

the parametric bootstrap procedure is stated in the theorem below.

Theorem 5 Assume that Y = (y1, ..., yT ) is a sample from an AR(p) process defined

by equation (15) with error terms satisfying the set of Assumptions B. Let Z =

(z1, ..., zT ) be an AR(p) process with normal errors defined by equation (18), where

α̂(ρ) is the OLS estimates in a regression model (16). Then the distribution of the

t-statistic based on the sample Y can be uniformly approximated by the distribution

of t-statistic based on the process Z:

lim
T→∞

sup
ρ∈(0,1)

sup
α∈Rρ

sup
x
|P{t(Y, ρ, α, T ) > x} − P{t(Z, ρ, α̂(ρ), T ) > x}| = 0.

As a result, the set defined by (17) with qi(ρ, T, α̂(ρ)), i = 1, 2 being quantiles of the

distribution of t(Z, ρ, α̂(ρ), T ), is a uniform asymptotic confidence set for ρ.

7.2 Non-parametric grid bootstrap

The non-parametric grid bootstrap procedure approximates the unknown distribution

of the t-statistic t(Y, ρ, α, T ) by the distribution of the t-statistic t(Z, ρ, α̂(ρ), T ),
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where Z is an AR(p) process defined by (18) with error terms having distribution FT .

Let FT be the empirical distribution function F err
T (·) of the residuals from regression

(16). Then FT (Σ, ρ0, ρ, α) depends on the realization of error terms of the process yt,

on the true coefficients ρ, α, and on the null value ρ0 tested.

Theorem 6 Assume that Y is a sample from an AR(p) process defined by equation

(15) with error terms satisfying the set of Assumptions B. Let zt be an AR(p) process

defined by equation (18), where α̂(ρ) is the OLS estimates in a regression model (16).

Assume that the errors et of the process zt are i.i.d. with the distribution function

FT . Then the following three statements hold:

1)

lim
T→∞

sup
ρ∈(0,1)

sup
α∈Rρ

sup
FT∈Lr(K,M,θ)

sup
x
|P{t(Y, ρ, α, T ) > x} − P{t(Z, ρ, α̂, T ) > x}| = 0.

2) If for almost all realizations of error terms Σ = {ε1, ..., εj, ...} there exist con-

stants K(Σ) > 0,M(Σ) > 0 and θ > 0 such that FT (Σ, ρ, ρ, α) ∈ L4(K, M, θ), for all

ρ ∈ ΘT , then

lim
T→∞

sup
ρ∈(0,1)

sup
α∈Rρ

sup
x

∣∣Pρ{t(Y, ρ, α, T ) > x} − P ∗
ρ {t(Z, ρ, α̂, T ) > x|Σ}

∣∣ = 0 a.s.

That is, the bootstrap provides a uniform asymptotic approximation of the distribution

of the t-statistic for almost all realizations of error terms.

c) Let C(Y ) be a set defined by equation (17) with qi(ρ, T, α̂(ρ)) = qi(ρ, T, α̂(ρ)|Y ), i =

1, 2 being quantiles of the distribution of the statistic t(Z, ρ, α̂, T ), where the boot-

strapped errors et have the distribution function F err
T . Then the set C(Y ) is an

asymptotic confidence set.

8 Conclusion

In this paper I emphasize the difference between point-wise and uniform approxima-

tions. A point-wise approximation is not a strict enough condition for constructing

an asymptotic confidence set, since it allows the convergence of the coverage probabil-

ities to be extremely slow for some values of ρ. A uniform asymptotic approximation
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guarantees that we can achieve any accuracy uniformly over all possible values of ρ, as

long as the sample size is large enough. Thus, having a uniform approximation of the

unknown distribution of a test statistic always allows us to construct asymptotically

valid confidence sets.

However, there still exists a common misleading belief in the literature that in

order to construct a confidence set it is enough to check the validity of the proce-

dure at each value of the parameter separately. Partially, it can be explained by the

observation that the distinction between point-wise and uniform convergence is not

important in many econometric applications (but it is here). We show the insuffi-

ciency of point-wise approximation by proving that Romano and Wolf’s subsampling

intervals are not asymptotic confidence sets, even though they are point-wise asymp-

totically correct.

This paper also fills a gap in the literature by proving the uniform validity of the

three most used methods of constructing confidence sets for the persistence parameter

in autoregressive models: Stock’s local to unity method, Andrews’ parametric grid

bootstrap and Hansen’s grid bootstrap.

Department of Economics, Harvard University, Littauer Center, Cambridge, MA

02138 USA; mikouch@fas.harvard.edu

APPENDIX

This Appendix provides proofs of the theorems and lemmas stated in Sections 2-6.

Proof of the results from Section 7 are placed in the Supplementary Appendix, which

can be found on the author’s web-site.

Proof of Lemma 1.

Pρ{ρ ∈ C(Y )} = FT,ρ(q
G
1−α/2(T, ρ))− FT,ρ(q

G
α/2(T, ρ)) ≥

≥ GT,ρ(q
G
1−α/2(T, ρ))−GT,ρ(q

G
α/2(T, ρ))− 2 sup

x
|FT,ρ(x)−GT,ρ(x)| =

= 1− α− 2 sup
x
|FT,ρ(x)−GT,ρ(x)|

As a result,

lim
T→∞

inf
ρ∈Θ

Pρ{ρ ∈ C(Y )} ≥ 1− α− 2 lim
T→∞

sup
ρ∈Θ

sup
x
|FT,ρ(x)−GT,ρ(x)| = 1− α.
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Proof of Lemma 2.

lim
T→∞

sup
ρ∈ΘT

sup
x
|Pρ{ϕ < x} − Pρ{ϕ1 < x}| ≤

≤ lim
T→∞

sup
ρ∈AT

sup
x
|Pρ{ϕ < x}−Pρ{ϕ1 < x}|+ lim

T→∞
sup
ρ∈BT

sup
x
|Pρ{ϕ < x}−Pρ{ϕ1 < x}|.

Let ρ ∈ AT . Then for the pairs (S, R) and (S1, R1) on a common probability space

we have

P{|φ(S1, R1, T, ρ)− φ(S,R, T, ρ)| > ε} ≤
≤ P{R1 < C}+ P{R < C}+ P{|S − S1|+ |R−R1| > ε

MC
}.

Here we use the fact that φ ∈ H. Condition 4 of Lemma 2 allows one to choose

C > 0 such that supρ∈ΘT
P{R1 < C} is small enough. Since P{R < C} < P{R1 <

2C}+P{|R−R1| > C}, then due to Conditions 1 and 4 of the Lemma 2 we can make

supρ∈AT
P{R < C} small enough. According to Condition 1, for a fixed C we can find

T1 such that supρ∈AT
P{|S − S1| + |R − R1| > ε

MC
} becomes small for T > T1. As a

result, the sequences of variables ϕ1 = φ(S1, R1, T, ρ) and ϕ = φ(S, R, T, ρ) converge

to each other in probability uniformly over AT :

lim
T→∞

sup
ρ∈AT

P{|ϕ1(T, ρ)− ϕ(T, ρ)| > ε} = 0. (20)

Note that,

P{ϕ1 < x− ε} − P{|ϕ− ϕ1| > ε} ≤ P{ϕ < x} ≤ P{ϕ1 < x + ε}+ P{|ϕ− ϕ1| > ε}.

If the distribution of variable ϕ1 is uniformly continuous

lim sup
T→∞

sup
ρ∈ΘT

sup
x

P{x− ε < ϕ1(T, ρ) < x + ε} → 0 as ε → 0, (21)

then statement (20) implies the closeness of distributions

lim
T→∞

sup
ρ∈AT

sup
x
|Pρ{ϕ < x} − Pρ{ϕ1 < x}| = 0. (22)

The statement that the distribution of variable ϕ1 is uniformly continuous follows

from the definition of the class H and Conditions 4 and 5 of Lemma 2. Namely, for

every 0 < C1 < C2 and δ > 0,

P{x− ε < φ(S1, R1, T, ρ) < x + ε} ≤ P{R1 < C1 or R1 > C2}+
+P{x− ε < φ(S1, R1, T, ρ) < x + ε, |R1 −K| < δ,C1 < R1 < C2}+
+P{x− ε < φ(S1, R1, T, ρ) < x + ε, |R1 −K| > δ,C1 < R1 < C2}

(23)
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Condition 4 and Chebyshev’s inequality imply P{R1 > C2} ≤ K
C2

. From this and

Condition 4 it follows that the first summand of (23) can be made small enough by

choosing large C2 and small C1.

According to the definition of H, |φ(S1, R1, T, ρ)−φ(S1, K, T, ρ)| ≤ MC1|R1−K|:

P{x− ε < φ(S1, R1, T, ρ) < x + ε, |R1 −K| < δ,C1 < R1 < C2} ≤
≤ P{x− ε−MC1δ < φ(S1, K, T, ρ) < x + ε + MC1δ}.

Let us have x−ε−MC1δ < φ(y,K, T, ρ) < x+ε+MC1δ for some y. Since ∂φ(s,r,T,ρ)
∂s

>

A > 0 (see definition of H), we have φ(y + ∆, K, T, ρ) > φ(y,K, T, ρ) + A∆ and

φ(y −∆, K, T, ρ) < φ(y,K, T, ρ)− A∆ for all ∆ > 0 . Thus,

P{x− ε−MC1δ < φ(S1, K, T, ρ) < x + ε + MC1δ} ≤
≤ P

{
y − 2

ε+MC1
δ

A
< S1 < y + 2

ε+MC1
δ

A

}
≤ 2M

ε+MC1
δ

A
.

Here the last inequality follows from Condition 5 of Lemma 2. As a result, the second

term in (23) can be made small by choosing small enough ε and δ.

Now we consider the last term in (23). Let y = y(r1) be a value such that

x− ε < φ(y, r1, T, ρ) < x + ε for some C1 < r1 < C2. By using the same reasoning as

above we receive the following ordering of invents {x−ε < φ(S1, r1+δ, T, ρ) < x+ε} ⊆
{x−ε−MC1δ < φ(S1, r1, T, ρ) < x+ε+MC1δ} ⊆ {y−2

ε+MC1
δ

A
< S1 < y+2

ε−MC1
δ

A
}.

By using continuity of the distribution of (S1, R1) (Condition 5 of Lemma 2) we get

that

P{x− ε < φ(S1, R1, T, ρ) < x + ε, |R1 −K| > δ,C1 < R1 < C2} ≤
≤ ∑

k P{x− ε < φ(S1, R1, T, ρ) < x + ε,R1 ∈ [xk − δ, xk + δ]} ≤
≤ ∑

k P{y(xk)− 2
ε+MC1

δ

A
< S1 < y(xk) + 2

ε−MC1
δ

A
, R1 ∈ [xk − δ, xk + δ]} ≤

≤ ∑
k M2

ε+MC1
δ

A
δ ≤ M

ε+MC1
δ

A
(C2 − C1) ≤ const(ε + MC1δ),

here we divided a set {|R1−K| > δ,C1 < R1 < C2} on intervals of the length 2δ. By

choosing small ε and δ we can make the last term of (23) arbitrary small. It ends the

proof of (21), and as a result, we have the uniform closeness of distributions (22).

Now let us consider ρ ∈ BT :

P{φ(S, R, T, ρ) < x} ≤ P{φ(S,R, T, ρ) < x, |R−K| < ε}+ P{|R−K| > ε} ≤
≤ P{φ(S, K, T, ρ) < x + MCε}+ P{|R−K| > ε}
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Similarly,

P{φ(S, R, T, ρ) < x−MCε} ≤ P{φ(S, K, T, ρ) < x}+ P{|R−K| > ε}.

As a result,

P {φ(S, K, T, ρ) < x−MCε} − P{|R−K| > ε} ≤ P{φ(S, R, T, ρ) < x} ≤
≤ P {φ(S, K, T, ρ) < x + MCε}+ P{|R−K| > ε}.

(24)

According to Condition 3 of the Lemma, for any ε > 0 we can make P{|R−K| > ε}
arbitrary small uniformly over ρ ∈ BT . Function s 7→ φ(s,K, T, ρ) is a continuous

function uniformly with respect to (T, ρ) (definition of H). Condition 2 and the

continuous mapping theorem imply that

lim
T→∞

sup
ρ∈BT

sup
x
|P{φ(S,K, T, ρ) < x} − P{φ(ξ,K, T, ρ) < x}| = 0, (25)

where ξ has distribution F (x). (24) and (25) imply that for any ε > 0 there is T1

such that for all T > T1

P {φ(ξ, K, T, ρ) < x− ε}− ε ≤ P{φ(S,R, T, ρ) < x} ≤ P {φ(ξ,K, T, ρ) < x + ε}+ ε.

(26)

Since φ(·, K, T, ρ) is a continuous function and F (x) is a continuous cdf,

P{x− ε < φ(ξ, K, T, ρ) < x + ε} → 0 as ε → 0.

As a result, (26) implies

lim
T→∞

sup
ρ∈BT

sup
x
|P{φ(S,R, T, ρ) < x} − P{φ(ξ,K, T, ρ) < x}| = 0.

The same statement is true for S1. It gives us

lim
T→∞

sup
ρ∈BT

sup
x
|P{ϕ < x} − P{ϕ1 < x}| = 0,

and completes the proof.

Lemma 9 (A corollary of Theorem 2.18 from Hall and Heyde (1980)) Let ξj be a

martingale difference sequence with E|ξj|β < ∞ for some 1 < β < 2. Then, for every

ε > 0,

lim
n→∞

n−1/β−ε

n∑
j=1

ξj = 0 a.s.
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Proof of Lemma 4. We start with a). It is easy to see that:

xj√
T

=
∑j

i=1 ρj−i
(
ηT

(
i
T

)− ηT

(
i−1
T

))
=

=
∑j

i=1(ρ
j−i − ρj−i−1)ηT

(
i
T

)
+ ηT

(
j
T

)− ρjηT

(
0
T

)
=

= −(1− ρ)
∑j

i=1 ρj−i−1ηT

(
i
T

)
+ ηT

(
j
T

)

A similar expression is true for zj:
zj√
T

= −(1− ρ)
∑j

i=1 ρj−i−1wT

(
i
T

)
+ wT

(
j
T

)
. So,

sup
ρ∈Θ+

T

sup
j

∣∣∣∣
xj√
T
− zj√

T

∣∣∣∣ ≤

≤ sup
ρ∈Θ+

T

sup
j

(1− ρ)

j∑
i=1

ρj−i−1

∣∣∣∣ηT

(
i

T

)
− wT

(
i

T

)∣∣∣∣ + sup
j

∣∣∣∣ηT

(
j

T

)
− wT

(
j

T

)∣∣∣∣ ≤

≤ sup
ρ∈Θ+

T

(
|1− ρ|

ρ
sup

j

j∑
i=1

ρj−i + 1

)
sup

0≤t≤1
|ηT (t)− wT (t)| = o(T−1/2+1/r+ε).

b)

sup
ρ∈Θ+

T

sup
j=1,...,T

| xj√
T
| ≤ sup

ρ∈Θ+
T

(
|1− ρ|

ρ
sup

j=1,...,T

j∑
i=1

ρj−i + 1

)
sup

0≤t≤1
|w(t)| ≤ 2 sup

0≤t≤1
|wT (t)|.

For c) we note that

1√
T

∑T
j=1 ηT (j/T )εj =

∑T
j=1

(
ε1√
T

+ ... +
εj√
T

)
εj√
T

=

= 1
2

(∑T
j=1

εj√
T

)2

+ 1
2T

∑T
j=1(ε

2
j − 1) + 1

2
= 1

2
(ηT (1))2 + 1

2T

∑T
j=1(ε

2
j − 1) + 1

2
.

According to Lemma 9,
∑T

j=1(ε
2
T,j − 1) = o(T 2/r+ε) a.s. Consequently,

1√
T

T∑
j=1

ηT (j/T )εj =
1

2
(ηT (1))2 +

1

2
+ o(T 2/r−1+ε).

By similar arguments,

1√
T

T∑
j=1

wT (j/T )eT,j =
1

2
(wT (1))2 +

1

2
+ o(T 2/r−1+ε).

As a result,

∣∣∣∣∣
1√
T

T∑
j=1

ηT (j/T )εj − 1√
T

T∑
j=1

wT (j/T )eT,j

∣∣∣∣∣ ≤
1

2
sup

0≤t≤1
(ηT (t)−wT (t))2 +o(T 2/r−1+ε) ≤
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≤ sup
0≤t≤1

|ηT (t)− w(t)|( sup
0≤t≤1

|ηT (t)|+ sup
0≤t≤1

|w(t)|) + o(T 2/r−1+ε) =

= o(T−1/2+1/r+ε) + o(T 2/r−1+ε) = o(T−1/2+1/r+ε).

d) The formula for discrete integration by parts gives us the following:

1
T

∑T
j=1 xj−1εj =

∑T
j=1

(
xj−1√

T
− xj√

T

)
ηT

(
j
T

)
+ xT√

T
ηT (1) .

1
T

∑T
j=1 zj−1eT,j =

∑T
j=1

(
zj−1√

T
− zj√

T

)
wT

(
j
T

)
+ zT√

T
wT (1) .

We note that
xj−1√

T
− xj√

T
= (1− ρ)

xj−1√
T
− εj√

T
. As a result,

1
T

∑T
j=1 xj−1εj − 1

T

∑T
j=1 zj−1eT,j = (1− ρ)

∑
j

(
xj−1√

T
ηT

(
j
T

)− zj−1√
T

wT

(
j
T

))−
−

(
1√
T

∑T
j=1 ηT (j/T )εj − 1√

T

∑T
j=1 wT (j/T )eT,j

)
+

(
xT√

T
ηT (1)− zT√

T
wT (1)

)

By applying a) and b) it is easy to see that

sup
ρ∈Θ+

T

∣∣∣∣
xj−1√

T
ηT

(
j

T

)
− zj−1√

T
wT

(
j

T

)∣∣∣∣ ≤ sup
ρ∈Θ+

T

sup
j
|xj−1√

T
− zj−1√

T
| sup
0≤t≤1

|wT (t)|+

+ sup
0≤t≤1

|wT (t)− ηT (t)| sup
ρ∈Θ+

T

sup
j
|xj−1√

T
| = o(T−1/2+1/r+ε).

As a result, from c) we have

sup
ρ∈Θ+

T

1

(1− ρ)T + 1

∣∣∣∣∣
1

T

T∑
j=1

xj−1εj − 1

T

T∑
j=1

zj−1eT,j

∣∣∣∣∣ = o(T−1/2+1/r+ε).

Statements e) and f) can be obtained from a) and b):
∣∣∣∣∣

1

T 2

T∑
j=1

x2
j−1 −

1

T 2

T∑
j=1

z2
j−1

∣∣∣∣∣ ≤

≤ sup
j

∣∣∣∣
xj√
T
− zj√

T

∣∣∣∣
(

sup
j

∣∣∣∣
xj√
T

∣∣∣∣ + sup
j

∣∣∣∣
zj√
T

∣∣∣∣
)

= o(T−1/2+1/r+ε);

∣∣∣∣∣
1

T 3/2+k

T∑
j=1

xj−1j
k − 1

T 3/2+k

T∑
j=1

zj−1j
k

∣∣∣∣∣ ≤

≤ sup
j

∣∣∣∣
xj√
T
− zj√

T

∣∣∣∣
1

T k+1

T∑
j=1

jk = o(T−1/2+1/r+ε).

To check Statements g) and h) we use statements d), e) and f):

sup
ρ∈ΘT

∣∣∣∣∣
1

T 2

T∑
j=1

(yµ
j−1)

2 − 1

T 2

T∑
j=1

(zµ
j−1)

2

∣∣∣∣∣ = sup
ρ∈ΘT

∣∣∣∣∣
1

T 2

T∑
j=1

x2
j−1 −

1

T 2

T∑
j=1

z2
j−1

∣∣∣∣∣ +
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+ sup
ρ∈ΘT

∣∣∣∣∣∣

(
1

T 3/2

T∑
j=1

xj−1

)2

−
(

1

T 3/2

T∑
j=1

zj−1

)2
∣∣∣∣∣∣
= o(T−1/2+1/r+ε) a.s.;

sup
ρ∈ΘT

1

(1 + ρ)T + 1

∣∣∣∣∣
1

T

T∑
j=1

yµ
j−1εj − 1

T

T∑
j=1

zµ
j−1ej

∣∣∣∣∣ =

=
1

(1 + ρ)T + 1
sup
ρ∈ΘT

∣∣∣∣∣

(
1

T 3/2

T∑
j=1

xj−1

)
ηT (1)−

(
1

T 3/2

T∑
j=1

zj−1

)
wT (1)

∣∣∣∣∣ +

+
1

(1 + ρ)T + 1
sup
ρ∈ΘT

∣∣∣∣∣
1

T

T∑
j=1

xj−1εj − 1

T

T∑
j=1

zj−1ej

∣∣∣∣∣ = o(T−1/2+1/r+ε) a.s.

We receive g) and h) from the two convergence statements above by noticing that

supρ∈A+
T

T 2

g(T,ρ)
= O(T 1−α). This completes the proof of Lemma 4.

Lemma 10 (Corollary to Theorem 2 in Székely and Bakirov (2003)) For every ε > 0

there exists C > 0 such that

sup
T

sup
ρ∈Θ

Pρ

{
1

g(T, ρ)

T∑
t=1

(zµ
t−1)

2 < C

}
< ε.

That is, the statistic RN is uniformly separated from 0.

Proof of Theorem 1. One can check that the conditions of Lemma 2 are satisfied

for sets AT and BT defined by (11) and (12) for 3
4

+ 1
2r

< α < 1. Condition 1 follows

from g) and h) of Lemma 4. Condition 4 is checked in Lemma 10.

Below we check Conditions 2 and 3. It is easy to see that

S(T, ρ) =

√
T

(1− ρ2)g(T, ρ)

√
1− ρ2

T

T∑
t=1

xt−1εt −
(

1√
g(T, ρ)

T∑
t=1

xt−1

)
ε,

R(T, ρ) =
T

(1− ρ2)g(T, ρ)
· 1− ρ2

T

T∑
t=1

x2
t−1 −

1

T

(
1√

g(T, ρ)

T∑
t=1

xt−1

)2

.

Giraitis and Phillips (2006, Lemmas 2.1 and 2.2) proved that the following statements

about convergence hold uniformly over BT :

lim
T→∞

sup
ρ∈BT

sup
x

∣∣∣∣∣P
{√

1− ρ2

T

T∑
j=1

xj−1εj ≤ x

}
− Φ(x)

∣∣∣∣∣ = 0,
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lim
T→∞

sup
ρ∈BT

P

{∣∣∣∣∣
1− ρ2

T

T∑
j=1

x2
j−1 − 1

∣∣∣∣∣ > ε

}
= 0.

Let us note that ε →p 0. The fact that the term 1√
g(T,ρ)

∑T
t=1 xt−1 is bounded in

probability uniformly over BT can be shown by checking that its second moment is

uniformly bounded. One also can check that

lim
T→∞

sup
ρ∈BT

∣∣∣∣
T

(1− ρ2)g(T, ρ)
− 1

∣∣∣∣ = 0.

Combining all facts mentioned above, Conditions 2 and 3 of Lemma 2 are satisfied.

Proof of Theorem 2. According to Theorem 1 distribution of φ(S, R, T, ρ) is

uniformly approximated by the distribution of φ(SN , RN , T, ρ). As a result, it is

enough to check the conditions of Lemma 2 for two pairs of statistics (S1, R1) =

(SN , RN) and (S, R) = (Sc(T,ρ), Rc(T,ρ)) and sets AT and BT defined by (11) and (12).

Condition 1 follows from Lemma 5. Condition 4 has been checked in Lemma 10.

We check that Conditions 2 and 3 are satisfied. By simple calculations we receive

that limc→−∞ |−2cg(c)− 1| = 0, and limc→−∞(−2c)E
(∫ 1

0
Jc(r)dr

)2

= 0. As a result,

convergence (14) implies that as c → −∞

Sc =

√
1

−2cg(c)

(√−2c

∫ 1

0

Jc(x)dw(x)− w(1)
√−2c

∫ 1

0

Jc(r)dr

)
⇒ N(0, 1),

Rc =
1

−2cg(c)
(−2c)

∫ 1

0

J2
c (x)dx− 1

−2cg(c)

(√−2c

∫ 1

0

Jc(r)dr

)2

→p 1.

Since limT→∞ maxρ∈BT
c(T, ρ) = −∞, Conditions 2 and 3 are satisfied for the pair

(Sc(T,ρ), Rc(T,ρ)).

Proof of Lemma 5. a) From the isomorphic property of Ito’s integrals we have:

E

(
1√

g(T,ρ)

∑T
j=1 zj−1ej − 1√

g(c(T,ρ))

∫ 1

0
Jc(t)dw(t)

)2

=

=
∫ 1

0

∫ t

0
(f1(t, s, T, ρ)− f2(t, s, T, ρ))2dsdt.

Let us introduce functions f3(t, s, T, ρ) = T√
g(T,ρ)

elog(ρ)([Tt]−[Ts]−1) and f4(t, s, T, ρ) =

T√
g(T,ρ)

elog(ρ)T (t−s).

∫ 1

0

∫ t

0

(f1 − f2)
2dsdt ≤ 2

∫ 1

0

∫ t

0

(
(f1 − f3)

2 + (f3 − f4)
2 + (f4 − f2)

2
)
dsdt.
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It is easy to see that

lim
T→∞

sup
ρ∈AT

∫ 1

0

∫ t

0

(f1 − f3)
2dsdt = lim

T→∞
sup
ρ∈AT

T 2

g(T, ρ)

∫ 1

0

∫ t

[Tt]
T

e2 log(ρ)([Tt]−[Ts]−1)dsdt =

= lim
T→∞

sup
ρ∈AT

T

g(T, ρ)
ρ−2 = 0.

For the second term we have:
∫ 1

0

∫ t

0

(f3 − f4)
2dsdt =

T 2

g(T, ρ)

∫ 1

0

∫ t

0

(elog(ρ)([Tt]−[Ts]−1) − elog(ρ)T (t−s))2dsdt ≤

≤ T 2

g(T, ρ)

∫ 1

0

∫ t

0

| log(ρ)([Tt]−[Ts]−1)−log(ρ)T (t−s)|2e2 log(ρ)([Tt]−[Ts]−1)dsdt ≤ 2 log2(ρ).

We used the inequality |e−a − e−b| ≤ |a− b|e−a that holds for 0 < a < b. As a result,

lim
T→∞

sup
ρ∈AT

∫ 1

0

∫ t

0

(f3 − f4)
2dsdt ≤ lim

T→∞
T−2α = 0.

Finally, by simple calculation we can receive that

lim
T→∞

sup
ρ∈AT

∣∣∣∣
T 2g(c(T, ρ))

g(T, ρ)
− 1

∣∣∣∣ = 0.

As a result, limT→∞ supρ∈AT

∫ 1

0

∫ t

0
(f4 − f2)

2dsdt = 0. It completes the proof of a).

For b) we note that

E
(

1
g(T,ρ)

∑T
j=1 z2

j−1 − 1
g(c(T,ρ))

∫ 1

0
(Jc(t))

2 dt
)2

= E

(∫ 1

0

{(∫ 1

0
f1(t, s)dw(s)

)2

−
(∫ 1

0
f2(t, s)dw(s)

)2
}

dt

)2

≤

≤ E
∫ 1

0

(∫ 1

0
(f1 − f2) dWs

)2 (∫ 1

0
(f1 + f2) dWs

)2

dt ≤

=

√
E

∫ 1

0

(∫ 1

0
(f1 − f2) dWs

)4

dt

√
E

∫ 1

0

(∫ 1

0
(f1 + f2) dWs

)4

dt.

From Theorem 4 in Chapter 2 of Skorokhod (1965) we receive

E

(∫ 1

0

(f1(t, s)− f2(t, s)) dWs

)4

≤ 36

∫ 1

0

(f1(t, s)− f2(t, s))
4 ds

and

E

(∫ 1

0

(f1(t, s) + f2(t, s)) dWs

)4

≤ 36

∫ 1

0

(f1(t, s) + f2(t, s))
4 ds.

It is easy to check that

sup
ρ∈AT

∫ 1

0

∫ 1

0

(f1(t, s) + f2(t, s))
4 dsdt = O(1) as T →∞.
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The proof that limT→∞ supρ∈AT

∫ 1

0

∫ 1

0
(f1(t, s)− f2(t, s))

4 dsdt = 0 is completely anal-

ogous to that of part a). It finishes the proof of part b).

c)

E

(
1√

T
√

g(T, ρ)

T∑
j=1

zj−1 − 1√
g(c(T, ρ))

∫ 1

0

Jc(T,ρ)(t)dt

)2

=

= E

(∫ 1

0

∫ t

0

f1(s, t, T, ρ)dw(s)dt−
∫ 1

0

∫ t

0

f2(s, t, T, ρ)dw(s)dt

)2

dt =

=

∫ 1

0

(∫ 1

s

f1(s, t)dt−
∫ 1

s

f2(s, t)dt

)2

ds ≤
∫ 1

0

∫ 1

0

(f1 − f2)
2 dsdt → 0

uniformly over AT as T →∞.

d) and e). By simple algebraic manipulation we receive

SN =
1√

g(T, ρ)

T∑
j=1

zj−1ej −
(

1

T 1/2

T∑
j=1

ej−1

)(
1√

g(T, ρ)
√

T

T∑
j=1

zj−1

)
;

Sc =
1√
g(c)

∫ 1

0

Jc(t)dw(t)− w(1)
1√
g(c)

∫ 1

0

Jc(t)dt,

and

RN =
1

g(T, ρ)

T∑
j=1

z2
j−1 −

(
1√

g(T, ρ)T 1/2

T∑
j=1

zj−1

)2

;

Rc =
1

g(c)

∫ 1

0

J2
c (t)dt−

(
1√
g(c)

∫ 1

0

Jc(t)dt

)2

.

Thus, statements a), b) and c) of Lemma 5 imply statements d) and e).

Lemma 11 Let {εT,j; j = 1, ..., T ; T ∈ N} be a triangular array of random variables,

such that for every T variables {εT,j}T
j=1 are i.i.d. with distribution FT . Assume that

yT,j = ρyT,j−1 + εT,j. Then for any sequence ρT such that T (1− ρT ) →∞ we have

lim
T→∞

sup
FT∈Lr(K,M,θ)

sup
|ρ|≤ρT

sup
x

∣∣∣∣∣P
{

1√
g(T, ρ)

T∑
j=1

yT,j−1εT,j < x

}
− Φ(x)

∣∣∣∣∣ = 0,

and, for every ε > 0,

lim
T→∞

sup
FT∈Lr(K,M,θ)

sup
|ρ|≤ρT

P

{∣∣∣∣∣
1

g(T, ρ)

T∑
j=1

y2
T,j−1 − 1

∣∣∣∣∣ > ε

}
= 0;

lim
T→∞

sup
FT∈Lr(K,M,θ)

sup
|ρ|≤ρT

P

{∣∣∣∣∣
1√

g(T, ρ)
√

T

T∑
j=1

yT,j−1

∣∣∣∣∣ > ε

}
= 0.
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Lemma 12 Let {εT,j; j = 1, ..., T ; T ∈ N} be a triangular array of random variables,

such that for every T the variables {εT,j}T
j=1 are iid with cdf FT ∈ Lr(K, M, θ). Then

we can construct a process ηT (t) = 1√
T

∑[Tt]
j=1 εT,j and a Brownian motions wT on a

common probability space in such a way that for every ε > 0 we have

lim
T→∞

sup
FT∈Lr(K,M,θ)

P{ sup
0≤t≤1

|ηT (t)− wT (t)| > εT−δ} = 0,

for some δ > 0.

Proofs of Lemmas 11 and 12 can be found in the Supplementary Appendix.

Proof of Theorem 3. 1) Given the validity of Theorem 1 it is enough to prove

that the bootstrapped statistics are uniformly approximated by statistics in a model

with normal errors. We follow the framework proposed in Lemma 2. We check the

conditions of Lemma 2 for two pairs of statistics (S1, R1) = (SN , RN) and (S, R) =

(S∗, R∗) and sets AT and BT defined by (11) and (12). Condition 1 of Lemma 2

follows from Lemma 12 and the reasoning completely parallel to those in Lemma 4

with changing the speed of convergence from −1/2 + 1/r to −δ. Conditions 2 and 3

of Lemma 2 follow from Lemma 11. Conditions 4 and 5 were checked in the proof of

Theorem 1.

Statement 2) of Theorem 3 trivially follows from statement 1).

3) From the definition of the grid bootstrap set we have that ρ ∈ C(Y ) if

and only if P ∗
ρ {φ(S∗1 , R

∗
1, T, ρ) > φ(S, R, T, ρ) |FT} > α/2 and P ∗

ρ {φ(S∗1 , R
∗
1, T, ρ) <

φ(S,R, T, ρ) |FT} > α/2. It is easy to see that

sup
ρ∈Θ

Pρ{P ∗
ρ {φ(S∗1 , R

∗
1, T, ρ) > φ(S,R, T, ρ) |FT} < α/2} ≤

≤ sup
ρ∈Θ

Pρ{F (φ(S, R, T, ρ), T, ρ) < α/2 + ε}+

+ sup
ρ∈Θ

Pρ

{
sup
ρ∈Θ

sup
x

∣∣Pρ{φ(S, R, T, ρ) < x} − P ∗
ρ {φ(S∗1 , R

∗
1, T, ρ) < x|ΣT}

∣∣ > ε

}
,

where F (x, T, ρ) = Pρ{φ(S,R, T, ρ) < x}. The second term goes to zero for every

ε > 0. The random variable F (φ(S,R, T, ρ), T, ρ) has a uniform distribution over

[0, 1], that is,

sup
ρ∈Θ

Pρ{F (φ(S,R, T, ρ), T, ρ) < α/2 + ε} = α/2 + ε.
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As a result, for every ε > 0 we have limT→∞ infρ∈Θ Pρ{ρ ∈ ΘT} ≥ 1 − (α + 2ε). So,

the coverage probability of C(Y ) converges to 1− α.

Proof of Lemma 6. First of all, we check that the residual based bootstrap

produces FT that belongs to Lr(K, M, θ) class. The first condition of the class is

trivially satisfied. For the third condition we have:

1

T

T∑
t=1

|êt|r ≤ Cr
1

T

T∑
t=1

|εµ
t |r + Cr

1

T

T∑
t=1

|êt − εµ
t |r ,

where êj − εµ
j =

PT
i=1 εiy

µ
i−1PT

i=1(y
µ
i−1)2

yµ
j−1.Let us consider each term separately. The first term

is bounded a.s. due to the Strong Law of Large Numbers. For the second term we

note that for every ε > 0 we have

1

T

T∑
j=1

∣∣êj − εµ
j

∣∣r =
1

T

∣∣∣∣∣

∑T
j=1 εjy

µ
j−1∑T

j=1(y
µ
j−1)

2

∣∣∣∣∣

r T∑
j=1

|yµ
j−1|r ≤

1

T

∣∣∣∣∣

∑T
j=1 εjy

µ
j−1∑T

j=1(y
µ
j−1)

2

∣∣∣∣∣

r (
T∑

t=1

|yµ
t−1|2

)r/2

=

=
1

T

∣∣∣∣ 1√
g(T,ρ)

∑T
j=1 εjy

µ
j−1

∣∣∣∣
r

(
1

g(T,ρ)

∑T
j=1(y

µ
j−1)

2
)r/2

= op(T
−1+ε).

Now, we check the second condition for the residual based bootstrap:

1

T

T∑
j=1

ê2
j − 1 =

(
1

T

T∑
j=1

(εµ
j )2 − 1

)
+ 3

1

T

(
1√

g(T,ρ)

∑T
j=1 εjy

µ
j−1

)2

1
g(T,ρ)

∑T
j=1(y

µ
j−1)

2
,

that converges a.s. to zero with a non-trivial speed since E|εj|r < ∞ for r > 2.

For the error based bootstrap the errors under the null are et(ρ) = εt the true

errors. Then all conditions of Lr(K, M, θ) class can be received directly from the

Strong Law of Large Numbers.

Proof of Theorem 4. Let us fix a negative number c and define ρT = 1 + c
bT

.

Then T (1 − ρT ) = − c
bT

T → ∞. According to Park (2003) and Giraitis and Phillips

(2006) we have the following convergence

lim
T→∞

sup
x
|PρT

{t(T, ρT ) < x} − Φ(x)| = 0.

The t-statistics calculated for the sample that has only bT observations follow the

local to unity asymptotics with the local parameter c. In particular, from Lemma 13
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of the Supplementary Appendix we have

lim
T→∞

sup
x

∣∣∣∣∣∣
PρT

{t̂1(b) < x} − P





∫ 1

0
Kµ

c (x)dw(x)√∫ 1

0
(Kµ

c (x))2dx
< x





∣∣∣∣∣∣
= 0,

where Kµ
c (t) is the demeaned process Kc(s) = Jc(s) + ecs√−2c

ξ, and ξ ∼ N(0, 1) is

independent of w. The difference between Jc and Kc is due to non-zero initial value

of z0, see more on that in Elliott (1999) and Elliott and Stock (2001).

According to Lemma 14 of the Supplementary Appendix we have

lim
T→∞

sup
x

∣∣∣∣∣∣
LT,b(x)− P





∫ 1

0
Kµ

c (s)dw(s)√∫ 1

0
(Kµ

c (s))2ds
< x





∣∣∣∣∣∣
= 0 in probability.

Since the cdf for the local to unity limit is a continuous function, the convergence

above gives us the convergence of the quantiles

qL
α(T, b)− qc

α → 0 in probability.

Here qc
α denotes the α− quantile of the distribution of

R 1
0 Kµ

c (x)dw(x)√R 1
0 (Kµ

c (x))2dx
. Finally, as shown

in Section 6 of the Supplementary Appendix

lim
T→∞

PρT
{ρT ∈ C(T, bT )} = Φ(qc

1−α/2)− Φ(qc
α/2) < 1− α.
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