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1. Introduction

This paper studies the following problem: how stable over time are the so-called “structural

parameters” of dynamic stochastic general equilibrium (DSGE) models? To answer this

question, we estimate a medium-scale DSGEmodel with real and nominal rigidities using U.S.

data. In our model, we allow for parameter drifting and rational expectations of the agents

with respect to this drift. We document that there is strong evidence that parameters change

within our sample. In particular, we illustrate variations in the parameters describing the

monetary policy reaction function and in the parameters characterizing the pricing behavior of

firms and households. Moreover, we show how the movements in the parameters are correlated

with the evolution of inflation and are consistent with alternative sources of information. Our

results cast doubts on some of the justifications for the empirical implementation of DSGE

models, at least in their current form.

Our findings are important because DSGE models are at the core of modern macroeco-

nomics. They promise to be a laboratory that researchers can employ to match theory with

reality, to design economic policies, and to evaluate welfare. The allure of DSGE models has

captured the imaginations of many, inside and outside academia. In universities, a multitude

of economists implements DSGE models in their many varieties and fashions. More remark-

able still, a burgeoning number of policy-making institutions are estimating DSGE models for

policy analysis and forecasting (An and Schorfheide, 2006). The Federal Reserve Board, the

European Central Bank, the International Monetary Fund, and the central banks of Austria,

Canada, Germany, Italy, Norway, Spain, and Sweden are at the front of the tide, but many

other institutions are keen to jump on the bandwagon. In addition, the profession is accumu-

lating experience of the good forecasting record of DSGE models, even when compared with

judgmental predictions from staff economists (Laforte and Windle, 2006).

At the center of DSGE models, we have the “structural parameters” that define the

preferences and technology of the economy. Usually, we call these parameters “structural” in

the sense of Hurwicz (1962): they are invariant to interventions, including shocks by nature.

The structural character of the parameters is responsible for much of the appeal of DSGE

models. Since the parameters are fully interpretable from the perspective of economic theory

and invariant to policy interventions, DSGE models avoid the Lucas critique and can be used

to quantitatively evaluate policy.
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Our point of departure is that, at least at some level, it is hard to believe that the

“structural parameters” of DSGE models are really structural given the class of interventions

we are interested in. Let us think, for instance, about technology. Most DSGE models specify

a stable production function, perhaps subject to productivity growth. Except in a few papers

(Young, 2004), the features of the technology, like the elasticity of output to capital, are

constant over time. But this constant elasticity is untenable in a world where technological

change is purposeful. We can expect that changes in the relative price of capital versus labor

will induce changes in the new technologies developed and that those may translate into

different elasticities of output to inputs. Similar arguments can be made along pretty much

every dimension of a modern DSGE model.

The previous argument is not sufficient to dismiss the practice of estimating DSGEmodels

with constant parameter values. Simplifying assumptions, like stable parameters, are required

to make progress in economics. However, as soon as we realize the possible changing nature

of “structural” parameters, we weaken the justifications for inference exercises underlying

the program of DSGE modelling. The separation between what is “structural” and what is

reduced-form becomes much more ambiguous.1

The possibility but not the necessity of parameter drifting motivates the main question of

this paper: how much evidence of parameter drifting in DSGE models is in the data? If the

answer is that we find much support for drifting (where the metric to decide “much” needs

to be discussed), we would need to re-evaluate the usefulness of our estimation exercises or

at least modify our models to account for parameter variation. Moreover, parameter drifting

may also be interpreted as a sign of model misspecification and, possibly, as a guide for

improving our models. If the answer is negative, i.e., if we find little evidence of parameter

drifting, we would increase our confidence in DSGE modelling as a way to tackle relevant

policy discussions.

Beyond addressing our substantive question, this paper also develops new tools for the

estimation of dynamic equilibrium models with parameter drifting. We show how the com-

bination of perturbation methods and the particle filter allows the efficient estimation of this

1Indeed, Hurwicz (1962) himself emphasized the contingency of the definition of structural parameter:
“...the concept of structure is relative to the domain of modifications anticipated”, “If two individuals differ
from regard to modifications they are willing to consider, they will probably differ with regard to the relations
accepted as structural,” and “...this relativity of the concept of structure is due to the fact that it represents
not a property of the material system under observation, but rather a property of the anticipations of those
asking for predictions concerning the state of the system” (italics in the original).
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class of economies. Indeed, all the required computations can be implemented in a good PC

in a reasonable amount of time. We hope that those tools may be put to good use in other

applications, not necessarily in general equilibrium, that involve time-varying parameters in

essential ways.

Our main results are as follows. First, we offer compelling proof of changing parameters

in the Fed’s behavior. Monetary policy became appreciably more aggressive in its stand

against inflation after Volcker’s appointment. This result agrees with Clarida, Galí, and

Gertler (2000), Lubick and Schorfheide (2004), and Boivin (2006). Our contribution is that

we re-derive the result within in the context of a model where agents understand and act

upon the fact that monetary policy can change over time.

Second, we expose the instability of the parameters controlling the level of nominal rigid-

ity and indexation of prices and wages. Those changes are strongly correlated with changes in

inflation in an intuitive way: lower rigidities correlate with higher inflation and higher rigidi-

ties with lower inflation. Our finding suggests that a more thorough treatment of nominal

rigidities, possibly through state-dependent pricing models, may have high payoffs in terms

of data fitting and policy analysis.

We want to be up-front about some of the shortcomings of our exercise. First, and

foremost, we face the limitation of the data. With 184 quarterly observations of the U.S.

economy, there is a tight bound on how much we can learn from the data (Ploberger and

Phillips, 2003, frame the problem of empirical limits for time series models precisely in terms

of information bounds.) The main consequence of the limitations of the short sample size is

relatively imprecise estimates.

The second limitation, forcefully emphasized by Sims (2001), is that we do not allow

for changing volatilities in the innovations of the model, which is itself a particular form

of parameter drift. If the innovations are heteroskedastic (and we have argued ourselves in

Fernández-Villaverde and Rubio-Ramírez, 2007, that there is notable evidence of stochastic

volatility in the U.S. data), the estimation may attempt to pick up the changing variance

by spurious changes in the structural parameters. At the same time, Cogley and Sargent

(2005) find that there is still variation in the parameters of a VAR even after controlling for

heteroskedasticity. We are currently working on an extension of the model where we allow

parameter drifting and changing volatilities.

In our work, we build upon an illustrious tradition of estimating models with parameter
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drifting. One classic reference is Cooley and Prescott (1976), where the authors studied the

estimation of regression parameters that are subject to permanent and transitory shocks. Un-

fortunately, the techniques in this tradition are within the context of the Cowles Commission’s

framework and, hence, are of little direct application to our investigation.

Our paper is also linked with a growing body of research that shows signs of parameter

drifting on dynamic models. Since the estimation of this class of models is a new under-

taking, the evidence is scattered. One relevant literature estimates VARs with time-varying

parameters and/or stochastic volatility. Examples include Uhlig (1997), Bernanke and Mihov

(1988), Cogley and Sargent (2005), Primiceri (2005), and Sims and Zha (2006). The consen-

sus emerging from these papers is that there is evidence of time variation in the parameters of

a VAR, although there is a dispute about whether the variation comes mainly from changes

in the autoregressive components or from stochastic volatility. This evidence, however, is

only suggestive, since a DSGE model with constant parameters may be compatible with a

time-varying VAR (Cogley and Sbordone, 2006).

A second literature has estimated equilibrium models with variation in some parameters,

but it has been much less ambitious in the extent of the fluctuations allowed. Fernández-

Villaverde and Rubio-Ramírez (2007) and Justiniano and Primiceri (2006) demonstrate the

importance of stochastic volatility to account for U.S. data using a DSGE model. King

(2005) works with a simple RBC economy with parameter drift in four parameters. However,

his approach relies on particular properties of his model and it is too cumbersome to be of

general applicability. Boivin (2006) estimates a parameter-drifting Taylor rule with real-time

data. He corroborates previous findings of changes in the rule coefficients obtained with

final data. Benati (2006), elaborating on an argument by Woodford (2006), questions the

indexation mechanisms introduced in New Keynesian models and shows evidence that they

are not structural to changes in monetary policy rules. Oliner, Rudebusch, and Sichel (1996)

find unstable parameters even in investment models with more intricate representations of

capital spending than those found in current DSGE models.

There are also numerous papers that tell us much about parameter drifting, albeit in an

indirect way. A common practice when estimating models has been to divide the sample into

two periods, usually before and after 1979, and argue that there are significant differences

in the inference results. One celebrated representative of this method is Clarida, Galí, and

Gertler (2000), a paper we will discuss later in more detail.
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Finally, a literature that shares many connections with our analysis is the one that deals

with DSGE models that have a Markov-switching process in some aspect of the environment,

like monetary or fiscal policy (Davig and Leeper, 2006a and 2006b, Chung, Davig, and Leeper,

2006, and Farmer, Waggoner, and Zha, 2006). The stated motivation of these papers is that

Markov switches may help us understand the dynamics of the economy better. So far, none

of these papers has produced an estimated model.

The rest of the article is organized as follows. First, in section 2, we discuss different ways

to think about parameter drifting in dynamic equilibrium models. In section 3, we develop

two simple examples of parameter drift that motivate our investigation. Section 4 spells out

a medium-scale model of the U.S. economy and discusses how to take this model to the data.

Section 5 introduces parameter drifting and explains how to adapt the approach in section 4

to handle this situation. We report our results in section 6. Section 7 concludes. An appendix

provides the interested reader with some technical details.

2. Parameter Drifting and Dynamic Equilibrium Models

There are at least three ways to think about parameter drifting in an estimated DSGE model.

The simplest approach, which we call the pure econometric interpretation, is to consider

parameter drifting as a convenient phenomenon to fit the data better or as the consequence

of a capricious nature that agents in the model neither understand nor forecast. Despite

its simplicity, this interpretation violates the spirit of rational expectations: not having free

parameters that the researcher can play with. Consequently, we will not investigate this case

further.

The second way to think about parameter drifting is as a characteristic of the environment

that the agents understand and act upon. Let us come back to our example of the production

function. Imagine that the aggregate technology is given by a Cobb-Douglas function Yt =

AKαt
t L

1−αt
t where output Yt is produced with capital Kt and labor Lt given some technology

level A and some share parameter αt. The only difference with the standard environment is

that αt is indexed by time (neither the realism nor the empirical justification of our example

is crucial for the argument, although we could argue in favor of both features). Let us also

assume that αt evolves over time as a random walk with reflecting boundaries at 0 and 1,

to ensure that the production function satisfies standard properties. We could imagine that
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such drift comes about because the new technologies developed have a random requirement

of capital. The solution of the agent’s problems are decision rules that have as one of their

arguments the current αt. Why? First, because αt determines current prices. Second, because

αt helps to forecast future values αt+j and hence to predict future prices. This interpretation

is our favorite one, and it will frame our reading of the results in section 6.

The final perspective about parameter drifting is as a telltale of model misspecification.

This point, raised by Cooley (1971) and Rosenberg (1968), is particularly cognate when

estimating DSGE models. These models are complex constructions. To make them useful for

policy purposes, researchers add many mechanisms that affect the dynamics of the economy:

sticky prices and wages, adjustment costs, etc. In addition, DSGE models require many

parametric assumptions: the utility function, the production function, the adjustment costs,

the distribution of shocks, etc. If we seriously misspecified the model along at least one

dimension, parameter drifting may appear as the only possibility left to the model to fit the

data. Our example in section 3 illustrates this point in detail. We will exploit this possibility

in our empirical results and assess how the drift in the parameters determining the degree

of nominal rigidity in the economy implies that time-dependent models of pricing decisions

may be flawed.

3. Two Examples

In this section, we present two simple examples that generate parameter drifting in estimated

DSGE models. We have chosen the examples to illustrate our points as clearly as possible

and not based on their empirical relevance or plausibility. However, the examples are not

far-fetched: they deal with recurrent themes in the literature and are linked, albeit we do not

explore this connection to its fullest, to relevant features of the economy.

3.1. Parameter Drift as a Consequence of Changing Policies

The first example deals with the changes in the elasticity of monetary policy to different

variables. It is common to postulate that the monetary authority uses open market operations

to set the short-run nominal interest rate Rt according to a Taylor rule:

Rt
R
=

µ
Rt−1
R

¶γR
µµ

Πt
Π

¶γΠ
µ
ytbyt
¶γy

¶1−γR
exp (σmεmt)
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The variable Π represents the target levels of inflation of the monetary authority, R the

steady-state gross return of capital, yt is output, and byt some measure of target output. The
term εmt is a random shock to the systematic component of monetary policy and is distributed

according to N (0, 1).
In an influential contribution, Clarida, Galí, and Gertler (2000) drove the attention of the

profession to changes in the elasticity parameter γΠ before and after Volcker’s appointment as

Fed Chairman in 1979. They document, with a slightly different specification of the Taylor

rule, that γΠ more than doubles after 1979. This finding has been corroborated in many

studies and found resilient to modifications in the empirical specification (see the results and

references in Lubick and Schorfheide, 2004). The division of the sample between the time

before and after 1979 has also been exploited in papers such as Boivin and Giannoni (2006),

who find that the point estimates of the structural parameters also substantially vary between

the two periods.

Changes in the policy coefficients are one particular example of parameter drift. We

can think of them as consequences of modifications in priorities by the policy-makers or as

consequences of changes in the perception of the effectiveness of monetary policy, a point

keenly defended by Sargent (1999). Once we recognize that there is much evidence of the

parameter γΠ drifting over time, it is natural to pursue the consequences of agents realizing

that these changes are a possibility and acting upon them. Also, such an environment may

capture some of the insights of Sims (1980) about the difference between a change in policy

regime (in our Taylor rule, a change in the way the interest rate is determined) and the

evolution of the policy within one regime, which can be interpreted in our context as the drift

of the parameters of the rule.

3.2. Parameter Drift as a Telltale of Model Misspecification

Our second example revisits several of the themes in Browning, Hansen, and Heckman (1999).

We explore the consequences for inference of an econometrician estimating a model with infi-

nitely lived agents when the data have actually been generated by an overlapping generations

model. We show how our estimate of the discount factor will be a function of the true

discount factor, the elasticity of output to capital, and the (changing) age distribution of

the population. This example is relevant because variations in the age structure of the U.S.

population have been continuous due both to changes in fertility and in mortality.
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3.2.1. An Artificial World

We begin by creating a simple artificial world. In each period t, there are two generations of

households alive, young and old. Each household maximizes the life utility

log ctt + βEt log ctt+1

where the superindex denotes that the household was born in period t, the subindex the

period in which it consumes, and Et is the conditional expectations operator. The discount

factor, β, captures the preference for current consumption. We pick a log utility function to

simplify the algebra below.

Households work when young and get a wage wt for a unit of time that they supply inelas-

tically. Households live off their savings when they are old. The period budget constraints

are given by ctt + st = wt and c
t
t+1 = Rt+1st, where st is the household savings and Rt+1 the

gross return on capital. From the first order condition of households, we have that ctt =
1
1+β
wt

and ctt =
β
1+β
wt.

In each period, a number nt of new households is born. For the moment, we will assume

only that lt is the realization of some random process. Nothing of substance for our argument

is lost by assuming that the size of the new generation is exogenous.

The production side of the economy is defined by a Cobb-Douglas production function

yt = k
α
t l
1−α
t where kt is the total amount of capital in the economy and lt the total amount

of labor. If we assume total depreciation in the economy, again to simplify the algebra,

and impose the condition lt = nt, we get by competitive pricing wt = (1− α) kαt n
−α
t and

Rt = αkα−1t n1−αt .

Now, all that remains is some accounting. Total consumption in the economy in period t,

Ct, is equal to the total consumption of the old generation plus the total consumption of the

young generation. The old consume all of their income, which is equal to the total capital

income of the economy, Rtkt = αkαt n
1−α
t . The young consume a fraction 1

1+β
of their total

income, which is equal to the total labor income of the economy wtlt = (1− α) kαt n
1−α
t . Then

total consumption is:

Ct =
1 + αβ

1 + β
kαt n

1−α
t
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By the aggregate resource constraint, investment (or, equivalently, capital in period t+ 1) is

It = kt+1 =
(1− α)β

1 + αβ
Ct

Finally, we can find per capita consumption cpct as:

cpct =
Ct

nt + nt−1

3.2.2. An Econometrician

Let us now suppose that we have an econometrician who aims to estimate with T observations

generated from our economy, a version of the model with a representative infinitely lived

agent. To do so, the econometrician postulates that the agent has a utility function:

max
{cpct }

Et
∞X
t=0

βt

"
tY
i=0

(1 + γt)

#
log cpct

where γt is the (random) growth rate of the population between periods t− 1 and t:

1 + γt =
nt + nt−1
nt−1 + nt−2

and γ0 = 0. This utility function is the same as in the canonical presentation of the RBC

model in Cooley and Prescott (1995) except that the growth rate of the population is sto-

chastic instead of constant. The production side of the economy is the same as before,

yt = k
α
t l
1−α
t . Thus, the only difference between the artificial world we have created and the

model the econometrician estimates is that, instead of having two generations alive in each

moment, the econometrician estimates a model with a representative agent.

What are the consequences on the estimated parameters? Imagine that the econometrician

knows α and that the depreciation factor is 1. Then, a simple procedure to estimate the

only remaining unknown parameter in the model, the discount factor β, is to build the the

population moment:
1

cpct
= βEt

¡
1 + γt+1

¢ Rt+1
cpct+1
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and substitute the expectation by the sample mean:

bβT = 1
T−1

PT−1
t=0

1
cpct

1
T−1

PT−1
t=0

¡
1 + γt+1

¢
Rt+1
cpct+1

We study how this expression evolves over time. First, note that, by substituting the

expressions found before, we get:

¡
1 + γt+1

¢ Rt+1
cpct+1

=
(nt+1 + nt)

2

nt + nt−1

α

1− α

1 + β

β

1

Ct

Then: bβT = β
1− α

α

1

1 + β

PT−1
t=0 (nt + nt−1)

1
CtPT−1

t=0
(nt+1+nt)

2

nt+nt−1
1
Ct

We want to work on the previous expression. First, we substitute aggregate consumption

for its value in terms of capital and labor:

bβT = β
1

1 + β

1− α

α

PT−1
t=0 (nt + nt−1)

1
kαt n

1−α
tPT−1

t=0
(nt+1+nt)

2

nt+nt−1
1

kαt n
1−α
t

The only remaining endogenous element in this equation is kt. To eliminate it, we recursively

substitute kt−i to find:

kt =

"
(1− α)β

1 + αβ
n1−αt−1

t−1Y
i=1

µ
(1− α)β

1 + αβ
n1−αt−1−i

¶αi
#
kαt0

Then:

bβT = β
1

1 + β

1− α

α

PT−1
t=0

nt+nt−1
n1−αt

µ∙
n1−αt−1

Qt−1
i=1

³
(1−α)β
1+αβ

n1−αt−1−i

´αi¸
kαt0

¶−α
PT−1

t=0
(nt+1+nt)

2

(nt+nt−1)n
1−α
t

µ∙
n1−αt−1

Qt−1
i=1

³
(1−α)β
1+αβ

n1−αt−1−i

´αi¸
kαt0

¶−α
which delivers a bβT , which is biased and drifts over time according to the evolution of the
population. This expression is composed of three parts. First, the true parameter, β, second

the deterministic bias,
1

1 + β

1− α

α
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and finally the term involving the nt’s and k0, which fluctuates over time.

Without further structure on population growth over time, it is difficult to say much aboutbβT . In the simple case where γt = γ is constant, as T →∞, the only factor dominating is:

bβT ' β
1

1 + β

1− α

α
(1 + γ)−2 (1)

To explore the behavior of bβT in the general case where γt varies, we simulate the model
and estimate the parameter recursively with data from an economy with α = 0.3 and β = 0.96.

The growth rates of population are 2, 4, 3, 1, 2, and 5 percent each for 50 periods (i.e., for

period 1 to 50, growth rate is 2 percent, for period 51 to 100, the growth rate is 4 percent and

so forth). We plot our results in figure 2.3.1 where we can see the evolution over time of bβT
and how it inherits the properties of γt. To facilitate comparison with (1), we superimpose

the value of (1) that would be implied if the growth rate in a period stayed constant over

time. The graph shows how bβT converges to (1) within each period.
4. The Baseline Model

We will structure our investigation around a baseline New Keynesian business cycle model.

We pick this model because it is the paradigmatic representative of the DSGE economies

estimated by practitioners. Since on other occasions (for example, Fernández-Villaverde,

2005), we have gone on the record criticizing the problems of this framework, we do not

feel obliged to repeat those shortcomings here. Suffice it to say as a motivation that given

the level of interest by policy-making institutions in this model, it is difficult to see a more

appropriate vessel for our exploration.

The New Keynesian model is quite well known (see the book-length description in Wood-

ford, 2003). Consequently, we will be short in our presentation, and we will omit some of

the technical aspects. On the other hand, for concreteness and to make our quantitative

results below meaningful, we need to discuss some aspects of the model in certain detail. The

interested reader can get the whole description of the model at a complementary technical

appendix posted at www.econ.upenn.edu/~jesusfv/benchmark_DSGE.pdf. In this section,

to fix ideas, we will introduce the model without changes in the parameters. In section 5, we

will introduce the parameter change over time.
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4.1. Households

The basic structure of the economy is as follows. A representative household consumes,

saves, holds money, supplies labor, and sets its own wages subject to a demand curve and

Calvo’s pricing. The final output is manufactured by a final good producer, which uses as

inputs a continuum of intermediate goods manufactured by monopolistic competitors. The

intermediate good producers rent capital and labor to manufacture their good. Also, these

intermediate good producers face the constraint that they can only change prices following a

Calvo’s rule. Finally, there is a monetary authority that fixes the one-period nominal interest

rate through open market operations with public debt. Long-run growth is induced by the

presence of two unit roots, one in the level of neutral technology and one in the investment-

specific technology. These stochastic trends will allow us to estimate the model with the raw,

undetrended data.

We have a continuum of households in the economy indexed by j. The households maxi-

mize the following lifetime utility function, which is separable in consumption, cjt, real money

balances, mjt/pt, and hours worked, ljt:

E0
∞X
t=0

βtdt

(
log (cjt − hcjt−1) + υ log

µ
mjt

pt

¶
− ϕtψ

l1+ϑjt

1 + ϑ

)

where β is the discount factor, h is the parameter that controls habit persistence, ϑ is the

inverse of Frisch labor supply elasticity, dt is a shock to intertemporal preference with the

law of motion:

log dt = ρd log dt−1 + σdεd,t where εd,t ∼ N (0, 1),

and ϕt is a labor supply shock with the law of motion:

logϕt = ρϕ logϕt−1 + σϕεϕ,t where εϕ,t ∼ N (0, 1).

Households trade on the whole set of Arrow-Debreu securities, contingent on idiosyncractic

and aggregate events. Our notation ajt+1 indicates the amount of those securities that pay one

unit of consumption in event ωj,t+1,t purchased by household j at time t at (real) price qjt+1,t.

To save on notation, we drop the explicit dependence on the event. Summing over different

individual assets, we can price securities contingent only on aggregate states. Households
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also hold an amount bjt of government bonds that pay a nominal gross interest rate of Rt

and invest xt. Then, the j − th household’s budget constraint is given by:

cjt + xjt +
mjt

pt
+
bjt+1
pt

+

Z
qjt+1,tajt+1dωj,t+1,t

= wjtljt +
¡
rtujt − μ−1t Φ [ujt]

¢
kjt−1 +

mjt−1

pt
+Rt−1

bjt
pt
+ ajt + Tt +zt

where wjt is the real wage, rt the real rental price of capital, ujt > 0 the intensity of use

of capital, μ−1t Φ [ujt] is the physical cost of the use of capital in resource terms, μt is an

investment-specific technological shock to be described momentarily, Tt is a lump-sum trans-

fer, and zt are the profits of the firms in the economy. We assume that Φ [1] = 0, Φ0 and

Φ00 > 0.

Investment xjt induces a law of motion for capital

kjt = (1− δ) kjt−1 + μt

µ
1− V

∙
xjt
xjt−1

¸¶
xjt

where δ is the depreciation rate and V [·] is a quadratic adjustment cost function such that
V [Λx] = 0, where Λx is the growth rate of investment along the balance growth path. Note

our capital timing: we index capital by the time its level is decided. The investment-specific

technological shock follows an autoregressive process:

μt = μt−1 exp (Λμ + zμ,t) where zμ,t = σμεμ,t and εμ,t ∼ N (0, 1)

The first order conditions with respect to cjt, bjt, ujt, kjt, and xjt are:

dt (cjt − hcjt−1)−1 − bβEtdt+1 (cjt+1 − hcjt)−1 = λjt,

λjt = βEt{λjt+1
Rt
Πt+1

},

rt = μ−1t Φ0 [ujt] ,

qjt = βEt
½
λjt+1
λjt

¡
(1− δ) qjt+1 + rt+1ujt+1 − μ−1t+1Φ [ujt+1]

¢¾
, and

1 = qjtμt

µ
1− V

∙
xjt
xjt−1

¸
− V 0

∙
xjt
xjt−1

¸
xjt
xjt−1

¶
+ βEqjt+1μt+1

λjt+1
λjt

V 0
∙
xjt+1
xjt

¸µ
xjt+1
xjt

¶2
,

where λjt is the lagrangian multiplier associated with the budget constraint and qjt is the
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marginal Tobin’s Q, the lagrangrian multiplier associated with the investment adjustment

constraint normalized by λjt.

The first order condition with respect to labor and wages is more involved. The labor

employed by intermediate good producers to be described below is supplied by a representa-

tive, competitive firm that hires the labor supplied by each household j. The labor supplier

aggregates the differentiated labor of households with the production function:

ldt =

µZ 1

0

l
η−1
η

jt dj

¶ η
η−1

(2)

where η controls the elasticity of substitution among different types of labor and ldt is the

aggregate labor demand.

The labor “packer” maximizes profits subject to the production function (2), taking as

given all differentiated labor wages wjt and the wage wt. From his maximization problem we

get:

ljt =

µ
wjt
wt

¶−η
ldt ∀j (3)

Then, to find the aggregated wage, we use again the zero profit condition wtldt =
R 1
0
wjtljtdj

to deliver:

wt =

µZ 1

0

w1−ηjt dj

¶ 1
1−η

.

Households set their wages following a Calvo’s setting. In each period, a fraction 1−θw of

households can change their wages. All other households can only partially index their wages

by past inflation. Indexation is controlled by the parameter χw ∈ [0, 1]. This implies that if
the household cannot change its wage for τ periods, her normalized wage after τ periods is
τY
s=1

Π
χw
t+s−1
Πt+s

wjt.

Since we assume complete markets and separable utility in labor (see Erceg et al., 2000),

we will concentrate on a symmetric equilibrium where cjt = ct, ujt = ut, kjt−1 = kt, xjt = xt,

λjt = λt, qjt = qt, and w∗jt = w
∗
t . In anticipation of that equilibrium, and after a fair amount

of manipulation, we arrive at the recursive equations:

ft =
η − 1
η

(w∗t )
1−η λtw

η
t l
d
t + βθwEt

µ
Π

χw
t

Πt+1

¶1−η µ
w∗t+1
w∗t

¶η−1
ft+1
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and:

ft = ψdtϕt

µ
wt
w∗t

¶η(1+ϑ) ¡
ldt
¢1+ϑ

+ βθwEt
µ
Π

χw
t

Πt+1

¶−η(1+ϑ)µ
w∗t+1
w∗t

¶η(1+ϑ)

ft+1.

that determine the evolution of wages.

Then, in every period, a fraction 1 − θw of households set w∗t as their wage, while the

remaining fraction θw partially index their price by past inflation. Consequently, the real

wage index evolves:

w1−ηt = θw

µ
Π

χw
t−1
Πt

¶1−η
w1−ηt−1 + (1− θw)w

∗1−η
t .

4.2. The Final Good Producer

There is one final good produced using intermediate goods with the following production

function:

ydt =

µZ 1

0

y
ε−1
ε

it di

¶ ε
ε−1

. (4)

where ε controls the elasticity of substitution.

Final good producers are perfectly competitive and maximize profits subject to the pro-

duction function (4), taking as given all intermediate goods prices pti and the final good price

pt. Following the same steps as for wages, we find the input demand functions associated

with this problem are:

yit =

µ
pit
pt

¶−ε
ydt ∀i,

where ydt is the aggregate demand and the zero profit condition pty
d
t =

R 1
0
pityitdi to deliver:

pt =

µZ 1

0

p1−εit di

¶ 1
1−ε

.

4.3. Intermediate Good Producers

There is a continuum of intermediate goods producers. Each intermediate good producer i

has access to a technology represented by a production function:

yit = Atk
α
it−1

¡
ldit
¢1−α − φzt
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where kit−1 is the capital rented by the firm, ldit is the amount of the “packed” labor input

rented by the firm, the parameter φ corresponds to the fixed cost of production, and where

At follows:

At = At−1 exp (ΛA + zA,t) where zA,t = σAεA,t and εA,t ∼ N (0, 1)

The fixed cost φ is scaled by the variable zt = A
1

1−α
t μ

α
1−α
t . We can think of zt as a weighted

index of the two technology levels At and μt, where the weight is given by the share of capital

in the production function. The product φzt guarantees that economic profits are roughly

equal to zero in the steady state. Also, we rule out the entry and exit of intermediate good

producers. Note that zt evolves over time as zt = zt−1 exp (Λz + zz,t) where zz,t =
zA,t+αzμ,t

1−α

and Λz =
ΛA+αΛμ
1−α . We will see below that Λz will be the mean growth rate of the economy.

Intermediate goods producers solve a two-stages problem. First, given wt and rt, they

rent ldit and kit−1 in perfectly competitive factor markets in order to minimize real costs, which

implies a marginal cost of:

mct =

µ
1

1− α

¶1−αµ
1

α

¶α
w1−αt rαt
At

The marginal cost does not depend on i: all firms receive the same shocks and all firms rent

inputs at the same price.

Second, intermediate good producers choose the price that maximizes discounted real

profits. To do so, they consider that they are under the same pricing scheme as households.

In each period, a fraction 1 − θp of firms can change their prices. All other firms can only

index their prices by past inflation. Indexation is controlled by the parameter χ ∈ [0, 1],
where χ = 0 is no indexation and χ = 1 is total indexation.

The problem of the firms is then:

max
pit
Et

∞X
τ=0

(βθp)
τ λt+τ

λt

(Ã
τY
s=1

Πχ
t+s−1

pit
pt+τ

−mct+τ

!
yit+τ

)

subject to

yit+τ =

Ã
τY
s=1

Πχ
t+s−1

pit
pt+τ

!−ε
ydt+τ ,
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where the marginal value of a dollar to the household is treated as exogenous by the firm.

Since we have complete markets in securities, this marginal value is constant across households

and, consequently, λt+τ/λt is the correct valuation on future profits.

We write the solution of the problem in terms of two recursive equations in g1t and g
2
t :

g1t = λtmcty
d
t + βθpEt

µ
Πχ
t

Πt+1

¶−ε
g1t+1

g2t = λtΠ
∗
ty
d
t + βθpEt

µ
Πχ
t

Πt+1

¶1−εµ
Π∗t
Π∗t+1

¶
g2t+1

and εg1t = (ε− 1)g2t where:
Π∗t =

p∗t
pt

Given Calvo’s pricing, the price index evolves:

p1−εt = θp
¡
Πχ
t−1
¢1−ε

p1−εt−1 + (1− θp) p
∗1−ε
t

or, dividing by p1−εt ,

1 = θp

µ
Πχ
t−1
Πt

¶1−ε
+ (1− θp)Π

∗1−ε
t

4.4. The Government

The government sets the nominal interest rates according to the Taylor rule:

Rt
R
=

µ
Rt−1
R

¶γR

⎛⎝µΠt
Π

¶γΠ

⎛⎝ ydt
ydt−1

Λyd

⎞⎠γy⎞⎠1−γR

exp (mt) (5)

through open market operations that are financed with lump-sum transfers Tt to ensure that

the government budget is balanced period by period. The variable Π represents the target

levels of inflation (equal to inflation in the steady state), R steady-state gross return of capital,

and Λyd the steady-state gross growth rate of ydt . With a bit of abuse of language, we will

refer to the term ydt
ydt−1

/Λyd as the growth gap. The term mt is a random shock to monetary

policy that follows mt = σmεmt where εmt is distributed according to N (0, 1). We introduce
the previous period interest rate, Rt, to match the smooth profile of the interest rate over

time observed in the U.S.

18



4.5. Aggregation

To close the model, we derive an aggregate supply equation. First, we begin with the aggre-

gate demand:

ydt = ct + xt + μ−1t Φ [ut] kt−1

Then, using the production function for intermediate good producers, the fact that all the

firms have the same optimal capital-labor ratio, and market clearing (both in the output and

the input markets), we have:

ydt =
At (utkt−1)

α ¡ldt ¢1−α − φzt

vpt

where:

vpt =

Z 1

0

µ
pit
pt

¶−ε
di

is the aggregate loss of efficiency induced by price dispersion. By the properties of the index

under Calvo’s pricing:

vpt = θp

µ
Πχ
t−1
Πt

¶−ε
vpt−1 + (1− θp)Π

∗−ε
t .

Finally, we integrate labor demand over all households j to get:

Z 1

0

ljtdj = lt =

Z 1

0

µ
wjt
wt

¶−η
djldt

where lt is the aggregate labor supply of households. Hence if we define:

vwt =

Z 1

0

µ
wjt
wt

¶−η
dj

we have:

ldt =
1

vwt
lt

and:

vwt = θw

µ
wt−1
wt

Π
χw
t−1
Πt

¶−η
vwt−1 + (1− θw) (Π

w∗
t )

−η .
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4.6. Equilibrium

A definition of equilibrium in this economy is standard and the equations that characterize

it are determined by the first order conditions of the household, the first order conditions of

the firms, the Taylor rule of the government, and market clearing.

To undertake our quantitative analysis, we must approximate the equilibrium dynamics

of the economy. Ours is a large model (even the version without parameter drifting has 19

state variables). Moreover, we will need to solve the model repeatedly during our estimation

process. We have argued elsewhere (Fernández-Villaverde, Rubio-Ramírez, and Santos, 2006)

that there is much to be gained from a nonlinear estimation of the model, both in terms of

accuracy and in terms of identification. As we will discuss later, this is particularly true if

we want to allow the agents in the economy to insure themselves against future changes in

the parameters of the model. Hence, we need a nonlinear solution method that is fast and

accurate. In previous work (Aruoba, Fernández-Villaverde, and Rubio-Ramírez, 2006), we

have found that a second order perturbation around the deterministic steady-state of the

model fulfills the previous desiderata .

But before solving the model, we need to clear up some technical issues. First, since we

have growth induced by technological change, most of the variables are growing in average. To

achieve the right accuracy in the computation, we make the variables stationary and solve the

model in those transformed variables. Hence, we define ect = ct
zt
, eλt = λtzt, ert = rtμt, eqt = qtμt,ext = xt

zt
, ewt = wt

zt
, ew∗t = w∗t

zt
, ekt = kt

ztμt
, and eydt = ydt

zt
. Also note that Λc = Λx = Λw = Λw∗ =

Λyd = Λz. Second, we need to choose functional forms for Φ [·] and V [·]. For Φ [u] we pick
Φ [u] = Φ1 (u− 1)+ Φ2

2
(u−1)2. Since in the steady state we have u = 1, then er = Φ0 [1] = Φ1

and Φ [1] = 0. The investment adjustment cost function is V
h
xt
xt−1

i
= κ

2
( xt
xt−1
− Λx)

2. Then,

along the balanced growth path, V [Λx] = V 0 [Λx] = 0.

We will perform our perturbation in logs. For each variable vart, we define dvart =
log vart − log var, as the log deviation with respect to the steady state. Then, the states of
the model St are given by:

St =

⎛⎝ bΠt−1, bewt−1,bg1t−1,bg2t−1,bekt−1, bRt−1,beydt−1,bect−1,bvpt−1, bvwt−1,beqt−1, bef t−1,bext−1, beλt−1,bezt−1, zμ,t−1, bdt−1, bϕt−1, zA,t−1
⎞⎠0

,

and the exogenous shocks are εt = (εμ,t, εd,t, εϕ,t, εA,t, εm,t)
0 .
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As a first step, we parameterize the matrix of variances-covariances of the exogenous

shocks as Ω (χ) = χΩ, where Ω (1) = Ω, a diagonal matrix. However, nothing really depends

on that assumption, and we could handle an arbitrary matrix of variances-covariances. Then,

we take a perturbation solution around χ = 0, i.e., around the deterministic stead- state of

the model.

From the output of the perturbation, we can build the law of motion for the states:

St+1 = Ψs1

³
S
0
t, ε

0
t

´0
+
1

2

³
S
0
t, ε

0
t

´
Ψs2

³
S
0
t, ε

0
t

´0
+Ψs3 (6)

where Ψs1 is a 1×24 vector and Ψk2 is a 24×24 matrix. The term Ψs1

³
S
0
t, ε

0
t

´0
constitutes

the linear solution of the model,
³
S
0
t, ε

0
t

´
Ψs2

³
S
0
t, ε

0
t

´0
is the quadratic component, and Ψs3

is a 1×24 vector of constants added by the second order approximation that corrects for
precautionary behavior. Some of the entries of the matrices Ψsi will be zero.

From the same output, we find the law of motion for the observables

YT =
¡
4 log μ−1t ,4 log yt,4 log xt,4 log lt, logΠt, logRt

¢0
Now, define:

St =
³
S
0
t, S

0
t−1, ε

0
t−1

´
.

We keep track of the past states, S
0
t−1, because some of the observables in the measurement

equation below will appear in first differences. Then, we get to the observation equation:

YT = Ψo1 (S
0
t, ε

0
t)
0
+
1

2
(S0t, ε

0
t)Ψo2 (S

0
t, ε

0
t)
0
+Ψo3 (7)

where Ψo1 and Ψo3 1×48 matrices and Ψo2 is a 48×48 matrix.
While the law of motion for states is unique (or at least equivalent to a class of different

choices of states, all of which have the same implications for the dynamics of the model),

the observation equation depends on what we assume the researcher actually observes. In

our case, we have chosen the first differences of the relative price of investment, output,

investment, and hours, and the log of inflation and the interest rate. Unfortunately, we do

not know much about the right choice of observables and how they may affect our estimation

results (for one of the few articles on this topic, see Boivin and Giannoni, 2006).
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4.7. The Likelihood Function

Equations (6) and (7) constitute the state space representation of our model. One convenient

properties of this representation is that we can exploit it to evaluate the likelihood of a DSGE

model, an otherwise challenging task. The likelihood, L
¡
YT ;Ψ

¢
, is the probability that the

model assigns to a sequence of realizations of the observable YT given parameter values:

Ψ =
©
β, h, υ,ϑ, δ, η, ε,α,φ, θw,χw, θp,χp,Φ2, γR, γy, γΠ,Π,Λμ,ΛA, ρd, ρϕ,σμ,σd,σA,σm,σϕ

ª
.

Note that Φ1 is not included in Ψ because it is a function of all the other parameters in

the economy to ensure that er = Φ1. With L
¡
YT ;Ψ

¢
, we can estimate Ψ by maximizing the

likelihood or by combining it with a prior density for the model parameter to form a posterior

distribution.

But how do we evaluate the likelihood L
¡
YT ;Ψ

¢
? Given the Markov structure of our

state space representation, we begin by factorizing the likelihood function as:

L
¡
YT ;Ψ

¢
=

TY
t=1

L
¡
Yt|Yt−1;Ψ

¢
Then, conditioning on the states:

L
¡
YT ;Ψ

¢
=

Z
L (Y1|S0;Ψ) dS0

TY
t=2

Z
L (Yt|St;Ψ) p

¡
St|Yt−1;Ψ

¢
dSt (8)

If we know St, computing L (Yt|St;Ψ) is relatively easy using the measurement equation (7) of
the state space representation. Conditional on St, equation (7) is a change of variables from εt

to YT and, hence, we can use it to compute probabilities using the change of variable formula.
Similarly, if we know S0, we can employ the transition (6) and measurement equation (7) of

the state space representation of the model to compute L (Y1|S0;Ψ) .
Consequently, knowledge of the sequence {p (St|Yt−1;Ψ)}Tt=1 and of p (S0;Ψ) allows the

evaluation of the likelihood of the model. Evaluating (or at least drawing from) p (S0;Ψ) is

usually straightforward, although often costly (Santos and Peralta-Alva, 2005). More involved

is to characterize the sequence of conditional distributions {p (St|Yt−1;Ψ)}Tt=1 and to compute
the integrals in (8).

An algorithm for doing so (but not the only one!; see the technical appendix to Fernández-
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Villaverde and Rubio-Ramírez, 2007 for alternatives) is to use a simulation technique known

as the particle filter (see the review in Doucet, de Freitas, and Gordon, 2001). Fernández-

Villaverde and Rubio-Ramírez (2005 and 2007) have shown that the particle filter can be

successfully applied to the estimation of nonlinear and/or non-normal DSGE models. The

particle filter is a sequential Monte Carlo method that replaces the {p (St|Yt−1;Ψ)}Tt=1 by
an empirical distribution of draws generated by simulation. The bit of magic of the particle

filter is that the simulation is generated through a procedure known as sequential importance

resampling (SIR). SIR guarantees that the Monte Carlo method achieves sufficient accuracy

in a reasonable amount of time, something that cannot be achieved without resampling

(Arulampalam et al., 2002). The appendix describes in further detail the working of the

particle filter.

4.8. A Bayesian Approach

We will confront our model with the data using Bayesian methods. The Bayesian paradigm is

a powerful and flexible perspective for the estimation of DSGE models (see the survey by An

and Schorfheide, 2006). First, Bayesian analysis is a coherent approach to inference based on

a clear set of axioms. Second, the Bayesian approach handles in a natural way misspecification

and lack of identification, both serious concerns in the estimation of DSGE models (Canova

and Sala, 2006). Moreover, it has desirable small sample and asymptotic properties, even

when evaluated by classical criteria (Fernández-Villaverde and Rubio-Ramírez, 2004). Third,

the use of priors is a flexible procedure to introduce presample information that the researcher

may have and to reduce the dimensionality problem associated with number of parameters.

This property will be especially attractive in our application, since parameter drifting will

increase the practical number of dimensions of our model.

The Bayesian approach combines the likelihood of the model L
¡
YT ;Ψ

¢
with a prior

density for the parameters p (Ψ) to form a posterior:

p
¡
Ψ|YT

¢
∝ L

¡
YT ;Ψ

¢
p (Ψ)

The posterior summarizes the uncertainty regarding the parameters, and it can be used for

point estimation. For example, under a quadratic loss function, our point estimates will be

the mean of the posterior.
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Since the posterior is also difficult to characterize, we generate draws from it using a

Metropolis-Hastings algorithm. We use the resulting empirical distribution to obtain point

estimates, standard deviations, etc. We describe this algorithm in the appendix.

5. Parameter Drifting

Now we can deal with parameter drifting. Since the extension to other cases of parameter

drifting is straightforward, we present only one example of drift within our model.

Motivated by the first example in section 3, we will investigate the situation where the

Taylor rule is specified as:

Rt
R
=

µ
Rt−1
R

¶γRt

⎛⎝µΠt
Π

¶γΠt

⎛⎝ ydt
ydt−1

Λyd

⎞⎠γyt⎞⎠1−γRt

exp (mt) (9)

Note the difference with the specification in (5): now the elasticities of the response of the

interest rate
©
γRt, γΠt, γyt

ª
are indexed by time.

We will postulate that the parameters follow an AR(1) in logs to ensure that the parameter

is positive:

log γRt = (1− ρR) log γR + ρR log γRt−1 + εRt (10)

log γRt = (1− ρΠ) log γΠ + ρΠ log γΠt−1 + εΠt (11)

log γRt =
¡
1− ρy

¢
log γy + ρy log γyt−1 + εyt (12)

where {εRt, εΠt, εyt} are i.i.d. normal shocks and Q is a 3 × 3 matrix of covariances.2 We
allow for arbitrary correlation in the innovations, since it is plausible that the reasons why

the monetary authority becomes more (less) responsive to inflation are the same reasons it

will become less (more) responsive to the growth gap. Also, we could generalize the changes

in parameters by allowing changes in Π or in the variance of mt (R and Λyd are not chosen

by the monetary authority but given by preferences and technology parameters of the model

and Π).

2The autoregressive coefficients
©
ρR, ρΠt, ρy

ª
and the matrix Q become in this formulation the new “struc-

tural parameters.” We are also skeptic about their true structural nature, but, to avoid the infinite regression
problem, we will ignore our doubts for the moment.
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Our specification of parameter drift emphasizes the continuity of the change process, in

opposition to the discrete changes in the parameters emphasized by the Markov-switching

process (Davig and Leeper, 2006a and 2006b). We do not have a strong prior preference for

one version or the other. We like our specification because it is parsimonious and easy to

handle, and it captures phenomena such the Fed’s gradual learning about the behavior of the

economy.

According to our favorite interpretation of parameter drifting, we will assume that agents

understand that policy evolves over time following (10)-(12). Consequently, they react to it

and make their decisions based on the current values of γt and on the fact that γt will evolve

over time.

The drift of the parameters implies that the economy will travel through zones where the

Taylor principle is not satisfied. However, this may not necessarily mean that the equilibrium

is not unique. In the context of Markov-regime changes in the coefficients of the Taylor rule,

Davig and Leeper (2006a) have developed what they call the generalized Taylor principle.

Davig and Leeper argue that a unique equilibrium survives if the Taylor rule is sufficiently

active when the economy is in the active policy regime or if the expected length of time

the economy will be in the nonactive policy regime is sufficiently small. To keep this paper

focused, we will not dwell on generating results equivalent to Davig and Leeper’s in our

environment. Suffice it to say that one further advantage of the Bayesian approach is that

we can handle restrictions on the parameter drifting with the use of the priors. For example,

we can implement a reflecting boundary on (10) by putting a zero prior to the possibility of

violating that boundary. Also, in our empirical analysis, we estimate γR as being bigger than

one. This suggests that the Taylor principle will be satisfied, at least on average.

Our formulation of parameter drifting has one important drawback: we do not model

explicitly why the parameters change over time. In section 3, we discussed that changes

in the policy parameters could be a reflection of changing political priorities or evolving

perceptions about the effectiveness of policy. A more complete model would include explicit

mechanisms through which we discipline the movement of the parameters over time. Many of

those mechanisms can be incorporated into our framework, since we are rather flexible with

the type of functional forms for the parameter drift that we can handle.

The model in section 4 carries on except with the modification of (9) and the fact that all

the conditional expectations now incorporate the process (10). Thus, the states of the model
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with parameter drifting are:

St =

⎛⎝ bΠt−1, bewt−1,bg1t−1,bg2t−1,bekt−1, bRt−1,beydt−1,bect−1, bvpt−1,bvwt−1,beqt−1, bef t−1,bext−1, beλt−1,bezt−1, zμ,t−1, bdt−1, bϕt−1, zA,t−1; γRt−1, γΠt−1, γyt
⎞⎠0

,

where we have included γRt, γΠt, and γyt as three additional states. We will follow the

convention of separating drifting parameters from the other states with a “;” since they are

an object of interest by themselves. Similarly, we apply the particle filter to evaluate the

likelihood of the model and the Metropolis-Hastings to draw from the posterior.

6. Empirical Analysis

This section presents our empirical analysis. First, we report the point estimates of the

model when we keep all parameters fixed over the estimation. This estimation sets a natural

benchmark for the rest of the study. Second, we discuss the results of an exercise where

we allow the parameters of the Taylor rule of the monetary authority to change over time.

Third, we analyze the evolution of the parameters that control the level of price and wage

rigidities. In the interest of space, we select these two exercises as particularly illustrative of

the procedure we propose. However, we could have performed many other exercises within

the framework of our methodology.

We estimate the model using six time series for the U.S.: 1) the relative price of investment

with respect to the price of consumption, 2) real output per capita growth, 3) real gross

investment per capita growth, 4) hours worked per capita, 5) the CPI and 6) the federal

funds rate. Our sample goes from 1955:Q1 to 2000:Q4. We stop our sample at the end of

2000 because of the absence of good information on the relative price of investment after

that time. To make the observed series compatible with the model, we need to compute

both real output and real gross investment in consumption units. For that purpose, we use

the relative price of investment defined as the ratio of an investment deflator and a deflator

for consumption. The consumption deflator is constructed from the deflators of nondurable

goods and services reported in the NIPA. Since the NIPA investment deflators are poorly

measured, we rely on the investment deflator constructed by Fisher (2006), a series that ends

at 2000:Q4. The appendix provides further information on the construction of the data.
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6.1. Point Estimation

Before reporting results, we specify priors for the model’s parameters. We adopt flat priors

for all parameters. We impose boundary constraints only to make the priors proper and

to rule out parameter values that are either incompatible with the model (i.e., a negative

value for a variance, Calvo parameters outside the unit interval) or extremely implausible

(the response to inflation in the Taylor rule being bigger than 100). The looseness of such

constraints is shown by the fact that the simulations performed below never travel even close

to those bounds. Also, we fix three parameters, {υ,φ,Φ2} . The parameter controlling money
demand υ is irrelevant for equilibrium dynamics because the government will supply as much

money as required to implement the nominal interest rate determined by the Taylor rule. We

fix the parameter φ to zero, since we do not have information on pure profits by firms (in the

absence of entry/exit of firms, there are no serious implications for equilibrium dynamics).

The parameter of the investment adjustment cost, Φ2, is set to 0.001 because it was difficult

to identify.

Our choice of flat priors is motivated by the fact that, with this prior, the posterior is pro-

portional to the likelihood function.3 Consequently, our Bayesian results can be interpreted

as a classical exercise where the mode of the likelihood function (the point estimate under

an absolute value loss function for estimation) is the maximum likelihood estimate. Also, a

researcher who prefers to use more informative priors can always reweight the draws from the

posterior to accommodate his favorite priors (Geweke, 1998).4 We repeated our estimation

with an informative prior without finding important differences in the results.

Table 6.1 summarizes our results. Most of our point estimates coincide with the typical

findings of other estimation exercises. Hence, we comment only on a few of them. We have

a high degree of habit persistence, h is 0.88, and we have a Frisch elasticity of labor supply

of 0.74 (1/1.36), well within the bounds of findings of the recent microeconomic literature

(Browning, Hansen, and Heckman, 1999). The estimates of elasticities of substitution ε and

η are around 8, implying average mark-ups of around 14 percent.

3There is a small qualifier: the bounded support of the priors. We can fix this small difference by thinking
about those bounds as frontiers of admissible parameter values in a classical perspective.

4We do not argue that our flat priors are uninformative. After a reparameterization of the model, a flat
prior may become highly curved. Also, if we wanted to compare the model with, for example, a VAR, we
would need to elicit our priors more carefully.
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TABLE 6.1: Point Estimates

Parameter Point Estimate Parameter Point Estimate

β 0.9999 γR 0.7900

h 0.8773 γy 0.1904

ψ 8.9420 γΠ 1.2596

ϑ 1.3586 Π 1.0078

δ 0.0149 Λμ 0.0100

α 0.2550 ΛA 0.0005

ε 7.9570 ρd 0.9506

η 7.9650 ρϕ 0.9420

κ 7.6790 σμ 0.1010

θp 0.9067 σd 0.0600

χp 0.1505 σA 0.0072

θw 0.4506 σm 0.0030

χw 0.8492 σϕ 0.0700

The Calvo parameter for price adjustment, θp, is a relatively high 0.91, while the in-

dexation level χp, is 0.15. It is tempting to compare the results from our exercise with

microeconomic evidence to determine the average duration of prices (Bils and Klenow, 2004,

or Nakamura and Steinsson, 2006). However, the comparison is difficult because we have

partial indexation: prices change every quarter for all producers, a fraction θp because pro-

ducers can reoptimize and a fraction 1− θp because of indexation. The Calvo parameter for

wage adjustment, θw, is 0.45, while the indexation, χw, is 0.85.

The policy parameters
©
γR, γΠ, γy,Π

ª
are also quite standard. The Fed smooths the

interest rate over time (γR is estimated to be 0.79), and responds actively to inflation (γR

is 1.25) and weakly to the output growth gap (γy is 0.19). We estimate that the Fed has a

target for quarterly inflation of 0.78 percent (or around 3 percent yearly).

The growth rates of the investment-specific technological change, Λμ, and of the neutral

technology, ΛA, imply that most of the growth in the U.S. economy (83 percent) is induced

by improvements in the capital-producing technology. This result corroborates the impor-

tance of modelling this biased technological change for understanding growth and fluctuations

that Greenwood, Herkowitz, and Krusell (1997 and 2000) have so forcefully defended. The
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estimated long-run growth rate of the economy, (ΛA + αΛμ) / (1− α) is 0.4 percent per quar-

ter, or 1.6 percent annually, roughly the observed mean in the sample. Also, the standard

deviation σμ is much higher than σA.

Our estimation serves different roles. First, it validates our model as a promising labora-

tory for our exercises with parameter drifting. Since in the benchmark case we obtain results

compatible with the literature and with the basic growth properties of the U.S. economy,

we know that the results with parameter drifting will indeed come from that feature of the

estimation. Second, we use our point estimates to initialize the parameters in the exercises

with parameter drifting.

In the next two subsections, we will report the results of estimating the model when we

allow one parameter to vary at a time. We do this for convenience. First, allowing several

parameters to move simultaneously makes the computation and estimation of the model much

more costly. Second, the information in the sample is limited, and it is difficult to obtain

stable estimates otherwise. Third, especially in our second exercise, our objective is not so

much to have the richest possible model to fit the data well but to show that as soon as you

let parameters change over time, strong signs of misspecification appear. We will continue

the exploration of joint moves of parameters in the near future.

6.2. Evolution of Policy Parameters

Our first exercise is to study the evolution of the policy parameters in the Taylor rule. This

investigation evaluates how much evidence there is in the data of a changing monetary policy

over time. As we discussed in section 3, the literature has extensively debated this topic

(Clarida, Galí, and Gertler, 2000, Cogley and Sargent, 2001, Lubick and Schorfheide, 2004,

Sims and Zha, 2006, Boivin, 2006, just to cite a few papers). However, the empirical methods

applied so far are unsatisfactory because they rely either on divisions of the sample that do

not let the agents in the model forecast the changes in policy or on the estimation of reduced

forms.

Arguably, the most interesting parameter is γΠt−1, since this parameter controls how

aggressively the monetary authority responds to inflation. In addition, γΠt−1 is intimately

linked with the issue of multiplicity of equilibria and the possibility of monetary policy being

a source of instability. Figure 6.2.1 plots our point estimate of the evolution of γΠt−1 over

time. We report the smoothed values of γΠt−1 using the whole sample (Godsill, Doucet,
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and West, 2004). We find it convenient, for expositional purposes, to eliminate some of

the quarter-to-quarter variation of the parameter. To accomplish this goal, in figure 6.2.2,

we graph the trend of the evolution of the parameter where we compute the trend using a

Hodrick-Prescott filter. We emphasize that this trend is only a device to read the graph more

clearly and lacks a formal statistical interpretation.

In both figures 6.2.1 and 6.2.2, we see how γΠt−1 starts low, slightly above 1 during the

1950s, 1960s, and early 1970s, with periods when it was even below 1. However, in the mid-

1970s, and especially after Volcker’s appointment as Chairman of the Board of Governors,

γΠt−1 soared. The response to inflation reached its peak in the early 1980s, where it was

as high as 6 in one quarter. After that, γΠt−1 slowly decreases during the 1990s, perhaps

reflecting the Fed’s more permissive attitude to accommodate the strong productivity growth

of the Internet boom.

Since our model has parameter drifting, it is not straightforward to compare these numbers

with estimates obtained in fixed-parameter models. However, we clearly confirm the findings

of Clarida, Galí, and Gertler (2000), Lubick and Schorfheide (2004), and Boivin (2006) that

monetary policy became much more active in the last 25 years. Our finding is also consistent

with the results of figure 12 in Cogley and Sargent (2001), where they trace the evolution of

the activism coefficient as measured by a parameter-drifting VAR.

Another parameter of importance is the inflation target of the monetary authority, Π.

Histories like those in Taylor (1998), Sargent (1999), or Primiceri (2006) explain that the

inflation target may have changed over time as a reflection of the Fed’s varying beliefs about

the trade-off between unemployment and inflation. Figure 6.2.3 plots the evolution of the

target over time. From the start of the sample until the early 1970s and, later, for the 1990s,

Π hovers around 1.004 or, in annual terms, around 1.6 percent. This number is close to the

informal target or comfort zone that describes the Fed’s behavior according to many com-

mentators. During the intermediate years, the inflation target increases, reflecting perhaps

the views the Fed had about the possibility of exploiting the Phillips curve or illustrating the

information lags regarding the changing features of the economy emphasized by Orphanides

(2002). We also find intriguing the similarity of figure 6.2.3 to Romer and Romer’s (2002)

hypothesis, based on narrative accounts and internal greenbook forecast of the Fed, that

monetary policy in the U.S. has gone through a long cycle of moderation, aggressiveness, and

renewed temperance.
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Our estimates of the evolution of the inflation target provide a reality check on our pro-

cedure. In our figure 6.2.4, we plot the inflation target versus the realized inflation and, in

figure 6.2.5, the HP-trend of both series. If the estimation is working properly, part of the

variation in the inflation target needs to be accounted for, in a purely mechanical fashion, by

changes in inflation. That is precisely what we see: as inflation increases and then falls during

the late 1960s and the 1970s, the target inflation estimated goes up and down (although in

a smaller quantity to leave room for other shocks to the economy).

Consequently, we trust our results not only because they come from the estimation of a

coherent DSGE model, but also because they are consistent with the findings of the existing

literature that uses alternative estimation procedures, with narrative accounts of monetary

policy, and with the reality check explained above.

6.3. Evolution of Price and Wage Rigidities

A key set of parameters in the New Keynesian model we are estimating are those determining

the extent of price and wage rigidities,
©
θp,χp, θw,χw

ª
. These four parameters generate the

nominal rigidity in the economy required to match the impulse response functions documented

by VARs (Christiano, Eichenbaum, and Evans, 2005).

Given their importance in the model, it is unfortunate that these parameters have only

a tenuous link with microeconomic foundations. Even if the Calvo adjustment probabilities

are the reduced form of a convex adjustment cost model, the environment that produces

this reduced form has changed over the years in our sample: we have gone from periods

of high inflation and low response of the monetary authority to raising prices to periods of

much lower inflation and a much more aggressive attitude toward inflation by the Fed. Also,

the U.S. economy has experienced a notable level of deregulation, increasing competition in

internal markets from international trade, and lower unionization rates. The justification of

the indexation parameters or their relation to the Calvo adjustment probabilities is even less

clear. Why do agents index their prices and wages? And if they do, to which quantity? Past

inflation? Current inflation? Steady-state inflation? Wage inflation?

Consequently, it is natural to examine the possibility that the parameters
©
θp,χp, θw,χw

ª
drift over time, both as a measure of how strong nominal rigidities have been in each different

moment and as a tool to assess the extent of possible misspecification of the model along this

dimension.
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As in the case of policy parameters, we specify an AR(1) as the law of motion for the

parameters:

θpt =
³
1− ρθp

´
θp + ρθpθpt−1 + εθpt

χpt =
³
1− ρχp

´
χp + ρχχpt−1 + εχpt

θwt =
¡
1− ρθw

¢
θw + ρθwθwt−1 + εθwt

χwt =
¡
1− ρθw

¢
χw + ρχχwt−1 + εχwt

where
n
εθpt, εχpt, εθwt, εχwt

o
are i.i.d. normal shocks.

We report first the experiment where we let θpt, the Calvo parameter of price changes,

evolve over time. We find it more informative (and more directly comparable to the micro

evidence) to report the average duration of the spell before the producers can reoptimize,

1 (/1− θpt), in quarter terms. Figure 6.3.1 plots that duration while figure 6.3.2 plots the

HP-trend and, for comparison purposes, the HP-trend of the CPI. The figures reveal a clear

pattern: average duration was high in the late 1950s, dropped quickly in the 1960s, and only

started to pick up in the late 1970s, continuing with an upward trend until today.

Interestingly enough, the changes in the average duration of the spell before the producers

can reoptimize are strongly correlated with changes in inflation. In figure 6.3.2 we see how

times of increasing trend inflation (late 1960s, 1970s) are times of falling average duration

and vice versa-how times of decreasing trend inflation (the 1980s and the 1990s) are times of

increasing average duration.

Our second experiment regarding price rigidities is with χpt, the parameter that controls

price indexation. Figure 6.3.3 plots the evolution of the parameter over the sample and figure

6.3.4 its HP-trend (again, with the HP-trend of the CPI superimposed). Indexation evolves

in an opposite way to price duration: it starts low in the 1950s and 1960s, but raises very

strongly during the late 1960s. Then, it drops dramatically in the mid-1970s, and stays low

over the next 20 years (except for a temporary increase in the early 1980s). In the last part

of the sample, during the 1990s, χpt steadily drops. The drop in indexation the second half of

the 1970s may be accounted for by firms switching to more often optimal price adjustments

and less automatic pricing rules. Firms were perhaps induced by the volatile inflation of those

years, which made partial indexation a costly option. Mechanically, our estimation finds less

indexation because inflation is less persistent in the 1970s.
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We find illuminating to combine the evolution of the Calvo parameter θpt and of indexation

χpt. We do so in figure 6.3.5 (for their levels) and in figure 6.3.6 (for their HP-trends). The

comparison of both parameters shows that periods of high price rigidities are also periods of

low indexation. The converse is also true, except for the mid 1970s. This result points out

that adding indexation as an ad hoc procedure to increase the level of inflation inertia may

hide important dynamics in price adjustments.

We repeat our two experiments for wages. Figure 6.3.7 (in levels) and figure 6.3.8 (in

HP-trends, with inflation superimposed) plot the evolution of the average duration of the

spell before the worker can reoptimize their wage, 1 (/1− θwt), in quarter terms. In this case

the evidence is more difficult to interpret, with a big spike in the second half of the 1980s

which is probably due to sampling uncertainty. However, we still see that, during the 1970s,

as inflation went up, wage rigidity went down, and as inflation was tamed in the early 1980s,

wages again became more rigid.

Figures 6.3.9 and 6.3.10 draw the evolution of wage indexation. Here, in comparison, the

clarity of the result is embarrassing: wage indexation is nearly the perfect mirror of inflation.

As we did for prices, we interpret this finding as the natural consequence of workers switching

to more often wage reoptimizations that make indexation less of an interesting rule.5 Less

wage indexation is what the model needs to capture the higher volatility of inflation in the

data.

For completeness, we finish our graphical display with figures 6.3.11 to 6.3.16, where we

plot the evolution of the different parameters controlling nominal rigidities against others.

Because of space constraints, we refrain from further discussion of the plots. However, the

reader can appreciate that the similarity in the evolution of the parameters over time solidifies

our confidence that we are uncovering a systematic pattern of relationships between nominal

rigidities and inflation.

We consider our findings to be strong proof of the changing nature of the nominal rigidities

in the economy and of a strong indication of model misspecification along the dimension of

price and wage adjustment. Calvo’s price adjustment cannot capture the evolution of the

5During the early 1970s, there was a raise in the prevalence of cost-of-living allowance (COLA) escalators
in collective bargaining agreements (Hendricks and Kahn, 1985). This observation could be used to undermine
our result. However, even at their peak, COLAs only covered 6 millions workers, a small percentage of the
labor force. Moreover, it is difficult to map COLAs from the 1970s into our model since they had many
contingent rules that make them quite different from the naïve indexation rules that we use. In fact, it could
be even possible to think about a state-contingent COLA as an implicit form of reoptimization.
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fundamentals that determine the pricing decisions of firms and households. Our results

underscore that this problem is relevant empirically. Also, they suggest that the evidence

in Klenow and Kryvtsov (2005) that the intensive margin of price changes accounts for 95

percent of the monthly variance of inflation may be a product of the sample period (1988-

2003), where the low level of inflation limits identification because it eliminates the source of

variation of the data. Indeed, in our figures 6.3.5 and 6.3.6, if we look at the period 1988-2000,

we observe much less variation in the pricing parameters.

More generally, we read our results as favoring models of state-dependent pricing (Ca-

ballero and Engel, 1993, Caplin and Leahy, 1991 and 1997) over time-dependent pricing as in

the Calvo-type model we have presented or, indirectly, Taylor’s staggered contract economies

(Taylor, 1980). The extra analytical difficulty implied by state-dependent models (Dotsey,

King, and Wolman, 1999) may be a price we are forced to pay.

Another strand of the literature that may find our results interesting is the one that deals

with sticky information (Mankiw and Reiss, 2002 or Sims, 2002). Higher inflation increases

the incentives to gather information and hence, it is likely to imply more frequent price and

wage adjustments.

Finally, our findings also have relevant implications for optimal policy design. First, if

we interpret the evolution of parameters like θpt as exogenously given, it may be something

that the monetary authority may condition its behavior on (we do not enter into a discussion

of how it would estimate them in real time, we only raise this as a theoretical possibility).

Second, if we interpret our results as showing that the measured amount of price rigidities

are endogenous to monetary policy, optimal design becomes tougher than in the standard

Ramsey exercises.

7. Conclusion

How structural are the structural parameters of DSGE models? Less so than we often claim.

Our analysis indicates that there are large variations in the estimated values of several of

the key parameters of a benchmark medium-scale macroeconomic model during our sample

period.
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We document changes in the response of the monetary authority to inflation and in the

inflation target that confirm previous findings by other researchers. In particular, we report

a move by the Fed toward a much more aggressive stand against raising prices. Our results

are remarkable because they are derived in a context where agents understand that policy

evolves over time and respond to that evolution.

We also uncover that the parameters controlling nominal rigidities drift in a substantial

way, and more important, are strongly correlated with inflation. These findings cast doubts

on the usefulness of models based on Calvo pricing and invite deeper investigations of state-

dependent pricing models.

We do not want our work to be interpreted as a sweeping criticism of the estimation of

DSGE models, because it is not. The literature has made impressive progress over the last

years and has contributed much to improving our understanding of aggregate fluctuations

and the effects of economic policy. We ourselves have been engaged in this research agenda

and plan to continue doing so. We hope, instead, that our paper will be read as an invitation

to further estimation of DSGE models with parameter drifting. This avenue is promising,

both as a mechanism to incorporate richer dynamics and as a diagnostic tool for detecting

gross misspecifications.

Finally, our skepticism about the structural nature of most “structural” parameters is not

a call to perform reduced-form exercises. With Tom Sargent and Mark Watson (Fernández-

Villaverde et al., 2007), we have singled out some of the problems of estimating reduced

form models. But there are many other papers emphasizing the weaknesses of reduced form

inference, too many indeed to even bother with a list. Our position is that every empirical

procedure has strengths and limitations. As Hurwicz (1962) warned us many years ago, just

because we name something “structural,” we should not believe we have taken the theoretical

high-ground.
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8. Appendix

This appendix offers further details about some of the technical aspects of the paper. First,

we discuss some general computational aspects and elaborate on the solution of the model.

Second, we describe the particle filter that we use to evaluate the likelihood function of the

model. Third, we comment on the estimation procedure. Fourth, we close with the details of

the construction of the data.

8.1. Computation of the Model

The most important feature of the algorithm to be described below to solve and estimate

the model is that it can be implemented on a good desktop computer. We coded all pro-

grams needed for the perturbation of the model and the particle filter in Fortran 95 and

compiled them in Intel Visual Fortran 9.1 to run on Windows-based machines (except some

Mathematica programs to generate analytic derivatives). We use a Xeon Processor 5160

EMT64 at 3.00 GHz with 16 GB of RAM.

As described in the main text, the solution of the model is challenging because we have 19

state variables plus the drifting parameters that we allow in each empirical exercise. Moreover,

we need to recompute the solution of the model for each new set of parameter values in

the estimation. The only non-linear procedure that can accomplish this computation in a

reasonable amount of time is perturbation (see Aruoba, Fernández-Villaverde, and Rubio-

Ramírez, 2006). We implement our solution by perturbing the equilibrium conditions of the

rescaled version of the model (i.e., the one where we have already eliminated the two unit

roots) around the deterministic steady state. This means that the solution is locally accurate

regardless of the level of the technology of the economy. Also, note that the steady state will

depend on the level of inflation targeted by the monetary authority.

We use Mathematica to compute the analytical derivatives and to generate Fortran 95

code with the corresponding analytical expression. Then, we load that output into a Fortran

95 code that evaluates the solution of the model for each parameter value as implied by the

Metropolis-Hastings algorithm to be described below. The solution will have the form:
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´0
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where, recalling our notation, St are the states of the model, εt are the shocks, Jt is a vector

of variables of interest in the model that are not states, and the Γsi’s are matrices of the right

size. With the solution of the model, and by selecting the appropriate rows, we can build the

state space form:

St+1 = Ψs1

³
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0
t, ε

0
t

´0
+
1

2

³
S
0
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0
t

´
Ψs2

³
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0
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0
t

´0
+Ψs3 (13)
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where St =
³
S
0
t, S

0
t−1, ε

0
t−1

´
and

YT =
¡
4 logμ−1t ,4 log yt,4 log xt,4 log lt, logΠt, logRt

¢0
.

8.2. Description of the Particle Filter

We provide now a short description of the particle filter. We will deliberately focus on the

intuition of the procedure and we will gloss over many technical issues that are relevant for

a successful application of the filter. We direct the interested reader to Fernández-Villaverde

and Rubio-Ramírez (2007), where we discuss most of those issues in much detail, and to the

excellent collection of articles in Doucet, de Freitas, and Gordon (2001). Also, note that

we are presenting here only a basic sequential Monte Carlo filter. Researchers have defended

many different routes to improve the efficiency of the simulation. Pitts and Shephard’s (1999)

auxiliary particle filter, which uses the observed data in the current period, is perhaps the

most celebrated of those alternatives.

As we described in the main text, given the Markov structure of our state space repre-

sentation, we can factorize the likelihood function as:

L
¡
YT ;Ψ

¢
=

TY
t=1

L
¡
Yt|Yt−1;Ψ

¢
and obtain the factorization:

L
¡
YT ;Ψ

¢
=

Z
L (Y1|S0;Ψ) dS0

TY
t=2

Z
L (Yt|St;Ψ) p

¡
St|Yt−1;Ψ

¢
dSt (15)
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Consequently, if we had the sequence {p (St|Yt−1;Ψ)}Tt=1 and p (S0;Ψ), we could evaluate
the likelihood of the model. Santos and Peralta-Alva (2005) show conditions under which

we can draw the numerical solution of the model to approximate p (S0;Ψ). The two diffi-

culties of evaluation (15) are then to characterize the sequence of conditional distributions

{p (St|Yt−1;Ψ)}Tt=1 and to compute the different integrals in the expression.
The particle filter begins from the observation that, if somehow we can get N draws of the

form
½n
sit|t−1

oN
i=1

¾T
t=1

from the sequence {p (St|Yt−1;Ψ)}Tt=1 , we can appeal to a law of large
numbers and substitute the integrals with a mean of the conditional likelihoods evaluated in

the empirical draws:

L
¡
YT ;Ψ

¢
' 1

N

NX
i=1

L
¡
Y1|si0|0;Ψ

¢ TY
t=2

1

N

NX
i=1

L
¡
Yt|sit|t−1;Ψ

¢
where our notation for the draws indicates in the subindex the conditioning set (i.e., t|t− 1
means draw at moment t conditional on information until t− 1) and the superindex denotes
the index of the draw. The intuition of the procedure is that we substitute the exact but

unknown sequence {p (St|Yt−1;Ψ)}Tt=1 by its empirical counterpart.
How do we draw from {p (St|Yt−1;Ψ)}Tt=1? The second key idea of the particle filter is

that we can extend importance sampling (Geweke, 1989) to a sequential environment. The

following proposition, due in its original form to Rubin (1988), formalizes the idea:

Proposition 1. Let
n
sit|t−1

oN
i=1

be a draw from p (St|Yt−1;Ψ). Let the sequence {esit}Ni=1 be
a draw with replacement from

n
sit|t−1

oN
i=1

where the resampling probability is given by

qit =
L
³
Yt|sit|t−1;Ψ

´
PN

i=1L
³
Yt|sit|t−1;Ψ

´ ,
Then {esit}Ni=1 is a draw from p (St|Yt;Ψ).

The proposition 1 shows how to recursively use a draw
n
sit|t−1

oN
i=1

from p (St|Yt−1;Ψ)

to get a draw
n
sit|t

oN
i=1

from p (St|Yt;Ψ). This result is crucial. It allows us to incorporate
the information in Yt to change our current estimate of St. This is why this step is known

in filtering theory as update (the discerning reader has probably already realized that this

update is nothing more than an application of the Bayes’ theorem).
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The resampling step is key for the success of the filter. A naïve extension of Monte Carlo

techniques will just draw a whole sequence of
½n
sit|t−1

oN
i=1

¾T
t=1

without stopping period by

period to resample according to proposition 1. It is easy to show how this naïve scheme

diverges. The reason is that all the sequences become arbitrarily far away from the true

sequence of states, which is a zero measure set and the sequence that is closer to the true states

dominates all the remaining ones in weight. Simple experiments show that this degeneracy

appears even after very few steps.

Given
n
sit|t

oN
i=1
, we draw N exogenous shocks, something quite simple, since exogenous

shocks in our model:

εit+1 =
¡
εiμ,t+1, ε

i
d,t+1, ε

i
ϕ,t+1, ε

i
A,t+1, ε

i
m,t+1

¢0
are normally distributed. Then, we apply the law of motion for states that relates the sit|t

and the shocks εit+1 to generate
n
sit+1|t

oN
i=1
. This step, known as forecast, put us back at the

beginning of proposition 1, but with the difference that we have moved forward one period

in our conditioning.

The following pseudocode summarizes the description of the algorithm:

Step 0, Initialization: Set tÃ 1. Sample N values
n
si0|0

oN
i=1

from p (S0;Ψ).

Step 1, Prediction: Sample N values
n
sit|t−1

oN
i=1

using
n
sit−1|t−1

oN
i=1
, the law of

motion for states and the distribution of shocks εt.

Step 2, Filtering: Assign to each draw
³
sit|t−1

´
the weight qit in proposition

1.

Step 3, Sampling: Sample N times with replacement from
n
sit|t−1

oN
i=1

using the

probabilities {qit}
N
i=1. Call each draw

³
sit|t

´
. If t < T set t Ã t + 1 and go to

step 1. Otherwise stop.

Then, with the output of the algorithm, we just substitute into our formula
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(16)

and get an estimate of the likelihood of the model. Del Moral and Jacod (2002) and Künsch
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(2005) show weak conditions under which the right-hand side of the previous equation is a

consistent estimator of L
¡
YT ;Ψ

¢
and a central limit theorem applies.

8.3. Estimation Procedure

We mention in the main part of the text that the posterior of the model

p
¡
Ψ|YT

¢
∝ L

¡
YT ;Ψ

¢
p (Ψ)

is difficult, if not impossible, to characterize. However, we can draw from it and build its

empirical counterpart using a Metropolis-Hastings algorithm. The algorithm is as follows:

Step 0, Initialization: Set i Ã 0 and an initial Ψi. Solve the model for Ψi

and build the state space representation. Evaluate prior p (Ψi) and approximate

L
¡
YT ;Ψ

¢
with (16). Set iÃ i+ 1.

Step 1, Proposal draw: Get a draw Ψ∗i from a proposal density q
¡
γi−1, γ

∗
i

¢
.

Step 2, Solving the Model: Solve the model for Ψ∗i and build the new state

space representation.

Step 3, Evaluating the proposal: Evaluate p (Ψ∗i ) and L
¡
YT ;Ψ∗i

¢
with (16).

Step 4, Accept/Reject: Draw χi ∼ U (0, 1). If χi ≤
L(YT ;Ψ∗i )p(Ψ∗i )q(Ψi−1,Ψ∗i )
L(YT ;Ψi−1)p(Ψi−1)q(Ψ∗i ,Ψi−1)

set

Ψi = Ψ∗i, otherwise Ψi = Ψi−1.

Step 5, Iteration: If i < M , set iÃ i+ 1 and go to step 1. Otherwise stop.

This algorithm requires us to specify a proposal density q (·, ·). We follow the standard
practice and choose a random walk proposal, Ψ∗i = Ψi−1 + κi, κi ∼ N (0,Σκ), where Σκ is a

scaling matrix. This matrix is selected to get the appropriate acceptance ratio of proposals

(Roberts, Gelman and Gilks, 1997).

To reduce the “chatter” of the problem, we will keep the innovations in the particle

filter (i.e., the draws from the exogenous shock distributions and the resampling probabili-

ties) constant across different passes of the Metropolis-Hastings algorithm. As pointed out

by McFadden (1989) and Pakes and Pollard (1989), this is required to achieve stochastic

equicontinuity, and even if this condition is not strictly necessary in a Bayesian framework,

it does reduce the numerical variance of the procedure.
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8.4. Construction of Data

As we mention in the text, we compute both real output and real gross investment in con-

sumption units to make the observed series compatible with the model. We define the relative

price of investment as the ratio of the investment deflator and the deflator for consumption.

The consumption deflator is constructed from the deflators of nondurable goods and ser-

vices reported in the NIPA. Since the NIPA investment deflators are poorly measured, we

use the investment deflator constructed by Fisher (2006). For the real output per capita

series, we first define nominal output as nominal consumption plus nominal gross investment.

We define nominal consumption as the sum of personal consumption expenditures on non-

durable goods and services, national defense consumption expenditures, federal nondefense

consumption expenditures, and state and local government consumption expenditures. We

define nominal gross investment as the sum of personal consumption expenditures on durable

goods, national defense gross investment, federal government nondefense gross investment,

state and local government gross investment, private nonresidential fixed investment, and pri-

vate residential fixed investment. Per capita nominal output is defined as the ratio between

our nominal output series and the civilian noninstitutional population between 16 and 65.

Since we need to measure real output per capita in consumption units, we deflate the series

by the consumption deflator. For the real gross investment per capita series, we divide our

above mentioned nominal gross investment series by the civilian noninstitutional population

between 16 and 65 and the consumption deflator. Finally, the hours worked per capita series

is constructed with the index of total number of hours worked in the business sector and the

civilian noninstitutional population between 16 and 65. Since our model implies that hours

worked per capita are between 0 and 1, we normalize the observed series of hours worked per

capita such that it is, on average, 0.33.
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