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Abstract

Open economy macroeconomics typically abstracts from portfolio structure.

But the recent experience of financial globalization makes it important to under-

stand the determinants and composition of gross country portfolios. This paper

presents a simple approximation method for computing equilibrium financial port-

folios in stochastic open economy macro models. The method is widely applicable,

easy to implement, and delivers analytical solutions for optimal gross portfolio po-

sitions in any combination of types of asset. It can be used in models with any

number of assets, whether markets are complete or incomplete, and can be applied

to stochastic dynamic general equilibrium models of any dimension, so long as the

model is amenable to a solution using standard approximation methods.
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1 Introduction

Open economy macroeconomic models typically represent international financial linkages

in terms of net foreign assets and the current account. Recent data show, however, that

there are large cross-country gross asset and liability positions. Lane and Milesi-Ferretti

(2001, 2006) show that these gross portfolio holdings have grown rapidly, particularly

in the last decade. The existence of large gross positions offers a number of interesting

challenges for open economy macro theory. For instance, can international macroeconomic

models offer any explanation for the observed structure of portfolio holdings? What are

the important macroeconomic determinants of the size and composition of gross portfolio

positions? The importance of gross asset positions, however, goes beyond questions about

the determinants of portfolio choice. This is because gross asset and liability positions can

themselves have important effects on macroeconomic dynamics. For instance a change

in the nominal exchange rate or a change in equity prices can give rise to capital gains

and losses for gross positions which can have very large effects on the value of net foreign

assets.1

While these issues are obviously of interest to open economy macroeconomists and

policymakers, current theoretical models and current solution methods cannot be used to

analyse the implications of gross portfolio holdings in any very systematic way. This is

because it is difficult to solve portfolio choice problems within standard general equilibrium

macroeconomic models with complex asset markets.

One approach that has recently been adopted is to focus on complete markets struc-

tures. Engel and Matsumoto (2005) and Kollmann (2006) represent examples of such an

approach. In the case of complete markets, it is possible to solve for a macroeconomic

equilibrium without having first to solve for behaviour in asset markets. It is then possible

to derive and analyse the implied country portfolios which support the macroeconomic

equilibrium.2

The complete markets approach certainly offers a useful starting point for analysing

1Lane and Milesi-Ferretti (2001) emphasize the quantitative importance of valuation effects on external

assets and liabilities. See also subsequent work by Ghironi et al. (2005), Gourinchas and Rey (2005),

and Tille (2003, 2004).
2For a comprehensive analysis of problems of portfolio choice for investors, see Campbell and Viceira

(2005). See also Kray et. al (2005) for an analysis in an international context.
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gross asset positions. But a large body of empirical evidence on the failure of risk-sharing

across countries throws doubt on the hypothesis that international financial markets are

complete (see, for instance, Obstfeld and Rogoff, 2000). Furthermore, there can be no cer-

tainty that complete markets are a good approximation to the true position, particularly

with regard to the implication for optimal portfolios. It is therefore important to make

progress in the analysis of portfolio choice in open economy macroeconomic models with

incomplete markets. This presents a number of problems however, principally because

standard solution methods cannot be used to analyse macro models with multiple assets

but incomplete markets. In such models the equilibrium portfolio allocation depends on

macroeconomic outcomes, and macroeconomic outcomes depend on the equilibrium port-

folio allocation. But, unlike the complete markets case, a solution for macro outcomes

can not be derived without first obtaining a solution for the equilibrium portfolio alloca-

tion. This means that models with incomplete markets are intractable in all but the most

restricted of cases.3 These problems are made more acute because it proves infeasible to

apply standard first-order and second-order approximation methods to incomplete mar-

kets models. The optimal portfolio allocation is generally indeterminate in a first-order

approximation of a model. It is also indeterminate in the non-stochastic steady state,

which is the natural starting point for standard approximation methods.

In this paper we develop and present a solution method which overcomes these prob-

lems. Our method can be applied to any standard open economy model with any number

of assets, any number of state variables and complete or incomplete markets. We find a

general formula for asset holdings which fits naturally into the standard solution approach

for DSGE models. In fact, our solution formula can be applied directly using a standard

first-order accurate solution that is generally derived in the analysis of DSGE models. It

is not necessary to repeat the derivation of our formula for every model. The technique

is simple to implement and can be used to derive either analytical results (for sufficiently

small models) or numerical results for larger models. In the case of numerical solutions,

the execution time of the solution code is no longer than required to obtain a standard

log-linear solution.

A key innovation in our approach is to recognize that, at the level of approximation

3Heathcote and Perri (2004) provide one example of an incomplete markets model in which it is

possible to derive explicit expressions for equilibrium portfolios. Their model is, however, only tractable

for a specific menu of assets and for specific functional forms for preferences and technology.
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that open economy macro-economists normally analyze multi-country models, one only

requires a solution for steady-state asset holdings. Higher-order aspects of portfolio be-

haviour are not relevant for the first-order accurate macro dynamics. Another way to

say this is that time variation in portfolio shares is irrelevant for all questions regard-

ing first-order responses of macroeconomic variables like consumption, output, etc. in a

DSGE model. Therefore, the approximation we derive exhausts all the macroeconomic

implications of portfolio choice at this level of approximation.

Using this fact, we characterise the optimal portfolio by a combination of a second-

order approximation of the portfolio selection condition with a first-order approximation

to the remaining parts of the model.4 Of course, these two approximations will be in-

terdependent; the endogenous portfolio weights will depend on the variance-covariance

matrix of excess returns produced by the general equilibrium model, but that in turn will

depend on the portfolio positions themselves. We show that this simultaneous system can

be solved to give a simple closed form analytical solution for the portfolio weights.

In the existing literature a number of alternative approaches have been developed

for analysing incomplete-markets models. Judd et al (2002) develop a numerical algo-

rithm based on ‘spline collocation’ and Evans and Hnatkovska (2005) present a numerical

approach that relies on a combination of perturbation, projection and continuous-time

approximation techniques. The methods proposed by Judd et al (2002) and Evans and

Hnatkovska (2005) are designed to handle dynamic general equilibrium models and they

are capable of analysing time variation in portfolios. On the other hand these methods

are very complex compared to our approach and they represent a significant departure

from standard DSGE solution methods. Devereux and Saito (2005) use a continuous time

framework which allows some analytical solutions to be derived and allows for time vary-

ing portfolios. But their approach can not handle general international macroeconomic

4Higher-order aspects of portfolio behaviour can be derived by considering higher-order approximations

of the model. This is a relatively straightforward extension of our method. The current paper focuses on

the derivation of steady-state portfolios because this represents a distinct and valuable first-step in the

analysis of portfolio choice in open-economy DSGE models. In an interesting recent paper, Tille and Van

Wincoop (2006) show how higher-order solutions to portfolio behaviour in an open economy model can

be obtained numerically via an iterative algorithm. Their approach requires the numerical computation

of steady-state portfolios in manner analogous to the analytical solutions derived in this paper. For an

analytical approach to the derivation of higher-order solutions to portfolios, see the companion to the

present paper (Devereux and Sutherland, 2006b).
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models with diminishing-returns technology or sticky nominal goods prices.

In the existing literature our method is most closely related to the work of Samuelson

(1970), Judd (1998) and Judd and Guu (2001). Samuelson, who analyses a simple static

portfolio allocation problem for a single investor, shows how a mean-variance approxi-

mation of a portfolio selection problem is sufficient to identify the optimal portfolio in a

near-non-stochastic world. Judd and Guu, who consider a static model of asset market

equilibrium, show how the problem of portfolio indeterminacy in the non-stochastic steady

state can be overcome by using a Bifurcation theorem in conjunction with the Implicit

Function Theorem. This allows them to identify an appropriate approximation point and

to construct higher-order Taylor series approximations for equilibrium portfolios which

are valid in a neighbourhood of this approximation point. The approximation point they

identify is a bifurcation point in the set of non-stochastic equilibria. Our solution ap-

proach relies on first-order and second-order approximations of the model, rather than

the Implicit Function and Bifurcation Theorems, but the underlying theory described by

Judd and Guu (2001) is applicable to our equilibrium solution. In particular, the steady-

state gross portfolio holdings derived using our technique correspond to the approximation

point derived by the Judd and Guu method. Our equilibrium portfolio can therefore be

rationalised in the same way, i.e. it is a bifurcation point in the set of non-stochastic

equilibria.5

This paper proceeds as follows. The next section sets out a general portfolio choice

problem within a generic open economy model. Section 3 develops and describes our

solution method. Section 4 presents two examples of how our technique can be use to

solve for bond and equity holdings in simple two-country models. Section 5 concludes the

paper.

5Judd and Guu use their technique to investigate the effects of stochastic noise on the equilibrium

portfolio. They therefore solve for the first and higher-order derivatives of portfolio holdings with respect

to the standard deviation of the underlying shock. In this sense they are able to derive higher-order

approximations of portfolio behaviour around the steady-state portfolio. As in Judd and Guu, our

steady-state asset holdings can be used as the starting point for deriving higher-order approximations.

As Samuelson (1970) shows, this requires taking higher-order approximations of the portfolio optimality

conditions and the model. This allows analysis of the effects of the level of noise on portfolios (is a similar

way to Judd and Guu). It also allows an analysis of time variation in equilibrium portfolios.
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2 A Generic Open Economy Model with Country

Portfolios

The solution process is explained in the context of a two-country open economy model.

The model is chosen to be general enough to encompass the range of structures that are

widely used in the recent open economy macro literature. However, only those parts of

the model necessary for understanding the portfolio selection problem need to be explic-

itly described here. Other components of the model, such as the labour supply decisions

of households and the production and pricing decisions of firms, are not directly relevant

to the portfolio allocation problem, so, for the moment, these parts of the model are

suppressed. It is important to emphasise from the start, however, that the solution pro-

cess, and the model used to describe it, are consistent with a wide range of specifications

for labour supply, pricing and production. Thus, the non-portfolio parts of the model

may be characterised by endogenous or exogenous employment, sticky or flexible prices

and wages, local currency pricing or producer currency pricing, perfect competition or

imperfect competition, etc.

It is assumed that the world consists of two countries, which will be referred to as the

home country and the foreign country. The home country is assumed to produce a good

(or a bundle of goods) with aggregate quantity denoted YH (which can be endogenous) and

aggregate price PH . Similarly the foreign country produces quantity YF of a (potentially

differentiated) foreign good (or bundle of goods) at price P ∗F . In what follows foreign

currency prices are denoted with an asterisk.

Agents in the home country have a utility function of the form

Ut = Et

∞X
τ=t

βτ−t [u(Cτ) + v(.)] (1)

where C is a bundle of the home and foreign goods and u(.) is a twice continuously differ-

entiable period utility function. The function v(.) captures those parts of the preference

function which are not relevant for the portfolio problem.6 The aggregate consumer price

index for home agents is denoted P .

6For these other aspects of the preference function to be irrelevant for portfolio selection it is necessary

to assume utility is additively separable in u(C) and v(.). Extensions to cases of non-additive separability

(e.g. habit persistence in consumption) are straightforward, as will become more clear below. Using (1)

allows us to illustrate the method with minimal notation.
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It is assumed that there are n assets and a vector of n returns (for holdings of assets

from period t− 1 to t) given by
r0t =

h
r1,t r2,t ... rn,t

i
Asset payoffs and asset prices are measured in terms of the aggregate consumption good

of the home economy (i.e. in units of C). Returns are defined to be the sum of the payoff

of the asset and capital gains expressed as percentage of the asset price. It is assumed

that the vector of available assets is exogenous and predefined.

The budget constraint for home agents is given by

Wt = α1,t−1r1,t + α2,t−1r2,t + ...+ αn,t−1rn,t + Yt − Ct (2)

where [α1,t−1, α2,t−1...αn,t−1] are the holdings of the n assets purchased at the end of period

t− 1 for holding into period t. It follows thatX
αi,t−1 =Wt−1 (3)

where Wt−1 is net wealth at the end of period t − 1. In (2), Y is the total disposable

income of home agents expressed in terms of the home consumption good. Thus, Y may

be given by YHPH/P + T where T is a fiscal transfer (or tax if negative)7.

It is simple to show that the budget constraint can be re-written in the following form

Wt = α0t−1rx,t + rn,tWt−1 + Yt − Ct (4)

where

α0t−1 =
h
α1,t−1 α2,t−1 ... αn−1,t−1

i
and

r0x,t =
h
(r1,t − rn,t) (r2,t − rn,t) ... (rn−1,t − rn,t)

i
=
h
rx,1,t rx,2,t ... rx,n−1,t

i
Here the nth asset is used as a numeraire and rx,t measures the "excess returns" on the

other n− 1 assets.
7The budget constraint is defined so that by default, home residents receive all home income. This

means that in a symmetric equilibrium with zero net foreign assets (Wt = 0), gross portfolio holdings

exactly offset each other in value terms. This convention simplifies the algebra, but it is not an important

part of the analysis. It would be easy to assume that direct claims to (some component of) home income

was tradable on a stock market, and wage earnings represented the home residents’ non-capital income.

In this case, even in a symmetric equilibrium with zero net foreign assets, agents in each economy would

have non-zero net portfolio positions. The method for approximating optimal portfolios applies equally

to this environment.
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2.1 First-order conditions for portfolio allocation and asset mar-

ket equilibrium

At the end of each period agents select a portfolio of assets to carry into the following

period. Thus, for instance, at the end of period t home country agents select a vector

αt to hold into period t + 1. There are n − 1 first-order conditions for the choice of the
elements of αt which can be written in the following form

Et [u
0(Ct+1)r1,t+1] = Et [u

0(Ct+1)rn,t+1]

Et [u
0(Ct+1)r2,t+1] = Et [u

0(Ct+1)rn,t+1]

:

Et [u
0(Ct+1)rn−1,t+1] = Et [u

0(Ct+1)rn,t+1]

(5)

Foreign-country agents face a similar portfolio allocation problem with a budget con-

straint given by
1

Qt
W ∗

t =
1

Qt

£
α∗0t−1rx,t + rn,tW

∗
t−1
¤
+ Y ∗t − C∗t (6)

where Qt = P ∗t St/Pt is the real exchange rate. The real exchange rate enters this budget

constraint because Y ∗ and C∗ are measured in terms of the foreign aggregate consumption

good while (as previously explained) asset holdings and rates of return are defined in terms

of the home consumption good.

Foreign agents are assumed to have preferences similar to (1) so the first-order condi-

tions for foreign-country agents’ choice of α∗t are

Et

£
Q−1t+1u

0(C∗t+1)r1,t+1
¤
= Et

£
Q−1t+1u

0(C∗t+1)rn,t+1
¤

Et

£
Q−1t+1u

0(C∗t+1)r2,t+1
¤
= Et

£
Q−1t+1u

0(C∗t+1)rn,t+1
¤

:

Et

£
Q−1t+1u

0(C∗t+1)rn−1,t+1
¤
= Et

£
Q−1t+1u

0(C∗t+1)rn,t+1
¤ (7)

The two sets of first-order conditions, (5) and (7), and the market clearing condition

αt = −α∗t , provide 3(n − 1) equations which, in principle, can be used to solve for the
elements of αt, α

∗
t and Et[rx,t+1]. However, given the non-linear nature of these equations,

combined with expectational terms, it is only possible to obtain exact solutions in very

special cases. The solution method described below achieves tractability (for the general

class of portfolio problems) by replacing the first-order conditions of the home and foreign

agents with second-order approximations.
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2.2 Other first-order and equilibrium conditions

Clearly, in any given general equilibrium model, there will be a set of first-order conditions

relating to intertemporal choice of consumption and labour supply for the home and

foreign consumers and a set of first-order conditions for price setting and factor demands

for home and foreign producers. Taken as a whole, and combined with an appropriate

set of equilibrium conditions for goods and factor markets, this full set of equations will

define the general equilibrium of the model. As already explained, the details of these non-

portfolio parts of the model are not necessary for the exposition of the solution method,

so they are not shown explicitly at this stage. In what follows these omitted equations

are simply referred to as the "non-portfolio equations" or the "non-portfolio equilibrium

conditions" of the model.

The non-portfolio equations of the model will normally include some exogenous forcing

variables. In the typical macroeconomic model these take the form of AR1 processes

which are driven by zero-mean innovations. In what follows the covariance matrix of the

innovations is denoted Σ. As is the usual practice in the macroeconomic literature, the

innovations are assumed to be i.i.d. This means that Σ is assumed to be non-time-varying.

It is convenient, for the purposes of taking approximations, to assume that the innova-

tions are symmetrically distributed in the interval [−�, �]. This ensures that any residual
in an equation approximated up to order n can be captured by a term denoted O (�n+1).8

3 The Solution Procedure

The solution procedure proposed here is based on a Taylor-series approximation of the

model. The approximation is based around a point where the vector of non-portfolio

variables is X̄ and the vector of portfolio holdings is ᾱ. In what follows a bar over a variable

indicates its value at the approximation point and a hat indicates the log-deviation from

the approximation point (except in the case of Ŵ and r̂x, which are defined below).

The standard log-linear approximation procedures used in macroeconomics can not be

directly applied to portfolio problems. This is for two reasons. Firstly, the equilibrium

8Clearly there must be a link between Σ and �. The value of � places an upper bound on the diagonal

elements of Σ. So an experiment which involves considering the effects of reducing � implicitly involves

reducing the magnitude of the elements of Σ.
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portfolio is indeterminate in a first-order approximation of the model. And secondly, the

equilibrium portfolio is indeterminate in the non-stochastic steady state.

The first of these problems can be overcome by considering higher order approxima-

tions of the model. This is the approach we adopt. More specifically, we focus on a

second-order approximation of the portfolio problem. A second-order approximation cap-

tures the effects of second moments and is therefore sufficient to capture the different risk

characteristics of assets.

The second problem (i.e. the indeterminacy of the equilibrium portfolio in the non-

stochastic steady state) presents a somewhat greater difficulty. This is because it (ap-

parently) rules out the most obvious approximation point. We overcome this problem by

treating the value of ᾱ as endogenous. Our procedure solves for ᾱ by looking at the first-

order optimality conditions of the portfolio problem in the (stochastic) neighbourhood of

the non-stochastic steady state. The solution for ᾱ is defined to be the one which ensures

that the second-order approximations of the first-order portfolio optimality conditions are

satisfied, within a neighbourhood of X̄ and ᾱ. The value of X̄, meanwhile, is fixed and

pre-specified. For this set of variables we follow the normal practice in the international

macro literature and choose X̄ based on a non-stochastic steady state of the model.9

From this description it might appear that we are approximating two sets of variables

around two different approximation points. It will be shown below, however, that the

solution derived for ᾱ can be interpreted as the equilibrium for portfolio holdings in a

world with an arbitrarily small amount of stochastic noise, i.e. the equilibrium in a ‘near-

non-stochastic’ world. The use of the non-stochastic equilibrium for the approximation

point for non-portfolio variables is therefore mathematically consistent with the use of

our solution for ᾱ as the approximation point for portfolio holdings.10

9In a sense our solution procedure reverses the normal perturbation methodology. The normal per-

turbation procedure is to specify an approximation point and to solve for the approximate behaviour of

variables around that point. Here the values of some of the variables (ᾱ) are unspecified at the approxi-

mation point and are determined endogenously by optimality conditions which hold in the neighbourhood

of the approximation point.
10As mentioned before, in a non-stochastic world all portfolio allocations are equivalent and can be

regarded as valid equilibria. A stochastic world on the other hand (assuming independent asset returns

and suitable regularity conditions on preferences) has a unique equilibrium portfolio allocation. If one

considers the limit of a sequence of stochastic worlds, with diminishing noise, the equilibrium portfolio

tends towards a limit which correspond to one of the many equilibria in the non-stochastic world. As
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Before describing the details of the solution method, it is useful to state two important

general properties of the approximated form of the model.

Property 1 In a first-order approximation of the non-portfolio parts of a model,

the only aspect of the portfolio allocation problem that appears is ᾱ, i.e. portfo-

lio holdings at the approximation point. The deviation of portfolio holdings from

their value at the approximation point, α̂, does not play any part in first-order ac-

curate macroeconomic dynamics. (This property will be demonstrated in the next

subsection.)

Property 2 The solution of a second-order approximation of the portfolio problem

only requires the non-portfolio parts of the model to be solved up to first-order

accuracy. This is because the only terms that appear in a second-order approxima-

tion of the equilibrium conditions of the portfolio problem are second moments, and

second-order accurate solutions for second moments can be obtained from first-order

accurate solutions for realised values (see Lombardo and Sutherland (2005)).

These two properties will be features of any model of the general form described above.

Property 1 is important because it implies that, when studying first-order macroeconomic

dynamics, it is sufficient to obtain a solution for ᾱ. Property 2 is important because the

first-order behaviour of the non-portfolio parts of a model is easily analysed in terms of

the standard theory of linearised macroeconomic models. Solutions for the non-portfolio

parts of a model can therefore be easily obtained using standard linear algorithms.

It proves convenient (but is not essential) to use the symmetric non-stochastic steady

state of the model as the approximation point for non-portfolio variables. Thus W̄ = 0,

Ȳ = C̄ and r̄1 = r̄2... = r̄n = 1/β. Note that this implies r̄x = 0. As explained above, the

objective is to derive a solution for ᾱ.

Taking a second-order approximation of the home-country portfolio first-order condi-

Judd and Guu (2001) point out, this limiting portfolio is a bifurcation point, i.e. it is the point in the

set of non-stochastic equilibria which intersects with the sequence of stochastic equilibria. We will show

below that our solution corresponds to the portfolio allocation at this bifurcation point.

10



tions yields

Et

h
(r̂1,t+1 − r̂n,t+1) +

1
2
(r̂21,t+1 − r̂2n,t+1)− ρĈt+1(r̂1,t+1 − r̂n,t+1)

i
= O (�3)

Et

h
(r̂2,t+1 − r̂n,t+1) +

1
2
(r̂22,t+1 − r̂2n,t+1)− ρĈt+1(r̂2,t+1 − r̂n,t+1)

i
= O (�3)

:

Et

h
(r̂n−1,t+1 − r̂n,t+1) +

1
2
(r̂2n−1,t+1 − r̂2n,t+1)− ρĈt+1(r̂n−1,t+1 − r̂n,t+1)

i
= O (�3)

(8)

where ρ ≡ −u00(C̄)C̄/u0(C̄) (i.e. the coefficient of relative risk aversion). Re-writing (8)
in vector form yields

Et

·
r̂x,t+1 +

1

2
r̂2x,t+1 − ρĈt+1r̂x,t+1

¸
= O

¡
�3
¢

(9)

where

r̂0x,t+1 ≡
h
r̂1,t+1 − r̂n,t+1 r̂2,t+1 − r̂n,t+1 ... r̂n−1,t+1 − r̂n,t+1

i
and

r̂20x,t+1 ≡
h
r̂21,t+1 − r̂2n,t+1 r̂22,t+1 − r̂2n,t+1 ... r̂2n−1,t+1 − r̂2n,t+1

i
The term O (�3) in (9) is a residual which contains all terms of order higher than two.

Applying a similar procedure to the foreign first-order conditions yields

Et

·
r̂x,t+1 +

1

2
r̂2x,t+1 − ρĈ∗t+1r̂x,t+1 + Q̂t+1/ρ

¸
= O

¡
�3
¢

(10)

The home and foreign optimality conditions, (9) and (10), can be combined to show

that, in equilibrium, the following conditions must hold

Et

h
(Ĉt+1 − Ĉ∗t+1 − Q̂t+1/ρ)r̂x,t+1

i
= 0 +O

¡
�3
¢

(11)

and

E [r̂x] = −1
2
E
£
r̂2x
¤
+ ρ

1

2
Et

h
(Ĉt+1 + Ĉ∗t+1 + Q̂t+1/ρ)r̂x,t+1

i
+O

¡
�3
¢

(12)

These two equations express the portfolio optimality conditions in a form which is partic-

ularly convenient for the derivation of equilibrium portfolio holdings and excess returns.

Equation (11) provides a set of equations which must be satisfied by equilibrium portfolio

holdings. And equation (12) shows the corresponding set of equilibrium expected excess

returns.

11



3.1 Time variation

Before proceeding with a detailed description of how equations (11) and (12) can be used

to derive equilibrium, it is important to discuss the effects of time on portfolio equilibrium

in the approximated model. In the form equations (11) and (12) are currently presented it

may appear that there is a separate set of equilibrium conditions for each time-period and

thus a separate solution for asset holdings in each time-period. It is, however, simple to

show that no element of the approximated portfolio problem is time varying at the level of

approximation employed here. It follows, therefore, that the time subscripts in the above

expressions can be omitted. This leaves a single non-time-varying set of equations and a

single set of non-time-varying unknowns.

The absence of time variation arises from a combination of Property 2 (stated above)

and two further properties of the approximated model:

Property 3 Expected excess returns, Et [r̂x,t+1] , are zero in all time periods in a

first-order approximation of the model. This is obvious from a first-order approxi-

mation of the portfolio first-order conditions (i.e. the first-order parts of equations

(9) and (10)). This implies that the expected cross product of excess returns with

any variable is equal to the covariance of excess returns with that variable, e.g.. for

any variable z it must be true that Et [ẑt+1r̂x,t+1] = Covt [ẑt+1, r̂x,t+1].

Property 4 The conditional one-period-ahead second moments generated by the

first-order approximation of the non-portfolio parts of the model are non-time-

varying if the covariance matrix of the innovations, Σ, is non-time-varying. (This

is a standard property of any linearised stochastic rational expectations model with

homoskedastic forcing processes.)

Property 3 implies the following:

Et

h
(Ĉt+1 − Ĉ∗t+1 − Q̂t+1/ρ)r̂x,t+1

i
= Covt

h
(Ĉt+1 − Ĉ∗t+1 − Q̂t+1/ρ), r̂x,t+1

i
Et

h
(Ĉt+1 + Ĉ∗t+1 + Q̂t+1/ρ)r̂x,t+1

i
= Covt

h
(Ĉt+1 + Ĉ∗t+1 + Q̂t+1/ρ), r̂x,t+1

i (13)

12



and Et

£
r̂2x,t+1

¤
is given by

Et

£
r̂2x,t+1

¤
=


V art[r̂1,t+1]− V art[r̂n,t+1]

V art[r̂2,t+1]− V art[r̂n,t+1]

:

V art[r̂n−1,t+1]− V art[r̂n,t+1]

 (14)

Property 2 implies that second-order accurate solutions for the second-moments in these

expressions can be obtained from first-order accurate solutions for realised values of r̂x,t+1,

Ĉt+1, Ĉ
∗
t+1 and Q̂t+1. Property 4 implies that the solutions for these second-moments will

be non-time varying provided Σ is non-time-varying. Thus all the terms in equations (11)

and (12) are non-time-varying.

3.2 Partial equilibrium in asset markets

The next subsection will describe the derivation of portfolio equilibrium within a full

general equilibrium of the model. Before considering general equilibrium, however, it is

insightful briefly to consider a partial equilibrium solution to the portfolio problem. A

partial equilibrium solution can be derived by substituting for Ĉ and Ĉ∗ in (11) using

the home and foreign budget constraints. Note that, as stated in Property 2, the budget

constraint need only be approximated up to first-order accuracy. This is because Ĉ and

Ĉ∗ only appear in (11) in second-order terms. First-order approximations of the home

and foreign budget constraints (in period t+ 1) imply

Ĉt+1 = α̃0r̂x,t+1 +
1

β
Ŵt − Ŵt+1 + Ŷt+1 +O

¡
�2
¢

(15)

and

Ĉ∗t+1 = −α̃0r̂x,t+1 −
1

β
Ŵt + Ŵt+1 + Ŷ ∗t+1 +O

¡
�2
¢

(16)

where the market clearing conditions, α̃ = −α̃∗ and Ŵ = −Ŵ ∗ have been imposed and

α̃ = ᾱ/(βȲ ) and Ŵt = (Wt − W̄ )/C̄ . The term O (�2) in these equations is a residual

which contains all terms of order higher than one. Note that, as stated in Property 1, in

(15) and (16) there are no terms in α̂ (the deviations of gross asset holdings from their

values at the approximation point).11

11This can the thought of as a type of envelope theorem result. Given that, at an optimal choice of

α, expected returns are equal (in equilibrium) up to the first order, time variation in the portfolio (i.e.bα) can only affect net wealth at the second-order level.
13



Using (15) and (16) to substitute for Ĉt+1 and Ĉ∗t+1 in (11) and solving for α̃ yields

α̃ = −1
2
V −1xx VxD +O (�) (17)

where

Vxx,t = Et

£
r̂x,t+1r̂

0
x,t+1

¤
, VxD = Cov

h
r̂x, (Ŷ − Ŷ ∗ − 2∆Ŵ − Q̂/ρ)

i
where ∆Ŵt+1 = (Ŵt+1 − Ŵt/β).

12 The corresponding (partial equilibrium) solution for

excess returns is

E [r̂x] = −1
2
E
£
r̂2x
¤
+ ρ

1

2
VxA +O

¡
�3
¢

(18)

where

VxA = Cov
h
r̂x, (Ŷ + Ŷ ∗ + Q̂/ρ)

i
Notice that (17) and (18) are very similar to the solutions for asset holdings and

expected returns that would emerge from a mean-variance model of portfolio allocation.

Thus some of the intuition that applies to models of that type is also applicable to the

approximate solution for portfolio holdings proposed here. Of course (17) and (18) are

not full general equilibrium solutions for α̃ and E [r̂x] because Vxx, VxD and VxA all depend

on α̃ via the impact of gross portfolio holdings on net wealth. Gross asset holdings affect

net wealth via the budget constraints (15) and (16). In turn this equation interacts

with first-order conditions for intertemporal allocation of consumption and work effort

and potentially many other components of a general equilibrium model. Thus the full

solution of the portfolio allocation problem requires a solution for the general equilibrium

of the entire model.

3.3 A general equilibrium solution for portfolio holdings

The derivation of a full general equilibrium solution for α̃ is now described.13 The objective

is to find values for the vector of portfolio allocations, α̃, and solutions for the behaviour

of Ĉ, Ĉ∗, Q̂ and r̂x, which satisfy equation (11) and all the non-portfolio equations of the

model.

12Note that Vxx is a second-order term, so V −1xx ×O
¡
�3
¢
is a first-order term and thus the residual in

(17) is of order one. This is consistent with the definition of α̃ as the point of approximation.
13The solution procedure will be described in terms of deriving a solution for α̃. The corresponding

solution for ᾱ is obviously given by ᾱ = α̃βȲ .
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Properties 1 and 2, stated above, play a crucial role in allowing a general equilibrium

solution to be derived. Property 2 implies that, in order to analyse equation (11) at the

level of second-order accuracy, it is only necessary to derive first-order accurate solutions

for the behaviour of Ĉ, Ĉ∗, Q̂ and r̂x. Property 1 implies that α̃ is the only aspect of

portfolio behaviour that affects the first-order accurate behaviour of Ĉ, Ĉ∗, Q̂ and r̂x.

Two further important properties of the approximated model make it possible to obtain

a solution.

Property 5 Portfolio holdings, α̃, only directly enter the first-order approximation

of the non-portfolio side of the model via budget constraints. In fact, because of

Walras’ Law, only one budget constraint is relevant. Here we focus on the home

country budget constraint, which, in its linearised form, is given by Ŵt = Ŵt−1/β+

Ŷt − Ĉt + α̃0r̂xt.

Property 6 Up to a first order of accuracy, realised excess asset returns, r̂xt, are

zero-mean i.i.d. random variables. This follows from Property 3.

Property 6 implies that the total realised excess return on the portfolio (i.e. α̃0r̂xt) is

also a zero-mean random variable (up to a first order of accuracy). This, in turn, implies

that the value of α̃ does not have any effect on the eigenvalues or eigenvectors of the

non-portfolio equations of the model.

These properties can now be used to derive a full general equilibrium solution for α̃.

From Property 6, we may initially treat the realised excess return on the portfolio as an

exogenous independent mean-zero i.i.d. random variable denoted ξt. The home country

budget constraint can therefore be written in the form

Ŵt =
1

β
Ŵt−1 + Ŷt − Ĉt + ξt +O

¡
�2
¢

(19)

and the entire first-order approximation of the non-portfolio equations of the model can

be summarised in a matrix equation of the form

A1

"
st+1

Et [ct+1]

#
= A2

"
st

ct

#
+A3xt +Bξt +O

¡
�2
¢

(20)

xt = Nxt−1 + εt

15



where s is a vector of predetermined variables, c is a vector of jump variables, x is a vector

of exogenous forcing processes and ε is a vector of i.i.d. shocks and B is a column vector

with unity in the row corresponding to the equation for the evolution of net wealth (19)

and zero in all other rows.14

The state-space solution to (20) can be derived using any standard solution method

for linear rational expectations models. It can be written as follows

st+1 = F1xt + F2st + F3ξt +O (�2)

ct = P1xt + P2st + P3ξt +O (�2)
(21)

This form of the solution shows explicitly, via the F3 and P3 matrices, how the first-order

accurate behaviour of all the model’s variables depend on exogenous i.i.d. innovations to

net wealth.

By extracting the appropriate rows from (21) it is possible to write the following

expression for the first-order accurate relationship between excess returns, r̂xt+1, and εt+1

and ξt+1

r̂xt+1 = R1ξt+1 +R2εt+1 +O
¡
�2
¢

(22)

where the matrices R1 and R2 are formed from the appropriate rows of (21). Equation

(22) shows how first-order accurate realised excess returns depend on the exogenous i.i.d.

shocks, εt+1, and the excess return on the portfolio, ξt+1.
15

Now recognize that rather than being exogenous, ξt+1 is determined by the endogenous

excess portfolio returns via the relationship

ξt+1 = α̃0r̂xt+1 (23)

where the vector of portfolio allocations, α̃, is to be determined. This equation, together

with (22), can be solved to yield expressions for ξt+1 and r̂xt+1 in terms of the exogenous

14As in many open economy macro models, there will be a unit root in the dynamics of net foreign

assets, Wt. . This means that we would not be able to compute unconditional second moments from the

model. But, as shown above, the optimal portfolio requires only conditional moments, which always

exist. It would be easy to amend the model using methods suggested by Schmitt-Grohe and Uribe (2003)

so as to render the distribution of Wt stationary. This has no bearing on the use of our method for

computing optimal portfolios.
15Notice that, as follows from Property 6, r̂xt+1 depends only on exogenous i.i.d. innovations and does

not depend on the values of the state variables contained in xt or st.
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innovations as follows

ξt+1 = H̃εt+1 (24)

r̂xt+1 = R̃εt+1 +O
¡
�2
¢

(25)

where

H̃ =
α̃0R2

1− α̃0R1
, R̃ = R1H̃ +R2 (26)

Equation (25), which shows how realised excess returns depend on the exogenous i.i.d.

innovations of the model, provides one of the relationships necessary to evaluate the left-

hand side of (11). The other relationship required is the link between (Ĉt+1 − Ĉ∗t+1 −
Q̂t+1/ρ) and the vector of exogenous innovations, εt+1. This relationship can derived in a

similar way to (25). First extract the appropriate rows from (21) to yield the following³
Ĉt+1 − Ĉ∗t+1 − Q̂t+1/ρ

´
= D1ξt+1 +D2εt+1 +D3

"
xt

st+1

#
+O

¡
�2
¢

(27)

where the matrices D1, D2 and D3 are formed from the appropriate rows of (21). After

substituting for ξt+1, this implies³
Ĉt+1 − Ĉ∗t+1 − Q̂t+1/ρ

´
= D̃εt+1 +D3

"
xt

st+1

#
+O

¡
�2
¢

(28)

where

D̃ = D1H̃ +D2 (29)

Using (25) and (28) it is now simple to derive the following expression

Et

h
(Ĉt+1 − Ĉ∗t+1 − Q̂t+1/ρ)r̂x,t+1

i
=

Covt[Ĉt+1 − Ĉ∗t+1 − Q̂t+1/ρ, r̂x,t+1] = R̃ΣD̃0 +O
¡
�3
¢

(30)

where Σ is the covariance matrix of ε.16 The equilibrium value of α̃ is that which satisfies

the following equation

R̃ΣD̃0 = 0 (31)

This matrix equation defines (n− 1) equations in the (n− 1) elements of α̃.
To solve for α̃ first substitute for R̃ and D̃ in (31) and expand to yield

R1H̃ΣH̃ 0D0
1 +R2ΣH̃

0D0
1 +R1H̃ΣD0

2 +R2ΣD
0
2 = 0 +O

¡
�3
¢

(32)

16NoticeD3 does not appear in this expression because, by assumption, Et(εt+1xt) = Et(εt+1st+1) = 0.
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Substituting for H̃ and H̃ 0 and multiplying by (1− α̃0R1)2 yields

R1α̃
0R2ΣR02α̃D

0
1 +R2ΣR

0
2α̃D

0
1(1− α̃0R1)

+R1α̃
0R2ΣD0

2(1− α̃0R1) +R2ΣD
0
2(1− α̃0R1)2 = 0 +O

¡
�3
¢

(33)

Note that α̃0R1, (1 − α̃0R1) and D1 are all scalars. It therefore follows that α̃
0R1 = R01α̃

and D0
1 = D1. Using these facts (33) simplifies to

D1R2ΣR
0
2α̃−R2ΣD

0
2R

0
1α̃+R2ΣD

0
2 = 0 +O

¡
�3
¢

(34)

which can be solved to yield the following expression for the equilibrium α̃

α̃ = [R2ΣD
0
2R

0
1 −D1R2ΣR

0
2]
−1

R2ΣD
0
2 +O (�) (35)

Notice that the residual in this expression is a first-order term. As previously noted, the

solution for ᾱ is simply given by ᾱ = α̃βȲ .

3.4 ᾱ in a ‘near-non-stochastic’ world

It is now possible to demonstrate that our solution for ᾱ is consistent with the use of the

non-stochastic steady state as the approximation point for non-portfolio variables.

Suppose that the covariance matrix of the innovations is given by Σ = ζΣ0 where

ζ > 0 is a scalar and Σ0 is a valid covariance matrix. Notice that the solution for α̃ given

in (35) is independent of ζ. So the value of α̃ given by (35) (and therefore the value of ᾱ)

is equivalent to the value that would arise in the case of an arbitrarily small, but non-zero,

value of ζ - i.e. the value of α̃ that would arise in a world which is arbitrarily close to a

non-stochastic world.

Furthermore, notice that as � tends to zero (which is equivalent to ζ tending to zero)

the size of the residual in (35) tends to zero. So, as the amount of noise tends to zero,

the value of α̃ becomes arbitrarily close to the true value of portfolio holdings in the

non-approximated model.

Our solution for ᾱ can therefore be thought of as the true portfolio equilibrium in a

world which is arbitrarily close to the non-stochastic equilibrium. So using our solution

for ᾱ as the approximation point for portfolio holdings is mathematically consistent with

using the non-stochastic steady state as an approximation point for the non-portfolio

variables.17

17In the terminology used by Judd and Guu (2001), it is clear that our solution corresponds to a
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3.5 Summary of the procedure

It should be emphasized that implementing this procedure requires only that the user ap-

ply (35), which needs only information from the first-order approximation of the model in

order to construct the D and R matrices. So long as the model satisfies the general prop-

erties described above, the other details of the model, such as production, labour supply,

and price setting can be varied without affecting the implementation. The derivations

used to obtain (35) do not need to be repeated. In summary, the solution for equilibrium

α̃ has three steps:

1. Solve the non-portfolio equations of the model in the form of (20) to yield a solution

in the form of (21).

2. Extract the appropriate rows from this solution to form R1, D1, R2 and D2.

3. Calculate α̃ using (35).

4 Applications of the Method

This section presents two simple examples of how the above solution technique can be

applied.

4.1 Example 1: A two-country endowment model with trade in

nominal bonds

Consider a one-good, two-country endowment economy where the utility of home house-

holds is given by

Ut = Et

∞X
τ=t

βτ−t
C
1−ρ
t

1− ρ
(36)

where C is consumption of the single good. There is a similar utility function for foreign

households.

bifurcation point in the set of non-stochastic equilibria. So the portfolio allocation defined by (35)

corresponds to one of the many possible non-stochastic equilibria and is thus consistent with the non-

stochastic steady-state values of the non-portfolio variables.
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The home and foreign endowments of the single good are auto-regressive processes of

the form

log Yt = ζY log Yt−1 + εY,t, log Y ∗t = ζY log Y
∗
t−1 + εY ∗,t (37)

where 0 ≤ ζY ≤ 1 and εY and εY ∗ are i.i.d. shocks symmetrically distributed over the

interval [−�, �] with V ar[εY ] = V ar[εY ∗] = σ2Y .

Asset trade is restricted to home and foreign nominal bonds. The budget constraint

of home agents is given by

Wt = αB,t−1rB,t + αB∗,t−1rB∗,t + Yt − Ct (38)

where W is net wealth, αB and αB∗ are holdings of home and foreign bonds and rB,t and

rB∗,t are the real returns on bonds. By definition, net wealth is the sum of bond holdings,

i.e.

Wt = αB,t + αB∗,t (39)

Real returns on bonds are given by

rB,t = RB,t
Pt−1
Pt

rB∗,t = RB∗,t
P ∗t−1
P ∗t

(40)

where P and P ∗ are home and foreign currency prices for the single tradeable good andRB

and RB∗ are the nominal returns on bonds. The law of one price holds so P = SP ∗ where

S is the nominal exchange rate (defined as the home currency price of foreign currency).

Consumer prices are assumed to be determined by simple quantity theory relations of

the following form

Mt = PtYt, M∗
t = P ∗t Y

∗
t (41)

where home and foreign money supplies, M and M∗, are assumed to be exogenous auto-

regressive processes of the following form

logMt = ζM logMt−1 + εM,t, logM∗
t = ζM logM

∗
t−1 + εM∗,t (42)

where 0 ≤ ζM ≤ 1 and εM and εM∗ are i.i.d. shocks symmetrically distributed over the

interval [−�, �] with V ar[εM ] = V ar[εM∗] = σ2M .

To make the example easy, the four shock processes are assumed to be indepen-

dent from each other. So the covariance matrix of the vector of innovations, εt =
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h
εY,t εY ∗,t εM,t εM∗,t

i
, is given by

Σ =


σ2Y 0 0 0

0 σ2Y 0 0

0 0 σ2M 0

0 0 0 σ2M


The first-order conditions for home and foreign consumption and bond holdings are

C
−ρ
t = βEt

£
C
−ρ
t+1rB∗,t+1

¤
, C

∗−ρ
t = βEt

£
C
∗−ρ
t+1 rB∗,t+1

¤
(43)

Et

£
C
−ρ
t+1rB,t+1

¤
= Et

£
C
−ρ
t+1rB∗,t+1

¤
, Et

£
C
∗−ρ
t+1 rB,t+1

¤
= Et

£
C
∗−ρ
t+1 rB∗,t+1

¤
(44)

Finally, equilibrium consumption plans must satisfy the resource constraint

Ct + C∗t = Yt + Y ∗t (45)

There are four sources of shocks in this model and only two independent assets. Assets

markets are incomplete.

4.1.1 First-order approximation

Application of the solution procedure requires a solution of the log-linear form of this

model. First-order approximation of (43) implies the following

−ρĈt = Et

h
−ρĈt+1 + r̂B∗,t+1

i
+O

¡
�2
¢
, −ρĈ∗t = Et

h
−ρĈ∗t+1 + r̂∗B∗,t+1

i
+O

¡
�2
¢
(46)

while approximation of (44) implies

Et [r̂B,t+1] = Et [r̂B∗,t+1] +O
¡
�2
¢

(47)

First order approximation of the resource constraint, the budget constraint and the quan-

tity theory relations yields

Ĉt + Ĉ∗t = Ŷt + Ŷ ∗t +O
¡
�2
¢

(48)

Ŵt =
1

β
Ŵt−1 + Ŷt − Ĉt + α̃B r̂x,t +O

¡
�2
¢

(49)

M̂t − P̂t = bYt, M̂∗
t − P̂ ∗t = bY ∗t (50)
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where foreign bonds are treated as the reference asset and r̂x,t is the excess return on

home bonds, defined as

r̂x,t = r̂B,t − r̂B∗,t +O
¡
�2
¢

(51)

Notice that (47) implies that the expected excess return is zero (up to a first-order

approximation) i.e. Et [r̂x,t+1] = O(�2). This is a demonstration of Property 3 in the

context of this model. Notice that this implies that nominal returns on bonds must

satisfy

R̂B,t − R̂B∗,t =
³
Et−1

h
P̂t

i
− P̂t−1

´
−
³
Et−1

h
P̂ ∗t
i
− P̂ ∗t−1

´
+O

¡
�2
¢

(52)

i.e. the nominal interest differential must equal the expected inflation differential. Com-

bined with (51) this implies that the realised excess return in period t is

r̂x,t =
³
Et−1

h
P̂t

i
− P̂t

´
−
³
Et−1

h
P̂ ∗t
i
− P̂ ∗t

´
+O

¡
�2
¢

(53)

i.e. the realised excess return is given by the difference between home and foreign price

surprises. Price surprises, by definition, can only depend on exogenous i.i.d. innovations.

This is a demonstration of Property 6 in the context of this model. Note that, since the

law of one price holds, (53) is also equal to the negative of the unexpected change in the

exchange rate.

In order to write the model in the form of a first-order system it is useful to define the

following relationships

P̂E
t = Et−1[P̂t], P̂ ∗Et = Et−1[P̂ ∗t ] (54)

r̂Et = Et [r̂B,t+1] = Et [r̂B∗,t+1] (55)

where P̂E
t , P̂

∗E
t and r̂Et represent expected home and foreign prices and the expected real

return on bonds.

The equations of the model can now be collected together in the form of matrix

equation system (20) where the vectors s, c and x are defined as follows

s0t =
h
P̂E
t−1 P̂E∗

t−1 Ŵt−1
i

c0t =
h
Ĉt Ĉ∗t r̂Et P̂t P̂ ∗t r̂x,t

i
x0t =

h
Ŷt Ŷ ∗t M̂t M̂∗

t

i
and the coefficient matrices are drawn from equations (46) to (55).
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4.1.2 Solution for bond holdings

The model is now in a form where it is straightforward to apply the solution procedure

outlined in the previous section. Any standard linear solution algorithm can be applied

to the first-order system to yield a state-space solution in the form of (21). In the case of

the above model, the resulting expressions for the matrices R1, R2, D1 and D2 are given

by

R1 = [0] , R2 =
h
1 −1 −1 1

i
D1 = [2(1− β)] , D2 =

h
1−β
1−βζY − 1−β

1−βζY 0 0
i

Finally, applying (35) yields the following expression for bond holdings

α̃B = −α̃B∗ = − σ2Y
2(σ2M + σ2Y )(1− βζY )

Home consumers take a negative position in home currency bonds, balanced by a

positive position in foreign currency bonds. The home price level is countercyclical, so

that home currency bonds have a relatively high payoff when home output is high. This

makes home currency bonds a relatively bad hedge against home output risk, while foreign

currency bonds are a relatively good hedge. An equivalent statement is that the home

country exchange rate appreciates in response to a positive home output shock, increasing

the return on home bonds relative to foreign bonds in this state. It is also noteworthy

that monetary policy volatility reduces the gross holdings of bonds. Although prices are

fully flexible, monetary volatility is costly because it reduces the usefulness of nominal

bonds as a risk-hedging instrument.

4.2 Example 2: A two-country production model with trade in

equities

Now we extend the model of the previous example to allow for endogenous production,

with productivity and fiscal policy shocks. Assume now that households supply labour,

and the utility of home households is

Ut = Et

∞X
τ=t

βτ−t
µ
C
1−ρ
t

1− ρ
−KLt

¶
(56)
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where now Ct is a composite consumption aggregate over home and foreign good cate-

gories, Lt is labour supply, and K is a constant. C is defined as

C =

"µ
1

2

¶ 1
θ

C
θ−1
θ

H +

µ
1

2

¶ 1
θ

C
θ−1
θ

F

# θ
θ−1

(57)

where CH and CF are indices of individual home and foreign-produced goods with an

elasticity of substitution between individual goods denoted φ, where φ > 1. The parameter

θ in (57) is the elasticity of substitution between home and foreign composite goods. The

aggregate consumer price index for home agents is therefore

P =

·
1

2
P 1−θ
H +

1

2
P 1−θF

¸ 1
1−θ

(58)

where PH (PF ) is the price index of home (foreign) goods. There is a similar utility

function for foreign households.

In this example, the focus is on trade in equities. The home budget constraint is given

by

Wt = αE,t−1rE,t + αE∗,t−1rE∗,t + wtLt + πt − Tt − Ct (59)

where again W is real net wealth, w is the real wage, π is real profit, αE and αE∗ are

holdings of home and foreign equities and rE and rE∗ are the real returns on equities.

In addition, T is a lump-sum tax which is used to finance government consumption. As

before, net wealth satisfies.

Wt = αE,t + αE∗,t (60)

Firms produce differentiated products. The production function for each differentiated

home good is linear in labour with productivity At, which is a stochastic productivity

shock. The foreign country has an analogous production function with productivity

shock A∗t . The home and foreign productivity shocks are given by

logAt = ζA logAt−1 + εA,t, logA∗t = ζA logA
∗
t−1 + εA∗,t (61)

where 0 ≤ ζA ≤ 1, and εA and εA∗ are i.i.d. shocks symmetrically distributed over the

interval [−�, �] with V ar[εA] = V ar[εA∗] = σ2A. Firms maximise profits, and all prices are

fully flexible ex-post.

The home government is assumed to purchase a bundle of goods, denoted G, with the

same composition as C, with budget constraint Tt = Gt. Similarly the foreign government
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purchases an amount G∗ of a bundle of foreign goods with the same composition as C∗.

We assume that government spending satisfies

logGt = G(1− ζG) + ζG logGt−1 + εG,t, logG
∗
t = G(1− ζG) + ζG logG

∗
t−1 + εG∗,t, (62)

where 0 ≤ ζG ≤ 1 and εG and εG∗ are i.i.d. shocks symmetrically distributed over the

interval [−�, �] with V ar[εG] = V ar[εG∗] = σ2G. The non-stochastic equilibrium level

G is set to match a given value for gy, the ratio of government spending to GDP in a

symmetric, non-stochastic equilibrium.

Home equities represent a claim on home aggregate profits. The real payoff to a unit of

the home equity is defined to be πt = Πt/Pt, where Πt are nominal profits. In a symmetric

equilibrium, nominal profits of each home firm will be (PHt−wtPt)YHt, which are positive

so long as φ > 1. The real price of a unit of home equity is denoted ZE,t−1. Thus the

gross real rate of return on the home equity is rE,t = (πt + ZE,t)/ZE,t−1.

The first-order conditions for home and foreign consumption and equity holdings are as

in the previous example, simply replacing rB,t+1with rE,t+1, etc. The first order condition

governing labour supply is

C
−ρ
t wt = K

Profit maximisation by firms implies

PH,t

Pt
=

φ

φ− 1wt

Finally, the market clearing conditions are

CHt + C∗Ht +GHt +G∗Ht = YHt

CFt + C∗Ft +GFt +G∗Ft = Y ∗Ft

As before, the four shocks are assumed to be independent from each other. As in the

previous example, asset markets are incomplete.

4.2.1 First-order approximation

First-order approximation of the model follows very closely that of the last example. The

excess return on foreign equity is given by

r̂x,t = [(1− β)π̂∗t + β bZ∗E,t − bZ∗E,t−1]− [(1− β)π̂t + β bZE,t − bZE,t−1] +O
¡
�2
¢

(63)
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As in the previous example, the equations of the model can be collected together in

the form of matrix equation system (20). Then any standard linear solution algorithm

can be applied to the first-order system to yield a state-space solution in the form of (21).

4.2.2 Solution for equity holdings

In order to illustrate the solutions for equity holdings, we make the further assumption

that ζA = ζG. In this case we compute the following expressions for the matrices R1, R2,

D1 and D2

R1 =

·
2ρ(θ − 1)(1− β)

Θ

¸
R2 =

h
− (1−gy)(1−β)(θ−1)

Θ(1−βζA)
(1−gy)(1−β)(θ−1)

Θ(1−βζA) − gyρ(1−β)(θ−1)
Θ(1−βζA)

gyρ(1−β)(θ−1)
Θ(1−βζA)

i
D1 =

·
2(1− β)

Θ

¸
D2 =

h
(1−β)(θ−1)
Θ(1−βζA) − (1−β)(θ−1)

Θ(1−βζA) − gy(1−β)
Θ(1−βζA)

gy(1−β)
Θ(1−βζA)

i
where Θ = (1 − gy + ρ(θ − 1)). Applying (35) yields the following expression for equity
holdings

α̃E = −α̃E∗ = − 1

2(1− β)

µ
1− ρg2y

(θ − 1)(1− gy)

σ2G
σ2A

¶
(64)

In the absence of government spending shocks, home households will hold a perfectly

pooled portfolio of home and foreign equity. Since the status quo embodied in budget

constraint (59) implies that home households receive all home profits, this requires that

α̃E is negative.

When gy > 0 however, home equity represents a good hedge against the consumption

risk of government spending shocks, since home profits are relatively high when govern-

ment spending is high. In this case, households will hold less than a fully pooled equity

portfolio. In fact, the presence of government spending shocks may explain either partial

or full home bias in equity portfolios.

The method can also be very easily applied to sticky price open economy models of the

type developed by, for instance Obstfeld and Rogoff (1995), Benigno and Benigno (2003),

Devereux and Engel (2003) and Corsetti and Pesenti (2005). Devereux and Sutherland

(2006a) show how the solution method can be used to analyze the impact of alternative

monetary policy rules on asset holdings in sticky-price models of this type.
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5 Conclusion

Portfolio structure has become a central issue in open economy macroeconomics and inter-

national finance. Despite this, existing models and solution methods are not well-suited

to analyzing portfolio choice in policy-relevant general equilibrium environments. This

paper has developed a simple approximation method for portfolio choice problems in open

economy models. Our approach is extremely easy to implement and can be used in any

of the existing models that rely on first-order approximation methods. If the researcher

is primarily interested in the implications of portfolio choice for the first order properties

of macro variables (such as GDP, consumption, or the real exchange rate), either through

impulse response analysis or by computing second moments so as to describe volatility

and comovement, then the solution method outlined here allows a full answer to these

questions. Since the overwhelming majority of the research in international finance and

macroeconomics is carried out at the level of first order approximation, the method is

widely applicable. It can be used to study many empirical questions in the interface

between international finance and macroeconomics. Moreover, the method allows us to

study the macroeconomic determinants of optimal steady state portfolio holdings for any

asset or combination of assets, whether markets are complete or incomplete.

The current paper focuses on the derivation of steady-state portfolios. If one is in-

terested in the time-variation in portfolio holdings (which, following from the analysis of

this paper, have only a second order effect on macroeconomic variables), it is necessary to

approximate the model to a higher order. A companion paper (Devereux and Sutherland

2006b) shows how a straightforward extension of the methods in this paper to higher-order

approximations allows analysis of higher-order aspects of portfolio behaviour, including

the impact of time-variation on portfolio holdings.
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