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1 Introduction

In this paper, I study the effect of risk taking on promotion in hierarchies, where

promotion at each stage depends on a signal of ability. The motivation comes from a

substantial body of evidence that males are more risk taking than females, and from

the continuing controversy about why males and females have different patterns of

success in labor markets. Granting the premise that the genders differ in risk taking,

does this have explanatory power for labor markets? The answer is mixed, partly

because the theorems below can be applied to labor markets in different ways.

The theorems proved below compare promotions drawn from two subpopu-

lations, one of which generates accurate signals of ability and the other of which

generates noisy signals of ability. The premise is that true abilities have the same

distribution in both populations, at least initially, but that agents in one population

give a noisy signal to the decision maker. This is a reduced-form hypothesis that

might follow from preferences and optimizing behavior, or might reflect behavior that

is hard-wired. This distinction does not matter for the theorems that I prove, although

it may matter for the interpretation.

The objective of the paper is to understand how the statistical properties of

surviving populations change in a hierarchy with a large (infinite) number of stages,

under various assumptions about the promotion standards.

I introduce two types of promotion hierarchies: those with memory and those

without memory. In a hierarchy without memory, promotion at stage t depends only

on the signal of ability generated in stage t. With memory, promotion can depend

on the entire history of signals. Hierarchies such as sports tournaments do not have

memory, since survival depends only on winning the current match. Hierarchies such

as academic labor markets have memory, although promotion would typically depend

more heavily on current performance than on past performance. To maximize the

difference between hierarchies with memory and those without, I assume for the case

of memory that all past signals are used symmetrically. There is no extra weight given
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to recent performance.

In section 2, I discuss some of the evidence that males are more risk taking

than females, and draw out some contradictions among the promotion objectives of

(a) promoting according to gender-blind standards, (b) promoting equal numbers, and

(c) promoting populations with equal average abilities. There is no promotion policy

that equalizes both the numbers of survivors and their average abilities.

In sections 3 and 4, I develop formal results about hierarchies with and without

memory. In both cases, if the objective is to equalize abilities, then more of the non

risk takers must be promoted than risk takers. This is because a surfeit in the number

of risk takers coincides with a deficit in their ability. This is true at any stage of the

hierarchy, and regardless of how the standards are chosen.

The main contribution of this paper is to show that the statistical properties of

the surviving populations can be reversed as the hierarchy progresses. For example, if

the standards are gender blind and relatively stringent at the beginning, the surviving

risk takers at early stages may be more numerous and less able than the surviving non

risk takers. However, this is reversed at the end. The ratio of surviving risk takers to

surviving non risk takers declines until there are fewer risk takers, but they have higher

ability. To remedy these discrepancies — to equalize numbers or abilities — the risk

takers (males) will need an affirmative action boost at the end, even though the non

risk takers (non risk takers) may need an affirmative action boost at the beginning.

Many labor markets have some of the features described in this paper, such

as markets for lawyers, academics, and corporate executives. However, none has an

infinite number of promotions stages. Nevertheless, it is useful to study the infinite

hierarchy because that is where we see the fundamental forces at work, leading to

reversals.
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2 Risk taking and Promotion in a Hierarchy

One motivation for this inquiry is the considerable evidence that males are more risk

taking than females. For example, Eckel and Grossman (2002) show that males and

females have different gambling behavior. In other experiments (2005b) they show

not only that females are more risk averse, but that other agents (not just researchers

on gender) perceive this to be true. In their recent review (2005a), they argue that the

evidence is especially strong in “field studies” (natural experiments such as observing

behavior in placing bets), but less conclusive in “contextual environmental” experi-

ments such as experiments involving insurance choices. One of the most interesting

risk taking contexts is investment. By observing investment portfolios, Jianakoplos

and Bernasek (1998) found that males have much higher risk tolerance than females.

(See also Bajtesmit and Bernasek, 1996.) There is also evidence from psychologists.

For example, Ginsburg and Miller (1982) gathered data on children’s behavior at a

zoo, where the children could choose to engage in risky activities or not. Young

boys were much more inclined to put themselves at risk than young girls. Males and

females even differ in their exam-taking behavior (Espinosa and Gardeazabal, 2005).

Accepting the hypothesis that males take more risks than females, scholars have

suggested evolutionary arguments for why it should be so. For example, Dekel and

Scotchmer (1999) postulated that males play “winner-take-all” games, and explored a

precise sense in which such games do (or do not) lead to riskier behavior. The premise

in that paper, which is also the easiest interpretation of the model below, is that risk

taking is genetically coded.

This paper is concerned with the consequences of risk taking, and not with an

explanation of it. The model below compares labor market outcomes of agents who

give noisy signals in the labor market with those who give accurate signals. A central

question, however, is whether a propensity to take risks leads to noisy signals in the

labor market. Some evidence suggests that it does. The same behavior that would

lead females to behave more conservatively on exams might lead them to take more
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conservative actions in the labor market. For example, in the academic sphere, a risk

taker might work on new and untried topics, with the risk of not finding an audience,

or even a publishable result, while a more conservative approach would be to extend

the work of others. If agents have different tolerances for risk, both choices could be

rational.

On the other hand, noisiness of labor market signals might be due to the amount

of information generated more than to its quality. If, for sociological reasons, males

are given more opportunity to perform, or are monitored more closely than females,

then the signals they generate are less noisy because there is more information about

them.

Finally, there can be unobservable confounding factors that overturn any in-

trinsic difference in risk taking. Becker and Eagly (2004) found that females were

at least as likely as males to put themselves at risk in protecting Jews in the Holo-

caust, and females are considerably more likely to put themselves at risk by donating

kidneys to relatives in need. However, the authors hypothesize that such behavior

might be rooted in a greater willingness of females to care for others, or to heed an

ethical calling. Females may be motivated by objectives that overcome, and therefore

obscure, an aversion to risk.

With these reservations in mind, I will nevertheless adopt the hypothesis that

risk taking leads to noisy labor market signals, and will often refer to risk takers and

non risk takers as “male” and “female.” I return to this issue in section 5.

Before turning to the hierarchy, I use figure 1 and a single round of promotion to

show how risk taking creates conflicts among three natural objectives of labor policy:

• equal promotion standards

• equal numbers of promotions

• promotion of a pool of agents with equal average or marginal ability
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In figure 1, the distribution of true ability a is shown by density g. The dis-

tribution of true ability is assumed to be the same in both populations, a risk taking

population (say, males) and a risk-averse population (say, females). The density g̃

represents the distribution of signals that the risk taking population will generate,

when their true ability a is confounded by noise.

Consider the first round of promotions. Suppose that the promotion standard

for males is c̄. That is, every male who generates a signal above c̄ is promoted. The

other promotion standards are for females: The promotion standard f e will ensure

that females are promoted with the same probability as males, and the promotion

standard fa will ensure that the expected ability of promoted females is the same as

that of promoted males.

If the promotion policy is gender blind, then females are also promoted accord-

ing to the standard c̄. In the example of figure 1, where more males than females are

promoted (because c̄ is above the mean), the promoted females have higher expected

ability than promoted males. Further, the promotion policy is inefficient. Given

the number of promotions, the total ability of promoted agents could be increased by

substituting a non risk taker for a risk taker. The expected ability of the marginal

non risk taker is c̄, but is less than c̄ for the risk taker. (The latter uses symmetry of

the distributions and the fact that c̄ is above the mean. See section 5.)

In an intuitive sense, it is because risk takers are overpromoted that their

average ability must be lower. To promote more of them, it is necessary to reach

further down into the ability distribution. In addition, some of those promotions are

mistakes. This insight is formalized in Lemmas 1 and 6 below. At every stage of

the hierarchy, surviving females have higher expected ability whenever the expected

number of surviving males is at least as large, regardless of what proportion of the

total pool is promoted.

Since the gender blind promotion policy is inefficient and also “inequitable” in

the sense that more risk takers (males) are promoted than non risk takers, we might
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Figure 1: First Stage of a Hierarchy

consider other rules for promotion. Suppose, instead, that the objective is to promote

equal numbers, as indicated by the promotion standard f e for females in figure 1.

Then

• the promoted risk takers (males) still have lower ability than the promoted non
risk takers (females); and

• the promotion standard for non risk takers (females) is lower than for risk takers
(males), provided fewer than half are promoted at stage 1, and otherwise higher.

Another critierion might be to promote agents with equal ability rather than

equal numbers. This criterion could not be a legal rule, since ability is not observable.

Qualitatively, though, one can see that the promotion standard for females would have

to be even lower than the one that ensures equal numbers, such as fa in figure 1. If

pools of agents with equal average ability are promoted, then

• fewer males than females are promoted; and

• the standard for female promotion is even lower than the one that equalizes
numbers.
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Figure 1 illustrates why “affirmative action” in labor markets is such a vexed

issue. To know whether affirmative action serves a social purpose, we must first

identify the purpose. It is not possible to equalize numbers, equalize abilities, and

also satisfy the procedural objective of having gender-blind standards. Moreover,

what is show below is that, for any of these objectives, the nature of the asymmetry

in the treatment of risk takers and non risk takers must invert at some point in the

hierarchy.

3 The Hierarchy without Memory

An agent’s ability A is a random variable with distribution G and density g, finite

variance, and support equal to the real line. Males and females (risk takers and non

risk takers) have the same distributions of abilities. A risk taking agent also gener-

ates a sequence of random errors U1, U2, ...Ut, ..., which are distributed independently

according to a cumulative distribution function Φ with a bounded density function φ,

mean zero, finite variance, and support equal to the real line.2 The random draw

A and the sequence of errors U1, U2, ...Ut, .. generate a sequence of random signals

Z1, Z2, ...Zt, ...where Zt = A+ Ut is also a random variable.

Promotion standards are a sequence of real numbers, c = c1, c2, ...ct... We will

say that the sequence is bounded if there exists c, c̄ such that c < ct < c̄ for each t.

We say that a risk taker survives to t if Zd ≥ cd, d = 1, ..., t. Define an

indicator function with values 1ct (Z) ∈ {0, 1}, such that the value is 1 if Zd ≥ cd, d =

1, ..., t.. The expected value of the indicator function is the probability of survival to

t. Conditioning on A = a, we denote the expected value of the indicator function by

SM
t (a, c), interpreted as the probability that a risk taker with ability a survives to t.

SM
t (a, c) := EZ [1

c
t (Z) : A = a] = Πt

d=1(1− Φ(cd − a))

2Full support is not required for all the results below, but I make the assumption here to avoid
technical assumptions in the formal statements. Boundedness of the density function is convenient
in the proof of Lemma 2(3), but not necessary.
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The probability that a random risk taker survives to t is therefore

EA

£
SM
t (A, c)

¤
=

Z ∞

−∞
SM
t (a, c) g (a) da =

Z ∞

−∞
g(a) Πt

d=1 [1− Φ(md − a)] da

and the expected ability of a random risk taking survivor at stage t is

EM
A [A|c, t] :=

EA

£
ASM

t (A, c)
¤

EA [SM
t (A, c)]

=

Z ∞

−∞
a

g(a)Πt
d=1 [1− Φ(md − a)]R∞

−∞ g(a)Πt
d=1 [1− Φ(md − a)] da

da (1)

For concreteness, I will often refer to risk takers as males and non risk takers

as females (hence the superscriptsM and F ) even though I point out in section 5 that

these interpretations can be reversed.

We say that a non risk taker (female) agent with ability a survives to stage t

if a ≥ cd, d = 1, 2, ...t. We use SF
t (a, f) directly as the indicator function:

SF
t (a, f) =

0 if a < maxi=1.,,,t {ci}
1 if a ≥ maxi=1.,,,t {ci}

The probability that a random non risk taker (female) survives to stage t isEA

£
SF
t (A, f)

¤
=

1−G (maxi=1.,,,t {ci}), and the expected ability of a random female survivor is

EF
A [A|c, t] :=

EA

£
ASF

t (A, c)
¤

EA [SF
t (A, c)]

=

Z ∞

maxi=1.,,,t{ci}
a

g (a)

1−G (maxi=1.,,,t {ci})
da (2)

We say that the promotion standards are gender-blind if all agents face the same

promotion standards. When we do not assume gender-blind promotion standards, we

will refer to the males’ (risk takers’) promotion standards by m = m1,m2, ...,mt, ...

and to the females’ (non risk takers’) promotion standards by f = f1, f2, ..., ft, ....For

females, we can assume without loss of generality that the promotion standards are

nondecreasing. If at any point a higher cutoff is followed by a lower cutoff, that is,

ft+1 < ft, then ft+1 can be replaced by ft with no consequence. If f is nondecreasing,

a female survives to stage t if a ≥ ft and does not survive otherwise.

We begin with two lemmas. The intuition for the first lemma is that the

promoted males include mistakes in both directions. Lower-ability males are promoted
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by mistake, and higher-ability males are excluded by mistake. Since no mistakes are

made in promoting females, the only way to ensure that promoted males have as high

ability as females is to promote fewer of them.

Lemma 1 Let m, f be promotion standards for risk takers and non risk takers in a

hierarchy without memory. Suppose that the probability of survival of a random risk

taker is no smaller than the probability of survival of a random non risk taker at time

t : EA

£
SM
t (A,m)

¤
≥ EA

£
SF
t (A, f)

¤
. Then the expected ability of a random surviving

risk taker is smaller than the expected ability of a random surviving non risk taker:

EA

£
ASM

t (A,m)
¤

EA [SM
t (A,m)]

<
EA

£
ASF

t (A, f)
¤

EA [SF
t (A, f)]

(3)

Proof: (a) For each a in the support of G, it holds that

0 < SM
t (a,m) < 1

SF
t (a, f) =

0 if a < ft
1 if a ≥ ft

The strict inequalities in the first line follow from the assumption that φ has full

support on the real line. As a consequence, every male has a positive probability

of being promoted at every stage, but promotion is never guaranteed. Therefore

SF
t (a, f)−SM

t (a,m) > 0 for all a such that (a− ft) ≥ 0, and SF
t (a, f)−SM

t (a,m) < 0

for all a such that (a− ft) < 0. It follows that

EA

£¡
SF
t (A, f)− SM

t (A,m)
¢
(A− ft)

¤
> 0

This implies that

EA

£
ASF

t (A, f)
¤
−EA

£
ASM

t (A,m)
¤
> ft

£
EA

£
SF
t (A,m)

¤
−EA

£
SM
t (A, f)

¤¤
(4)

Then EA

£
SM
t (A,m)

¤
= EA

£
SF
t (A, f)

¤
only if EA

£
ASF

t (A, f)
¤
> EA

£
ASM

t (A,m)
¤
,

which implies (3). If EA

£
SM
t (A,m)

¤
> EA

£
SF
t (A, f)

¤
, the same result holds, since
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the expected number of risk takers can only be increased by lowering their promotion

standards and including agents with lower ability. ¤

In the next lemma, the first part reflects the fact that, regardless of the promo-

tion standards, each male has positive probability of being eliminated at each stage.

Since excluded agents cannot re-enter the pool, almost no males survive in the long

run.

The second part reflects the fact that, regardless of the promotion standards,

only the males with very high ability are likely to survive many opportunities to be

eliminated. Thus, in the “long run”, it does not matter very much what the promotion

standards are, as long as there is a possibility to be eliminated at each stage. Males

who survive will likely have very high ability. In contrast, a female survives with

probability one if her ability is above the maximum promotion standard. This means

that more females survive in the long run even without extraordinary ability.

The third part concerns the marginal risk takers who would be excluded by

increasing the standard. The risk takers who would be eliminated would be those

with signal Zt = A + Ut = ct. Define the expected ability of the marginal surviving

risk taker at stage t as the expected ability of agents who generate signal ct :

eMA [A|c, t] :=
Z ∞

−∞
a

g(a) φ (ct − a)SM
t−1 (a, c)R∞

−∞ g(a) φ (ct − a)SM
t−1 (a, c) da

da (5)

Lemma 2 Let m = m1,m2, ...mt, ... be bounded promotion standards for a hierarchy

without memory. Then

(a) Given ε > 0, there exists t̃ such that for t > t̃, the probability that a risk taker

survives to stage t is less than ε;

(b) Given x > 0, there exists t̃ such that for t > t̃, the expected ability of a random

surviving risk taker is larger than x.

(c) Given x > 0, there exists t̂ such that for t > t̂, the expected ability (5) of the

marginal surviving risk taker is larger than x.

The proof is in the appendix.
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I now use these lemmas to characterize the populations that survive gender-

blind promotion standards. Together with figure 1, the following proposition shows

that there is a reversal in the relative numbers and relative abilities of the surviving

populations of risk takers and non risk takers. At the beginning, under the reasonable

conditions of figure 1, gender blind strategies lead to a higher survival rate among risk

takers, but lower ability. At the end, this is reversed. According to Proposition 3,

there is eventually a higher survival rate among non risk takers, but they have lower

ability.

Proposition 3 (Gender Blind Promotions) Let c = c1, c2, ... be bounded, gender-blind

promotion standards for a hierarchy without memory. Then there exists t̃ such that

for t > t̃ the survival probability of a random risk taker is smaller than the survival

probability of a random non risk taker, but the expected ability of surviving risk takers

is larger than the expected ability of surviving non risk takers.

Proof: The first part follows directly from Lemma 2 by choosing ε > 0 such

that (1−G (ct)) > ε for all t. The second part follows from Lemma 1. ¤

We now turn to alternative policy goals. We first consider the goal of equalizing

the probabilities of promotion at each stage, and then consider the goal of equalizing

the average ability of the survivors at each stage.

It follows directly from Lemma 2(a) that if the promotion standards m, f are

bounded, the survival rates of males and females in the limit are different. Proposition

4 says this in a different way: If survival rates are the same, the males’ promotion

standards cannot be bounded below. In particular, it is impossible to support equal

promotions with the most natural hierarchy in which standards are increasing.

Proposition 4 (Promoting Equal Numbers) Let m, f be promotion standards in a

hierarchy without memory such that risk takers and non risk takers have the same

probability of survival at each stage t. If the sequence f converges to a finite limit,

then the sequence m is not bounded below.
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Proof: The sequence f = f1, f2, ... is nondecreasing and converges. The

sequence of female survival rates EA

£
SF
t (A, f)

¤
, t = 1, 2, ...., also converges, and, by

hypothesis, the sequence of male survival rates EA

£
SM
t (A,m)

¤
, t = 1, 2, ...., converges

to the same limit, say L. Choose an ε > 0 such that ε < L. Suppose, contrary to

the proposition, that the sequence m is bounded below by m. The male survival rate

at stage t satisfies

EA

£
SM
t (A,m)

¤
=

Z ∞

−∞
g(a)SM

t (a,m)da ≤
Z ∞

−∞
g(a)(1− Φ(m− a))tda (6)

Choose ã, â such that â < ã and

1−G(ã) < ε/3

G(â) < ε/3

Choose t̂ such that (1 − Φ(m − ã))t̂ < ε/3. Then if t > t̂, the upper bound on the

male survival rate at stage t, (6), can be writtenZ â

−∞
g(a)(1−Φ(m− a))tda+

Z ã

â

g(a)(1−Φ(m− a))tda+

Z ∞

ã

g(a)(1−Φ(m− a))tda

<

Z â

−∞
g(a)da+ [G(ã)−G(â)](1− Φ(m− ã))t +

Z ∞

ã

g(a)da

< ε/3 + (1− Φ(m− ã))t + ε/3 < ε < L

This is a contradiction. ¤

Proposition 5 (Promoting Equal Average Ability) (a) Suppose that the expected

abilities of surviving males and females are the same at stage t̂ under the promotion

standards m, f in a hierarchy without memory. Then the survival rate of females at

stage t̂ is greater than that of males. (b) In a hierarchy without memory, there are no

bounded promotion standards m, f for which promoted males have the same average

ability as promoted females at each t.

Proof: Part (a) follows from Lemma 1, which would otherwise be contradicted.

Part (b) follows from Lemma 2(b), which says that, for any bounded sequences, the

average ability of surviving males is higher than the average ability of surviving females

for late stages of the hierarchy (large t). ¤
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4 The Hierarchy with Memory

Say that the hierarchy has memory if promotion depends on the performance in all

periods up to the promotion date. In the hierarchy without memory, promotion at

stage t depends only on having survived the last promotion, and on the performance

afterwards, but not on the margin with which promotion to t− 1 was achieved.

I will study the special case in which promotion depends symmetrically on the

signals generated in the entire history to date, through their average. For risk takers,

survival depends on a different set of random events than before. For the random

sequence Z1, Z2, ...Zt, .., define the sequence of sample means Z̄1, Z̄2, ...Z̄t, .., where

Z̄t =
1
t

Pt
k=1 Zk for each t. We again describe survival with an indicator function,

where 1̄ct (Z) ∈ {0, 1} takes value 1 if Z̄d ≥ cd, d = 1, ..., t. The expected value of

the indicator function is the probability of survival to t. When A = a, we denote this

expected value by S̃M
t (a, c):

S̃M
t (a, c) := EZ [1̄

c
t (Z) : A = a]

The survival function S̃M
t (·, c) is continuous and increasing, and can be written

S̃M
t (a, c) =

Z ∞

c1−a
φ (u1)

Z ∞

2(c2−a)−u1
φ (u2) ...

Z ∞

t(ct−a)− t−1
i=1 ut

φ (ut) dut...du2 du1

At each a, the probability of survival S̃t (a, c) is decreasing with t, and bounded
below by zero. Hence the sequence converges at each a. Let

S̃M (a, c) = lim
t→∞

S̃M
t (a, c) for each a ∈ R

The limiting expected ability of surviving risk takers is the following, provided

the probability of survival in the limit (the denominator) is positive.

ẼM
A [A|c] =

Z ∞

−∞
a

S̃M (a, c) g(a)R∞
−∞ S̃M (a, c) g (a) da

da (7)

For hierarchies with memory, Lemma 6 is the analog of Lemma 1, and is proved

analogously.
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Lemma 6 Let m, f be promotion standards for risk takers and non risk takers in a

hierarchy with memory. Suppose that the probability of survival of a random risk

taker is no smaller than the probability of survival of a random non risk taker at stage

t : EA

£
SM
t (A,m)

¤
≥ EA

£
SF
t (A, f)

¤
. Then the expected ability of a random surviving

risk taker is smaller than the expected ability of a random surviving non risk taker:

EA

£
ASM

t (A,m)
¤

EA [SM
t (A,m)]

<
EA

£
ASF

t (A, f)
¤

EA [SF
t (A, f)]

For hierarchies without memory, we showed in Lemma 2 and Proposition 3 that

most risk takers will eventually be eliminated, provided the standards are bounded

below. Each risk taker has infinitely many opportunities to throw himself out of the

pool, and if any risk takers survive, it is only those with exceptional ability. As long

as the promotion standards for males and females are bounded, the expected ability of

surviving risk takers is arbitrarily large for large enough t, and in particular is higher

in the limit than for surviving non risk takers.

I now show that, with memory, risk takers survive in the limit with positive

probability. Nevertheless, it is still true, as in hierarchies without memory, that sur-

viving risk takers will be less numerous than surviving non risk takers, and will have

higher average ability. This must be proved in a different manner than Proposition

3, since the analog to Lemma 2 does not hold. Further, Proposition 8 only holds for

promotion standards that are nondecreasing. With decreasing promotion standards,

all non-risk takers with ability above c1 would survive, and none would be eliminated

after stage one. This is not true of risk takers. If the performance standards decrease

rapidly, risk takers with abilities lower than c1 might survive in large numbers, and

the limiting expected ability of risk takers could be lower than that of non risk takers.

In any case, increasing promotion standards are the more natural case.

Proposition 8 follows from the shape of the limiting survival function S̃M (·, c) ,
described in Lemma 7 and shown in figure 2.
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Figure 2: Survival of Risk Takers in a Hierarchy with Memory

Lemma 7 Suppose that the promotion standards c1, c2...ct.. are nondecreasing and

converge to c̄. For each a ≤ c̄, S̃M (a, c) = 0. For each a > c, S̃M (a, c) > 0. The

limit function S̃M is nondecreasing.

The proof is in the appendix.

Proposition 8 (Gender Blind Promotions with Memory) Let c = c1, c2., , , ct, ... be a

nondecreasing sequence of gender blind promotion standards that converge to c̄ in a

hierarchy with memory. Then there exists t̂ such that for t > t̂, the survival probability

of a random risk taker is smaller than the survival probability of a random non risk

taker, but the surviving risk takers have higher expected ability.

Proof: First, fewer risk takers than non risk takers survive in the limit. For

a < c̄, neither risk takers nor non risk takers survive. For a > c̄, the probability that

a non risk taker survives is one, while, for risk takers, the survival probability is less

than one: S (a, c) < 1− Φ (c1 − a) < 1.

Because the risk takers’ limit probabilities of survival are nondecreasing with

a, the limit distribution of their abilities first-order dominates the limit distribution
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of non risk takers’ abilities. Thus, the expected ability of surviving risk takers is no

smaller than that of surviving non risk takers. But since S̃ (a, c) > S̃ (c̄, c) for some
a > c, the limiting expected ability of surviving risk takers is strictly greater than that

of surviving non risk takers. ¤

For hierarchies with memory, there is no analog to Proposition 4, but the

following is the analog to Proposition 5.

Proposition 9 (Promoting Equal Average Ability with Memory) Suppose that the

expected abilities of surviving males and females are the same at stage t̂ under the

promotion standards m, f in a hierarchy with memory. Then the survival rate of

females at stage t̂ is greater than that of males.

Proof: By Lemma 6, if the expected number of surviving risk takers at stage

t is greater than or equal to the surviving non risk takers, then the average ability of

surviving risk takers is lower than that of surviving females. The proposition follows

from an equivalent statement: If the average ability of surviving males is as great

or greater than the average ability of surviving females, then the expected number of

surviving males is lower. ¤

For completeness, the following proposition gives some insight into how the

promotion standards must differ with and without memory, in order to equalize the

number of survivors.

Proposition 10 Let ĉa and c be promotion standards in hierarchies with and without

memory, respectively, which yield the same probabilities of survival at each t for a risk

taking agent with ability a. Then it holds that ĉa1 = c1 and ĉat > (1/t)
Pt

d=1 cd for each

t > 1.

Proof: A risk taking agent with ability a will have a sequence of random

errors in his signal, {Ut} . With and without memory, respectively, the agent survives
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the first stage in the events

{U1 ≥ c1 − a} , {U1 ≥ ĉa1 − a}

so c1 = ĉa1. Without memory, the agent survives two stages in the event

{U1 ≥ c1 − a and U2 ≥ c2 − a} (8)

With memory the agent survives two stages in the event

{U1 ≥ c1 − a and U2 ≥ c2 − a+ (c1 − a− U1)} (9)

Since 0 ≥ (c1 − a− U1) , the event (8) implies the event (9), but not vice versa. Thus,

the probability of the event (8) is lower than the probability of the event (9). There

exists c̃2 > c2 such that the probabilities of survival are equalized at the first two

stages, when ĉa1 = c1 and ĉa2 = (1/2) (c1 + c̃2) > (1/2) (c1 + c2) :

Pr {U1 ≥ c1 − a and U2 ≥ c2 − a} = Pr {U1 ≥ c1 − a and U2 ≥ c̃2 − a+ (c1 − a− U1)}

Similarly, at stage t = 3,

Pr {U1 ≥ c1 − a and U2 ≥ c2 − a and U3 ≥ c3 − a}

< Pr

½
U1 ≥ c1 − a and U2 ≥ c̃2 − a+ (c1 − a− U1)
and U3 ≥ c3 − a+ (c1 + c̃2 − 2a− U2 − U1)

¾
since 0 ≥ (c1 + c̃2 − 2a− U2 − U1) . Thus, there exists c̃3 > c3 such that

Pr {U1 ≥ c1 − a and U2 ≥ c2 − a and U3 ≥ c3 − a}

= Pr

½
U1 ≥ c1 − a and U2 ≥ c̃2 − a+ (c1 − a− U1)
and U3 ≥ c̃3 − a+ (c1 + c̃2 − 2a− U2 − U1)

¾

Thus, there exists a sequence c̃1, c̃2, ... such that c̃1 = c1, c̃t > ct for t > 1, and

for each t,

Pr {Ud ≥ (cd − a) for all d ≤ t} = Pr
(

dX
i=1

Ui ≥
dX

i=1

(c̃i − a) for all d ≤ t

)
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Thus, the promotion standards with memory ĉa defined by ĉa1 = c1, ĉ
a
t =

1
t

Pt
i=1 c̃i for

t > 1, yield the same probabilities of survival at each t as the promotion standards

without memory c, and ĉat > (1/d)
Pt

d=1 cd for all t > 1. ¤

Proposition 10 does not assert that the promotion standards ĉa are the same

for agents with different abilities. However it does imply that to maintain the same

overall promotion rate with and without memory, the standards must satisfy ĉt >

(1/d)
Pt

d=1 cd for each t > 1, since otherwise the promotion rate would be higher at

some t for every a.

5 Interpretations

So far, the strategy of this paper has been to make primitive hypotheses about pro-

motion standards, and then to study the consequences when some agents generate

noisy signals of ability and others do not. The reduced-form nature of the inquiry is

intentional. The labor-market effects that follow from the hypotheses on promotion

standards do not require an explanation for why one population generates noisier sig-

nals than another, but only that such differences exist. Nevertheless, in this section I

say more about why labor market signals might be noisy, and whether the hypotheses

on promotion standards might be justified from primitive objectives.

In section 2, I cited evidence that males are more risk-taking than females.

However, that does not necessarily imply that the signals relevant to promotion are

noisier. In fact, as I already hinted, the hypothesis about which gender gives noiser

signals can be inverted.

There are formal and informal ways of accumulating evidence. Formal evidence

such as testing may simulate the laboratory environments where risk-taking emerges as

noise in the signal. But informal signals, such as accrue through casual interactions,

will be less precise for females than for males if females have less opportunity to

perform. Males may be more closely observed — their papers may be read instead of
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shelved, or they may be approached more often for conversation, help or collaboration.

Under this interpretation, a shift from formal to informal standards in a gender-blind

hierarchy will increase the promotion rate of females at early stages, but decrease it

at later stages when more evidence has accumulated despite these sociological effects.

I have investigated two plausible constraints on promotions: that the standards

must be gender blind, or that promotion rates must be equal. These are of interest

because they reflect what is observable to a court.

However, we can alternatively ask whether the constraints we have studied

follow from a more primitive objective. The obvious objective is efficiency, although

efficiency is hard to define in a partial model of a labor market such as this. See Holzer

and Neumark (2000) for an overview of this multifaceted subject, and Lundberg and

Startz (1983), Lundberg (1991), Milgrom and Oster (1987) for some specific efficiency

effects. I will consider the particularly simple objective of trying to promote the most

able agents.

Say that promotions standards m, f are efficient at stage t if mt, ft solve the

following problem:

maximize
Z ∞

−∞
aSt (a,m) g (a) da+

Z ∞

ft

ag (a) da

subject to
Z ∞

−∞
St (a,m) g (a) da+

Z ∞

ft

g (a) da ≤ N

The optimum entails that the marginally promoted risk taker has expected

ability equal to the marginally promoted non risk taker: eMA [A|m, t] = ft. A court

could not enforce this rule, since it cannot observe ability, but we can still say some-

thing about the efficiency of gender-blind promotion standards or standards that lead

to equal promotion rates. It is convenient for this purpose to assume that the distri-

butions G and Φ are symmetric, as in figure 1, and also that G is single peaked.

The following remark implies that gender blind standards are not efficient. At

the beginning of the hierarchy, efficiency could be improved by trading some risk takers
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for more non risk takers. The ability of the marginal non risk takers who would thus

be included is c1, which is larger than the ability of the marginal risk takers who would

be excluded. The trade must be reversed at later stages. At large t, efficiency can

be improved by trading some non risk takers for more risk takers. It is only in the

hierarchy with memory that the marginal risk takers and marginal non risk takers

have the same expected ability in the limit, even though the average ability of risk

takers is higher than that of non risk takers.

Proposition 11 Suppose that the distributions G and Φ are symmetric and centered

at zero, that the density g is single peaked as well as symmetric, that the standards c

are gender blind, and that c1 > 0. Then

(a) The expected ability of the marginal risk taker at stage 1 is smaller than c1.

(b) When the hierarchy does not have memory, there exists t̃ such that for t > t̃, the

expected ability of the marginal risk taker is higher than ct.

(c) When the hierarchy has memory, the expected ability of the marginal risk takers

in the limit distribution of survivors is the same as the expected ability of the marginal

non risk takers.

Proof: (a) The expected ability of the marginal risk taker is

eA [A|c, 1] : =

Z ∞

−∞
a

g(a) φ (c1 − a)R∞
−∞ g(a) φ (c1 − a) da

da =

Z ∞

−∞
(c1 − x)

g(c1 − x) φ (x)R∞
−∞ g(a) φ (c1 − a) da

dx

= c1 −
Z ∞

−∞
x

g(c1 − x) φ (x)R∞
−∞ g(a) φ (c1 − a) da

dx < c1 (10)

The inequality follows because the integral in (10) is positive. The denominator is

positive, and the numerator can be writtenZ ∞

0

xg(c1 − x) φ (x) dx+

Z 0

−∞
xg(c1 − x) φ (x) dx

=

Z ∞

0

yg(c1 − y) φ (y) dy −
Z ∞

0

yg(c1 + y) φ (−y) dy

=

Z ∞

0

y [g(c1 − y)− g (c1 + y)] φ (y) dy > 0
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In the second line, φ (y) = φ (−y) due to symmetry of φ and in the last line, [g(c1 − y)− g (c1 + y)] >

0 due to c1 > 0, symmetry of g, and single-peakedness of g.

(b) is proved in Lemma 2(c).

(c) follows from figure 2, which shows that, in the limit, the marginal males

have the same ability as the marginal females, even though there are negligibly few of

them. ¤

6 Appendix

Proof of Lemma 2: Let m ≤ mt ≤ m̄ for all t = 1, 2, ... Since the distributions

G and Φ have full support, the probability that any risk taker survives at any date

t, conditional on having survived to t − 1, is strictly less than one. That is, 1 −
Φ (mt − a) < 1 for every t and every a ∈ R.

(a) Let ε > 0. Let ã > 0 satisfy 0 < 1 − G(ã) < ε/2 and let t̃ satisfy

(1− Φ(m− a))t̃ < ε/2 for all a ≤ ã. Then for t ≥ t̃,Z ∞

−∞
g(a)SM

t (a,m) da

=

Z ã

−∞
g(a)Πt

d=1(1− Φ(md − a))da+

Z ∞

ã

g(a)Πt
d=1(1− Φ(md − a))da

≤
Z ã

−∞
g(a)(1− Φ(m− a))tda+

Z ∞

ã

g(a)Πt
d=1(1− Φ(md − a))da

< G(ã)ε/2 + (1−G(ã) < ε

(b) For given t, write the expected ability of surviving risk takers, EM
A [A|c, t],

in two parts, restricting attention to those agents who have survived to t. The first term

in (11) is the expected ability of survivors who satisfy |a| > 4x, times the probability
of that event, and the second part is the expected ability of survivors who satisfy

|a| ≤ 4x, times the probability of that event.

EM
A [A|c, t, |A| > 4x] × Pr [|A| > 4x] + EM

A [A|c, t, |A| ≤ 4x] × Pr [|A| ≤ 4x] (11)
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or equivalently,

EM
A [A|c, t] =

"R∞
4x

ag (a)SM
t (a,m) da+

R −4x
−∞ ag (a)SM

t (a,m) daR∞
−∞ g (a)SM

t (a,m) da

#
+

R 4x
−4x ag (a)SM

t (a,m) daR∞
−∞ g (a)SM

t (a,m) da

=

"R∞
4x

ag (a)SM
t (a,m) da+

R −4x
−∞ ag (a)SM

t (a,m) daR∞
4x

g (a)SM
t (a,m) da+

R −4x
−∞ g (a)SM

t (a,m) da

#

×
"R∞

4x
g (a)SM

t (a,m) da+
R −4x
−∞ g (a)SM

t (a,m) daR∞
−∞ g (a)SM

t (a,m) da

#

+

"R 4x
−4x ag (a)SM

t (a,m) daR 4x
−4x g (a)SM

t (a,m) da

#
×
"R 4x

−4x g (a)SM
t (a,m) daR∞

−∞ g (a)SM
t (a,m) da

#
Since Pr[|a| > 4x] + Pr[|a ≤ 4x|] =1, and EM

A [A|c, t, |A| ≤ 4x] > −4x, it will be
enough to show that as t becomes large, EM

A [A|c, t, |A| > 4x] becomes large (larger
than 2x) and Pr[|a| ≤ 4x] becomes small (smaller than 1/6). Then EM

A [A|c, t] >
(2x) (5/6)− (4x)(1/6) = x.

First show that EM
A [A|c, t, |A| > 4x] > 2x for large t.

EM
A [A|c, t, |A| > 4x]

=

R∞
4x

ag (a)SM
t (a,m) da+

R −4x
−∞ ag (a)SM

t (a,m) daR∞
4x

g (a)SM
t (a,m) da+

R −4x
−∞ g (a)SM

t (a,m) da

>
4x
R∞
4x

g (a)SM
t (a,m) da+

R −4x
−∞ ag (a)SM

t (a,m) daR∞
4x

g (a)SM
t (a,m) da+ SM

t (−4x,m)G (−4x)

=

⎡⎣4x+ R −4x−∞ ag (a) SMt (a,m)

SMt (−4x,m)daR∞
4x

g (a)
SMt (a,m)

SMt (−4x,m)da

⎤⎦ /
⎡⎣1 + G (−4x)R∞

4x
g (a)

SMt (a,m)

SMt (−4x,m)da

⎤⎦ (12)

Using the boundedness of m, and the fact that Φ is strictly increasing on the

entire real line, it holds as t gets large that

SM
t (a,m)

SM
t (−4x,m)

=
tY

d=1

[1− Φ(md − a)]

[1− Φ(md + 4x)]
→ 0 for a < −4x (13)

SM
t (a,m)

SM
t (−4x,m)

=
tY

d=1

[1− Φ(md − a)]

[1− Φ(md + 4x)]
→∞ for a > 4x (14)

The value of (12) is less than 4x, since the numerator adds a negative term to

4x, and the denominator of (12) is greater than one. However, using the fact
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that
R −4x
−∞ ag (a) da is finite3 and using (13),(14), it follows that the negative term

in the numerator vanishes for large enough t. Using (14), the second term of the

denominator of (12) vanishes as t becomes large, and we can therefore assert that

EM
A [A|c, t, |A| > 4x] > 2x for large enough t.

We now show that Pr[|a| ≤ 4x] < 1/6 for large enough t.

Pr [|a| ≤ 4x] =

R 4x
−4x g (a)SM

t (a,m) daR∞
−∞ g (a)SM

t (a,m) da
<

R 4x
−4x g (a)SM

t (4x,m) daR∞
−∞ g (a)SM

t (a,m) da

=

R 4x
−4x g (a) daR∞

−∞ g (a)
SMt (a,m)

SMt (4x,m)
da
=

R 4x
−4x g (a) daR 4x

−∞ g (a)
SMt (a,m)

SMt (4x,m)
da+

R∞
4x

g (a)
SMt (a,m)

SMt (4x,m)
da

The result follows because Pr[|A| > 4x] > 0 and the following holds.

SM
t (a,m)

SM
t (4x,m)

=
tY

d=1

[1− Φ(md − a)]

[1− Φ(md − 4x)]
→∞ for a > 4x

(c) We omit the proof, which is essentially the same as for part (b), replace

EM
A [A|c, t] with eMA [A|c, t] , and using the fact that φ is bounded. ¤

Proof of Lemma 7: For the sequence of independent random variables

U1, U2, ...Ut, .., define the sequence of sample means Ū1, Ū2, ...Ūt, .., where Ūt = (1/t)
Pt

k=1 Uk

for each t. That S̃M
t (a, c) → 0 for a < c̄ follows because Ūt + a converges in proba-

bility to a < c. That S̃M
t (c̄, c) → 0 follows because the limit distribution of

√
tŪt/v

is normal, centered at 0, where v2 is the variance of Φ. If a = c̄, then for large t,

ct−a = ct− c̄ is close to 0. With positive probability it holds that
√
tŪt/v < ct− c̄ < 0.

But since survival at t requires that Ūt ≥ 0, this implies that the agent survives at
each t with probability strictly less than one, so that the joint probability of survival

at t = 1, 2, .... is zero.

To show that S̃M (a, c) > 0 for a > c̄, we argue instead that S̃M (a, {c̄, c̄, ...}) >
0, since S̃M (a, c) ≥ S̃M (a, {c̄, c̄, ...}) . An agent with random ability A = a fails to

survive if Ūt < c̄− a for some t. Using Lemma (6) of Dubins and Freedman (1965, p.

3Notice that
R∞
−∞ a2g (a) da is finite because variance is finite.
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801), if b1, b2 > 0,

Pr

∙
Ūt ≤ −b1v2 −

b2
t
for some t = 1, 2, ...

¸
≤ 1

1 + b1b2

Thus,

Pr

∙
Ūt > −b1v2 −

b2
t
for all t = 1, 2, ...

¸
≥ 1− 1

1 + b1b2
> 0

Choose b1, b2 > 0 so that −b1v2 − b2 = c̄− a. Then

S̃M (a, c) > S̃M (a, {c̄, c̄, ...}) = Pr
£
Ūt ≥ −b1v2 − b2 = c̄− a for all t = 1, 2, ...

¤
>

Pr
£
Ūt ≥ −b1v2 − b2/t for all t = 1, 2, ...

¤
≥ 1− 1

1 + b1b2
> 0

¤
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