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Abstract

This paper explores the ability of the stock-flow matching model to generate real-

istic business cycle frequency fluctuations in unemployment, job vacancies, and labor

flows. The model’s behavior is very similar to that in Shimer (2006) and fits the data

significantly better than a comparable search and matching model (Shimer, 2005).
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1 Introduction

This paper explores the ability of the stock-flow matching model (Taylor, 1995; Coles and Muthoo,

1998; Coles and Smith, 1998) to generate realistic business cycle frequency fluctuations in

unemployment, job vacancies, and labor flows. The model’s premise is that the labor market

is characterized by heterogeneous workers and jobs. Most workers would be unproductive if

forced to take a random job and the suitability of a worker for a job is independent across

worker-job pairs. When a worker becomes unemployed, she examines the stock of vacant

jobs. If she is suitable for one of them, she takes it; otherwise, she joins the stock of un-

employed workers and waits until a firm creates a suitable job. Thus in equilibrium the

inflow of new workers matches with the stock of available jobs and symmetrically the stock

of unemployed workers matches with the inflow of new jobs.

I show that the stock-flow matching model generates realistic unemployment-vacancy

(Beveridge curve) dynamics in response to productivity shocks. Moreover, the transition

rate from unemployment to employment, the job-finding rate, is strongly correlated with

the vacancy-unemployment (v-u) ratio, although the theoretical correlation, about 0.8, is

smaller than the empirical correlation of 0.95. Finally, the model explains between a quarter

and a third of the fluctuations in the job finding rate and the v-u ratio in response to

quantitatively plausible productivity shocks, considerably more than a similarly-calibrated

search and matching model (Shimer, 2005).

There are several reasons I am interested in the behavior of this model. First, in Shimer

(2006), I developed a “mismatch” model of distinct labor markets—geographic areas or

occupations—with perfect competition within labor markets but limited mobility of workers

and jobs across labor markets. In equilibrium, unemployed workers exist in labor markets

with insufficient jobs and job vacancies in markets with excess jobs. Aggregate shocks then

lead to fluctuations in the same labor market variables. One can think of the mismatch

model as one with ex ante heterogeneity, a perfect correlation in the suitability of workers

for jobs. The stock-flow matching model is the one with ex post heterogeneity, no correlation

in the suitability of workers for jobs. This paper then represents a robustness check on the

conclusions of that earlier work. The important conclusions carry through.

Second, the state space in the stock-flow matching model is small relative to the mismatch

model, potentially facilitating some interesting extensions. In the mismatch model, the state

is the distribution of workers and jobs across labor markets. Under a strong assumption,

exogenous mobility, it is possible to characterize the equilibrium when the economy is subject
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to aggregate shocks. In the stock-flow matching model, the state of the economy is simply

the unemployment and vacancy rates. In future versions of this paper, I plan to examine

how labor market conditions affect the willingness of workers to accept jobs that are a less-

than-perfect match.

Finally, reality probably contains elements of each model. Across broad labor market,

the mismatch assumption of segmented labor markets is possibly realistic. However, within

narrower labor markets, the idiosyncratic matching problem captured by the stock-flow

matching model may be more relevant. The fact that the models’ behavior is so similar

is therefore reassuring and suggests that the results in both papers reflect a more general

approximate aggregation theorem.

The outline of this paper is as follows: Section 2 describes the basic model. Section 3

analyzes the determination of unemployment and vacancies as a function of the number of

active jobs in the economy. Section 4 discusses the determination of the number of jobs both

in a centralized and a decentralized economy. Section 5 explains how I calibrate the model

and Section 6 discusses the results.

2 Model

I study a continuous time, infinite horizon model. At any point in time t, there is a measure

M = 1 of workers and a measure N(t) of jobs. While the measure of workers is exogenous,

the measure of jobs will be determined endogenously by firms’ job creation decision.

Workers are risk-neutral and infinitely-lived. They can be either unemployed, obtaining

leisure z, or employed in a job producing p(t) > z units of output. Productivity p(t) follows

an first order Markov process and is the sole driving force in this economy. More precisely,

there is an aggregate shock at rate λ, at which point the new value of productivity p′ is

drawn from some distribution that depends on current productivity. Let EpXp′ denote the

expected value of some variable X following the next productivity shock, conditional on the

current state p.

Most worker-job matches are totally unproductive, while a few have the potential to

produce output. Which matches are productive is independent across worker-job pairs and

so for any worker looking at any random set of jobs, the number of suitable jobs is a Poisson

random variable. In particular, within a measure ν of jobs, a worker has at least one

productive job with probability 1 − e−αν . The parameter α measures the extent of search

frictions in the model economy.
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Firms are also risk-neutral and infinitely-lived. They can create an unlimited number of

jobs by paying a sunk-cost k > 0, while existing jobs end according to a Poisson process with

arrival rate s. Immediately upon creating a job, a firm observes whether any unemployed

worker can produce with it. If so, the job is filled and production begins. Otherwise, the

job remains vacant until either it ends or until an employed worker loses her job but finds

she can take this vacancy. Thus at any point in time unemployed workers and vacant jobs

coexist, but no unemployed worker can produce with any vacant job.

I characterize the characterize the solution to the problem of a social planner who is

interested in maximizing the expected present value of output in the economy and who can

instruct firms when to create jobs. I later consider how this can be decentralized.

3 Beveridge Curve

I start by examining how the measure of active jobs N(t) determines which workers are

matched with which jobs, which workers are unemployed, and which jobs are vacant. Any

variation in the number of jobs then induces variation in unemployment and vacancies,

the Beveridge curve. I finish the section by comparing the empirical and model-generated

Beveridge curves.

3.1 Computing Unemployment and Vacancies

Order the workers i ∈ [0, 1] according to the amount of time since they last lost a job, so

worker 1 just lost her job. Similarly order the jobs j ∈ [0, N(t)] according to the amount

of time since they entered, with job N(t) the newest entrant. If a positive measure of jobs

entered at the some instant, any ordering of those jobs is permitted.

Then match workers to jobs sequentially, giving worker 0 the opportunity to match first.

Since there are µ0(t) = N(t) jobs available, she has a match with probability 1 − e−αN(t).

In this event, she takes the lowest productive match, the one that entered at the earliest

date. Proceeding sequentially, when worker i has the opportunity to match, there are µi(t)

available jobs and so she has a match with probability 1− e−αµi(t). This implies ∂µi(t)/∂i =

−1 + e−αµi(t) and so solving the differential equation gives

µi(t) =
1

α
log
(

eαi + eαN(t) − 1
)

− i. (1)

3



Worker i is unemployed with probability e−αµi(t) = eαi

eαi+eαN(t)−1
and so the unemployment

rate is

U(t) =

∫ 1

0

e−αµi(t)di =
1

α
log
(

eα + eαN(t) − 1
)

− N(t), (2)

while the number of vacancies is just equal to the number of jobs left after worker 1 enters,

V (t) = µ1(t) =
1

α
log
(

eα + eαN(t) − 1
)

− 1. (3)

Note that the number of employed workers 1 − U(t) is equal to the number of filled jobs

N(t) − V (t) and both depend only on the number of jobs N(t).

Also note the symmetry of the characterization. The matching of workers to jobs would

have been unchanged if we gave the lowest-named job the opportunity to match first and

then matched jobs to workers in order. In particular, the probability job j is vacant is

vj =
eαj

eα + eαj − 1
. (4)

This matching is stable in the following sense: First, if a new job enters, it immediately

hires a worker if it has a match with one of the unemployed workers, with probability

1 − e−αU(t). This is equal both to the probability that job N(t) is filled, eα−1
eαN(t)+eα−1

, and to

marginal effect of entry on unemployment, −∂U(t)/∂N(t), as one would expect.

Second, suppose an arbitrary job j exits. If the firm was vacant, no one loses or changes

jobs, consistent with the initial matching. If it was filled, with probability 1−vj, the displaced

worker immediately moves to the end of the queue. From the fact that she was matched

with job j, we know that she cannot match with any vacant job j′ ∈ [0, j); however, the

worker may be able to match with any of the
∫ N(t)

j
vj′dj

′ remaining vacancies. It follows that

the probability a worker becomes unemployed when job j exits is the product of these two

probabilities:

(1 − vj)e
−α

R N(t)
j

vj′dj
′

=
eα − 1

eαN(t) + eα − 1
≡ δN(t), (5)

independent of the job’s identity. Curiously, the probability a job is filled by a worker with

no other employment possibilities does not depend on the age of the job, only on the total

number of jobs in existence. I will use this fact later.

The probability that a job exiting leads to a worker getting displaced, δ, is equal to the

probability that a new entrant immediately hires a worker, 1 − e−αU(t), so the simultaneous

entry and exit of a job does not affect unemployment and vacancies. Moreover, the job’s
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exit and the reordering of workers implies that the resulting matching pattern is consistent

with the outcome of original matching algorithm; worker 1 is unemployed only if she does

not have a match among the V (t) vacancies.

I summarize these results as follows:

Proposition 1 Suppose at some time t0, U(t0) and V (t0) satisfy equations (2) and (3).

Then, provided that jobs enter sequentially and unemployed workers and vacancies are matched

whenever possible between time t0 and t1, U(t1) and V (t1) solve the same pair of equations,

regardless of the evolution of N(t).

It is worth noting that a more sophisticated matching procedure may result in fewer un-

employed workers and vacancies. In particular, there may be a worker i employed in job j

but productive in a vacant job j′ and an unemployed worker i′ who is productive in job j.

The stock-flow matching algorithm does not permit worker i′ to take job j and worker i to

take job j′ since newly unemployed workers only look at the set of vacant jobs. If there are

substantial unmodeled search or turnover costs, it may not be advantageous to try to take

advantage of such matching opportunities.

3.2 Theory and Evidence

I can eliminate N(t) between equations (2) and (3) to get

V (t) =
1

α
log

(

1 − e−α

1 − e−αU(t)

)

, (6)

the theoretical Beveridge curve.

I compare this with U.S. data on unemployment and job vacancies. The Bureau of Labor

Statistics (BLS) uses the Current Population Survey (CPS) to measure the unemployment

rate each month. The CPS measures employment and unemployment using a household

questionnaire designed to determine whether an individual is working or, if she is not work-

ing, available for and actively seeking work. The ratio of unemployment to the sum of

unemployment and employment is the unemployment rate.

Since December 2000, the BLS has measured job vacancies using the JOLTS. This is the

most reliable time series for vacancies in the U.S.. According to the BLS, “A job opening

requires that 1) a specific position exists, 2) work could start within 30 days, and 3) the em-

ployer is actively recruiting from outside of the establishment to fill the position. Included

are full-time, part-time, permanent, temporary, and short-term openings. Active recruiting
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Figure 1: The brown dots show U.S. monthly data from December 2000 to April 2006. The
unemployment rate is measured by the BLS from the CPS. The vacancy rate is measured
by the BLS from the JOLTS. The solid blue line shows the model generated Beveridge curve
with α = 19.2

means that the establishment is engaged in current efforts to fill the opening, such as adver-

tising in newspapers or on the Internet, posting help-wanted signs, accepting applications,

or using similar methods.”1 I measure the vacancy rate as the ratio of vacancies to vacancies

plus employment. The brown dots in Figure 1 show the strong negative correlation between

unemployment and vacancies over this time period, the empirical Beveridge curve.

In an average month from December 2000 to April 2006, the geometric mean of the

unemployment and vacancy rates were 5.33% and 2.33%, respectively. Using equation (6),

this implies α = 19.2. The blue line in Figure 1 shows the modeled-generated Beveridge

curve. The fit of the model to the data is excellent and virtually indistinguishable from

Figure 1 in Shimer (2006). The fact that the level of the model-generated Beveridge curve

fits the data reflects a judicious choice of α. But the fact that the slope and curvature of the

model-generated Beveridge curve also fits the data comes from the structure of the model.

That the results are so similar in the mismatch and stock-flow matching models suggests

that the Beveridge curve may simply be an aggregation phenomenon.

1See BLS news release, July 30, 2002, available at http://www.bls.gov/jlt/jlt_nr1.pdf
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4 Determination of the Number of Jobs

I now solve the problem of a social planner who chooses the number of jobs N(t) in order

to maximize the expected present value of output net of job creation costs. I show that the

planner’s solution is characterized by a function mapping current productivity p into a target

number of jobs N∗
p . If the actual number of jobs is below the target, the planner adjusts up to

the target instantaneously. If it is above the target, the planner permits the number of jobs

to decline with exit, at rate s, until the target is reached. I then discuss the decentralization

of the social optimum. Finally, I show how to solve for the targets numerically.

4.1 Planner’s Problem

Let Wp(N) denote the expected present value of net output when current productivity is p

and the current number of jobs is N . I represent the planner’s problem recursively as

rWp(N) = max
g≥0

p(1 − u(N)) + zu(N) − kg

+ W ′
p(N)(g − sN) + λEp

(

Wp′(N) − Wp(N)
)

(7)

Here g is the gross increase in the number of jobs and

u(N) =
1

α
log
(

eα + eαN − 1
)

− N, (8)

solves equation (8). The flow value of the planner, rWp(N), can be divided into three terms.

First is current net output, p for each of the 1 − u(N) employed workers, z for each of the

u(N) unemployed workers, and −k for each job created. Second is the future increases in

in Wp(N) coming from any net increase in the number of jobs, the difference between gross

job creation and deprecation, g − sN . Third is the possibility of an aggregate shock, with

arrival rate λ, at which point the planner anticipates a capital gain Ep

(

Wp′(N) − Wp(N)
)

.

The first order condition for the gross amount of job creation conditional on the current

state (p,N) is

gp(N) ≥ 0, W ′
p(N) ≤ k, and gp(N)(W ′

p(N) − k) = 0. (9)

That is, whenever the marginal value of a job is smaller than k, gross job creation is zero

and conversely, if some jobs are being created, the marginal value of a job must equal its
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cost.

The envelope condition is

rW ′
p(N) = (p − z)

(

1 − e−αu(N)
)

− sW ′
p(N)

+ W ′′
p (N)(gp(N) − sN) + λEp

(

W ′
p′(N) − W ′

p(N)
)

, (10)

where I use the fact that u′(N) = − eα−1
eα+eαN−1

= −
(

1 − e−αu(N)
)

. Combining the first order

and envelope conditions, we can define the targets N∗
p as follows. First, if N > N∗

p , no new

jobs are created, gp(N) = 0 so

(r + s + λ)W ′
p(N) = (p − z)

(

1 − e−αu(N)
)

− W ′′
p (N)sN + λEpW

′
p′(N). (11)

Second, if N = N∗
p , gp(N) = sN and W ′

p(N) = k, so the envelope condition reduces to

(r + s + λ)k = (p − z)
(

1 − e−αu(N∗

p )
)

+ λEpW
′
p′(N

∗
p ). (12)

Finally, if N < N∗
p , entry immediately drives N up to N∗

p .

4.2 Decentralization

Before discussing how to solve for the targets N∗
p , I briefly mention how to decentralize the

planner’s solution. Whenever a job is filled by a worker with no opportunities among the

vacancies, the worker is paid her value of leisure z. When a job is filled by a worker with

at least one opportunity, the worker receives her marginal product p(t). For example, if a

single firm enters and hires a worker from the stock of unemployed, that worker will, at least

initially, be paid the value of leisure; however, if firm later creates a suitable job vacancy

that goes unfilled, the wage will later increase.

To see that this decentralizes the optimum, recall from equation (5) that the probability

job j is filled by a worker with no other job opportunities is δN = 1 − e−αu(N), independent

of the age of the job. Then let Jp(N) denote the expected value of a job, vacant or filled,

when the aggregate state is (p,N). If N > N∗
p , there is no job creation and so Ṅ = −sN .

Then

rJp(N) = (p − z)
(

1 − e−αu(N)
)

− sJp(N) − J ′
p(N)sN + λEp

(

Jp′(N) − Jp(N)
)

. (13)
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The current value of a job is p − z if it is filled by a worker with no opportunities among

the vacancies and zero otherwise. The job ends at rate s, the number of other jobs decreases

at rate sN , and the aggregate state may change at rate λ. Alternatively, if N = N∗
p , job

creation balances job destruction and the expected value of a job must equal to the creation

cost k. Then the Bellman equation is

rk = (p − z)
(

1 − e−αu(N∗

p )
)

− sk + λEp

(

Jp′(N
∗
p ) − k

)

. (14)

Finally, if N < N∗
p , entry drives N up to N∗

p immediately. Note that in this case firms do

not care about the order in which their jobs enter. Although this may affect the probability

of hiring a worker, if two jobs could have hired the same worker but one job is left vacant,

the other job is forced to pay the high wage p.

To prove that these wages decentralize the social optimum, simply note that if Jp(N) ≡
W ′

p(N), equation (11) is equivalent to equation (13) and equation (12) is equivalent to equation (14).

A version of the Mortensen (1982) rule is optimal: to give firms the proper incentive to enter

the market, they must receive the full marginal product of a filled job when the worker would

otherwise be unemployed and nothing otherwise.

4.3 Solution Method

In what follows I assume that productivity is an increasing function of a latent variable y, py,

while the latent variable in turn follows a homoskedastic first-order autoregressive process

and lives in a countable set Y . This ensures that the thresholds N∗
p are increasing in p. For

notational simplicity, define the value functions and thresholds directly in terms of the latent

variables: N ∗
y ≡ N∗

py
and J ∗

y (N) ≡ J∗
py

(N).

More precisely, let

Y ≡ {−n∆,−(n − 1)∆, . . . , 0, . . . , (n − 1)∆, n∆},

where ∆ > 0 is the step size and 2n + 1 ≥ 3 is the number of grid points. When a shock

hits, at rate λ, the new value y′ either moves up or down by one grid point:

y′ =

{

y + ∆

y − ∆
with probability

{

1
2

(

1 − y

n∆

)

1
2

(

1 + y

n∆

) . (15)

Note that although the step size is constant, the probability that y′ = y + ∆ is smaller
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when y is larger, falling from 1 at y = −n∆ to zero at y = n∆. One can prove that y

follows a first-order autoregressive process with drift −γy where γ = λ/n and instantaneous

variance σ2 = λ∆2. In the limit as n → ∞, the stochastic process for y converges to an

Ornstein-Uhlenbeck process. See Shimer (2005) for details.

To solve the model, I start with the smallest value y = −n∆ with associated threshold

N ∗
−n∆. Following an aggregate shock, productivity increases by one step with certainty and

so the target number of job increases discretely. If the number of jobs was at the target

N ∗
−n∆ before the shock, the marginal value of a job is k both before and after the shock,

J−n∆(N ∗
−n∆) = J−(n−1)∆(N ∗

−n∆) = k. Then the envelope condition (14) reduces to

(r + s)k = (p−n∆ − z)
(

1 − e−αu(N ∗

−n∆)
)

. (16)

Solve this explicitly for N ∗
−n∆.

Now compute the remaining thresholds by induction. For any y > −n∆, y ∈ Y , suppose

we have computed Jy′(N ∗
y−∆) for all y′ < y, y′ ∈ Y . Equation (13) implies that for N ∈

[N ∗
y−∆,N ∗

y ] and y′ < y,

(r + s + λ)Jy′(N) = (py′ − z)
(

1 − e−αu(N)
)

− J ′
y′(N)sN

+
λ

2

(

1 +
y′

n∆

)

Jy′−∆(N) +
λ

2

(

1 − y′

n∆

)

Jy′+∆(N)

with Jy(N) = k by the free entry condition. Using the terminal conditions provided, solve

this system of differential equations for Jy′(N), N ∈ [N ∗
y−∆,N ∗

y ] for all y′ < y, y′ ∈ Y .

Finally, equation (14) gives

(r + s)k = (py − z)
(

1 − e−αu(N ∗

y )
)

+
λ

2

(

1 +
y

n∆

)

(

Jy−∆(N ∗
y ) − k

)

,

where I use the fact that Jy+∆(N ∗
y ) = k to eliminate the term coming from a positive shock.

We can solve this for N ∗(y). This gives all the terms needed for the next induction step.

5 Calibration

I calibrate the model to match salient facts about the U.S. economy. The model is in

continuous time and so I normalize a time period to represent a quarter. I set the quarterly

discount rate at r = 0.012 and the separation rate at s = 0.1 (Shimer, 2005). I fix α = 19.2

10



to match the location of the Beveridge curve (see Section 3.2). For the productivity process,

I let

py = ey + (1 − ey)

(

z +
(r + s)k

1 − e−α

)

.

That is, py − z − (r+s)k
1−e−α follows a geometric random walk. The lower bound on productivity

ensures that, even in the worst possible state, y = −n∆, the unemployment rate stays

between 0 and 1; see equation (16). At the mean value of y = 0, I normalize productivity

to p0 = 1 and set the value of leisure to z = 0.4. As in the search model, this is a critical

parameter for the volatility of aggregate productivity (Hagedorn and Manovskii, 2005). I

set k = 3.56389, which implies a 5.7 percent unemployment rate in the deterministic steady

state with p = 1; this matches the mean unemployment rate during the post-war period.

I allow for 2001 productivity states (n = 1000) and verify that my results are insensitive

to this choice. I calibrate the remaining parameters to match moments in the U.S. labor

productivity process, λ = 86.6 and ∆ = 0.00634. These parameters, or more precisely

γ = λ/n = 0.0866 and σ = ∆
√

λ = 0.059, determine the autocorrelation and standard

deviation of y.

To characterize the equilibrium, I start by computing the type-dependent thresholds N∗
p .

I then choose an initial value for y(0) and N(0) and select the timing of the first shock t, an

exponentially-distributed random variable with mean 1/λ. I then compute the number of

jobs at time t: if N(0) ≤ estN ∗
y(0), N(t) = N ∗

y(0); otherwise, N(t) = e−stN(0) as the number

of jobs decays with exits. I also compute the number of unemployed workers who finds jobs

during the interval [0, t], m(t):

• if N(0) < N ∗
y(0),

m(t) = u(N(0)) − u(N ∗
y(0)) + sN ∗

y(0)

(

1 − e−αu(N ∗

y(0)
))t.

u(N(0)) − u(N ∗
y(0)) unemployed workers find jobs immediately as the number of jobs

jumps up to N ∗
y(0). During the remaining t periods, jobs enter to balance exits, at rate

sN ∗
y(0), and hire an unemployed worker if one is suitable, with probability 1−e−αu(N ∗

y(0)
).

• if N ∗
y(0) ≤ N(0) ≤ estN ∗

y(0),

m(t) = sN ∗
y(0)

(

1 − e−αu(N ∗

y(0)
))

(

t −
log(N(0)/N ∗

y(0))

s

)

.
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For the first log
(

N(0)/N ∗
y(0)

)

/s periods, there is no entry and so no unemployed workers

find jobs. Thereafter, unemployed workers find jobs when a job enters to balance an

exit and finds a suitable unemployed worker.

• if N(0) > estN ∗
y(0), m(t) = 0 since there is no entry before time t.

I next choose the value of y(t) according to equation (15), find the timing of the next shock,

compute the incremental number of unemployed workers who find a job before the shock

hits, and repeat.

At the end of each month (1/3 of a period), I record unemployment, vacancies, cumulative

matches, and productivity. I measure the job finding probability F for unemployed workers

as the ratio of the number of matches during a month to the number of unemployed workers

at the start of the month. I throw away the first 25,000 years of data to remove the effect

of initial conditions. Every subsequent 53 years of model-generated data gives one sample.

I take quarterly averages of monthly data and express all variables as log deviation from an

HP filter with parameter 105, a relatively low frequency filter.2 I create 100,000 samples in

order to precisely estimate model moments and bootstrap model standard errors. I compare

these results with the U.S. data reported in Shimer (2005), Table 1, and repeated here in

Table 1 for convenience.

6 Results

Table 2 summarizes the model generated data. The last column shows the driving force,

labor productivity. By construction, I exactly match the standard deviation and quarterly

autocorrelation in U.S. data. The remaining numbers reflect results driven by the structure

of the model. As expected, the model delivers a strong negative correlation between unem-

ployment and vacancies; the correlation is imperfect only because of nonlinearities. Vacancies

are somewhat more volatile than unemployment both in the model and in the data, with

the model explaining about 35 percent of the observed fluctuations in both the v-u ratio and

the job finding probability. Mortensen and Nagypal (2005) argue that productivity shocks

in fact should not explain all of the observed fluctuations in the v-u ratio since the empirical

2In Shimer (2005), I record the quarterly data directly. Taking quarterly averages of monthly obser-
vations makes the model-generated data more similar to U.S. data. The main effect that this has is to
increase the autocorrelation of variables by reducing high-frequency noise. I offset this here by using a lower
autocorrelation for productivity.
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Summary Statistics, quarterly U.S. data, 1951 to 2003

U V V/U F p
Standard Deviation 0.190 0.202 0.382 0.118 0.020

Quarterly Autocorrelation 0.936 0.940 0.941 0.908 0.878
U 1 −0.894 −0.971 −0.949 −0.408
V — 1 0.975 0.897 0.364

Correlation Matrix V/U — — 1 0.948 0.396
F — — — 1 0.396
p — — — — 1

Table 1: Seasonally adjusted unemployment U is constructed by the BLS from the CPS.
Seasonally adjusted Help Wanted Index V is constructed by the Conference Board. Job
finding probability Ft ≡ 1 − (Ut+1 − U s

t+1)/Ut is constructed from seasonally adjusted un-
employment (Ut) and short-term unemployment (U s

t ) data, computed by the BLS from the
CPS and corrected for CPS redesign in 1994. U , V , and F are quarterly averages of monthly
data. p is seasonally adjusted real average output per person in the non-farm business sector,
constructed by the Bureau of Labor Statistics (BLS) from the National Income and Prod-
uct Accounts and the Current Employment Statistics. All variables are reported in logs as
deviation from an HP trend with smoothing parameter 105.

correlation between productivity and the v-u ratio is only 0.4; by their metric, the stock-flow

matching model explains nearly all of the productivity-induced fluctuations in the v-u ratio.

The model’s weakest point is the low autocorrelation of the job finding probability, or

equivalently the low correlation between this variable and unemployment and vacancies. The

empirical autocorrelation is 0.91, while the theoretical correlation is just above 0.5. This

low autocorrelation is intrinsic to the structure of the model: the job finding probability

fluctuates with the inflow rate into unemployment, i.e. in response to changes in the number

of jobs. In contrast, vacancies and unemployment depend on the stock of jobs. This leads

to a correlation between the job finding probability and both the level and change in the

v-u ratio. Coles and Petrongolo (2003) argue that this offers a way to test the stock-flow

matching model; however, U.S. data the correlation in levels is remarkably strong. One

possible way to reconcile model and data would be to make the marginal cost of job creation

increasing in gross job creation g; this should dampen the sharp transitory fluctuations in

the job finding probability.

Despite this, the model generates a “reduced-form matching function”—a relationship

between the job finding probability and the v-u ratio—that is similar to the one in U.S.

data. Empirically, a one percent increase in the v-u ratio is associated with a 0.28 percent

increase in the job finding probability. The corresponding theoretical elasticity is about 0.22.
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Labor Productivity Shocks

U V V/U F p

Standard Deviation 0.061
(0.008)

0.077
(0.010)

0.137
(0.018)

0.041
(0.004)

0.020
(0.003)

Quarterly Autocorrelation 0.878
(0.030)

0.878
(0.030)

0.878
(0.030)

0.525
(0.086)

0.878
(0.030)

U 1 −0.999
(0.000)

−1.000
(0.000)

−0.716
(0.053)

−0.999
(0.001)

V — 1 1.000
(0.000)

0.717
(0.053)

0.995
(0.002)

Correlation Matrix V/U — — 1 0.717
(0.053)

0.997
(0.002)

F — — — 1 0.714
(0.052)

p — — — — 1

Table 2: Results from simulating the model. All variables are reported as log deviation from
an HP trend with smoothing parameter 105. Bootstrapped standard errors—the standard
deviation across 100,000 model simulations—are reported in parenthesis. See the text for
details on the calibration.

Moreover, one can test the constant elasticity assumption both in the theory and the data by

regressing the log job finding probability on the log v-u ratio and its square. The quadratic

term is insignificant at conventional confidence levels in the data and significant only twice

in 100,000 simulations of the model.
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