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Abstract

This paper characterizes Ramsey-optimal monetary policy in a medium-scale macro-
economic model that has been estimated to fit well postwar U.S. business cycles. We
find that mild deflation is Ramsey optimal in the long run. However, the optimal
inflation rate appears to be highly sensitive to the assumed degree of price stickiness.
Within the window of available estimates of price stickiness (between 2 and 5 quarters)
the optimal rate of inflation ranges from -4.2 percent per year (close to the Friedman
rule) to -0.4 percent per year (close to price stability). This sensitivity disappears
when one assumes that lump-sum taxes are unavailable and fiscal instruments take the
form of distortionary income taxes. In this case, mild deflation emerges as a robust
Ramsey prediction. In light of the finding that the Ramsey-optimal inflation rate is
negative, it is puzzling that most inflation-targeting countries pursue positive inflation
goals. We show that the zero bound on the nominal interest rate, which is often cited
as a rationale for setting positive inflation targets, is of no quantitative relevance in
the present model. Finally, the paper characterizes operational interest-rate feedback
rules that best implement Ramsey-optimal stabilization policy. We find that the op-
timal interest-rate rule is active in price and wage inflation, mute in output growth,
and moderately inertial. This rule achieves virtually the same level of welfare as the
Ramsey optimal policy. JEL Classification: E52, E61, E63.
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1 Introduction

Two fundamental but separate questions in the theory of monetary stabilization policy are

what is the optimal monetary policy and how can the central bank implement it. Both

questions have been extensively studied in the existing related literature, but always in the

context of simple theoretical structures, which by design are limited in their ability to account

for actual observed business-cycle fluctuations. The goal of this paper is to characterize

optimal monetary policy and its implementation using a medium-scale, empirically plausible

model of the U.S. business cycle.

The model we consider is the one developed in Altig et al. (2005). This model has been

estimated econometrically and shown to account fairly well for business-cycle fluctuations

in the postwar United States. The theoretical framework emphasizes the importance of

combining nominal as well as real rigidities in explaining the propagation of macroeconomic

shocks. Specifically, the model features four nominal frictions, sticky prices, sticky wages,

a transactional demand for money by households, and a cash-in-advance constraint on the

wage bill of firms, and four sources of real rigidities, investment adjustment costs, vari-

able capacity utilization, habit formation, and imperfect competition in product and factor

markets. Aggregate fluctuations are driven by three shocks: a permanent neutral technol-

ogy shock, a permanent investment-specific technology shock, and temporary variations in

government spending. Altig et al. (2005) and Christiano, Eichenbaum, and Evans (2005)

argue that the model economy for which we seek to design optimal monetary policy can

indeed explain the observed responses of inflation, real wages, nominal interest rates, money

growth, output, investment, consumption, labor productivity, and real profits to neutral and

investment-specific productivity shocks and monetary shocks in the postwar United States.

In our characterization of optimal monetary policy, we depart from the widespread prac-

tice in the neo-Keynesian literature on optimal monetary policy of limiting attention to

models in which the nonstochastic steady state is undistorted. Most often, this approach

involves assuming the existence of a battery of subsidies to production and employment

aimed at eliminating the long-run distortions originating from monopolistic competition in

factor and product markets. The efficiency of the deterministic steady-state allocation is

assumed for purely computational reasons. For it allows the use of first-order approximation

techniques to evaluate welfare accurately up to second order (see Rotemberg and Woodford,

1997). This practice has two potential shortcomings. First, the instruments necessary to

bring about an undistorted steady state (e.g., labor and output subsidies financed by lump-

sum taxation) are empirically uncompelling. Second, it is ex ante not clear whether a policy

that is optimal for an economy with an efficient steady state will also be so for an economy
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where the instruments necessary to engineer the nondistorted steady state are unavailable.

For these reasons, we refrain from making the efficient-steady-state assumption and instead

work with a model whose steady state is distorted.

Departing from a model whose steady state is Pareto efficient has a number of important

ramifications. One is that to obtain a second-order accurate measure of welfare it no longer

suffices to approximate the equilibrium of the model up to first order. For this reason, we

solve the equilibrium of the model up to second order. Specifically, we use the methodology

and computer code developed in Schmitt-Grohé and Uribe (2004c) to compute second-order

approximations to policy functions of dynamic, stochastic models. One advantage of this

numerical strategy is that because it is based on perturbation arguments, it is particularly

well suited to handle economies with a large number of state variables like the one studied

in this paper.

We address the first question posed above, namely, what business-cycle fluctuations

should look like under optimal monetary policy by characterizing the Ramsey equilibrium

associated with our model. The central policy problem faced by the monetary authority is,

on the one hand, the need to stabilize prices so as to minimize price dispersion stemming

from nominal rigidities and, on the other hand, the need to minimize and stabilize the op-

portunity cost of holding money to avoid transactional frictions. The task of characterizing

Ramsey-optimal policy is challenging because the model is large and highly distorted. A

methodological contribution of the research project to which this paper belongs is the devel-

opment of computational procedures to derive and characterize the Ramsey equilibrium for

a general class of dynamic rational expectations models.1

We find that the policy tradeoff faced by the Ramsey planner is resolved in favor of

price stability. In effect, the Ramsey optimal inflation rate is -0.4 percent per annum, with

a standard deviation of only 0.1 percentage points. The optimality of near-zero inflation,

however, is highly sensitive to the assumed degree of price stickiness. Available estimates

of the degree of price stickiness vary between 2 and 5 quarters. Within this range, the

optimal rate of inflation increases from a deflation of about 4 percent per year when prices

are reoptimized every two quarters to a mild deflation of about half a percent when prices are

reoptimized every five quarters. So, depending on what available estimate of price rigidity

one chooses to pick, the Ramsey-optimal policy can range from close to the Friedman rule,

to close to price stability.

Quite independently of the precise degree of price stickiness, the optimal inflation target

is below zero. In light of this robust result, it is puzzling that all countries that self-classify

1Matlab code to replicate the quantitative results reported in this paper is available on the authors’
websites.
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as inflation targeters set inflation targets that are positive. In effect, in the developed world

inflation targets range between 2 and 4 percent per year. Somewhat higher targets are ob-

served across developing countries. An argument often raised in defense of positive inflation

targets is that negative inflation targets imply nominal interest rates that are dangerously

close to the zero lower bound on nominal interest rates and hence may impair the central

bank’s ability to conduct stabilization policy. We find, however, that this argument is of

no relevance in the context of the medium-scale estimated model within which we conduct

policy evaluation. The reason is that under the optimal policy regime, the mean of the

nominal interest rate is about 4.5 percent per year with a standard deviation of only 0.4

percent. This means that for the zero lower bound to pose an obstacle to monetary policy,

the economy must suffer from an adverse shock that forces the interest rate to be more than

10 standard deviations below target. The likelihood of such an event is practically nil.

We address the question of implementation of optimal monetary policy by characterizing

optimal, simple, and implementable interest-rate feedback rules. We restrict attention to

what we call operational interest rate rules. By an operational interest-rate rule we mean

an interest-rate rule that satisfies three requirements. First, it prescribes that the nominal

interest rate is set as a function of a few readily observable macroeconomic variables. In the

tradition of Taylor (1993), we focus on rules whereby the nominal interest rate depends on

measures of inflation, aggregate activity, and possibly its own lag. Second, the operational

rule must induce an equilibrium satisfying the zero lower bound on nominal interest rates.

And third, operational rules must render the rational expectations equilibrium unique. This

last restriction closes the door to expectations driven aggregate fluctuations.

Our numerical findings suggest that in the model economy we study, the optimal opera-

tional interest-rate rule responds aggressively to deviations of price and wage inflation from

target. The price-inflation coefficient is about 5 and the wage-inflation coefficient is about 2.

In addition, the optimal interest-rate rule prescribes a mute response to deviations of output

growth from target. In this sense, the implementation of optimal policy calls for following a

regime of inflation targeting. The parameters of the optimized rule appear to be robust to

using a conditional or unconditional measure of welfare.

Remarkably, the optimal operational interest-rate rule delivers a welfare level that is

virtually identical to the one obtained under the Ramsey-optimal policy. Specifically, the

welfare cost associated with living in an economy where the monetary authority follows the

optimal operational rule as opposed to living in the Ramsey economy is only 0.23 dollars per

year per person (or 0.001 percent of 2006 annual per capita consumption).

The impulse responses of all variables of the model to the three exogenous shocks driving

business cycles in our theoretical model are remarkably similar under the Ramsey policy and
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under the optimal operational rule.

The remainder of the paper is organized in five sections. Section 2 presents the theoreti-

cal economy and derives nonlinear recursive representations for the price and wage Phillips

curves as well as for the state variables summarizing the degree of wage and price dispersion.

Section 3 describes the calibration of the model and discusses the solution method. Section 4

characterizes the steady state of the Ramsey equilibrium. Section ?? studies the dynam-

ics induced by the Ramsey monetary policy. Section 6 computes the optimal operational

interest-rate rule. Section 7 provides concluding remarks.

2 The Model

The skeleton of the model economy that we use for policy evaluation is a standard neoclassical

growth model driven by neutral and investment-specific productivity shocks and government

spending shocks. In addition the economy features four sources of nominal frictions and five

real rigidities. The nominal frictions include price and wage stickiness à la Calvo (1983) and

Yun (1996) with indexation to past inflation, and money demands by households and firms.

The real rigidities originate from internal habit formation in consumption, monopolistic

competition in factor and product markets, investment adjustment costs, and variable costs

of adjusting capacity utilization.

To perform monetary policy evaluation, we are forced to approximate the equilibrium

conditions of the economy to an order higher than linear. To this end, we derive the exact

nonlinear recursive representation of the complete set of equilibrium conditions. Of par-

ticular interest is the recursive nonlinear representation of the equilibrium Phillips curves

for prices and wages. These representations depart from most of the existing literature,

which restricts attention to linear approximations to these functions. Another byproduct

of deriving the exact nonlinear set of equilibrium conditions is the emergence of two state

variables measuring the degree of price and wage dispersion in the economy induced by the

sluggishness in the adjustment of nominal product and factor prices. We present a recursive

representation of these state variables and track their dynamic behavior.

2.1 Households

The economy is assumed to be populated by a large representative family with a continuum

of members. Consumption and hours worked are identical across family members. The

household’s preferences are defined over per capita consumption, ct, and per capita labor
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effort, ht, and are described by the utility function

E0

∞∑

t=0

βtU(ct − bct−1, ht), (1)

where Et denotes the mathematical expectations operator conditional on information avail-

able at time t, β ∈ (0, 1) represents a subjective discount factor, and U is a period utility

index assumed to be strictly increasing in its first argument, strictly decreasing in its second

argument, and strictly concave. Preferences display internal habit formation, measured by

the parameter b ∈ [0, 1). The consumption good is assumed to be a composite made of a

continuum of differentiated goods cit indexed by i ∈ [0, 1] via the aggregator

ct =

[∫ 1

0

cit
1−1/ηdi

]1/(1−1/η)

, (2)

where the parameter η > 1 denotes the intratemporal elasticity of substitution across differ-

ent varieties of consumption goods.

For any given level of consumption of the composite good, purchases of each individual

variety of goods i ∈ [0, 1] in period t must solve the dual problem of minimizing total

expenditure,
∫ 1

0
Pitcitdi, subject to the aggregation constraint (2), where Pit denotes the

nominal price of a good of variety i at time t. The demand for goods of variety i is then

given by

cit =

(
Pit

Pt

)−η

ct, (3)

where Pt is a nominal price index defined as

Pt ≡
[∫ 1

0

P 1−η
it di

] 1
1−η

. (4)

This price index has the property that the minimum cost of a bundle of intermediate goods

yielding ct units of the composite good is given by Ptct.

Labor decisions are made by a central authority within the household, a union, which

supplies labor monopolistically to a continuum of labor markets of measure 1 indexed by

j ∈ [0, 1]. In each labor market j, the union faces a demand for labor given by
(
W j

t /Wt

)−η̃
hd

t .

Here W j
t denotes the nominal wage charged by the union in labor market j at time t, Wt is

an index of nominal wages prevailing in the economy, and hd
t is a measure of aggregate labor

demand by firms. We postpone a formal derivation of this labor demand function until we

consider the firm’s problem. In each particular labor market, the union takes Wt and hd
t as
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exogenous.2 Given the wage it charges in each labor market j ∈ [0, 1], the union is assumed

to supply enough labor, hj
t , to satisfy demand. That is,

hj
t =

(
wj

t

wt

)−η̃

hd
t , (5)

where wj
t ≡ W j

t /Pt and wt ≡ Wt/Pt. In addition, the total number of hours allocated to

the different labor markets must satisfy the resource constraint ht =
∫ 1

0
hj

tdj. Combining this

restriction with equation (5), we obtain

ht = hd
t

∫ 1

0

(
wj

t

wt

)−η̃

dj. (6)

Our setup of imperfectly competitive labor markets departs from most existing exposi-

tions of models with nominal wage inertia (e.g., Erceg, et al., 2000). For in these models, it is

assumed that each household supplies a differentiated type of labor input. This assumption

introduces equilibrium heterogeneity across households in the number of hours worked. To

avoid this heterogeneity from spilling over into consumption heterogeneity, it is typically as-

sumed that preferences are separable in consumption and hours and that financial markets

exist that allow agents to fully insure against employment risk. Our formulation has the

advantage that it avoids the need to assume both separability of preferences in leisure and

consumption and the existence of such insurance markets. As we will explain later in more

detail, our specification gives rise to a wage-inflation Phillips curve with a larger coefficient

on the wage-markup gap than the model with employment heterogeneity across households.

The household is assumed to own physical capital, kt, which accumulates according to

the following law of motion

kt+1 = (1 − δ)kt + it

[
1 − S

(
it
it−1

)]
, (7)

where it denotes gross investment and δ is a parameter denoting the rate of depreciation of

physical capital. The function S introduces investment adjustment costs. It is assumed that

in the steady state, the function S satisfies S = S ′ = 0 and S ′′ > 0. These assumptions

imply the absence of adjustment costs up to first-order in the vicinity of the deterministic

steady state.

2The case in which the union takes aggregate labor variables as endogenous can be interpreted as an
environment with highly centralized labor unions. Higher-level labor organizations play an important role
in some European and Latin American countries, but are less prominent in the United States.
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As in Fisher (2005) and Altig et al. (2004), it is assumed that investment is subject

to permanent investment-specific technology shocks. Fisher argues that this type of shock

is needed to explain the observed secular decline in the relative price of investment goods

in terms of consumption goods. More importantly, Fisher argues that investment-specific

technology shocks account for about 50 percent of aggregate fluctuations at business-cycle

frequencies in the postwar U.S. economy. (As we will discuss below, Altig et al., 2005, find

significantly smaller numbers in the context of the model studied in our paper.)

We assume that investment goods are produced from consumption goods by means of a

linear technology whereby Υt units of consumption goods yield one unit of investment goods,

where Υt denotes an exogenous, permanent technology shock in period t. The growth rate

of Υt is assumed to follow an AR(1) process of the form:

µ̂Υ,t = ρµΥ
µ̂Υ,t−1 + εµΥ,t,

where µ̂Υ,t ≡ ln(µΥ,t/µΥ) denotes the percentage deviation of the gross growth rate of in-

vestment specific technological change and µΥ denotes the steady-state growth rate of Υt.

Owners of physical capital can control the intensity at which this factor is utilized. For-

mally, we let ut measure capacity utilization in period t. We assume that using the stock of

capital with intensity ut entails a cost of Υ−1
t a(ut)kt units of the composite final good. The

function a is assumed to satisfy a(1) = 0, and a′(1), a′′(1) > 0. Both the specification of cap-

ital adjustment costs and capacity utilization costs are somewhat peculiar. More standard

formulations assume that adjustment costs depend on the level of investment rather than

on its growth rate, as is assumed here. Also, costs of capacity utilization typically take the

form of a higher rate of depreciation of physical capital. The modeling choice here is guided

by the need to fit the response of investment and capacity utilization to a monetary shock

in the U.S. economy. For further discussion of this issue, see Christiano, Eichenbaum, and

Evans (2005) and Altig et al. (2005).

Households rent the capital stock to firms at the real rental rate rk
t per unit of capital.

Total income stemming from the rental of capital is given by rk
t utkt. The investment good is

assumed to be a composite good made with the aggregator function shown in equation (2).

Thus, the demand for each intermediate good i ∈ [0, 1] for investment purposes, iit, is given

by iit = Υ−1
t it (Pit/Pt)

−η .

As in our earlier related work (Schmitt-Grohé and Uribe, 2004a,b), we motivate a demand

for money by households by assuming that purchases of consumption goods are subject

to a proportional transaction cost that is increasing in consumption-based money velocity.
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Formally, the purchase of each unit of consumption entails a cost given by `(vt). Here,

vt ≡
ct
mh

t

(8)

is the ratio of consumption to real money balances held by the household, which we denote

by mh
t . The transaction cost function ` satisfies the following assumptions: (a) `(v) is

nonnegative and twice continuously differentiable; (b) There exists a level of velocity v > 0, to

which we refer as the satiation level of money, such that `(v) = `′(v) = 0; (c) (v−v)`′(v) > 0

for v 6= v; and (d) 2`′(v) + v`′′(v) > 0 for all v ≥ v. Assumption (a) implies that the

transaction process does not generate resources. Assumption (b) ensures that the Friedman

rule, i.e., a zero nominal interest rate, need not be associated with an infinite demand for

money. It also implies that both the transaction cost and the associated distortions in

the intra and intertemporal allocation of consumption and leisure vanish when the nominal

interest rate is zero. Assumption (c) guarantees that in equilibrium money velocity is always

greater than or equal to the satiation level v. As will become clear shortly, assumption (d)

ensures that the demand for money is decreasing in the nominal interest rate. Assumption (d)

is weaker than the more common assumption of strict convexity of the transaction cost

function.

Households are assumed to have access to a complete set of nominal state-contingent

assets. Specifically, each period t ≥ 0, consumers can purchase any desired state-contingent

nominal payment Xh
t+1 in period t + 1 at the dollar cost Etrt,t+1X

h
t+1. The variable rt,t+1

denotes a stochastic nominal discount factor between periods t and t + 1. Households pay

real lump-sum taxes in the amount τt per period. The household’s period-by-period budget

constraint is given by:

Etrt,t+1x
h
t+1 + ct[1 + `(vt)] + Υ−1

t [it + a(ut)kt] +mh
t + τt =

xh
t +mh

t−1

πt

+ rk
t utkt (9)

+

∫ 1

0

wj
t

(
wj

t

wt

)−η̃

hd
tdj + φt.

The variable xh
t /πt ≡ Xh

t /Pt denotes the real payoff in period t of nominal state-contingent

assets purchased in period t − 1. The variable φt denotes dividends received from the own-

ership of firms and πt ≡ Pt/Pt−1 denotes the gross rate of consumer-price inflation.

We introduce wage stickiness in the model by assuming that each period the household

(or unions) cannot set the nominal wage optimally in a fraction α̃ ∈ [0, 1) of randomly chosen

labor markets. In these markets, the wage rate is indexed to average real wage growth and to

the previous period’s consumer-price inflation according to the rule W j
t = W j

t−1(µz∗πt−1)
χ̃,
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where χ̃ ∈ [0, 1] is a parameter measuring the degree of wage indexation. When χ̃ equals 0,

there is no wage indexation. When χ̃ equals 1, there is full wage indexation to long-run real

wage growth and to past consumer price inflation.

The household chooses processes for ct, ht, x
h
t+1, w

j
t , kt+1, it, ut, and mh

t so as to maximize

the utility function (1) subject to (6)-(9), the wage stickiness friction, and a no-Ponzi-game

constraint, taking as given the processes wt, r
k
t , h

d
t , rt,t+1, πt, φt, and τt and the initial

conditions xh
0 , k0, and mh

−1. The household’s optimal plan must satisfy constraints (6)-(9).

In addition, letting βtλtwtµ̃t, β
tλtqt, and βtλt denote Lagrange multipliers associated with

constraints (6), (7), and (9), respectively, the Lagrangian associated with the household’s

optimization problem is

L = E0

∞∑

t=0

βt {U(ct − bct−1, ht)

+λt

[
hd

t

∫ 1

0

wi
t

(
wi

t

wt

)−η̃

di+ rk
t utkt + φt − τt

−ct
[
1 + `

(
ct
mh

t

)]
− Υ−1

t [it + a(ut)kt] − rt,t+1x
h
t+1 −mh

t +
mh

t−1 + xh
t

πt

]

+
λtwt

µ̃t

[
ht − hd

t

∫ 1

0

(
wi

t

wt

)−η̃

di

]

+λtqt

[
(1 − δ)kt + it

[
1 − S

(
it
it−1

)]
− kt+1

]}
.

The first-order conditions with respect to ct, x
h
t+1, ht, kt+1, it, m

h
t , ut, and wi

t, in that order,

are given by

Uc(ct − bct−1, ht) − bβEtUc(ct+1 − bct, ht+1) = λt[1 + `(vt) + vt`
′(vt)], (10)

λtrt,t+1 = βλt+1
Pt

Pt+1
(11)

−Uh(ct − bct−1, ht) =
λtwt

µ̃t
, (12)

λtqt = βEtλt+1

[
rk
t+1ut+1 − Υ−1

t+1a(ut+1) + qt+1(1 − δ)
]
, (13)

Υ−1
t λt = λtqt

[
1 − S

(
it
it−1

)
−
(

it
it−1

)
S ′
(

it
it−1

)]
+ βEtλt+1qt+1

(
it+1

it

)2

S ′
(
it+1

it

)
(14)

v2
t `

′(vt) = 1 − βEt
λt+1

λtπt+1
. (15)
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rk
t = Υ−1

t a′(ut) (16)

wi
t =

{
w̃t if wi

t is set optimally in t

wi
t−1(µz∗πt−1)

χ̃/πt otherwise
,

where w̃t denotes the real wage prevailing in the 1 − α̃ labor markets in which the union

can set wages optimally in period t. Let h̃t denote the level of labor effort supplied to those

markets. Because the labor demand curve faced by the union is identical across all labor

markets, and because the cost of supplying labor is the same for all markets, one can assume

that wage rates, w̃t, and employment, h̃t, are identical across all labor markets updating

wages in a given period. By equation (5), we have that w̃η̃
t h̃t = wη̃hd

t . It is of use to track the

evolution of real wages in a particular labor market. In any labor market j where the wage

is set optimally in period t, the real wage in that period is w̃t. If in period t+1 wages are not

reoptimized in that market, the real wage is w̃t(µz∗πt)
χ̃/πt+1. This is because the nominal

wage is indexed by χ̃ percent of the sum of past price inflation and long-run real wage growth.

In general, s periods after the last reoptimization, the real wage is w̃t

∏s
k=1

(
(µz∗πt+k−1)

χ̃

πt+k

)
. To

derive the household’s first-order condition with respect to the wage rate in those markets

where the wage rate is set optimally in the current period, it is convenient to reproduce the

parts of the Lagrangian given above that are relevant for this purpose,

Lw = Et

∞∑

s=0

(α̃β)sλt+sh
d
t+sw

η̃
t+s

s∏

k=1

(
πt+k

(µz∗πt+k−1)χ̃

)η̃
[
w̃1−η̃

t

s∏

k=1

(
πt+k

(µz∗πt+k−1)χ̃

)−1

− wt+s

µ̃t+s
w̃−η̃

t

]
.

The first-order condition with respect to w̃t is

0 = Et

∞∑

s=0

(βα̃)sλt+sw
η̃
t+sh

d
t+s

s∏

k=1

(
πt+k

(µz∗πt+k−1)χ̃

)η̃

 η̃ − 1

η̃

w̃t
∏s

k=1

(
πt+k

(µz∗πt+k−1)χ̃

) − wt+s

µ̃t+s


 .

Using equation (12) to eliminate µ̃t+s, we obtain that the real wage w̃t must satisfy

0 = Et

∞∑

s=0

(βα̃)sλt+s

(
w̃t

wt+s

)−η̃

hd
t+s

s∏

k=1

(
πt+k

(µz∗πt+k−1)χ̃

)η̃

 η̃ − 1

η̃

w̃t
∏s

k=1

(
πt+k

(µz∗πt+k−1)χ̃

) − −Uht+s

λt+s


 .

This expression states that in labor markets in which the wage rate is reoptimized in period

t, the real wage is set so as to equate the union’s future expected average marginal revenue

to the average marginal cost of supplying labor. The union’s marginal revenue s periods

after its last wage reoptimization is given by η̃−1
η̃
w̃t

∏s
k=1

(
(µz∗πt+k−1)

χ̃

πt+k

)
. Here, η̃/(η̃ − 1)

represents the markup of wages over marginal cost of labor that would prevail in the absence

11



of wage stickiness. The factor
∏s

k=1

(
(µz∗πt+k−1)

χ̃

πt+k

)
in the expression for marginal revenue

reflects the fact that as time goes by without a chance to reoptimize, the real wage declines

as the price level increases when wages are imperfectly indexed. In turn, the marginal cost

of supplying labor is given by the marginal rate of substitution between consumption and

leisure, or −Uht+s

λt+s
= wt+s

µ̃t+s
. The variable µ̃t is a wedge between the disutility of labor and

the average real wage prevailing in the economy. Thus, µ̃t can be interpreted as the average

markup that unions impose on the labor market. The weights used to compute the average

difference between marginal revenue and marginal cost are decreasing in time and increasing

in the amount of labor supplied to the market.

We wish to write the wage-setting equation in recursive form. To this end, define

f 1
t =

(
η̃ − 1

η̃

)
w̃tEt

∞∑

s=0

(βα̃)sλt+s

(
wt+s

w̃t

)η̃

hd
t+s

s∏

k=1

(
πt+k

(µz∗πt+k−1)χ̃

)η̃−1

and

f 2
t = −w̃−η̃

t Et

∞∑

s=0

(βα̃)swη̃
t+sh

d
t+sUht+s

s∏

k=1

(
πt+k

(µz∗πt+k−1)χ̃

)η̃

.

One can express f 1
t and f 2

t recursively as

f 1
t =

(
η̃ − 1

η̃

)
w̃tλt

(
wt

w̃t

)η̃

hd
t + α̃βEt

(
πt+1

(µz∗πt)χ̃

)η̃−1(
w̃t+1

w̃t

)η̃−1

f 1
t+1, (17)

f 2
t = −Uht

(
wt

w̃t

)η̃

hd
t + α̃βEt

(
πt+1

(µz∗πt)χ̃

)η̃ (
w̃t+1

w̃t

)η̃

f 2
t+1. (18)

With these definitions at hand, the wage-setting equation becomes

f 1
t = f 2

t . (19)

The household’s optimality conditions imply a liquidity preference function featuring a

negative relation between real balances and the short-term nominal interest rate. To see this,

we first note that the absence of arbitrage opportunities in financial markets requires that

the gross risk-free nominal interest rate, which we denote by Rt, be equal to the reciprocal

of the price in period t of a nominal security that pays one unit of currency in every state

of period t + 1. Formally, Rt = 1/Etrt,t+1. This relation together with the household’s

optimality condition (11) implies that

λt = βRtEt
λt+1

πt+1
, (20)

12



which is a standard Euler equation for pricing nominally risk-free assets. Combining this

expression with equations (10) and (15), we obtain

v2
t `

′(vt) = 1 − 1

Rt

.

The right-hand side of this expression represents the opportunity cost of holding money,

which is an increasing function of the nominal interest rate. Given the assumptions regarding

the form of the transactions cost function `, the left-hand side is increasing in money velocity.

Thus, this expression defines a liquidity preference function that is decreasing in the nominal

interest rate and unit elastic in consumption.

2.2 Firms

Each variety of final goods is produced by a single firm in a monopolistically competitive

environment. Each firm i ∈ [0, 1] produces output using as factor inputs capital services, kit,

and labor services, hit. The production technology is given by

F (kit, zthit) − ψz∗t ,

where the function F is assumed to be homogenous of degree one, concave, and strictly in-

creasing in both arguments. The variable zt denotes an aggregate, exogenous, and stochastic

neutral productivity shock. The parameter ψ > 0 introduces fixed costs of operating a firm

in each period. In turn, the presence of fixed costs implies that the production function ex-

hibits increasing returns to scale. We model fixed costs to ensure a realistic profit-to-output

ratio in steady state. Finally, we follow Altig et al. (2005) and assume that fixed costs are

subject to permanent shocks, z∗t , with

z∗t
zt

= Υ
θ

1−θ

t .

This formulation of fixed costs ensures that along the balanced-growth path fixed costs do

not vanish. Let µz,t ≡ zt/zt−1 denote the gross growth rate of the neutral technology shock.

By assumption, in the non-stochastic steady state µz,t is constant and equal to µz. Also, let

µ̂z,t = ln(µz,t/µz) denote the percentage deviation of the growth rate of neutral technology

shocks. Then, the evolution of µz,t is assumed to be given by:

µ̂z,t = ρµz µ̂z,t−1 + εµz ,t,

13



with εµz ,t ∼ (0, σ2
µz

).

Aggregate demand for good i, which we denote by yit, is given by

yit = (Pit/Pt)
−ηyt,

where

yt ≡ ct[1 + `(vt)] + gt + Υ−1
t [it + a(ut)kt], (21)

denotes aggregate absorption. The variable gt denotes government consumption of the com-

posite good in period t.

We rationalize a demand for money by firms by imposing that wage payments be sub-

ject to a working-capital requirement that takes the form of a cash-in-advance constraint.

Formally, we impose

mf
it = νwthit, (22)

where mf
it denotes the demand for real money balances by firm i in period t and ν ≥ 0 is a

parameter indicating the fraction of the wage bill that must be backed with monetary assets.

Firms incur financial costs in the amount (1 − R−1
t )mf

it stemming from the need to

hold money to satisfy the working-capital constraint. Letting the variable φit denote real

distributed profits, the period-by-period budget constraint of firm i can then be written as

Etrt,t+1x
f
it+1 +mf

it −
xf

it +mf
it−1

πt
=

(
Pit

Pt

)1−η

yt − rk
t kit − wthit − φit,

where Etrt,t+1x
f
it+1 denotes the total real cost of one-period state-contingent assets that the

firm purchases in period t in terms of the composite good.3 We assume that the firm must

satisfy demand at the posted price. Formally, we impose

F (kit, zthit) − ψz∗t ≥
(
Pit

Pt

)−η

yt. (23)

The objective of the firm is to choose contingent plans for Pit, hit, kit, x
f
it+1, and mf

it so as

3Implicit in this specification of the firm’s budget constraint is the assumption that firms rent capital
services from a centralized market. This is a common assumption in the related literature (e.g., Christiano
et al., 2005; Kollmann, 2003; Carlstrom and Fuerst, 2003; and Rotemberg and Woodford, 1992). A polar
assumption is that capital is firm specific, as in Woodford (2003, chapter 5.3) and Sveen and Weinke (2003).
Both assumptions are clearly extreme. A more realistic treatment of investment dynamics would incorporate
a mix of firm-specific and homogeneous capital.
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to maximize the present discounted value of dividend payments, given by

Et

∞∑

s=0

rt,t+sPt+sφit+s,

where rt,t+s ≡
∏s

k=1 rt+k−1,t+k, for s ≥ 1, denotes the stochastic nominal discount factor

between t and t+ s, and rt,t ≡ 1. Firms are assumed to be subject to a borrowing constraint

that prevents them from engaging in Ponzi games.

Clearly, because rt,t+s represents both the firm’s stochastic discount factor and the market

pricing kernel for financial assets, and because the firm’s objective function is linear in asset

holdings, it follows that any asset accumulation plan of the firm satisfying the no-Ponzi

constraint is optimal. Suppose, without loss of generality, that the firm manages its portfolio

so that its financial position at the beginning of each period is nil. Formally, assume that

xf
it+1 + mf

it = 0 at all dates and states. Note that this financial strategy makes xf
it+1 state

noncontingent. In this case, distributed dividends take the form

φit =

(
Pit

Pt

)1−η

yt − rk
t kit − wthit − (1 −R−1

t )mf
it. (24)

For this expression to hold in period zero, we impose the initial condition xf
i0 + mf

i−1 = 0.

The last term on the right-hand side of the above expression for dividends represents the

firm’s financial costs associated with the cash-in-advance constraint on wages. This financial

cost is increasing in the opportunity cost of holding money, 1 − R−1
t , which in turn is an

increasing function of the short-term nominal interest rate Rt.

Letting rt,t+sPt+smcit+s denote the Lagrange multiplier associated with constraint (23),

the first-order conditions of the firm’s maximization problem with respect to capital and

labor services are, respectively,

mcitztF2(kit, zthit) = wt

[
1 + ν

Rt − 1

Rt

]
(25)

and

mcitF1(kit, zthit) = rk
t . (26)

It is clear from these optimality conditions that the presence of a working-capital requirement

introduces a financial cost of labor that is increasing in the nominal interest rate. We note

also that because all firms face the same factor prices and because they all have access to

the same production technology with the function F being linearly homogeneous, marginal

costs, mcit, are identical across firms. Indeed, because the above first-order conditions hold

15



for all firms independently of whether they are allowed to reset prices optimally, marginal

costs are identical across all firms in the economy.

Prices are assumed to be sticky à la Calvo (1983) and Yun (1996). Specifically, each

period t ≥ 0 a fraction α ∈ [0, 1) of randomly picked firms is not allowed to optimally set

the nominal price of the good they produce. Instead, these firms index their prices to past

inflation according to the rule Pit = Pit−1π
χ
t−1. The interpretation of the parameter χ is the

similar to that of its wage counterpart χ̃. The remaining 1−α firms choose prices optimally.

Consider the price-setting problem faced by a firm that has the opportunity to reoptimize

the price in period t. This price, which we denote by P̃t, is set so as to maximize the expected

present discounted value of profits. That is, P̃t maximizes the following Lagrangian:

L = Et

∞∑

s=0

rt,t+sPt+sα
s





(
P̃t

Pt

)1−η s∏

k=1

(
πχ

t+k−1

πt+k

)1−η

yt+s − rk
t+skit+s − wt+shit+s[1 + ν(1 − R−1

t+s)]

+mcit+s

[
F (kit+s, zt+shit+s) − ψz∗t+s −

(
P̃t

Pt

)−η s∏

k=1

(
πχ

t+k−1

πt+k

)−η

yt+s

]}
.

The first-order condition with respect to P̃t is

Et

∞∑

s=0

rt,t+sPt+sα
s

(
P̃t

Pt

)−η s∏

k=1

(
πχ

t+k−1

πt+k

)−η

yt+s

[
η − 1

η

(
P̃t

Pt

)
s∏

k=1

(
πχ

t+k−1

πt+k

)
−mcit+s

]
= 0.

(27)

According to this expression, optimizing firms set nominal prices so as to equate average

future expected marginal revenues to average future expected marginal costs. The weights

used in calculating these averages are decreasing with time and increasing in the size of

the demand for the good produced by the firm. Under flexible prices (α = 0), the above

optimality condition reduces to a static relation equating marginal costs to marginal revenues

period by period.

It will prove useful to express this first-order condition recursively. To that end, let

x1
t ≡ Et

∞∑

s=0

rt,t+sα
syt+smcit+s

(
P̃t

Pt

)−η−1 s∏

k=1

(
πχ

t+k−1

π
(1+η)/η
t+k

)−η

and

x2
t ≡ Et

∞∑

s=0

rt,t+sα
syt+s

(
P̃t

Pt

)−η s∏

k=1

(
πχ

t+k−1

π
η/(η−1)
t+k

)1−η

.
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Express x1
t and x2

t recursively as

x1
t = ytmctp̃

−η−1
t + αβEt

λt+1

λt

(p̃t/p̃t+1)
−η−1

(
πχ

t

πt+1

)−η

x1
t+1, (28)

x2
t = ytp̃

−η
t + αβEt

λt+1

λt

(
πχ

t

πt+1

)1−η (
p̃t

p̃t+1

)−η

x2
t+1. (29)

Then we can write the first-order condition with respect to P̃t as

ηx1
t = (η − 1)x2

t . (30)

The labor input used by firm i ∈ [0, 1], denoted hit, is assumed to be a composite made

of a continuum of differentiated labor services, hj
it indexed by j ∈ [0, 1]. Formally,

hit =

[∫ 1

0

hj
it

1−1/η̃
dj

]1/(1−1/η̃)

, (31)

where the parameter η̃ > 1 denotes the intratemporal elasticity of substitution across dif-

ferent types of activities. For any given level of hit, the demand for each variety of labor

j ∈ [0, 1] in period t must solve the dual problem of minimizing total labor cost,
∫ 1

0
W j

t h
j
itdj,

subject to the aggregation constraint (31), where W j
t denotes the nominal wage rate paid to

labor of variety j at time t. The optimal demand for labor of type j is then given by

hj
it =

(
W j

t

Wt

)−η̃

hit, (32)

where Wt is a nominal wage index given by

Wt ≡
[∫ 1

0

W j
t

1−η̃
dj

] 1
1−η̃

. (33)

This wage index has the property that the minimum cost of a bundle of intermediate labor

inputs yielding hit units of the composite labor is given by Wthit.

2.3 The Government

Each period, the government consumes gt units of the composite good. We assume that the

government minimizes the cost of producing gt. As a result, public demand for each variety

i ∈ [0, 1] of differentiated goods git is given by git = (Pit/Pt)
−ηgt.
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We assume that along the balanced-growth path the share of government spending in

value added is constant, that is, we impose limj→∞Etgt+j/yt+j = sg, where sg is a constant

indicating the share of government consumption in value added. To this end we impose:

gt = z∗t ḡt,

where ḡt is an exogenous stationary stochastic process. This assumption ensures that gov-

ernment purchases and output are cointegrated. We impose the following law of motion for

ḡt:

ln

(
ḡt

ḡ

)
= ρḡ ln

(
ḡt−1

ḡ

)
+ εḡ,t.

The government issues money given in real terms by mt ≡ mh
t +
∫ 1

0
mf

itdi. For simplicity, we

assume that government debt is zero at time zero and that the fiscal authority levies lump-

sum taxes, τt to bridge any gap between seignorage income and government expenditures,

that is, τt = gt − (mt −mt−1/πt). As a consequence, government debt is nil at all times.

We postpone the presentation of the monetary policy regime until after we characterize

a competitive equilibrium.

2.4 Aggregation

We limit attention to a symmetric equilibrium in which all firms that have the opportunity to

change their price optimally at a given time choose the same price. It then follows from (4)

that the aggregate price index can be written as P 1−η
t = α(Pt−1π

χ
t−1)

1−η + (1 − α)P̃ 1−η
t .

Dividing this expression through by P 1−η
t one obtains

1 = απη−1
t π

χ(1−η)
t−1 + (1 − α)p̃1−η

t . (34)

2.4.1 Market Clearing in the Final Goods Market

Naturally, the set of equilibrium conditions includes a resource constraint. Such a restriction

is typically of the type F (kt, ztht)−ψz∗t = ct[1+ `(vt)]+gt +Υ−1
t [it +a(ut)kt]. In the present

model, however, this restriction is not valid. This is because the model implies relative price

dispersion across varieties. This price dispersion, which is induced by the assumed nature

of price stickiness, is inefficient and entails output loss. To see this, consider the following

expression stating that supply must equal demand at the firm level:

F (kit, zthit) − ψz∗t =
{
[1 + `(vt)]ct + gt + Υ−1

t [it + a(ut)kt]
}(Pit

Pt

)−η

.
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Integrating over all firms and taking into account that (a) the capital-labor ratio is common

across firms, (b) that the aggregate demand for the composite labor input, hd
t , satisfies

hd
t =

∫ 1

0

hitdi,

and that (c) the aggregate effective level of capital, utkt satisfies

utkt =

∫ 1

0

kitdi,

we obtain

zth
d
tF

(
utkt

zthd
t

, 1

)
− ψz∗t =

{
[1 + `(vt)]ct + gt + Υ−1

t [it + a(ut)kt]
} ∫ 1

0

(
Pit

Pt

)−η

di.

Let st ≡
∫ 1

0

(
Pit

Pt

)−η

di. Then we have

st =

∫ 1

0

(
Pit

Pt

)−η

di

= (1 − α)

(
P̃t

Pt

)−η

+ (1 − α)α

(
P̃t−1π

χ
t−1

Pt

)−η

+ (1 − α)α2

(
P̃t−2π

χ
t−1π

χ
t−2

Pt

)−η

+ . . .

= (1 − α)

∞∑

j=0

αj

(
P̃t−j

∏j
s=1 π

χ
t−j−1+s

Pt

)−η

= (1 − α)p̃−η
t + α

(
πt

πχ
t−1

)η

st−1.

Summarizing, the resource constraint in the present model is given by the following two

expressions

F (utkt, zth
d
t ) − ψz∗t =

{
[1 + `(vt)]ct + gt + Υ−1

t [it + a(ut)kt]
}
st (35)

and

st = (1 − α)p̃−η
t + α

(
πt

πχ
t−1

)η

st−1, (36)

with s−1 given. The state variable st summarizes the resource costs induced by the inefficient

price dispersion featured in the Calvo model in equilibrium. Three observations are in order

about the price dispersion measure st. First, st is bounded below by 1. That is, price

dispersion is always a costly distortion in this model. To see that st is bounded below by 1,
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let vit ≡ (Pit/Pt)
1−η. It follows from the definition of the price index given in equation (4) that[∫ 1

0
vit

]η/(η−1)

= 1. Also, by definition we have st =
∫ 1

0
v

η/(η−1)
it . Then, taking into account

that η/(η − 1) > 1, Jensen’s inequality implies that 1 =
[∫ 1

0
vit

]η/(η−1)

≤
∫ 1

0
v

η/(η−1)
it = st.

Second, in an economy where the non-stochastic level of inflation is nil (i.e., when π = 1)

or where prices are fully indexed to any variable ωt with the property that its deterministic

steady-state level equals the deterministic steady-state value of inflation (i.e., ω = π), then

the variable st follows, up to first order, the univariate autoregressive process ŝt = αŝt−1.

In these cases, the price dispersion measure st has no first-order real consequences for the

stationary distribution of any endogenous variable of the model. This means that studies that

restrict attention to linear approximations to the equilibrium conditions are justified to ignore

the variable st if the model features no price dispersion in the deterministic steady state.

But st matters up to first order when the deterministic steady state features movements in

relative prices across goods varieties. More importantly, the price dispersion variable st must

be taken into account if one is interested in higher-order approximations to the equilibrium

conditions even if relative prices are stable in the deterministic steady state. Omitting st

in higher-order expansions would amount to leaving out certain higher-order terms while

including others. Finally, when prices are fully flexible, α = 0, we have that p̃t = 1 and

thus st = 1. (Obviously, in a flexible-price equilibrium there is no price dispersion across

varieties.)

As discussed above, equilibrium marginal costs and capital-labor ratios are identical

across firms. Therefore, one can aggregate the firm’s optimality conditions with respect to

labor and capital, equations (25) and (26), as

mctztF2(utkt, zth
d
t ) = wt

[
1 + ν

Rt − 1

Rt

]
(37)

and

mctF1(utkt, zth
d
t ) = rk

t . (38)

2.4.2 Market Clearing in the Labor Market

It follows from equation (32) that the aggregate demand for labor of type j ∈ [0, 1], which

we denote by hj
t ≡

∫ 1

0
hj

itdi, is given by

hj
t =

(
W j

t

Wt

)−η̃

hd
t , (39)
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where hd
t ≡

∫ 1

0
hitdi denotes the aggregate demand for the composite labor input. Taking

into account that at any point in time the nominal wage rate is identical across all labor

markets at which wages are allowed to change optimally, we have that labor demand in each

of those markets is

h̃t =

(
w̃t

wt

)−η̃

hd
t .

Combining this expression with equation (39), describing the demand for labor of type

j ∈ [0, 1], and with the time constraint (6), which must hold with equality, we can write

ht = (1 − α̃)hd
t

∞∑

s=0

α̃s

(
W̃t−s

∏s
k=1(µz∗πt+k−s−1)

χ̃

Wt

)−η̃

.

Let s̃t ≡ (1 − α̃)
∑∞

s=0 α̃
s
(

W̃t−s
∏s

k=1(µz∗πt+k−s−1)
χ̃

Wt

)−η̃

. The variable s̃t measures the degree of

wage dispersion across different types of labor. The above expression can be written as

ht = s̃th
d
t . (40)

The state variable s̃t evolves over time according to

s̃t = (1 − α̃)

(
w̃t

wt

)−η̃

+ α̃

(
wt−1

wt

)−η̃ (
πt

(µz∗πt−1)χ̃

)η̃

s̃t−1. (41)

We note that because all job varieties are ex-ante identical, any wage dispersion is inefficient.

This is reflected in the fact that s̃t is bounded below by 1. The proof of this statement is

identical to that offered earlier for the fact that st is bounded below by unity. To see this, note

that s̃t can be written as s̃t =
∫ 1

0

(
Wit

Wt

)−η̃

di. This inefficiency introduces a wedge that makes

the number of hours supplied to the market, ht, larger than the number of productive units

of labor input, hd
t . In an environment without long-run wage dispersion, the dead-weight

loss created by wage dispersion is nil up to first order. Formally, a first-order approximation

of the law of motion of s̃t yields a univariate autoregressive process of the form ˆ̃st = α̃ˆ̃st−1,

as long as there is no wage dispersion in the deterministic steady state. When wages are

fully flexible, α̃ = 0, wage dispersion disappears, and thus s̃t equals 1.

It follows from our definition of the wage index given in equation (33) that in equilibrium

the real wage rate must satisfy

w1−η̃
t = (1 − α̃)w̃1−η̃

t + α̃w1−η̃
t−1

(
(µz∗πt−1)

χ̃

πt

)1−η̃

. (42)
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Aggregating the expression for firm’s profits given in equation (24) yields

φt = yt − rk
t utkt − wth

d
t − ν(1 −R−1

t )wth
d
t . (43)

In equilibrium, real money holdings can be expressed as

mt = mh
t + νwth

d
t , (44)

and the government budget constraint is given by

τt = gt − (mt −mt−1/πt). (45)

2.5 Functional Forms

We use the following standard functional forms for utility and technology:

U =

[
(ct − bct−1)

1−φ4 (1 − ht)
φ4

]1−φ3

− 1

1 − φ3
(46)

and

F (k, h) = kθh1−θ.

The functional form for the investment adjustment cost function is taken from Christiano,

Eichenbaum, and Evans (2005):

S
(

it
it−1

)
=
κ

2

(
it
it−1

− µI

)2

,

where µI is the steady-state growth rate of investment.

Following Schmitt-Grohé and Uribe (2004a,b) we assume that the transaction cost tech-

nology takes the form

`(v) = φ1v + φ2/v − 2
√
φ1φ2. (47)

The money demand function implied by the above transaction technology is of the form

v2
t =

φ2

φ1
+

1

φ1

Rt − 1

Rt
.

Note the existence of a satiation point for consumption-based money velocity, v, equal to√
φ2/φ1. Also, the implied money demand is unit elastic with respect to consumption expen-

ditures. This feature is a consequence of the assumption that transaction costs, c`(c/m), are
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homogenous of degree one in consumption and real balances and is independent of the par-

ticular functional form assumed for `(·). Further, as the parameter φ2 approaches zero, the

transaction cost function `(·) becomes linear in velocity and the demand for money adopts

the Baumol-Tobin square root form with respect to the opportunity cost of holding money,

(R− 1)/R. That is, the log-log elasticity of money demand with respect to the opportunity

cost of holding money converges to 1/2, as φ2 vanishes.

The costs of higher capacity utilization are parameterized as follows:

a(u) = γ1(u− 1) +
γ2

2
(u− 1)2.

2.6 Inducing Stationarity

This economy features two types of permanent shocks. As a result, a number of variables,

such as output and the real wage, will not be stationary along the balanced-growth path.

We therefore perform a change of variables so as to obtain a set of equilibrium conditions

that involve only stationary variables. To this end we note that the variables ct, m
h
t , mt,

wt, w̃t, yt, gt, φt, x
1
t , x

2
t , and τt are cointegrated with z∗t . Similarly, the variables kt+1 and it

are cointegrated with Υtz
∗
t , the variable λt is cointegrated with z∗t

(1−φ3)(1−φ4)−1, the variables

qt and rk
t are cointegrated with 1/Υt, and the variables f 1

t and f 2
t are cointegrated with

z∗t
(1−φ3)(1−φ4). We therefore divide these variables by the appropriate cointegrating factor

and denote the corresponding stationary variables with capital letters.

2.7 Competitive Equilibrium

A stationary competitive equilibrium is a set of stationary processes ut, Ct, ht, It, Kt+1,

vt, M
h
t , Mt, Λt, πt, Wt, µ̃t, Qt, R

k
t , Φt, F

1
t , F 2

t , W̃t, h
d
t , Yt, mct, X

1
t , X2

t , p̃t, st, s̃t, and

Tt satisfying (7), (8), (10), (12)-(21), (28)-(30), (34)-(38), and (40)-(45) written in terms of

the stationary variables, given exogenous stochastic processes µΥ,t, µz,t, and ḡt, the policy

process, Rt, and initial conditions c−1, w−1, s−1, s̃−1, π−1, i−1, and k0. A complete list of the

competitive equilibrium conditions in terms of stationary variables is given in the technical

appendix to this paper (Schmitt-Grohé and Uribe, 2005b).

2.8 Ramsey Equilibrium

We assume that at t = 0 the benevolent government has been operating for an infinite number

of periods. In choosing optimal policy, the government is assumed to honor commitments

made in the past. This form of policy commitment has been referred to as ‘optimal from

the timeless perspective’ (Woodford, 2003).
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Formally, we define a Ramsey equilibrium as a set of stationary processes ut, Ct, ht, It,

Kt+1, vt, M
h
t , Mt, Λt, πt, Wt, µ̃t, Qt, R

k
t , Φt, F

1
t , F 2

t , W̃t, h
d
t , Yt, mct, X

1
t , X2

t , p̃t, st, s̃t, Tt,

and Rt for t ≥ 0 that maximize

E0

∞∑

t=0

βt

(
z∗0
∏t

s=1 µz∗,s

)(1−φ4)(1−φ3)
[(
Ct − bCt−1

µz∗,t

)1−φ4

(1 − ht)
φ4

]1−φ3

− 1

1 − φ3

subject to the competitive equilibrium conditions (7), (8), (10), (12)-(21), (28)-(30), (34)-

(38), and (40)-(45) written in stationary variables, and Rt ≥ 1, for t > −∞, given exogenous

stochastic processes µz,t, µΥ,t, and ḡt, values of the variables listed above dated t < 0, and

values of the Lagrange multipliers associated with the constraints listed above dated t < 0.

Technically, the difference between the usual Ramsey equilibrium concept and the one

employed here is that here the structure of the optimality conditions associated with the

Ramsey equilibrium is time invariant. By contrast, under the standard Ramsey equilibrium

definition, the equilibrium conditions in the initial periods are different from those applying

to later periods.

Our results concerning the business-cycle properties of Ramsey-optimal policy are com-

parable to those obtained in the existing literature under the standard definition of Ramsey

optimality (e.g., Chari, Christiano, and Kehoe, 1995). The reason is that existing studies of

business cycles under the standard Ramsey policy focus on the behavior of the economy in

the stochastic steady state (i.e., they limit attention to the properties of equilibrium time

series excluding the initial transition).

3 Calibration

The time unit is meant to be one quarter. For most of the calibration we draw on the paper

by Altig et al. (2005) (hereafter ACEL). We assign most of the parameter values from the

‘high-markup’ case of the ACEL estimation results. In this case, the steady-state markup

in product markets is 20 percent (or η = 6).

Following ACEL, we assume that in the deterministic steady state of the competitive

equilibrium the rate of capacity utilization equals one (u = 1) and profits are zero (φ =

0). ACEL calibrate the discount factor, β, to be 1.03−1/4, the depreciation rate, δ, to be

0.025, and the capital share, θ, to be 0.36. ACEL assume that preferences are separable

in consumption and leisure and logarithmic in habit-adjusted consumption (φ3 = 1). Their

assumed functional form for the period utility function implies a unit Frisch elasticity of labor

supply. ACEL assume a steady-state markup of wages over the marginal rate of substitution
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between leisure and consumption of 5 percent (or η̃ = 21).

ACEL estimate the degree of nominal wage stickiness to be slightly above 3 quarters

(α̃ = 0.69). They also estimate the degree of habit formation measured by the parameter b

to be 0.69, the elasticity of the marginal capital adjustment cost, κ, to be 2.79, the elasticity

of the marginal cost of capacity utilization, γ2/γ1, to be 1.46, and the annualized interest

semielasticity of money demand by households, (1/4)∂ ln(mh
t )/∂(Rt), to be -0.81.

ACEL estimate the parameters of the exogenous stochastic processes for the investment-

specific and neutral technology shocks µΥ,t and µz,t to be, respectively, (µΥ, σµΥ
, ρµΥ

) =

(1.0042, 0.0031, 0.20) and (µz, σµz , ρµz) = (1.00213, 0.0007, 0.89).

ACEL estimate the degree of price stickiness to be 5 quarters (or α = 0.8) when capital

is not firm specific, which is the assumption maintained in this paper.

We do not draw from the work of ACEL to calibrate the degree of indexation in product

prices and wages. The reason is that in their study the parameters governing the degree

of indexation are not estimated. They simply assume full indexation of all prices to past

product price inflation. Instead, we draw from the econometric work of Cogley and Sbordone

(2005) and Levin et al. (2005) who find no evidence of indexation in product prices. We

therefore set χ = 0. At the same time, Levin et al. estimate a high degree of indexation in

nominal wages. We therefore assume that χ̃ = 1, which happens to be the value assumed in

ACEL.

Following Christiano, Eichenbaum, and Evans (2005), hereafter CEE, we set the steady-

state share of money held by households, mh/m, to 0.44. Using postwar U.S. data, we

measure the average money-to-output ratio as the ratio of M1 to GDP, and set it equal to

17 percent per year. Neither ACEL nor CEE impose this calibration restriction. Instead,

they assume that all of the wage bill is subject to a cash-in-advance constraint—i.e., they

impose ν = 1. By contrast, our calibration implies that only 60 percent of wage payments

must be held in money (or ν = 0.6).

In calibrating the model we assume that in the deterministic steady state of the compet-

itive equilibrium the rate of inflation equals 4.2 percent per year. This value coincides with

the average growth rate of the U.S. postwar GDP deflator.

ACEL do not consider government purchases shocks. One study that estimates the

process for government purchases in the context of a model similar to the one we are studying

is Ravn (2005) and we use his findings to calibrate this process. Specifically, Ravn estimates

ρg = 0.9 and σεg = 0.008. Finally, we impose that the steady-state share of government

consumption in value added is 17 percent, which equals the average value observed in the

United States over the postwar period.

Table 1 presents the values of the deep structural parameters implied by our calibration
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strategy.

4 The Ramsey Steady State

In this section, we characterize the long-run state of the Ramsey equilibrium in an economy

without uncertainty. We refer to this state as the Ramsey steady state. Note that the Ramsey

steady state is in general different from the allocation/policy that maximizes welfare in the

steady state of a competitive equilibrium.

In most existing studies on optimal monetary policy in economies with neo-Keynesian

features, the task of characterizing the Ramsey steady state is trivial. The reason is that

these studies assume the existence of a single nominal distortion, namely sluggish adjustment

in nominal product or factor prices or both. In this case, the optimal rate of inflation in

the Ramsey steady state is nil. By contrast, the economy studied in this paper features

additional nominal frictions in the form of money demand by households and firms. This

feature complicates enormously the computation of the Ramsey steady state in the context

of the rich theoretical environment studied in this paper.

Two exceptions to the common practice of abstracting from money demand in analysis

of optimal monetary policy in the neo-Keynesian model are Khan et al. (2003) and Schmitt-

Grohé and Uribe (2004a). In both of these studies, the computation of the Ramsey steady

state is relatively straight forward because of the simplicity of the theoretical structures con-

sidered. In particular, neither study features wage stickiness, capital accumulation, habit

formation, variable capacity utilization, or factor adjustment costs. When all of these com-

plications are added, it becomes virtually impossible to characterize the Ramsey steady state

conditions analytically. A contribution of the research project to which this paper belongs

is the development of a general algorithm to characterize and numerically solve the Ramsey

equilibrium in models of arbitrary complexity. This algorithm yields an exact numerical

solution for the Ramsey steady-state equilibrium.

4.1 Price Stickiness and the Optimal Inflation Rate

We find that the most striking characteristic of the Ramsey steady state is the high sensitivity

of the optimal rate of inflation with respect to the parameter governing the degree of price

stickiness, α, for the range of values of this parameter that is empirically relevant.

Available empirical estimates of the degree of price rigidity using macroeconomic data

vary from about 2 quarters to 5 quarters, or α ∈ [0.5, 0.8]. For example, CEE (2005) in the

context of a model similar to ours estimate α to be 0.6. By contrast, ACEL (2005), using a
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Table 1: Structural Parameters

Parameter Value Description

β 1.031/4 Subjective discount factor (quarterly)
θ 0.36 Share of capital in value added
ψ 0.25 Fixed cost parameter
δ 0.025 Depreciation rate (quarterly)
ν 0.6011 Fraction of wage bill subject to a CIA constraint
η 6 Price-elasticity of demand for a specific good variety
η̃ 21 Wage-elasticity of demand for a specific labor variety
α 0.8 Fraction of firms not setting prices optimally each quarter
α̃ 0.69 Fraction of labor markets not setting wages optimally each quarter
b 0.69 Degree of habit persistence
φ1 0.0459 Transaction cost parameter
φ2 0.1257 Transaction cost parameter
φ3 1 Preference parameter
φ4 0.5301 Preference parameter
κ 2.79 Parameter governing investment adjustment costs
γ1 0.0412 Parameter of capacity-utilization cost function
γ2 0.0601 Parameter of capacity-utilization cost function
χ 0 Degree of price indexation
χ̃ 1 Degree of wage indexation
µΥ 1.0042 Quarterly growth rate of investment-specific technological change
σµΥ

0.0031 Std. dev. of the innovation to the investment-specific technology shock
ρµΥ

0.20 Serial correlation of the log of the investment-specific technology shock
µz 1.00213 Quarterly growth rate of neutral technology shock
σµz 0.0007 Std. dev. of the innovation to the neutral technology shock
ρµz 0.89 Serial correlation of the log of the neutral technology shock
ḡ 0.2141 Steady-state value of government consumption (quarterly)
σεg 0.008 Std. dev. of the innovation to log of gov. consumption
ρg 0.9 Serial correlation of the log of government spending
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Figure 1: Degree of Price Stickiness and the Optimal Rate of Inflation
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Note: CEE and ACEL indicate, respectively, the parameter values estimated by
Christiano, Eichenbaum, and Evans (2005) and Altig et al. (2005). All parame-
ters other than α take their baseline values, given in table 1.

model identical to the present one, estimate an marginal-cost-gap coefficient in the Phillips

curve that is consistent with a value of α of around 0.8 when the market for capital is assumed

to be centralized, as is maintained in our formulation.4 Both CEE and ACEL use an impulse-

response matching technique to estimate α. Bayesian estimates of this parameter include

Del Negro et al. (2004) and Levin et al. (2005) who report posterior means of 0.67 and 0.83,

respectively, and 90-percent probability intervals of (0.51,0.83) and (0.81,0.86), respectively.

Evidence on price stickiness based on microeconomic data suggest a much higher frequency

of price changes than the evidence based on macro data. The findings reported in Bils and

Klenow (2004) and Golosov and Lucas (2003), for example, suggest values of α of around

1/3, or a degree of price stickiness of about 1.5 quarters.

Figure 1 displays the relationship between the degree of price stickiness, α, and the

optimal rate of inflation in percent per year, π. When α equals 0.5, the lower range of the

4If, instead, capital accumulation is assumed to be firm-specific, then ACEL’s estimate of the Phillips
curve is consistent with a value of α of about 0.7.
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available empirical evidence using macro data, the optimal rate of inflation is -4 percent,

virtually equal to the level called for by the Friedman rule. For our baseline value of α of

0.8, which is near the upper range of the available empirical evidence using macro data, the

optimal level of inflation rises to -0.4 percent, which is close to price stability. Also evident

from figure 1 is the fact that values of α based on microeconomic evidence, around 1/3,

imply that the Friedman rule is Ramsey optimal in the long-run.

The above analysis suggests that it is of outmost importance to devote further research

into refining the available estimates of the degree of price stickiness. This research should

aim not only at narrowing the range of values that stem from macro evidence but also at

reconciling the apparent disconnect between estimates emerging from macro and micro data.

Besides the uncertainty surrounding the estimation of the degree of price stickiness, a

second aspect of the apparent difficulty in establishing reliably the long-run level of inflation

has to do with the shape of the relationship linking the degree of price stickiness to the

optimal level of inflation. The problem resides in the fact that this relationship becomes

significantly steep precisely for that range of values of α that is empirically most compelling.

The problem would not arise if the steep portion of the relationship would take place at

values of α below 1/3 or above 0.8, say. It turns out that an important factor determining

the shape of the function relating the optimal level of π to α is the underlying fiscal policy

regime.

4.2 Fiscal Policy and the Optimal Inflation Rate

In this paper, we follow the widespread practice in the literature on optimal monetary policy

in the neo-Keynesian framework of ignoring fiscal considerations by implicitly or explicitly

assuming the existence of lump-sum, nondistorting taxes that balance the government budget

at all times and under all circumstances. This assumption is clearly unrealistic and usually

maintained on the sole basis of simplicity. We wish to argue that taking explicitly into

account the fiscal side of the optimal policy problem has crucial consequences for the optimal

long-run level of inflation.

Fiscal considerations fundamentally change the long-run tradeoff between price stability

and the Friedman rule. To see this, we now briefly consider an economy where lump-sum

taxes are unavailable. Instead, the fiscal authority must finance government purchases by

means of proportional capital and labor income taxes. The social planner sets jointly mon-

etary and fiscal policy in a Ramsey-optimal fashion. The details of this environment are

contained in Schmitt-Grohé and Uribe (2005a). Figure 2 displays the relationship between

the degree of price stickiness, α, and the optimal rate of inflation, π. The solid line cor-
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Figure 2: Price Stickiness, Fiscal Policy, and Optimal Inflation
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responds to the baseline case considered in this paper (featuring lump-sum taxes).5 The

dash-circled line corresponds to the economy with optimally chosen income taxes analyzed

in Schmitt-Grohé and Uribe (2005a).6 In stark contrast to what happens under lump-sum

taxation, under optimal distortionary taxation the function linking π and α is flat and very

close to zero for the entire range of macro-data-based empirically plausible values of α,

namely 0.5 to 0.8. In other words, when taxes are distortionary and optimally determined,

price stability emerges as a prediction that is robust to the existing uncertainty about the

exact degree of price stickiness. Even if one focuses on the evidence of price stickiness stem-

ming from micro data, the model with distortionary Ramsey taxation predicts an optimal

long-run level of inflation that is much closer to zero than to the level predicted by the

Friedman rule.

Our intuition for why price stability arises as a robust policy recommendation in the

economy with optimally set distortionary taxation runs as follows. Consider the economy

with lump-sum taxation. Deviating from the Friedman rule (by raising the inflation rate) has

the benefit of reducing the price dispersion that originates in the presence of price stickiness.

Consider next the economy with Ramsey-optimal income taxation and no lump-sum taxes.

In this economy, deviating from the Friedman rule still provides the benefit of reducing

price dispersion. However, in this economy increasing inflation has the additional benefit

of increasing seignorage revenue thereby allowing the social planner to lower distortionary

income tax rates. Therefore, the Friedman-rule versus price-stability tradeoff is tilted in

favor of price stability.

It follows from this intuition that what is essential in inducing the optimality of price

stability is that on the margin the fiscal authority trades off the inflation tax for regular

taxation. Indeed, it can be shown that if distortionary tax rates are fixed, even if they are

fixed at the level that is optimal in a world without lump-sum taxes, and the fiscal authority

has access to lump-sum taxes on the margin, the optimal rate of inflation is much closer to

the Friedman rule than to zero. In this case, increasing inflation no longer has the benefit of

reducing distortionary taxes. As a result, the Ramsey planner has less incentives to inflate.

5In producing the solid line shown in figure 2, all structural parameters take their baseline values shown
in table 1 except for the long-run growth rates of the two productivity shocks, which are set to zero. This
deviation from the baseline calibration is necessary to preserve comparability with the model in Schmitt-
Grohé and Uribe (2005a), which features no long-run growth. The solid line looks essentially like the one
shown in figure 1, with the only difference that at the Friedman rule the inflation rate is -2.9 percent, whereas
in figure 1 it is -4.6 percent. This difference is explained by the lack of growth in the model used to produce
the solid line in figure 2.

6In producing the dash-circled line shown in figure 2, we set all structural parameter values to those
shown in table 1 in the present paper, except for those governing long-run growth, which are set to zero.
The model economy features proportional labor, capital, and profit taxes. The profit tax rate is constrained
to be equal to the capital income tax rate. Government transfers are set to zero.
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Figure 3: Degree of Price Indexation and the Optimal Rate of Inflation
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Note: CEE and ACEL indicate, respectively, the value of χ used by Christiano,
Eichenbaum, and Evans (2005) and Altig et al. (2005). All parameters other
than χ take their baseline values, given in table 1.

4.3 Price Indexation and the Optimal Inflation Rate

The parameter χ measuring the degree of price indexation is crucial in determining the

optimal level of long-run inflation. The reason is that when prices are fully indexed (χ =

1), price dispersion disappears in the deterministic steady state. As a result the social

planner faces no longer a tradeoff between minimizing price dispersion and minimizing the

opportunity cost of holding money. In such an environment, the Friedman rule is Ramsey

optimal. In the absence of perfect indexation (χ < 1), any deviation from zero inflation

will entail price dispersion, and the lower the degree of indexation, the higher will be the

price dispersion associated with a given level of inflation. Consequently, the Ramsey optimal

deflation rate is increasing in the degree of price indexation.

Figure 3 shows that the Ramsey optimal inflation rate is indeed a decreasing function of

the indexation parameter χ. CEE and ACEL assume that prices are perfectly indexed to

lagged inflation, that is, they calibrate the parameter χ to be unity. Under this assumption,

the Friedman rule is optimal in the deterministic Ramsey steady state. However, the few
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Figure 4: Money Demand and the Optimal Rate of Inflation
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existing studies that attempt to estimate econometrically the indexation parameter χ find

little empirical support for price indexation. For example, Levin et al. (2005) using Bayesian

methods report a tight estimate of χ of 0.08. Similarly, Cogley and Sbordone (2005) using

a different empirical strategy than Levin et al. also find virtually no evidence of price

indexation in U.S. data. As we argued above, these two empirical studies motivate our

setting χ = 0. But more importantly, this evidence gives support to near-zero inflation rates

being Ramsey optimal for our baseline calibration of the degree of price stickiness, namely

α = 0.8.

4.4 Money Demand and the Optimal Inflation Rate

Given the long-run policy tradeoffs present in the model—namely, minimizing the opportu-

nity cost of holding money (by setting Rt = 1) versus minimizing price dispersion (by setting

πt = 1)—one should expect that the larger is the money demand friction, the closer is the

optimal rate of inflation to the one prescribed by the Friedman rule. Figure 4 displays the

optimal rate of inflation as a function of the two structural parameters defining the demand

for money by households, φ1 and φ2. The figure suggests that the optimal rate of inflation

is rather insensitive to changes in these two parameters. For instance, at the baseline value

of 0.05 for the parameter φ1, the optimal rate of inflation is -0.4 percent per year and money

demand is 17 percent of GDP. If one increases φ1 by a factor of 10 to 0.5, the optimal rate of

deflation is still small at only 1 percent, but the demand for money doubles to 35 percent of

GDP. One must increase φ1 by a factor of more than 150 to around 8 to induce an optimal
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inflation rate close to the Friedman rule. At this value of φ1, the demand for money is larger

than one entire annual GDP.

The reason for the implied low sensitivity of the Ramsey inflation rate with respect to

the parameters defining the demand for money is the assumed high degree of price stickiness.

This distortion is so dominant in the present model that optimal policy is overwhelmingly

geared toward price stability. As a result, low inflation survives as the overriding goal of

monetary policy even for economically large values of the money demand distortion. If

one lowers the degree of price stickiness, the optimal rate of inflation becomes much more

sensitive with respect the transaction-cost parameter φ1. Figure 4 displays with a dashed

line the relationship between the optimal rate of inflation and the parameters φ1 and φ2 when

the sticky-price parameter α takes the value 0.6. In this case, the optimal rate of inflation

falls from near price stability to the Friedman rule much faster as one increases φ1 than in

the baseline case in which α is 0.8.

A similar message emerges as one varies the other transaction cost parameter, φ2. Only for

economically implausible values of φ2 (ones implying extremely high interest-rate elasticities

of money demand) does the Friedman rule emerge as Ramsey optimal.

4.5 Implications for Inflation Targeting

A robust implication of the ACEL model studied here is that the central bank should target

mild deflation. This implication is at odds with the observed inflation goals among the

by-now large number of industrialized and emerging-market countries that self-identify their

monetary policy as inflation targeting. In industrialized countries, inflation targets typically

lie in the rage of 2 to 3 percent per year. Inflation targets are somewhat higher in developing

countries.

It is therefore a challenge for monetary policy to square theoretically optimal inflation

targets with actual ones. One reason often offered for why the inflation target should be

positive is that too low an inflation target (in particular, zero or negative targets) would leave

the central bank too close to the zero bound on nominal interest rates, thereby impairing the

monetary authority’s ability to steer the economy out of recession. Our analysis thus far is

necessarily mute on this point because we have limited attention to a characterization of the

Ramsey steady state. In order to ascertain whether the zero bound will indeed be frequently

visited under the Ramsey optimal stabilization policy, a dynamic equilibrium analysis must

be carried out. We turn to this matter next.
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5 Ramsey Dynamics

In this section, we characterize the business cycle dynamics that arise in the stochastic

steady state of the Ramsey equilibrium. We approximate the Ramsey equilibrium dynam-

ics by solving a first-order approximation to the Ramsey equilibrium conditions. There is

evidence that first-order approximations to the Ramsey equilibrium conditions deliver dy-

namics that are fairly close to those associated with the exact solution. For instance, in

Schmitt-Grohé and Uribe (2004b) we compute the exact solution to the Ramsey equilibrium

in a flexible-price dynamic economy with money, income taxes, and monopolistic competi-

tion in product markets. In Schmitt-Grohé and Uribe (2004a) we compute the solution to

the exact same economy using a first-order approximation to the Ramsey equilibrium condi-

tions. We find that the exact solution is not significantly different from the one based on a

first-order approximation. More recently, Benigno and Woodford (2005) have shown, in the

context of optimal taxation in the standard RBC model, that the first-order approximation

to the Ramsey equilibrium conditions implies second moments that are similar to the second

moments computed from an approximation based on a minimum-weighted-residual method

reported in Chari et al. (1995).

5.1 Is the Zero Bound an Impediment to Optimal Policy?

As mentioned earlier, an argument against setting a zero or negative inflation target, as

recommended by the present model, is that at zero or negative rates of inflation the risk

of hitting the zero lower bound on nominal interest rates would severely restrict the central

bank’s ability to conduct successful stabilization policy. This argument is made explicit in

Summers (1991), for example. Table 2 reports the standard deviations of the nominal interest

rate as well as other key macroeconomic variables under the Ramsey optimal stabilization

policy. In computing these second moments, all structural parameters of the model take

the values shown in table 1. The table shows that the standard deviation of the nominal

interest rate is only 0.4 percentage points at an annual rate. At the same time, the Ramsey

steady-state level of the nominal interest rate is 4.4 percent. These two figures taken together

imply that for the nominal interest rate to hit the zero bound, it must fall more than 10

standard deviations below its target level. The probability of this happening is so small that

in the context of the estimated medium-scale model studied in this paper, the zero bound on

nominal interest rates does not impose an economically important constraint on the conduct

of optimal monetary policy.

This conclusion appears to be robust to changes in the degree of price or wage stickiness

within the range of available empirical estimates for the parameters determining the degree

35



Table 2: Ramsey Optimal Stabilization Policy: Second Moments

Variable α = 0.8 α = 0.8 α = 0.6
α̃ = 0.69 α̃ = 0.9 α̃ = 0.69

Standard Deviation
Nominal Interest Rate 0.4 0.4 0.3
Price Inflation 0.1 0.4 0.2
Wage Inflation 1.2 1.0 1.2

Output Growth 0.8 0.8 0.8
Consumption Growth 0.5 0.5 0.5
Investment Growth 1.3 1.5 1.3

Serial Correlation
Nominal Interest Rate 0.9 0.8 0.9
Price Inflation 0.8 0.9 0.8
Wage Inflation 0.7 0.5 0.6

Output Growth 0.4 0.5 0.5
Consumption Growth 0.9 0.9 0.9
Investment Growth 0.8 0.7 0.8

Correlation with Output Growth
Nominal Interest Rate 0.4 0.0 0.3
Price Inflation -0.3 -0.5 -0.4
Wage Inflation 0.6 0.4 0.6

Output Growth 1.0 1.0 1
Consumption Growth 0.4 0.4 0.4
Investment Growth 0.4 0.5 0.4

The standard deviation is measured in percentage points per year.
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of nominal sluggishness (see columns 2 and 3 of table 2).

5.2 Optimality of Inflation Stability

The Ramsey authority faces a three-dimensional tradeoff in determining the optimal degree

of inflation volatility. The sticky price distortion in isolation calls for minimizing inflation

volatility. The money demand distortion, on the other hand, calls for stabilizing the op-

portunity cost of holding money, that is, minimizing the standard deviation of Rt. Finally,

the sticky wage distortion renders stabilization of wage inflation (in the absence of indexa-

tion) or stabilization of wage inflation net of lagged price inflation (under full indexation to

past price inflation) Ramsey optimal. Table 2 shows that this three-way tradeoff is resolved

overwhelmingly in favor of inflation stability.

To see how sensitive the inflation stability goal is with respect to the size of the sticky

wage distortion, we also consider the case of α̃ = 0.9, which implies that unions reoptimize

wages only every 10 quarters. In this case, as expected, the optimal volatility of price

inflation increases and that of wage inflation falls. The optimal standard deviation of price

inflation is now 0.4 percent per year and the optimal standard deviation of wage inflation is

now 1.0 percent. Yet, price inflation continues to be significant smoother over the business

cycle than wage inflation. We conclude that a central characteristic of optimal stabilization

policy is smooth inflation rates. In this sense, one could say that the Ramsey planner pursues

a policy of inflation targeting.

5.3 Ramsey Optimal Impulse Responses and Variance Decompo-

sition

Optimal stabilization policy will in general be shaped by the number and nature of the

exogenous shocks generating aggregate fluctuations. There is considerable debate in the

empirical literature about the identification of the main sources of business cycle fluctuations.

One branch of the literature uses structural vector autoregression analysis to identify specific

structural shocks. Examples of this approach are Altig et al. (2005) and Fisher (2005). The

work of Fisher (2005) suggests that investment specific technology shocks may explain as

much as 50 percent of variations in hours worked. Altig et al. identify monetary policy shocks

and investment-specific as well as neutral technology shocks. The find that investment-

specific shocks play a smaller role in generating business cycles: specifically, they estimate

that neutral and investment-specific technology shocks together explain only about one third

of the fluctuations in hours, output, and consumption.
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Table 3: Percent of variance explained by each of the three exogenous disturbances in the
Ramsey equilibrium

Variable µΥ,t µz,t gt

ln yt/yt−1 0.11 0.44 0.45
ln ct/ct−1 0.10 0.80 0.10
ln It/It−1 0.61 0.33 0.06
lnRt 0.21 0.62 0.17
ln πt 0.13 0.83 0.04
ln πW

t 0.37 0.63 0.00
ln hd

t 0.47 0.44 0.09

On the other hand, there is a very active recent literature that uses Bayesian methods

to estimate the entire data generating process of a dynamic stochastic general equilibrium

model. The paper of Smets and Wouters (2004) is a key example of this line of research.

Those authors estimate a model with 10 shocks. One might consider using all of those

10 estimated shocks in the optimal policy problem. However, in econometrically estimated

versions of the model studied in this paper (or variations thereof), it is often the case that

many of these shocks are difficult to interpret economically. In effect, these shocks, to a

large extent, represent simple econometric residuals reflecting the distance between model

and data rather than true sources of business-cycle fluctuations. A case in point are shocks

to Euler equations or markup shocks. Before incorporating this type of residual as driving

forces, it is perhaps more productive to give theory a chance to get closer to the data.

Therefore, we do not attempt to build a model that includes all sources of fluctuations. We

simply focus on three shocks that have been shown in the empirical literature to explain

a significant fraction of aggregate fluctuations. Namely, neutral and investment-specific

technology shocks and government purchases shocks.

Table 3 shows how important each of these three shocks is in explaining short-run fluctu-

ations under the Ramsey regime. Variations in output growth are explained in equal parts

by government purchases shocks and neutral technology shocks, which each account for 45

percent of output growth variance. Investment-specific productivity shocks play a minor role

in driving fluctuations in output growth. However, investment-specific shocks are important

in explaining movements in hours worked (47 percent), wage inflation (37 percent), and in-

vestment growth (61 percent). Fluctuations in consumption growth, the nominal interest

rate, inflation, and wage inflation are mainly driven by neutral productivity shocks with a

small contribution of government purchases shocks.

Figure 5 shows model’s response to a one percentage increase in the growth rate of the
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Figure 5: Ramsey Response To A Neutral Productivity Shock
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neutral technology shock (ln(µz,0/µz) = 1%). The Ramsey planner raises nominal interest

rates by 175 basis points on impact and allows inflation to fall slightly by 45 basis points.

This monetary tightening is short lived however, after 6 quarters the nominal interest rate

is back at 5 percent, or 50 basis points above its long run target. We conjecture that the

reason for this tightening is as follows. The Ramsey planner aims to replicate the real

allocation associated with the flexible-price flexible-wage economy. In such an economy,

the real interest rate would rise at least temporarily in response to a positive shock to the

growth rate of technology. With sluggish nominal price adjustment, the Ramsey planner

would like to induce this dynamics without relying in costly movements in the inflation rate.

Because the real interest rate equals the risk free nominal interest rate minus the inflation

rate, it follows that the Ramsey-optimal policy is to raise nominal interest rates roughly by

the amount that real interest rates would rise in the flexible-price economy. Interestingly,

nominal interest rates are tightened not to avoid inflation, but rather to avoid deflation.

Currently, there exists an active debate surrounding the estimated effects of neutral

technology shocks on hours. For example, Gaĺı (1999) finds that hours decline on impact

whereas ACEL find that hours increase. Consistent with the findings of Gaĺı, our model

predicts that under the Ramsey policy hours decline on impact in response to a positive

innovation in the neutral technology shock. Our intuition for the initial decline in hours is as

follows. Because monetary policy induces a sharp increase in real interest rates on impact,

the wealth effect on consumption is muted initially. Additionally, due to the presence of

adjustment costs in investment, investment spending does not increase much on impact. As a

result the positive wealth effect generated by the increase in productivity growth materializes

in an expansion of the consumption of leisure.

Figure 6 presents the Ramsey impulse responses to a one percent innovation in govern-

ment purchases. A one percent increase in government consumption raises output by 0.15

percent. Given that in the model the share of public consumption in GDP is assumed to

be 17 percent, it follows that the government spending multiplier implied by the model is

slightly below unity. The model predicts that the government should increase interest rates

in response to a positive government spending shock, which is in line with conventional

wisdom.

Figure 7 displays the model’s response to a one percentage point increase in the growth

rate of investment-specific technological change. Ramsey policy calls for an easing of money

market conditions in response to a positive investment-specific productivity shock. Again,

our intuition is that the Ramsey planner tries to mimic the flexible-price equilibrium. In

the absence of price stickiness, real interest rates would fall. Hence, the Ramsey planner

lowers nominal rates so as to achieve a fall in real rates without putting upward pressure on
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Figure 6: Ramsey Response To a Government Purchases Shock
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Figure 7: Ramsey Response To An Investment-Specific Productivity Shock
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inflation.

6 Optimal Operational Interest-Rate Rules

Ramsey outcomes are mute on the issue of what policy regimes can implement them. The

information on policy one can extract from the solution to the Ramsey problem is limited

to the equilibrium behavior of policy variables such as the nominal interest rate. But this

information is in general of little use for central banks seeking to implement the Ramsey equi-

librium. Specifically, the equilibrium process of policy variables in the Ramsey equilibrium

is a function of all of the states of the Ramsey equilibrium. These state variables include all

of the exogenous driving forces and all of the endogenous predetermined variables. Among

this second set of variables are past values of the Lagrange multipliers associated with the

constraints of the Ramsey problem. Even if the policymaker could observe the state of all of

these variables, using the equilibrium process of the policy variables to define a policy regime

would not guarantee the Ramsey outcome as the competitive equilibrium. The problem is

that such a policy regime could give rise to multiple equilibria.

In this section, we show that a simple interest-rate feedback rule implements the Ram-

sey equilibrium in the medium-scale model under study. Specifically, we focus on finding

parameterizations of interest-rate rules that satisfy the following 4 conditions: (a) They are

simple, in the sense that they involve only a few observable macroeconomic variables; (b)

They guarantee local uniqueness of the rational expectations equilibrium; (c) The associated

path of the nominal interest rate does not violate the zero bound.7 and (d) They maximize

the expected lifetime utility of the representative household conditional on the initial state

of the economy being the deterministic steady state of the Ramsey economy. We refer to

rules that satisfy criteria (a)-(c) as operational. We refer to operational rules that satisfy

criterion (d) as optimal operational rules.

The family of rules that we consider consists of interest-rules whereby the nominal interest

rate depends linearly on its own lag, the rates of price and wage inflation, and the growth

rate of output. Formally, the interest-rate rule is given by

ln

(
Rt

R∗

)
= απ ln

( πt

π∗

)
+ αW ln

(
πW

t

πW ∗

)
+ αy ln

(
yt

yt−1µ∗
y

)
+ αR ln

(
Rt−1

R∗

)
. (48)

The target values R∗, π∗, πW ∗
and µ∗

y are assumed to be the Ramsey steady-state values

of their associated endogenous variables. (The steady-state growth of output is indeed

7We approximate this constraint by requiring that in the competitive equilibrium two standard deviations
of the nominal interest rate be less than the steady-state level of the nominal interest rate.
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exogenous and given by µz∗.) The variable πW
t denotes nominal wage inflation and in the

nonstochachstic steady state we have that πW ∗ ≡ µz∗π
∗. It follows that in our search for the

optimal operational policy rule, we pick the four policy parameters (απ, αW , αy, αR) so as to

maximize welfare, Vt ≡ E0

∑∞
t=0 β

tU(ct−bct−1, ht), where expectations are taken conditional

on the initial state being the non-stochastic steady state of the Ramsey equilibrium. Given

the complexity of the model, an exact numerical solution does not exist. We therefore

approximate our conditional welfare measure to second-order accuracy using the numerical

method developed in Schmitt-Grohé and Uribe (2004c).

6.1 The Optimal Operational Rule

We find that the optimal operational interest rate is given by

ln

(
Rt

R∗

)
= 5.0 ln

( πt

π∗

)
+ 1.6 ln

(
πW

t

πW ∗

)
− 0.1 ln

(
yt

yt−1µ∗
y

)
+ 0.4 ln

(
Rt−1

R∗

)
.

The optimal operational interest-rate rule is active in both price and wage inflation because

both coefficients are greater than unity. In addition, the rule prescribes virtually no response

to output growth. In this sense the optimized interest-rate rule can indeed be interpreted as a

pure inflation targeting rule. According to the above rule, the policymaker reacts positively

to lagged nominal interest rates. Because the interest-rate coefficient is less than unity,

the rule is inertial but not superinertial. Thus, the policymaker is backward looking in its

response to inflation deviations from target.

To quantify the difference in the level of welfare under the Ramsey policy and under the

optimal operational rule, we compute the welfare costs of the optimal operational interest-

rate rules relative to the time-invariant equilibrium process associated with the Ramsey

policy.

We assume that at time zero all state variables of the economy equal their respective

Ramsey-steady-state values. Because the non-stochastic steady state is the same across all

policy regimes we consider, computing expected welfare conditional on the initial state being

the nonstochastic steady state ensures that the economy begins from the same initial point

under all possible polices.

Consider the Ramsey policy, and denote the contingent plans for consumption and hours

under the Ramsey policy by crt and hr
t . Similarly, denote the contingent plans under the

alternative policy regime by cat and ha
t . Let λc denote the welfare cost of adopting policy

regime a instead of the Ramsey policy conditional on a particular state in period zero. We

define λc as the fraction of regime r’s consumption process that a household would be willing
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Table 4: Welfare Under the Optimal Operational Rules

Parameterization απ αW αy αR (100 × λc) (100 × λu) c2006λ
c c2006λ

u

Optimized Rules [Eq. (48)]
Baseline Calibration 5.0 1.6 -0.1 0.4 0.001 0.001 $0.23 $0.19
High Wage Stickiness (α̃ = 0.9) 0.4 1.9 0.1 2.3 0.008 0.005 $2.50 $1.41

Ad-Hoc Rule
Taylor Rule – Output Level 1.5 0 0.5 0 0.14 0.16 $41.81 $48.06

Note. The variable c2006 ≡ $30, 441 denotes nominal U.S. per capita personal
consumption expenditures seasonally adjusted at annual rates, in the first quarter
of 2006. Source: www.bea.gov.

to give up to be as well off under regime a as under regime r. It follows that λc is implicitly

defined by8

E0

∞∑

t=0

βtU(cat − bcat−1), h
a
t ) = E0

∞∑

t=0

βtU((1 − λc)(crt − bcrt−1), h
r
t ).

Similarly, one can derive an unconditional welfare cost measure. That is one can ask which

fraction of consumption under the Ramsey policy are agents willing to give up, to attain

the same unconditional expectation of lifetime utility as under the alternative policy. Let λu

denote this unconditional welfare cost measure. Then λu is implicitly given by

E

{
∞∑

t=0

βtU(cat − bcat−1), h
a
t )

}
= E

{
∞∑

t=0

βtU((1 − λc)(crt − bcrt−1), h
r
t )

}
.

We restrict attention to approximations of λc and λu that are accurate up to second order.

See the appendix for a derivation.

Table 4, displays the central result of this section. Namely, that the welfare costs of fol-

lowing the optimal operational interest rate rule rather than the Ramsey policy are virtually

zero; agents are willing to give up less than one one-hundreths of one percent of the Ramsey

consumption stream (or less than 23 cents per annum) to be as well off under the optimal

operational rule as under the Ramsey policy.

8Note that for analytical convenience we apply the factor (1 − λc) to c−1 eventhough this variable is
predetermined at the time of the policy evaluation. In Schmitt-Grohé and Uribe (2004d) we show that if one
were not to apply the factor (1 − λc) to c−1, then one would obtain a welfare cost measure that is slightly
smaller than the one we obtain here. However, because the alternative welfare cost measure is proportioal
to the one we use here, the welfare rankings would be unchanged. Furthermore, our conclusion that the
opotimal operational rule yields virtually the same level of welfare as the Ramsey policy would only be
strengthened.
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A central characteristic of the optimal rule is that its response to output is mute. Forcing

the output coefficient, αy, to be zero, increases the welfare cost by less than one cent per

year. This finding has an important policy implication. Central banks need not respond to

a measure of output in order to implement an equilibrium that provides virtually the same

level of welfare as the Ramsey policy.

While it is true that responding to output has virtually zero welfare gains, one can show

that it may have significant welfare costs. In table 4 we consider a Taylor rule with a

coefficient of 0.5 on deviations of output from trend (ln(Yt/Y )) and an inflation coefficient

of 1.5. This rule is associated with welfare costs of almost $50 per person per year, or $ 200

per 4-person household per year.

Interest-rate smoothing is not essential from a welfare point of view in the present econ-

omy. Under the optimal rule the interest rate smoothing coefficient is 0.4. If one eliminates

interest-rate smoothing by setting αR = 0 while keeping the other rule coefficients at απ = 5,

αy = 0, and απW = 1.6, the welfare costs of the rule increase by 3 cents per year to 26 cents

per year, which we regard as negligible.9

Next, we address the question of how important it is for the central bank to respond to

both wage and price inflation rather than to just price inflation. Setting απW = αy = αR = 0

and leaving απ at the optimized value of 5 increases welfre costs to 81 cents per year per

person (or 0.003 percent of annual consumption). This is still a fairly small number, which

leads us to conclude that a simple policy prescription, namely, responding aggressively to

price inflation only, can bring about an equilibrium in which agents are virtually as well off

as under the Ramsey policy. In this sense, we can interpret our findings as supportive of

inflation targeting policies.

Table 4 presents the optimal operational rule when wages are reoptimized every 10 quar-

ters, or α̃ = 0.9. In the baseline calibration, we draw from the work of Altig et al. (2005)

and assume that wage contracts are reoptimized about every third quarter (α̃ = 0.69). As

mentioned earlier, the model of Altig et al. (2005) adopts the Erceg et al. (2000) model of

nominal wage stickiness. Under this formulation, wage dispersion generates heterogeneity in

work intensity across households. In our formulation, all households supply the same amount

of labor. In equilibrium, these two alternative modeling strategies result, up to first order,

in a different labor markup coefficient in the wage Phillips curve. Specifically, under the

assumption of no growth, µυ = µz = 1, the log-linear approximation to the wage inflation

Phillips curve in the Altig et al. model can be written as π̂W
t − π̂t−1 = β(Etπ̂

W
t+1 − π̂t)− γ ˆ̃µt,

9In Schmitt-Grohe and Uribe (2006) we study a simpler model without nominal wage rigidity or growth.
In that model we also find that the optimal interest-rate rule delivers virtually the same level of welfare as
the Ramsey policy, that the optimal response to output is nil, that responding to output can entail significant
welfare costs, and that the welfare gains from interest-rate smoothing are negligible.
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where γ = 1
1+η̃

(1−α̃)(1−βα̃)
α̃

. In our model, under the assumption of full wage indexation,

χ̃ = 1 (as maintained in Altig et al., 2005, as well as in our baseline calibration), the wage

Phillips-curve is given by π̂W
t − π̂t−1 = β(Etπ̂

W
t+1 − π̂t) − (1 + η̃)γ ˆ̃µt. This means that the

coefficient on the labor market markup is different in the two models by a factor (1 + η̃).

Given the estimated value for γ reported by Altig et al. and given our baseline values for η̃

and β of 21 and 1.03−0.25, respectively, the implied value of α̃ in the context of our model

is about 0.9. With this degree of wage stickiness the optimized interest-rate rule calls for a

more aggressive response to wage inflation and a less aggressive response to price inflation.

In addition, the optimal rule now displays a superinertial response to lagged interest rates.

The rule continues to call for a mute response to output variations. The welfare differences

between the optimal operation rule and the Ramsey policy are still small at 0.005 percent

of the Ramsey consumption stream.

In computing the coeffcients of the optimized policy rule, thus far we have restricted

attention to maximizing lifetime utility of the representative household conditional on a

particular initial the initial state of the economy being the nonstochastic Ramsey steady

state. Alternative, one could pick policy-rule coefficients so as to maximize an unconditional

measure of lifetime utility. Our results are robust to adopting this alternative. Specifically,

under the unconditional welfare objective we obtain απ = 5.1, αW = 1.6, αy = −0.1,

αR = 0.4, 100 × λc = 0.001, and 100 × λu = 0.001.

Figures 8, 9, and 10 compare the impulse responses of all variables of the model to the

three shocks driving aggregate fluctuations under the Ramsey-optimal policy (solid lines)

and under the optimized operational interest-rate rule (broken lines). In the figures, inflation

and the nominal interest rate are in percent per quarter deviations from their steady-state

values. All other variables are expressed in percent deviations from their deterministic steady

state. As described earlier in section 2.6 variables in capital letters are stationarity-inducing

transformations of the corresponding variables in lowercase letters. The figures suggest a

remarkable match between the Ramsey responses and the impulse responses associated with

the optimized operational interest-rate rule.

6.2 Interest-Rate Rules and Equilibrium Determinacy

For an interest-rate feedback rule to be operational, we require that it induce a locally

determinate rational expectations equilibrium. A natural question is what restrictions this

requirement imposes on the values that the parameters defining the interest rate rule can

take. Figure 11 displays with dots the values of the price- and wage-inflation coefficients

(απ and αW ) in the interest-rate rule (48) for which the equilibrium is locally determinate.
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Figure 8: Ramsey And Optimized Responses To An Investment-Specific Productivity Shock
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Figure 9: Ramsey And Optimized Responses To A Neutral Productivity Shock
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Figure 10: Ramsey And Optimized Responses To A Government Purchases Shock
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Figure 11: Interest-Rate Feedback Rules and Equilibrium Determinacy
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Note: The policy parameters αy and αR are set to zero. All structural parameters
take their baseline values, given in table 1.

In producing the figure, the remaining two policy parameters, αy and αR, associated with

output growth and the lagged interest rate are set to zero. It is clear from the figure that

to a first approximation a condition for determinacy is that the sum of the price- and wage-

inflation coefficients be greater than unity. That is, local determinacy of equilibrium requires

that

απ + αW > 1.

The result that the inflation coefficient must be greater than unity for the equilibrium to be

unique is easily established in small models with few frictions (see, for example, Leeper, 1991).

It is of interest that the same principle applies to a much richer theoretical structure like the

one studied in the present paper. Also noteworthy is the apparent perfect substitutability on

the margin between the price- and wage-inflation coefficients in ensuring local uniqueness.

In effect, at the southwest frontier of the uniqueness area the price- and wage-inflation

coefficients satisfy απ + αW ≈ 1.

Local uniqueness of equilibrium is related to the long-run values of the inflation coeffi-

cients of the interest-rate rule. In the example discussed thus far, the inertial term of the

policy rule, αR, is assumed to be nil. As a result, the short- and long-run values of the price-

and wage-inflation coefficients coincide and are equals to απ and αW , respectively. Increasing

the value of αR to its optimal level of 0.4 results in a local-determinacy area defined by the
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relation απ +αW > 0.4. This result appears to generalize to other values of the interest-rate

coefficient. Thus, the pattern that appears to emerge implies roughly a determinacy area

defined by the relation [απ + αW ]/(1 − αR) > 1. In words, the long-run value of the price-

and wage-inflation coefficients of the interest-rate rule must add up to a number larger than

unity for the equilibrium to be locally unique.

7 Discussion and Conclusion

The central focus of the present study is the characterization and implementation of optimal

monetary policy in the context of a rich model of the macroeconomy with parameters and

sources of uncertainty estimated to fit observed fluctuations at business-cycle frequency.

The central recommendation that emerges from the solution of the Ramses optimization

problem is that the central bank should aim at a low and highly stable rate of inflation. This

prescription is very much in line with those proposed by advocates of inflation targeting.

At a deeper level, however, the inflation predictions of the Ramsey equilibrium are neither

robust nor coincidental with the inflation targeting principles. With respect to robustness,

the Ramsey-optimal inflation target varies enormously with the parameter determining the

degree of price stickiness. For empirically plausible values of this parameter, the optimal

inflation target ranges from the Friedman rule (i.e., minus the real interest rate) to price

stability. This apparent hypersensitivity of the optimal rate of inflation calls for an increased

effort aimed at obtaining tighter estimates of the amount of nominal sluggishness present in

the economy.

An important difference between the predictions of the Ramsey equilibrium studied in

the present paper and the observed behavior of central banks adhering to inflation targeting

regimes is that the Ramsey optimal rate of inflation is negative (although possibly close to

zero) whereas inflation targeters around the world set targets for the inflation rate that are

significantly above zero. We establish that in the context of the estimated medium-scale

model studied in this paper fear of confronting the zero-bound on nominal interest rates

can hardly represent an impediment to adopting the Ramsey-optimal rate of inflation. In

effect, in the Ramsey equilibrium the nominal interest rate takes an average value of about

4.5 percent per year, with a standard deviation of about half a percent. It follows that

the chances that a shock would push the nominal interest rate to zero are negligible. This

result poses the challenge for future researchers of finding a theoretical explanation for the

optimality of positive inflation targets. Some have argued that the presence of downward

inflexibility in nominal prices and wages may provide a justification for setting positive

inflation targets. Formalizations of this idea have been limited to highly stylized models. It
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remains to be seen whether medium-scale models incorporating a realistic degree of nominal

downward rigidities can generate optimal inflation targets similar in magnitude to those

observed across inflation targeting countries.

The issue of the interaction between optimal fiscal and monetary policy in the context of

medium-scale models was touched upon in this paper but requires much further research. We

find that the hypersensitivity of the optimal inflation target to the degree of price stickiness

alluded to above may disappear under certain fiscal arrangements. This is the case, for

instance, when fiscal policy is also set optimally and the fiscal authority has access only

to distortionary income taxes. But under alternative fiscal scenarios the hypersensitivity

problem may be exacerbated. This is the case, for instance, when the fiscal authority has

access to a combination of distortionary and nondistortionary taxes, but distortionary taxes

are fixed (even if at the level prescribed by the Ramsey steady state) so that lump-sum taxes

are used on the margin to achieve intertemporal solvency.

In this paper we limit attention to an economy driven by three shocks that have been

shown to account for a sizable fraction of business cycles in the U.S. economy; namely, neutral

and investment-specific productivity shocks and government spending shocks. Ideally, the

study of optimal monetary policy would incorporate into the model all of the sources of

uncertainty that are important drivers of business cycles in the real world. The current

study is admittedly far from this theoretical desideratum. Progress in this area is in order.

There is no clear guideline on how to go about in this endeavor. We are skeptical of the

approach—recently adopted in some studies—of using the estimation residuals obtained from

econometric estimations of the DGE model as structural economic sources of uncertainty.

In many instances, these estimation errors are hardly interpretable as structural economic

shocks and are more likely a reflection of the fact that theory lags behind business cycles.

The dimension of the challenge that the presence of these ‘nonstructural’ errors pose for

macroeconomic theory is demonstrated by the fact that in most of the available estimates of

relatively large macroeconomic models, this class of shocks explain the majority of observed

business-cycle fluctuations.
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Appendix: Deriving the Welfare Costs Measure

Consider the Ramsey policy, denoted by r, and an alternative policy regime, denoted by a.

We define the welfare associated with the time-invariant equilibrium implied by the Ramsey

policy conditional on a particular state of the economy in period 0 as

Ṽ r
0 = E0

∞∑

t=0

βtU(crt − bcrt−1, h
r
t ),

where crt and hr
t denote the contingent plans for consumption and hours under the Ramsey

policy. Using the particular functional form for the period utility function given in equa-

tion (46) and setting φ3 to its baseline value of one, we can express the above expression in

terms of the stationary transformation of consumption, Cr
t ,

Ṽ r
0 = E0

∞∑

t=0

βt(1 − φ4) ln z∗t + E0

∞∑

t=0

βtU(Cr
t − bCr

t−1/µz∗,t, h
r
t ).

Similarly, define the conditional welfare associated with policy regime a as

Ṽ a
0 = E0

∞∑

t=0

βtU(cat − bcrt−1, h
a
t ),

which can be written in terms of the stationary transformation of consumption as follows

E0

∞∑

t=0

βt(1 − φ4) ln z∗t + E0

∞∑

t=0

βtU(Ca
t − bCa

t−1/µz∗,t, h
a
t ).

Let V r
0 ≡ E0

∑∞
t=0 β

tU(Cr
t − bCr

t−1/µz∗,t, h
r
t ) so that

Ṽ r
0 = E0

∞∑

t=0

βt(1 − φ4) ln z∗t + V r
0

and let V a
0 ≡ E0

∑∞
t=0 β

tU(Ca
t − bCa

t−1/µz∗,t, h
a
t ) so that

Ṽ a
0 = E0

∞∑

t=0

βt(1 − φ4) ln z∗t + V a
0

Let λc denote the welfare cost of adopting policy regime a instead of the Ramsey policy

conditional on a particular state in period zero. We define λc as the fraction of regime r’s

consumption process that a household would be willing to give up to be as well off under
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regime a as under regime r. It follows that λc is implicitly defined by

Ṽ a
0 = E0

∞∑

t=0

βtU((1 − λc)(crt − bcrt−1), h
r
t ).

Using the definitions given above, this expression can be written as

V a
0 = V r

0 +
(1 − φ4)

(1 − β)
ln(1 − λc). (49)

We restrict attention to an approximation of λc that is accurate up to second order. In

equilibrium, V a
0 and V r

0 are functions of the initial state vector x0 and the parameter σε

scaling the standard deviation of the exogenous shocks (see Schmitt-Grohé and Uribe, 2004c).

Therefore, we can write V a
0 = V ac(x0, σε) and V r

0 = V rc(x0, σε). This implies that λc must

be a function of x0 and σε as well

λc = Λc(x0, σε).

Consider a second-order approximation of the function Λc around the point x0 = x and

σε = 0, where x denotes the deterministic Ramsey steady state of the state vector. Because

we wish to characterize welfare conditional upon the initial state being the deterministic

Ramsey steady state, in performing the second-order expansion of Λc only its first and

second derivatives with respect to σε have to be considered. Formally, we have

λc ≈ Λc(x, 0) + Λc
σε

(x, 0)σε +
Λc

σεσε
(x, 0)

2
σ2

ε .

Because the deterministic steady-state level of welfare is the same across all monetary policies

belonging to the class defined in equation (48), it follows that λc vanishes at the point

(x0, σε) = (x, 0). Formally,

Λc(x, 0) = 0.

Totally differentiating equation (49) with respect to σε, evaluating the result at (x0, σε) =

(x, 0), and using the result derived in Schmitt-Grohé and Uribe (2004c) that the first

derivatives of the policy functions with respect to σε evaluated at (x0, σε) = (x, 0) are nil

(V ac
σε

= V rc
σε

= 0), it follows immediately that

Λc
σε

(x, 0) = 0.

Now totally differentiating (49) twice with respect to σε, and evaluating the result at
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(x0, σε) = (x, 0) yields

Λc
σεσε

(x, 0) =

(
1 − β

1 − φ4

)
[V rc

σεσε
(x, 0) − V ac

σεσε
(x, 0)].

Thus, the conditional welfare cost measure is given by

λc ≈
(

1 − β

1 − φ4

)
[V rc

σεσε
(x, 0) − V ac

σεσε
(x, 0)]

σ2
ε

2
. (50)
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