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Abstract

I present an RBC model in which investment options raise the volatility of
investment compared to the standard adjustment-cost model. When they are
embodied only in new capital, new ideas reduce the value of old capital. Thus
when the stock of unimplemented ideas rises, the value of stock market falls,
i.e., the stock market and Tobin’s Q are negative indexes of intangibles. In the
model, equilibrium is efficient even without markets for knowledge; the stock
market suffices.

1 Introduction

An investment option is a profit opportunity that requires an investment to imple-
ment. It is postponable if it is a patented invention, or if it is specific to a firm so that
others cannot reduce its value by copying it. A firm has investment options that it
may use up immediately, or store for future use. A patent, for instance, represents an
investment option that only its holder can implement for a certain number of years.
In a sense, even a trademark represents an option to produce a product that no one
else can produce. Some investment options are protected not by law but by secrecy.

Investment options are a focus of the new Keynesian literature (Shleifer 1986),
the strategic delay literature (Chamley and Gale 1994), and the investment literature
(MacDonald and Siegel 1986, Dixit and Pindyck 1994). Several papers model business
cycles, e.g., Gale (1996), but do not try to fit data.

It is a competitive GE model in which investment options, or “seeds” as I shall
call them, are needed for the planting of trees. Seeds are produced by trees that are
already planted, which I think of as the result of learning by doing. The number of
trees grows over time and, in the absence of the seed constraint on investment, the
model would be a standard one-sectorAkmodel with randomTFP shocks. The model
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can be thought of as a GE version of Abel and Eberly (2005) that also endogenizes the
supply of what they call “growth options”, but one that focuses on RBC issues and
not mainly on the investment-Q relation. It also relates closely to Yorukoglu (2000)
who studied the relation between the level of income and the equilibrium variety
of goods. And, although the model has no shocks to the investment technology, it
behaves a bit like models that do have such shocks, namely Greenwood, Hercowitz
and Huffman (1987), and Fisher (2005).
Intangibles reduce Q.–In the model, investment implements new ideas. Because

seeds are scarce, the value of planted trees and thus Tobin’s Q, is always above unity.
Unimplemented ideas compete for capital, and when there are many around, their
price falls, and with it so then does the price of claims to the output of existing ideas.
In this sense, the more seeds we have on hand, the larger is the stock of what one
would call intangibles, and the lower the value of our planted trees. This result is
directly opposite to that of Hall (2000), in whose model are a positive indicator of the
stock of intangibles. Technically, the difference arises because Hall assumes variable
proportions between tangible and intangible capital in production and no storage
of unimplemented intangibles, whereas I assume the opposite: Fixed proportions
in production and storage, the latter amounting to variable proportions between
consumption goods and intangibles in the investment technology. Abel and Eberly
(2005) also predict that their growth options should raise Q, which follows easily
in their partial equilibrium setting and which holds in my setting too for any firm
that alone receives a growth option. When all firms get growth options at the same
time, however, interest rates rise immediately and the value of capital in place falls
— a standard effect in vintage-capital models. Measures of the aggregate stock of
intangibles based on patent applications and trademarks co-move negatively with
Tobin’s Q, thus supporting my model. While these relations hold in the aggregate,
at the individual-firm level, relation between knowledge stocks and Q is positive, just
as Abel and Eberly claim.
More volatile investment.–The standard model with convex adjustment costs

induces a smoothness on investment. The seeds model introduces an intertemporal
substitutability in investment that raises its volatility just as it raises the volatility of
labor supply in the Lucas-Rapping model. The seeds model also has all investment
occurring on an extensive margin, just as all the labor supply changes on the extensive
margin in the simplest Rogerson-Hansen economy, and this too raises its volatility.
The model also relates to that of Khan and Thomas (2005), where firms’ ability to
store output raises the volatility of their production and investment.
Decentralization.–These results hold in the planner’s optimum which has two

decentralizations. The first is a complete-markets decentralization in which a market
for seeds exists. The second decentralization has no seeds market, only a market for
shares of firms. The outcome for quantities and prices remains the same. It remains
to be seen whether the efficiency of the no-seeds decentralization survives when firms
differ. Jovanovic and Braguinsky (2004) develop a related one-period model in which
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firms differ in how many seeds they have and in the eventual productivity of trees that
they may get to plant; they find that even without a seed market, takeovers (which
are still transactions in the market for firms only) achieve efficiency. The results here
are consistent with theirs.
Section 2 presents the model, section 3 describes a complete-markets decentraliza-

tion, section 4 an incomplete-markets one. Section 5 reports simulations, compares
the model to the data. Section 6 compares the model to the standard adjustment-
cost model. Several proofs and extensions are reported in the Appendix, which also
discusses extensions.

2 Model

The model is that of a growing economy with two types of capital — trees, k, and
seeds, S. A seed represents an option, storable indefinitely, to plant exactly one tree.

Production of output.–Output of fruit is

Y = zk. (1)

If X is the number of trees newly planted, k evolves as

k0 = k +X. (2)

Production of seeds.–Let S denote the stock of seeds. New seeds are produced
by existing trees. Each period a tree gives rise to λ new seeds, i.e., a total of

new seeds = λk (3)

Thus seeds grow via a process like learning by doing that takes up no resources.
The planting of trees.–Planting a tree requires a unit of fruit and a seed. Only

one tree per seed can be planted, after which the seed is used up. Let S be the stock
of seeds and let X be the number of trees planted. Then S evolves as

S0 = λk + S −X. (4)

Since X is subtracted from the stock, a seed can be used to plant exactly one tree.
Thus investment is Leontieff in two inputs, seeds and fruit. Their proportions are
equal, an assumption that we shall drop when we get to the empirics, along with the
assumption that neither k nor S depreciate. Leontieff investment implies that output
too is Leontieff in seeds and fruit. Seeds are storable whereas fruit is not.
Timing.–Investment, X, is chosen after the trees produce zk units of fruit and

after λk new seeds. Since S0 ≥ 0, the constraint on X is

X ≤ λk + S. (5)
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Thus investment is Leontieff in two inputs: seeds and fruit. We shall let investment
be reversible: 1

The income identity.–The cost of planting a tree is, as usual, one unit of fruit.
Letting C be the consumption of fruit, the income identity is

zk = C +X. (6)

The shocks.–We assume that the shocks follow the first-order Markov process:
Pr (zt+1 ≤ z0 | zt = z) = F (z0, z), and that z0 is stochastically increasing in z.
Preferences.–For σ > 0 and β < 1, preferences are

E0

( ∞X
t=0

βt
C1−σ
t

1− σ

)
.

The standard one-sector growth model.–It arises when the inequality in (5) never
binds. The latter occurs when λ is large enough, e.g., if λ exceeds the largest possible
z. It also occurs, de facto, when the initial stock of seeds, S0, is so large that (5) does
not come into play for a very long time.

2.1 The planner’s problem

The state is (k, S, z), and the decision, x, is constrained by (59). The Bellman eq. is

v (k, S, z) = max
X≤λk+S

(
(zk −X)1−σ

1− σ
+ β

Z
v (k +X,λk + S −X, z0) dF

)
. (7)

Lemma 1 A unique solution v to (7) exists, and is is strictly concave in (k, S) .
Moreover, X is increasing in S and, if z is i.i.d., in z.

Proof. (i) Existence, uniqueness: Let T denote the operator on the RHS of (7).
The operator is a contraction and maps continuous functions v into continuous and
unbounded functions (Tv). Methods of Alvarez and Stokey (2000) show that....(ii)
Concavity: We shall show that if ṽ is concave then T ṽ is strictly concave. Let
0 ≤ α ≤ 1. The constraint (5) is convex and its boundary is linear in S and k.
Therefore if X1 is feasible and optimal for the state (k1, S1) and X2 is feasible and
optimal for (k2, S2), then Xα ≡ αX1 + (1− α)X2 is feasible, though not necessarily
optimal for (αk1 + (1− α) k2, αS1 + (1− α)S2). Therefore if 0 < α < 1

T ṽ (αk1 + (1− α) k2, αS1 + (1− α)S2) ≥
(zk −Xα)

1−σ

1− σ
+ β

Z
ṽ (k +Xα, λk + S −Xα, z

0) dF

> αT ṽ (k1, S1) + (1− α)T ṽ (k2, S2)

1Unlike Sargent (1980), we shall not impose the constraint X ≥ 0. This constraint is never
violated in any of the simulations which assume that σ = 2. With a much lower value of σ and/or
with a very persistent and variable zt process, X would at times be negative.
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Therefore the operator transforms weakly into strictly concave functions. Therefore,
the operator being a contraction, its unique fixed point v is strictly concave. (iii)
Properties of X: (Here I assume the differentiability needed. Later, first derivatives
of v will be shown to exist independently of the results of this Proposition). The
FOC is

ξ (X,S) ≡ − (zk −X)−σ + β

Z
dv

dX
v (k +X,λk + S −X, z0) dF = 0

We have dropped k and z from the arguments of ξ as they play no role in the argument
to be made. We now argue in 3 steps: (A) If a function of one variable H is twice
differentiable with H 00 < 0, then

∂

∂S

µ
∂

∂X
H [λk + S −X]

¶
= −H 00 (·) > 0

Therefore, concavity of v in S alone implies ∂
∂S

dv
dX

³
= − ∂2v

∂S2

´
> 0; earlier, under (ii)

we showed that concavity of v in (k, S) implies concavity of v in X holding (k, S)
fixed — i.e., that d2v

dX2 < 0 and (B) Therefore ξX < 0 and ξS > 0. And, when z is i.i.d.,
ξz = (C) Therefore

∂X
∂S
= − ξS

ξX
> 0.

Reducing the state space.–From (60), s0 = λ+s−x
1+x

. The following result allows us
to reduce the state space to just (s, z):

Lemma 2 For σ 6= 1, v is of the form

v (k, S, z) = w (s, z) k1−σ,

where w (s, z) = v (1, s, z), and where w satisfies

w (s, z) = max
x

(
(z − x)1−σ

1− σ
+ (1 + x)1−σ β

Z
w

µ
λ+ s− x

1 + x
, z0
¶
dF

)
(8)

subject to (59). Moreover, v and w are of the same sign as 1− σ.

The proof (not reported) substitutes the desired functional form for v on the RHS of
(7), and verifies that the same functional form emerges on the LHS. The case σ = 1
is covered separately below. Similar results are in Alvarez and Stokey (2000).

Corollary 1 A unique solution w to (8) exists that is increasing and concave in s.

Proof. Existence: Since a unique v exists, w (s, z) = v (k, S, z) k−(1−σ) is the
unique solution for w. Increasing: In (59), a rise in s relaxes the constraint on x.
Moreover, if one inserts on the RHS of (8) a function w that increases in s, evidently
the property is preserved. Concave: The concavity of v (k, S, z) k−(1−σ) in S for fixed
k implies that w is concave in s.
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Figure 1: Relation to the convex adjustment-cost model

Corollary 2 The policy x (s, z) is increasing in s and, if z is i.i.d., increasing in z.

Proof. All changes in s ≡ S/k can be interpreted as changes in S for a given k.
By Lemma 2, X is, for all k, increasing in S. For fixed k, a rise in S implies a rise in
s and in x. The claim about z follows at once from Lemma 2.
The relation to other models is easily seen graphically. In its left panel, Figure 1

shows the consumption-investment trade-off in the standard model and the convex-
adjustment-cost model. In its right panel,the Figure shows the constraint imposed
by a particular upper bound on x, namely λ+ s. Since s ≥ 0, investment can never
be constrained by any number smaller than λ, and so that’s the tightest constraint
on x that can possibly arise. The position of the constraint will depend on what has
been happening earlier. In particular, an “seed crunch” and with it a high value of
Q will turn out to be more likely following a prolonged boom caused by a succession
of large realizations of z. Such realizations are likely to draw s to its minimum level
of zero, leading the constraint to be at λ.
We can also illustrate in terms of the marginal cost of investment. Let

C (x, s) =
investment cost
capital stock

=

½
x if x ≤ λ+ s
∞ otherwise

denote the cost of investment, in units of fruit. The marginal adjustment costs,
∂
∂x
C (x, s), are drawn in Figure 2. Other microfoundations — time to build — is also

related, but more complicated. If time to build is T periods, then there are, in
principle, T capital stocks, the capital that is productive now, and T − 1 capital
types, indexed by the number of periods’ waiting time until it becomes productive.
In sum there are two differences between this model and the standard one. First,

the shape of the feasible set is different, as Figure 1 shows. And, second, there is
intertemporal substitution in investment.
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Lemma 3 w is strictly increasing in z.

Proof. Since x ≥ −1 and since z0 is stochastically increasing in z, for any
function w (s, z) increasing in z0, the second term on the RHS of (8) is increasing in
z. Moreover, since C ≥ 0, the first term on the RHS of (8) is strictly increasing in z.

Lemma 4 w is differentiable with respect to s, with derivative

ws =
1

1 + λ+ s

¡
[1− σ]w − (1 + z) [z − x]−σ

¢
> 0 (9)

for all (s, z).

The proof is in Appendix 1; if follows the proof of proposition 2 of Lucas (1978)
but is complicated by the seed constraint.

Note that the term (1− σ)w is positive for all σ 6= 1 because for σ > 1, w < 0.

Lemma 5 The optimal policy x (s, z)satisfies

1− β

Z µ
(1 + x)

z − x

¶−σ h
(z0 − x0)

−σ
(1 + z0) + λw0s

i
dF

½
= 0 if s0 > 0
≤ 0 if s0 = 0

. (10)

Proof. By Lemma 2, v is differentiable w.r.t. k, and if w is differentiable w.r.t.
s, so is v w.r.t. S. Then the FOC is

C−σ − β

Z
(vk − vS) dF ≤ 0, (11)
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with equality if S0 > 0. We have

v (k, S, z) = max
S0

(
(zk + S0 − λk − S)1−σ

1− σ
+ β

Z
v (k + λk + S − S0, S0, z0) dF

)
.

The envelope result (since S does not enter the constraint S0 ≥ 0) is

vS = −C−σ + β

Z
vkdF

and

vk = (z − λ)C−σ+(1 + λ) β

Z
vkdF = (z − λ)C−σ+(1 + λ)

¡
vS + C−σ

¢
= (1 + λ) vS+(1 + z)C−σ

(12)
But by Lemma 2, v (k, S, z) = w

¡
S
k
, z
¢
k1−σ so that

vk = (1− σ)wk−σ − swsk
−σ and vS = wsk

−σ

Now, from (12), vk = (1 + λ) vS + (1 + z)C−σ, so that the FOC becomes

C−σ − β

Z ¡
λv0S + (1 + z)C 0−σ¢ dF ≤ 0

But vS = wsk
−σ and the above equation then reads

0 ≥ (z − x)−σ k−σ − β

Z ³
λw0s (k

0)
−σ
+ (1 + z0) (z0 − x0)

−σ
(k0)

−σ
´
dF

=

µ
z − x

1 + x

¶−σ
− β

Z ³
λw0s + (1 + z0) (z0 − x0)

−σ
´
dF, (13)

from which (10) follows.

2.1.1 The set on which (5) binds

Consumption is most volatile and investment least volatile when (5) binds. Let
∆ = {(s, z) | x (s, z) = λ+ s} be the set of states for which (5) binds. In this region,
X cannot respond to z and therefore C moves one-for-one with zk and, hence, is
more volatile than in the standard model. True, this statement is conditional on s,
but for (s, z) ∈ ∆, s0 = 0, and x0 = x (0, z0). If (s, z) remain in ∆ for more than one
period, then in period two and beyond,

x (0, z) = λ and c = z − λ.

The further z is from being a random walk (and it seems to depart substantially
from it, see Table 1), the more these rules depart from what the standard model
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Figure 3: The set ∆ when z is i.i.d.

would predict. In contrast, when s → ∞, we get the standard model, for then the
probability that (5) will bind in the foreseeable future goes to zero.
Even when z is i.i.d., x is increasing in z because a higher z today raises wealth and

causes a rise in desired future consumption. Because x is increasing in z, ∆ contains
large z values. For (s, z) ∈ ∆, s0 = 0 so that x0 = x (0, z0). Let z∗ (s) = inf{z|(z,s)∈∆} z
be the boundary of ∆. Then, as Figure 3 illustrates, we can then show the following:

Proposition 1 If z ∼ F (z) is i.i.d., then

z∗ (s) =
1 + (1 + α) (λ+ s)

α
, (14)

where α is the constant:

α =

µ
β

Z
λ (1− σ)w (0, z0)− (1 + z0) (z0 − x [0, z0])−σ

1 + λ
dF (z0)

¶1/σ
. (15)

Proof. From (10) and from an updated version of (9) we have

β

Z µ
1 + x

z − x

¶−σ
λ (1− σ)w0 − (1 + s0) (1 + z0) (z0 − x0)−σ

1 + λ+ s0
dF

½
= 1 if s0 > 0
≥ 1 if s0 = 0

,

i.e.,

β

Z
λ (1− σ)w0 − (1 + s0) (1 + z0) (z0 − x0)−σ

1 + λ+ s0

½
=
¡
1+x
z−x
¢σ

if s0 > 0
≥
¡
1+x
z−x
¢σ

if s0 = 0

i.e.,

α

½
= 1+x

z−x if s0 > 0
≥ 1+x

z−x if s0 = 0
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On the other hand, if x is constrained and held constant at λ + s as z varies, the
RHS is decreasing in z. Large z’s make the inequality strict. We find the smallest
one that will allow strict equality at x = λ + (1 + λ) s. Setting it at equality we
have 1 + λ + s = α (z − λ− s), i.e., (14). Moreover, for z = z∗ (s) at s0 = 0 so that
x0 = x (0, z0), and w0 = w (0, z0), which yields (15).
On ∆, only Q responds to changes in z; x does not, and therefore s0 = λ is

also unchanged. Therefore shocks to output today have no effect on output in any
future period. Since ∆ contains mainly boom states the model thus implies that the
persistence of output shocks is lower in booms. Moreover, in this case where z is
i.i.d., changes in Q will not forecast output. This matches the finding of Henry et
al. (2005) that the stock market is a better predictor of growth in recessions than in
booms and, in particular, that in non-recession periods equity returns do not predict
growth.

When z is serially correlated, the boundary of ∆ is no longer linear but ∆ retains
a shape similar to that portrayed in Figure 3: z∗ (s) still solves (14) in which α is
replaced by

α (z) =

µ
β

Z
λ (1− σ)w (0, z0)− (1 + s0) (1 + z0) (z0 − x [0, z0])−σ

1 + λ+ s0
dF (z0, z)

¶1/σ
.

While x is less volatile on ∆, to achieve a given growth rate, x must make up for
its low mean on ∆ with a higher mean off of ∆, which introduces a force towards
bimodality in the distribution of x and a higher volatility of x.

3 Complete markets

Assume that a market for seeds exists. This is not that unrealistic. Serrano (2006)
finds that 18 percent of patents granted to small inventors are traded at least once in
their lives, and that the citations-weighted percentage is even higher. Large firms also
often sell their patents and enter into patent-sharing agreements with one another.
Takeovers play a part in achieving transfers of intellectual capital; this is a fairly thick
market in which Microsoft and Pfizer, e.g., have been highly active. A firm can be
said to sell seeds when it spins off some activity, or when it hires people at wages that
include a negative compensating differential for the value that its workers will draws
from the experience gained; such a market is modeled, e.g., by Chari and Hopenhayn
(1991). An example of employees walking out with seeds is Xerox in the 70’s — it had
inventions that it was unable or unwilling to implement and that were later marketed
by its former employees.

Let p (s, z) be the price of seeds, and q (s, z) the price of a planted tree without
a claim on its current-period dividends. A firm pays all its net income in dividends
every period. All trade in seeds is between firms.
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Firms.–A firm consists of the trees it has planted and of seeds it has stored. The
firm maximizes its value. That is, it solves

Pk = max
X,Y 0

{zk −X + (k +X) q + pS0}

subject to (4) but not (5); the firm can support any level of investment X by a seed
purchase, so that S0 can be negative. Of course, (5) will have to hold in the aggregate.
Substituting from (4) for S0, the firm’s problem becomes

max
X
{(z + q) k + p (S + λk) + (q − [1 + p])X}

Arbitrage.–If q differed from 1 + p the firm could drive dividends to plus infinity
by sending X to plus or to minus infinity. A negative X would entail selling off k
and the seeds that it embodies at a price of 1+ p and paying the net proceeds out as
dividends.2 These extreme outcomes cannot arise in equilibrium, we must have the
“no-arbitrage condition”3

q = 1 + p. (16)

which, when substituted into the maximand, means that the firm’s cum-dividend
value is

P = (z + q) k + p (S + λk) . (17)

We shall obtain q from the household’s problem, and then (16) gives us p.

Households.–Let k =# of trees owned by the household. The household’s budget
constraint therefore is

qk0 + C = zk + qk. (18)

The RHS of (18) gives the household’s dividend receipts which are proportional to
total resources, the LHS describes how they are spent.

The household’s Bellman eq.–The household’s personal state is the pair (k, S) ,
and it takes (s, z) and their laws of motion as given. Its Bellman equation is

V (k, s, z) = max
k0≥0

(
(zk − q (s, z) [k0 − k])1−σ

1− σ
+ β

Z
V (k0, S0, s0 (s, z) , z0) dF

)
(19)

2The most relevant real-life counterpart of this is when a company sells off a division, or when it
is acquired.

3This arbitrage condition would hold even if we imposed the constraint that aggregate investment
be nonnegative. An individual firm could haveX < 0 without affecting aggregatesOn the other hand,
if the salvage value of k were less than unity, (16) would read

q ≤ 1 + p when X ≤ 0.
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with q (s, z) and s0 (s, z) taken as given.

Since the household gets all the rents, optimality of the equilibrium occurs if and
only if v = V . For p to equal its marginal social value in consumption units, we
should have p = vS

C−σ

Proposition 2 Optimum and equilibrium coincide; for all states,

v = V and p =
vS
C−σ

.

Proof. The FOC is
−C−σq + β

Z
V 0
kdF = 0. (20)

If v = V , (20) reads −C−σ − vS + β
R
v0kdF = 0, which implies that

vS = −C−σ + β

Z
v0kdF (21)

But (7) can be written as

v (k, S, z) = max
S0≥0

(
(zk − [λk + S − S0])1−σ

1− σ
+ β

Z
v (k + λk + S − S0, S0, z0) dF

)
,

(22)
and differentiating w.r.t. S, (21) follows. This implies that the household’s choice of
k0 should coincide with that of the planner.

Finally, let us show that P , the value of the firm, equals the marginal social value,
in consumption units, of the capital that it contains.

Corollary 3 The value of firms equals the marginal social value of the (k, S) bundle
that they contain:

P =
vk + svs
C−σ

=
(1− σ)w

c−σ
. (23)

Proof. The first equality in (23): Since we have established that p = vS
C−σ , we

need only show that
z + q + pλ =

vk
C−σ

But from (22),
vk
C−σ

= z − λ+
(1 + λ) β

C−σ

Z
v0kdF,

and therefore we need to show that

q + pλ = −λ+ (1 + λ)β

C−σ

Z
v0kdF.
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Now, since q + pλ+ λ = q (1 + λ), we simply need to show that

q =
β

C−σ

Z
v0kdF

but this follows from (20). The second equality in (23): Since v = w
¡
S
k
, z
¢
k1−σ,

vk = k−σ ([1− σ]w − sws) and vs = wsk
−σ

and the second equality follows.
Calculating q and p.–Optimum and equilibrium are the same, and therefore p

must equal the marginal social value of a seed:

p (s, z) =
1

U 0 (C)
vS = (z − x)σ ws (s, z) . (24)

because 1
U 0(C) =

(z−x)σ
k−σ and vS =

1
k
ws (s, z) k

1−σ. Now we can finally prove the result
on the relation between seeds and q:

Proposition 3 p (s, z) and, hence, q (s, z) are decreasing in s

Proof. By Corollary 1, w is concave in s which means that ws is decreasing in
s. By Corollary 2, x is increasing in s so that (z − x)σ is decreasing in s. Thus the
claim holds for p and, by (16) it also holds for q.

3.0.2 The negative dependence of Tobin’s Q on s.

Since s is probably not in the firm’s book value, by Q or “Tobin’s Q” we shall mean
the firm’s ex-dividend value per unit of k. That is, if D is the firm’s dividend, then

Q =
P

k
− D

k
(25)

We shall now see that if we include capital gains as part of dividends (which is in any
case needed if dividend policy is to be neutral in its effect on Q), then Q = q.
If the firm were to hold no seeds into the next period but, instead, sell them and

pay out the proceeds in dividends along with its net earnings, its dividends per unit
of k would equal

D̂

k
= z − x(1 + p) + p (s+ λ) .

In addition to D̂, however, the owners of the firm also enjoy capital gains, the expected
value of which is just the current value of the newly-planted trees, i.e., qX. Therefore
dividends plus capital gains are

D

k
=

D̂

k
+ qx = z + p (s+ λ)

13



Substituting into (25) yields and using (17) yields

Q = z + q + p (s+ λ)− [z − x(1 + p) + p (s+ λ)]− qx

= q.

By proposition 3, Q is decreasing in s. This is a GE effect, however, that applies
to the value of trees when all firms have more seeds. It does not hold in the cross
section. A firm that owned an above-average stock of seeds would be more valuable
than other firms.

4 Incomplete markets

This section simply assumes that the market for seeds is closed and that, while each
firm’s state (k, S, z) is public information, separate markets for k and s do not exist.
It would of course be better to model the friction that causes the market for seeds to
have zero transactions, but this would complicate things. So, let us assume that only
(k, S) bundles trade in the form of shares of firms. We use the recursive equilibrium
concept of Mehra and Prescott (1980) extended to a growing production economy, as
done in Jovanovic (2006, Sec. 4).

Suppose that firms’ shares trade but that seeds and trees do not. Seeds then have
to be stored by the firms that produced them, and the representative firm holds the
tree-seed bundle (k, S) under its roof. The household can own a claim on the dividends
paid by such a firm and no other assets exist. Therefore this decentralization has just
two markets: A market for output, and a market for firms’ shares. Since the number
of date-t goods (consumption, capital, and seeds) is three, the number of goods
exceeds the number of markets, and we cannot be sure that a recursive competitive
equilibrium is optimal.

Assume a continuum of firms of measure one and an equal number of households.
Equilibrium then requires that each household hold exactly one share. Firms pay
(z − x [s, z]) k dividends in state (k, s, z), and households take firms’ policies x (s, z)
as given.

4.0.3 The household’s decision problem

With n shares, a household’s wealth is the current dividend, (z − x) k plus the value of
his holdings, Q̂ [s, z] kn. This wealth is spent on consumption and on future holdings

of shares Q̂ (s, z) kn0. Thus Q̂kn0+C =
³
[z − x] k + Q̂k

´
n, or after dividing through

by k,
Q̂n0 + c =

³
z − x+ Q̂

´
n,

so that
c = (z − x)n+ Q̂ (n− n0)

14



where x is given to the household. The household takes the aggregate law of motion
of k0 (s, z) x (s, z) and s0 (s, z) as given. His state is (k, n, s, z), and, with some of the
arguments (s, z) dropped from the notation, his Bellman equation then is

V (k, n, s, z) = max
n0

⎧⎪⎨⎪⎩
³
(z − x [s, z])n+ Q̂ (s, z) (n− n0)

´1−σ
k1−σ

1− σ
+ β

Z
V (k0 (s, z) , n0, s0, z0) dF

⎫⎪⎬⎪⎭ .

Deriving the pricing equation.–As in the planner’s problem, V (k, n, s, z) =W (n, s, z) k1−σ,
where

W (n, s, z) = max
n0

⎧⎪⎨⎪⎩
³
[z − x (s, z)]n+ Q̂ (s, z) [n− n0]

´1−σ
1− σ

+ β (1 + x [s, z])1−σ
Z

W (n0, s0 [s, z] , z0) dF

(26)
The derivative of W with respect to n, call it Wn, exists for much the same reasons

that ws does. Equilibrium requires that n0 (1, s, z) = 1. At equilibrium, the first-order
condition is

(z − x [s, z])−σ Q̂ (s, z) = β (1 + x [s, z])1−σ
Z

Wn (1, s
0 [s, z] , z0) dF. (27)

The envelope theorem then implies

Wn (1, s, z) = (z − x [s, z])−σ
h
z − x (s, z) + Q̂ (s, z)

i
.

Updating, substituting into (27), and dividing by (z − x)−σ gives our version of the
Lucas (1978) pricing formula

Q̂ (s, z) = β (1 + x [s, z])

Z
M (s, s0, z, z0)

³
z0 − x [s0 (s, z) , z0] + Q̂ (s0 [s, z] , z0)

´
dF,

(28)
where

M (s, s0, z, z0) ≡
µ
[1 + x (s, z)] (z0 − x [s0 (s, z) , z0])

z − x (s, z)

¶−σ
(29)

is the MRS in consumption between today and tomorrow.

4.0.4 The firm’s decision problem

Since markets for s do not exist, the firm’s only decision is x. Let us use bold letters
to denote aggregate states and decisions x (s, z) and s0 (s, z). Let P denote the cum-
dividend price of 1/k’th of the representative firm, i.e., the price of the tuple (1, s).
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Equilibrium is efficient if P = vk+svS, with v defined in (7). The functional equation
(in units of the consumption good) for its cum-dividend price per unit of k is

P (s, s, z) = max
x

µ
z − x+ β (1 + x)

Z
M (s, s0, z, z0)P (s0 [s, z] , s0, z) dF

¶
(30)

Writing P in this way implies that s is public information s even when it differs from
s. I.e., (30) assumes that (s, s) is a sufficient statistic for the how the market values
the firm. If the market did not know a firm’s s, it would try to guess s from the firm’s
choice of x, and incentive constraints would be needed to accompany the problem in
(30). Mayers and Majluf (1985) deal with this issue. Thus the seeds market does not
exist for reasons other than imperfect information about s.
In equilibrium,

1. All firms must choose the same x, and so we ask that in state (s, z) = (s, z),
the firm will behave like other firms. That is, at the fixed point for P , the
RHS of (30) is maximized by x (s, s, z) = x (s, z). This would imply that
s0 = λ+s−x(s,s,z)

1+x(s,s,z)
= s0 (s, z) = λ+s−x(s,z)

1+x(s,z)
.

2. For all (s, z), the maximized value of the firm must equal the value that the
shareholders hold:

P (s, s, z) = z − x (s, s, z) + (1 + x (s, s, z)) Q̂ (s, z) . (31)

In fact, property 1 implies property 2 as one can deduce by setting x (s, s, z) =
x (s, z) for all (s, z) so that s0 = s0, in which case substitution from (31) into (30)
makes it identical to (28). Thus it suffices to show that property 1 holds. Recall that
U (C) = c1−σ

1−σ so that U
0 (C 0) /U 0 (C) = [(1 + x) (z0 − x0) / (z − x)]−σ. Then, evaluated

at x = x, the FOC in (30), calculated by solving

P (s, s, z) = max
s0

½
z − x̂ (s0, s) + β (1 + x̂ [s0, s])

Z
M (s, s0 [s, z] , z, z0)P (s0 [s, z] , s0, z0) dF

¾
(32)

where

x̂ (s0, s) =
λ+ s− s0

1 + s0
, (33)

and does not depend on the firm’s action.

Differentiability of P .–Similar to the proof of Lemma 4 we can establish that
Ps (s, s, z) ≡ ∂

∂s
P (s, s, z) exists everywhere. Since

∂x̂

∂s0
=

∂ (1 + x̂)

∂s0
=

∂

∂s0

µ
1 + λ+ s

1 + s0

¶
= − 1 + x

1 + s0
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the derivative w.r.t. s0 is 1+x
1+s0 − β 1+x

1+s0

R
M 0P 0dF + (1 + x)β

R
M 0P 0

sdF ≤ 0, with an
exact equality if s0 > 0. The term (1 + x) cancels, and so the FOC to the problem
(32) is

1− β

Z
M 0P 0dF + (1 + s0)β

Z
M 0P 0

sdF

½
= 0 if s0 > 0
≤ 0 if s0 = 0

, (34)

Efficiency.–Here P is the cum-dividend price of one-k’th of the firm in current
consumption units. Per unit of its k, a firm is a package of (1, s) units of (k, S).
Therefore, efficiency would appear to require that P = 1

U 0 (vk + svS). In what follows
we let x (s, z) denote the planner’s optimal policy, and s0 (s, z) = λ+s−x(s,z)

1+x(s,z)
.

The next claim states that if the representative firm used the planner’s policy, its
market value would equal the marginal social value of the bundle (k, S):

Lemma 6
P (s, s, z) = P, (35)

where P is given in (23).

Proof. Updating (35) by a period we have P (s0 [s, z] , s0, z0) = (1− σ) (z0 − x [s0, z0])σ w (s0, z0).
Substituting into the RHS of (30), the latter becomes

z − x (s, z) + β (1 + x [s, z])

Z
M (s, s0, z, z0) (1− σ) (z − x [s, z])σ w (s0 [s, z] , z0) dF

= z − x+ (1− σ)β
(1 + x)1−σ

(z − x)−σ

Z
w (s0, z0) dF in view of (29)

= (1− σ) (z − x [s, z])σ w (s, z)

= P (s, s, z) , as claimed in (35).

The previous lemma is, however, conditional on the assumption that the repre-
sentative firm uses the planner’s policy, i.e., that

x (s, s, z) = x (s, z) . (36)

Next we shall show that (36) does hold if (35) does.

Lemma 7 If P satisfies (35), then (36) holds.

Proof. If (36) holds, the firm’s FOC, (34), must coincide with the planner’s FOC,

(10). In view of (29), LHS of (34) can be written as 1−β
R ³ (1+x)(z0−x0)

z−x

´−σ
(P 0 − [1 + s0]P 0

s) dF .

This is the same as the LHS of (10) if

(z0 − x0)
−σ
(P 0 − [1 + s0]P 0

s) =
h
(z0 − x0)

−σ
(1 + z0) + λw0s

i
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i.e., if

1 + z +
λws

(z − x)−σ
= P − (1 + s)Ps (37)

Now applying the envelope theorem in (32) and noting that, since x̂ (s0, s) = λ+s−s0
1+s0 ,

∂x̂
∂s
= 1

1+s0 =
1+x
1+λ+s

, gives

Ps =
∂x̂

∂s

µ
−1 + β

Z
M 0P 0dF

¶
=

1 + x

1 + λ+ s

µ
−1 + P − (z − x)

1 + x

¶
,

=
P − 1− z

1 + λ+ s
.

Substituting this into (37) for Ps gives

1 + z +
λws

(z − x)−σ
= P − (1 + s)

P − 1− z

1 + λ+ s

=
λP

1 + λ+ s
+ (1 + s)

1 + z

1 + λ+ s

Rearranging,
λws

(z − x)−σ
=

λP − λ (1 + z)

1 + λ+ s
,

i.e.,

ws = (z − x)−σ
P − (1 + z)

1 + λ+ s

= (z − x)−σ
(1− σ) (z − x [s, z])σ w (s, z)− (1 + z)

1 + λ+ s
(35),

=
1

1 + λ+ s

¡
[1− σ]w − (1 + z) [z − x]−σ

¢
But this is the same as (9).
Lemmas 6 and 7 then imply the main result of this section:

Proposition 4 The incomplete-market economy has an efficient equilibrium.

For general parameter values, we cannot rule out other equilibria that are not
efficient. In general, the RHS of (32) is not a contraction operator, and then we
cannot tell if more than one solution for P exists. However, for some parameter
values, e.g. when z is bounded from above by zmax, then we do have uniqueness.

Proposition 5 If
βzmax < 1 (38)

Then the incomplete-markets economy (i) has a unique equilibrium, and (ii) it is
efficient.

Proof. (i) When (38) holds, the RHS of (32) is a contraction operator with
modulus βzmax < 1, and then the solution for P is unique. (ii)We apply the previous
proposition.

18



4.0.5 The effects of financial-market completion

The results say that if all firms are publicly traded, a stock market exists, the emer-
gence of a seeds market should affect neither prices nor quantities. It is enough that
all firms trade on the stock market. Even in a financially developed society like the
U.S., however, only about one half of the privately owned capital trades on stock
markets, and therefore further enlargement of the stock market would probably raise
efficiency. That certainly was the conclusion of Greenwood and Jovanovic (1990) in
a model in which different-sized firms gradually join the stock market as they grow.

The efficiency result should extend to a situation in which firms do differ because,
e.g., they draw different z’s. Jovanovic and Braguinsky (2004) develop a related
one-period model in which firms differ in two dimensions: Project quality which we
can interpret as s, and managerial ability, which we can interpret as z. They find
that even when s is private information to the firm being acquired, the stock market
achieves efficiency.

All this must be qualified by noting that seeds, S , do not share some of the
features of inventions that are sometimes thought important. Namely,

1. Seeds are of purely private value, and not costlessly reproducible — as informa-
tion perhaps is — and cannot raise output in more than one firm;

2. The producer of a seed has a perfect property right to it even when markets for
seeds do not exist.

If either assumption did not hold, equilibrium would not be efficient.

5 Numerical solution and fitting the data

Data.–Since z = Y/k, we use the output-capital ratio to measure z. We measure
k by private non-residential fixed assets, NIPA table 4.1; output and investment are
from NIPA table 1.1.5. For Patents we use the total number “utility” (i.e., invention)
patents from the U.S. Patent and Trademark Office for 1963-2000, and from the U.S.
Bureau of the Census (1975, series W-96, pp. 957-959) for 1946-62. The number of
registered trademarks is from the U.S. Bureau of the Census (1975, series W-107, p.
959) for 1946-1969, and from various issues of the Statistical Abstract of the U.S. for
later years.

The benchmark model with adjustment costs.–When thinking about empirics, we
shall compare the model for the standard model with no seeds constraint and with a
quadratic adjustment-cost. Instead of (1), we assume that Y = zk − h

¡
X
k

¢
k, where

h (x) = b
2
(x− δ)2 is the adjustment cost. It is described more fully in Appendix 4.

We continue to have just three values for z, and maintain the same persistence and
volatility.
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Process for z.–When de-trended linearly it follows an AR(1) process with au-
tocorrelation coefficient 0.903, and innovation variance 0.026. The Tauchen-Hussey
procedure for discretizing the AR yields a first-order Markov chain with 3 evenly
spread-out states, (z1, z2, z3) = (0.092, 0.174, 0.256), and the symmetric transition
probability matrix

z1 z2 z3
0.787 0.210 0.004

0.667 0.167
0.787

(39)

Table 1 : The Matrix of transition probabilities for z

which has the stationary distribution (0.307, 0.387, 0.307) .

Parameters.–At this point we assume that k depreciates at the rate δ and S at
the rate γ so that their laws of motion (2) and (4) become k0 = (1− δ) k + X and
Y 0 = (1− γ)Y +λk−X respectively. The details are in Appendix 2. The parameter
values in Table 2

β σ δ γ λ z̄ ρ std(z)
0.95 2.0 0.08 0.15 0.134 0.174 0.903 0.065

Table 2 : Parameter values for the seeds model

were chosen, among other reasons, so as to match (i) An investment-capital ratio of
0.098, and (ii) An average level of Tobin’s Q of 1.22 and (iii) Some properties of the
Q and x series since WW2 which will be shown in Figure 5. Section 6.2 shows that for
a constant-z economy the growth rate is bounded by λ−δ, and that if x < λ−δ, seeds
accumulate indefinitely and the seeds constraint becomes irrelevant. The depreciation
of S is γ and it was chosen based on estimates of private obsolescence of knowledge
by Griliches, Pakes, Schankerman and others.

5.1 Simulated decision rules and Q.

For the parameter values and transition probabilities stated in Tables 1 and 2, Figure
4 plots the equilibrium Q, the decision rules and the value function. In all the plots,
the variable on the horizontal axis is s, the beginning-of-period seeds-capital ratio.
We may summarize the plots as follows:
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1. Panel 1 of Figure 4 plots Tobin’s Q.4 As s gets large, p (s, z)→ 0 for all z, and
therefore Q (s, z)→ 1. The maximal Q of 2.3 occurs when s = 0 and z = z3.

2. The second panel plots investment, which responds more to s when z is high.
At z3 investment is constrained at low values of s. In particular, x (s, z3) = λ+s
when s is close to zero, so that the initial slope of the red curve in Panel 2 is
unity. When z ∈ {z1, z2}, however, x is never constrained and s then has a
much smaller effect on it.

3. In Panel 3 we see the long-run distribution of seeds. Thirteen percent of the
time s = 0, and the median is 0.20. Occasionally, the stock of seeds may exceed
ninety percent of k. Indeed, illustrated in Figure 5, the simulated s peaks at
0.7 in the late 80’s.

4. Finally, the last panel plots w which is negative (because σ = 2 exceeds unity)
and increasing in s. The increase with s is sharper at higher levels of z because
seeds are more valuable when z is high.

The effect of s is to move x and Q in opposite directions. On the other hand, z
moves x and Q in the same direction, and this effect dominates so that the correlation
between x and Q is positive as the matrix of unconditional correlations for the model
and data in Table 3 shows:

z s x Q
-0.59 0.97 0.61

-0.51 -0.51
0.42

Model

z s x Q
0.03 0.19 0.63

-0.24 -0.29
0.54

Data
Table 3 : The Matrix of unconditional correlations in the model and

in the data

The signs the model produces are mostly correct, but the magnitudes are far apart in
some cases. The main source of the discrepancy is the strong correlation (0.97) that
the model produces between z and x. This induces a negative correlation between
z and s via the negative influence that x exerts on s0 in (60) or in its empirical
equivalent (40). The data show only a modest correlation between z and x and,

4To calculate Q we substitute fom (9) into (24) to obtain

p (s, z) = (z − x)σ
1

1 + λ+ s

³
[1− σ]w − (1 + z) [z − x]−σ

´
=

1

1 + λ+ s

µ
1− σ

(z − x)−σ
w − [1 + z]

¶
Finally, (16) gives us q, which is the market value of planted trees in the complete-market decen-
tralization, and the value of the firm in the incomplete-market decentralization.
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Figure 4: Simulated value, decision rules, and Tobin’s Q for z1 < z2 < z3.
On the horizontal axis is s.

hence, a negligible correlation between z and s. We now describe how the data were
generated and how the model fits. The correlations involving Q will be discussed
when we get to intangibles

5.2 Fitting data

The state variables of the model are k, S, and z, and the decision variable is x. In
addition, we focused on the price of seeds, p, but the real motivation for it is the role
that p plays in the price of the firm, Q. Thus we shall fit the following post-war series:
(i) The output-capital ratio, which in the model is z, (ii) The seed-capital ratio, s,
(iii) The investment-capital ratio, x, and (iv) Tobin’s q as measured by P − z, with
P given by (23).

Quadratic adjustment costs instead of the seeds constraint.–We shall contrast the
seeds model with a standard model with no seeds constraint but with a quadratic
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adjustment-cost. That is, instead of (1), the adjustment-cost model assumes that
output is Y = zk − h

¡
X
k

¢
k, where h (x) = b

2
(x− δ)2 is the adjustment cost. The

model is otherwise the same as the seeds model, except that now λ drops out with the
seeds constraint. Table 4 gives the parameter values for the adjustment-cost model:

β σ δ γ b z̄ ρ std(z)
0.95 2.0 0.08 0.15 12.06 0.183 0.902 0.065

Table 4 : Parameter values for the adjustment-cost model

The analysis is in Section 6.2. We continue with the same three values for z, and set
b = 12.06 which yielded the best fit. The firm’s FOC leads to the equation

x = δ +
1

b
Q = 0.08 + 0.08Q

which is numerically quite close to Hayashi’s OLS estimate x = 0.98 + 0.42Q for the
period 1953-76. In all four Panels of Figure 5, the solid blue lines represent the seeds
model, the dashed blue lines represent the adjustment-cost model, and the red lines
represent the data. The variables were constructed as follows:

1. The red line in Panel 1 of Figure 5 plots z = Y/k where Y = private non-farm
output and k = non-farm stock of capital. The model has just 3 values of z
to fit this with: 0.092, 0.174, and 0.256, obtained previously by applying the
Tauchen-Hussey procedure to the output-capital ratio.

2. Panel 2 plots the series for s implied by the model as the blue line. Panel 2 also
plots several possible proxies for s, each constructed via the formula

s0 =
n+ (1− γ)s− x

1− δ + x
, (40)

where n is one of the following: (A) n = patents/(θk) (red line), (B) n =
trademarks/(θk) (green line), (C) n = λ (turquoise line). The constant θ fixes
units appropriately; it is explained in Appendix 3.5 Red, green, and turquoise
lines in the second panel of Figure 5 correspond to cases A, B, and C. In cases A
and B the least-squares routine chose s0 = 0 as the initial condition. We noted
that the simulated s peaks at 0.32 in the late 80’s. The model overpredicts the
empirical estimate of st, i.e., the estimate of the seeds series that produces the
model’s best fit to the post-war data. Panel 2 shows all three estimated series
for st remaining below 0.13. Thus the post-war stock of seeds always was less
than thirteen percent of installed capital.

5The model is neutral in (λ, θ). Doubling these two parameters and doubling S0 doubles St for
all t but leaves all the other variables unchanged. Therefore θ has been normalized to unity up to
this point.
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Figure 5: Fitting the post-war data
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3. Panel 3 shows that their desire to fit Q and its movements, the seeds and the
adjustment-cost models both generate too much investment volatility. This will
also be evident in Table 5. Neither model resolves the excess-volatility puzzle.
In the seeds model z exerts a more important influence on it than does s. From
Panel 2 we see that the simulated s peaks at 0.32

4. In Panel 4 of Figure 5 we plot the actual and fitted Q. For the measured Q, for
1951-1999 we use Hall’s series, but since it ends in 1999, for the period 1999-
2004 we use Abel’s data scaled so that the two Q series match in 1999. This is
the red line in Panel 4 of Figure 5. To get a sustained rise in Q we must have
a prolonged period during which z = z3. The ‘90s appear to have been such a
period.

The parameters θ and s0 were chosen to minimize the RSS between the simulated
and constructed series. The model has a problem with reconciling the following facts:

• Y/k falls dramatically in the late 70’s and early 80’s, something that the model
interprets as a low-z epoch causing the huge buildup of seeds portrayed in panel
2 and the resulting collapse of Q to its lowest possible level of unity, and

• The rise in Q starting in the early 80s. Even with the accompanying rise in the
estimate of z from z1 to z2 in the middle 80s and then to z3 in 1991, it takes
time for the model s (the blue line) to be drawn to zero and for Q to rise to its
maximal value of 1.75.

5.3 Intangibles and Q

The correlation between s and Q is bolded in the two panels of Table 3. A rise in s
represents a rise in the ratio of unimplemented intangible capital to tangible capital.
The stock of all intangible capital is k + S with k being the number of seeds already
in the ground and being used for production. Therefore the ratio

All intangible capital
Tangible capital

=
k + S

k
= 1 + s

is also monotone in s. This is why the seeds model implies a fall in Q whereas Hall’s
(2000) implies a rise in Q. In my model, variation in intangibles is caused by variation
in the stock of unimplemented seeds. In Hall’s model there are variable proportions
between intangibles and physical capital in production and there is no storage of
intangibles, hence a rise in intangibles gives a rise in the productivity of the firm’s
measured capital and (barring GE effects) a rise in the firm’s Q.

The model matches well the strong positive correlation between z and Q and
the negative correlation between s and x. That the latter should be negative in the
model may at first seem to contradict Corollary 2 which says that the policy x(s, z) is
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increasing in s, a fact that is also borne out by Panel 2 of Figure 4. It turns out that
the negative feedback effect of x on s0 via (40) is stronger and renders the correlation
negative.

We already saw that the model generates too much volatility in investment. To
this it is driven by the attempt to also fit Q. But the signs of the z − x correlations
are both positive in the two tables, even if their magnitudes differ a lot. The glaring
discrepancy is the negative relation between s and z. Like the negative relation
between s and x, this one arises because s is constructed using (40), and again reflects
the negative effect that x exerts on s0 through this accounting relation, and not any
negative effect of s on x.

6 Comparison with the adjustment-cost model

We shall now show that our model loosens the relation between investment and Q, so
that Abel and Eberly’s (2006) argument carries over to the aggregate setting. Figure
3 shows the region ∆ on which x cannot respond to z and, hence, to Q. Since ∆
contains mainly boom states, we would expect that x should respond more elastically
to Q in recessions than in booms.

In the ACM, z is the only state variable and therefore a one-to-one relation emerges
between x and Q, and it is shown as the straight black line in Figure 6.When z takes
on its lowest value, x is below δ, and Q falls below unity. In the seeds model we also
allow negative net investment, but, in contrast to the ACM where the two go hand
in hand, in that model this very possibility precludes Q from falling below 1. In the
seeds model there are two state variables, s and z.
Next, let us contrast the two models’ implications for the second moments of the

data. Parameters were chosen for the two models so that they both fit the sample
averages E (z), E (c), E (x), and E (Q). Then the two models’ abilities to explain
the second moments can be contrasted. Column 1 of Table 5 presents summary
statistics for the data. As before, the s series was generated via (40). Columns 2
and 3 reports the results of three 100,000-period simulations of two models when the
shocks z ∈ {0.092, 0.174, 0.256} are drawn according to the transition matrix in (39).

The first model is the Seeds model; Column 2 presents its implications under the
parameter values in Table 2 — the parameters that, together with (39), were used
to generate the decision rules in Figures 4 and 5. The initial condition is s0 = 0.
One should compare the numbers in Column 2 to the information in Figure 4. For
instance, E (s) and S (s) are the mean and standard deviation of the distribution of
s plotted in Panel 3 of Figure 4.

Column 3 presents the same set of statistics for the ACM under the parameter
values given in Table 4. Both models underpredict the volatility of z by a factor
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Figure 6: Investment and Q in the Seeds and Adjustment-Cost Models

of almost two.6 The seeds model overpredicts S (x) by more than the ACM, but it
underpredicts S (Q) and S (c) by less. Finally, the seeds model has an additional
endogenous variable — seeds — and no new exogenous variables, but as we have seen
in Figure 5 it does not explain well any reasonable measure of seeds. Consumption
volatility is the same in the two models, but investment is more volatile in the seeds
model: Even though the output-capital ratio is equally volatile in the two cases, the
seeds constraint induces a negative correlation between c and x on ∆, which allows
S (x) to both be higher in the seeds model than in the ACM.

6The Tauchen-Hussey procedure is thus pretty far off in this dimension. This seems to be because
for a highly persistent process, the approximation with only 3 shocks, the AR coefficient estimated
from simulated data underestimates the true coefficient. Since Var(z) = Var(innovation)/(1 - a),
the ratio is sensitive to a and when a is understated, the ratio can easily be off by a factor of two.
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Statistic Data
Seeds Model

s0 = 0
No Seed Constraint
Adj-Cost Model

E(z) 0.174 0.174 0.188
E(x) 0.098 0.098 0.098
E(s) 0.195 via (40) 0.262 —
E(Q) 1.218 1.218 1.218
E(c) 0.076 0.076 0.085
S(z) 0.065 0.065 0.065
S(x) 0.008 0.048 0.036
S(s) 0.047 0.240 —
S(Q) 0.571 0.432 0.438
S(c) 0.064 0.021 0.022

.Table 5 : Comparison to the adjustment-cost model

7 Conclusion

This paper has emphasized the role of new ideas in investment and in the business
cycle. It has found that investment options raise the volatility of investment com-
pared to the standard adjustment-cost model. When they facilitate the formation
of new capital, new ideas reduce the value of old capital. Thus what we often call
intangible capital acts to reduce the value of tangible capital. When intangibles are
used up by investment, we found that investment acquires an intertemporal substitu-
tion character that is missing in the standard model. Finally, we found that a stock
market alone suffices to ensure efficiency of the equilibrium.
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8 Appendix

8.1 Proof of differentiability (Lemma 4)

I use subscripts to denote the state that a policy pertains to. Thus we have the
accounting identities

s0s =
λ+ s− xs
1 + xs

and s0s+h =
λ+ s+ h− xs+h

1 + xs+h
.

Variations.–We use (33) to figure out the feasible variations.
Variation (i).–If we begin at state s+h, and if we want to end up at s0s, we need

an investment of

x̂ (s0s, s+ h) =
λ+ s+ h− λ+s−xs

1+xs

1 + λ+s−xs
1+xs

=
(1 + xs) (λ+ s+ h)− (λ+ s− xs)

1 + xs + λ+ s− xs

=
(1 + xs)h+ xs (λ+ s) + xs

1 + λ+ s

= xs + h
1 + xs
1 + λ+ s

.

Then

Ah ≡
µ
1 + x̂

1 + xs

¶1−σ
=

µ
1 +

h

1 + λ+ s

¶1−σ
,

and
x̂− xs = h

1 + xs
1 + λ+ s

.

Therefore

w (s+ h, z) ≥ U (z − x̂ [s0s, s+ h]) + (1 + x̂ [s0s, s+ h])
1−σ

β

Z
w (s0s, z

0) dF

= U (z − x̂ [s0s, s+ h]) +Ah (1 + xs)
1−σ β

Z
w (s0s, z

0) dF

= U (z − x̂ [s0s, s+ h]) +Ah (w (s, z)− U (z − xs))

and

w(s+ h, z)− w(s, z) > U(z − x̂[s0s, s+ h])−AhU(cs) + (Ah − 1)w(s, z)
= U(z − x̂[s0s, s+ h])− U(cs) + (Ah − 1)(w(s, z)− U(cs)).
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Dividing both sides by h and taking the limit as h& 0 gives

d

ds
w(s, z) > −U 0(cs) lim

h&0

x̂− xs
h

+ lim
h&0

(Ah − 1)
h

[w(s, z)− U(cs)]

= −U 0(cs)
1 + xs
1 + λ+ s

+ (1− σ)
w(s, z)− U(cs)

1 + λ+ s
. (41)

because, by L’Hôpital’s rule,

lim
h&0

(Ah − 1)
h

= lim
h&0

dAh

dh
= lim

h&0

d

dh

µ
1 +

h

1 + λ+ s

¶1−σ
=

1− σ

1 + λ+ s
lim
h&0

µ
1 +

h

1 + λ+ s

¶−σ
=

1− σ

1 + λ+ s

Variation 2: Start from s and end at s0s+h...

Variation (ii) .– If we begin at state s, and if we want to end up at s0s+h, we need
an investment of

x̂
¡
s0s+h, s

¢
=

λ+ s− λ+s+h−xs+h
1+xs+h

1 + λ+s+h−xs+h
1+xs+h

=
(1 + xs+h) (λ+ s)− (λ+ s+ h− xs+h)

1 + xs+h + λ+ s+ h− xs+h

=
xs+h (λ+ s)− (h− xs+h)

1 + λ+ s+ h
=
(1 + λ+ s)xs+h − h

1 + λ+ s+ h

=
(1 + λ+ s+ h)xs+h − h (1 + xs+h)

1 + λ+ s+ h

= xs+h −
h (1 + xs+h)

1 + λ+ s+ h
(42)

< xs+h −
h (1 + xs)

1 + λ+ s+ h
(43)

because by Corollary 2, x is increasing in s. We shall also need the following impli-
cation of (42):

Bh ≡
µ
1 + x̂

1 + xs+h

¶1−σ
=

µ
1− h

1 + λ+ s+ h

¶1−σ
Therefore

w (s, z) ≥ U (z − x̂) + (1 + x̂)1−σ β

Z
w
¡
s0s+h, z

0¢ dF
= U (z − x̂) +Bh (1 + xs+h)

1−σ β

Z
w
¡
s0s+h, z

0¢ dF
= U (z − x̂)−BhU (z − xs+h) +Bhw (s+ h, z) .
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and therefore

w (s, z)− w (s+ h, z) ≥ U (z − x̂)−BhU (z − xs+h) + (Bh − 1)w (s+ h, z) ,

i.e.,

w (s+ h, z)− w (s, z) ≤ BhU (z − xs+h)− U (z − x̂) + (1−Bh)w (s+ h, z) (44)

= U (z − xs+h)− U (z − x̂) + (1−Bh) [w (s+ h, z)− U (cs+h)](45)

Now, [w (s+ h, z)− U (z − xs+h)] is Lipschitz in h for every z > 0. This is because it
is bounded above by the increment in value when a unit of consumption is added in
perpetuity, and the latter is bounded as long as c > 0, i.e., as long as z > 0). Now,
by (43), xs+h ≥ x̂+ h(1+xs)

1+λ+s+h
and therefore

U (z − xs+h)− U (z − x̂) ≤ U

µ
z − x̂+

h (1 + xs)

1 + λ+ s+ h

¶
− U (z − x̂)

Using the RHS of this expression to replace the first two terms on the RHS of 45)
leaves the inequality in (45) undisturbed. Moreover, using L’Hôpital’s rule as before,

lim
h&0

1

h
(1−Bh) [w (s+ h, z)− U (cs+h)] =

1− σ

1 + λ+ s
[w (s, z)− U (cs)]

Putting this all together,

ws ≤
1

1 + λ+ s
(U 0 (cs) (1 + xs) + (1− σ) [w (s, z)− U (cs)]) (46)

Then (41) and (46) imply (9). To see this, (9) says (in this notation) that

ws =
1

1 + λ+ s
([1− σ]w − (1 + z)U 0 (c)) > 0.

For them to be the same we would need that

− (1 + x)U 0 + (1− σ) (w − U) = (1− σ)w − (1 + z)U 0,

i.e.,
− (1 + x)U 0 − (1− σ)U = − (1 + z)U 0,

i.e.
(1− σ)U = (z − x)U 0

which is true because z−x = c so that both sides of the equation equal c1−σ. Therefore
(41) and (46) imply (9).

32



8.2 Depreciation

Let δ = depreciation of k and let γ be the depreciation of S. The laws of motion and
the value are

k0 = k (1− δ) +X, (47)

S0 = S (1− γ) + λk −X, (48)

and

v (k, S, z) = max
X≤λk+S

(
(zk −X)1−σ

1− σ
+ β

Z
v (k [1− δ] +X,λk + S [1− γ]−X, z0) dF

)
.

(49)
Since

S0

k0
=

S0

k

k

k0
=

s (1− γ) + λ− x

1− δ + x
,

we have

s0 =
λ+ s (1− γ)− x

1− δ + x
, (50)

so that (1− δ + x) s0 = λ+ s (1− γ)− x. Collecting terms, we get

xs0 + x = λ+ s (1− γ)− (1− δ) s0,

which leaves us with

x̂ (s0, s) =
λ+ s (1− γ)− (1− δ) s0

1 + s0
. (51)

The auxiliary Bellman equation is

w (s, z) = max
x

(
(z − x)1−σ

1− σ
+ (1− δ + x)1−σ β

Z
w

µ
λ+ s (1− γ)− x

1− δ + x
, z0
¶
dF

)
,

(52)
and we still have P = vk+svs

C−σ .

differentiability, i.e., ws, when there is depreciation I use subscripts to denote
the state that a policy pertains to. Thus we have the accounting identities

s0s =
λ+ s (1− γ)− xs

1− δ + xs
and s0s+h =

λ+ (s+ h) (1− γ)− xs+h
1− δ + xs+h

.
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If we begin at state s+ h, and to end up at s0s we need an investment of

x̂ (s0s, s+ h) =
λ+ s (1− γ)− (1− δ) s0s

1 + s0s

=
λ+ (s+ h) (1− γ)− (1− δ) λ+s(1−γ)−xs

1−δ+xs

1 + λ+s(1−γ)−xs
1−δ+xs

(substituting from [50])

=
(1− δ + xs) (λ+ (s+ h) (1− γ))− (1− δ) (λ+ s (1− γ)− xs)

1− δ + xs + λ+ s (1− γ)− xs

=
(1− δ + xs) (λ+ s (1− γ) + h (1− γ))− (1− δ) (λ+ s (1− γ)− xs)

1− δ + λ+ s (1− γ)

=
(1− δ) (λ+ s (1− γ) + h (1− γ)) + xs (λ+ s (1− γ) + h (1− γ))− (1− δ) (λ+ s (1−

1− δ + λ+ s (1− γ)

=
(1− δ)h (1− γ) + xs (λ+ s (1− γ) + h (1− γ)) + (1− δ)xs

1− δ + λ+ s (1− γ)

=
(1− δ)h (1− γ) + xs [1− δ + λ+ s (1− γ) + h (1− γ)]

1− δ + λ+ s (1− γ)

= xs +
(1− δ)h (1− γ) + xsh (1− γ)

1− δ + λ+ s (1− γ)

= xs + h
(1− γ) (1− δ + xs)

1− δ + λ+ s (1− γ)
.

Then

Ah ≡
µ
1− δ + x̂

1− δ + xs

¶1−σ
=

Ã
1 +

h (1−γ)(1−δ+xs)
1−δ+λ+s(1−γ)

1− δ + xs

!1−σ
=

µ
1 + h

1− γ

1− δ + λ+ s (1− γ)

¶1−σ
,

and

x̂− xs = h
(1− γ) (1− δ + xs)

1− δ + λ+ s (1− γ)
.

Therefore

w (s+ h, z) ≥ U (z − x̂ [s0s, s+ h]) + (1− δ + x̂ [s0s, s+ h])
1−σ

β

Z
w (s0s, z

0) dF

= U (z − x̂ [s0s, s+ h]) +Ah (1− δ + xs)
1−σ β

Z
w (s0s, z

0) dF

= U (z − x̂ [s0s, s+ h]) +Ah (w (s, z)− U (z − xs))

and

w(s+ h, z)− w(s, z) > U(z − x̂[s0s, s+ h])−AhU(cs) + (Ah − 1)w(s, z)
= U(z − x̂[s0s, s+ h])− U(cs) + (Ah − 1)(w(s, z)− U(cs)).
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Dividing both sides by h and taking the limit as h& 0 gives

d

ds
w(s, z) > −U 0(cs) lim

h&0

x̂− xs
h

+ lim
h&0

(Ah − 1)
h

[w(s, z)− U(cs)]

= −U 0(cs)
(1− γ) (1− δ + xs)

1− δ + λ+ s (1− γ)
+

(1− σ) (1− γ)

1− δ + λ+ s (1− γ)
[w(s, z)− U(cs)]

because, by L’Hôpital’s rule,

lim
h&0

(Ah − 1)
h

= lim
h&0

dAh

dh
= lim

h&0

d

dh

µ
1 + h

1− γ

1− δ + λ+ s (1− γ)

¶1−σ
=

1− γ

1− δ + λ+ s (1− γ)
lim
h&0

µ
1 + h

1− γ

1− δ + λ+ s (1− γ)

¶−σ
=

1− γ

1− δ + λ+ s (1− γ)
.

Then

ws =
(1− γ) (1− δ + x)

1− δ + λ+ s (1− γ)
([1− σ]w − (1− δ + xs)U

0 − (1− σ)U)

=
1− γ

1− δ + λ+ s (1− γ)

¡
[1− σ]w − (1− δ + x) (z − x)−σ − (z − x)1−σ

¢
=

1− γ

1− δ + λ+ s (1− γ)

¡
[1− σ]w − (z − x)−σ [1− δ + z]

¢
,

which one also could obtain by assuming differentiability in (52) and applying the
envelope theorem. The expression collapses to (9) when γ = δ = 0.

8.3 Construction of Ŝt
Two practical problems face us when constructing a proxy for S. First, (4) will
sometimes lead S to be negative. That is, if we use (??) as a proxy for λk, the
resulting S will become negative. To prevent this from happening, we change (4) to

S0 = max (0, λk + S −X) . (53)

Second, we face a units-conversion problem. What we measure, though, is not S
but its proxy, Ŝ, which we shall assume obeys the equation

Ŝ = θS = θλk ≡ NEW PATENTS & TRADEMARKS,

Since S is measured in consumption units, θ is the number of Ŝ units per unit of con-
sumption. (Our measures ofX and k are already in consumption units). Substituting
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for S into (53),

1

θ
Ŝ0 = max

Ã
0, λk +

Ŝ

θ
−X

!
, i.e., Ŝ0 = max

³
0, θλk + Ŝ − θX

´
,

i.e.,
Ŝ0

k0
(1− δ + x) = max (0, θλ+ ŝ− θx) ,

where ŝ = Ŝ
k
. Therefore the law of motion for ŝ is

ŝ0 =
max (0, θλ+ ŝ− θx)

1− δ + x
,

i.e.,

ŝ0 =
max

¡
0, NEW PATENTS &TRADEMARKS

CAPITAL STOCK + ŝ− θx
¢

1− δ + x
,

or, dividing both sides by θ,

s0 =
max

¡
0, NEW PATENTS &TRADEMARKS

θ.CAPITAL STOCK + s− x
¢

1− δ + x
.

8.4 Details on the standard adjustment-cost model

The adjustment-cost model that simulated and the statistics of which are reported
in column 3 of Table 1 goes as follows: Output and dividend is

zk − h

µ
X

k

¶
k

where

h (x) =
b

2
(x− δ)2 .

and where k still follows (47) and where the Bellman equation is

v (k, z) = max
X

(¡
zk −X − h

¡
X
k

¢
k
¢1−σ

1− σ
+ β

Z
v ([1− δ] k +X, z0) dF

)
. (54)

The auxiliary Bellman equation is

w (z) = max
x

(
(z − x− h [x])1−σ

1− σ
+ (1− δ + x)1−σ β

Z
w (z0) dF

)
. (55)

The FOC is

− (z − x− h [x])−σ (1 + h0 [x]) + (1− σ) (1− δ + x)−σ β

Z
w (z0) dF,
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i.e.,
1 + h0 (x) = q,

where

q =

µ
1− δ + x

z − x− h (x)

¶−σ
β (1− σ)

Z
w (z0) dF .

8.5 Research

Because new seeds are proportional to capital in the model, seeds pile up in recessions,
and this depresses Q for a while after the recovery starts. If resources, i.e., research
is needed, fewer seeds will be created when p is low. To see how hit might work, let
us change (3) to

new seeds = λRεk1−ε

so that (4) becomes
S0 = λRεk1−ε + S −X

and so that (5) becomes
X ≤ λRεk1−ε + S.

The planner’s Bellman equation becomes

v (k, S, z) = max
R≥0, X≤λRεk1−ε+S

(
(zk −X −R)1−σ

1− σ
+ β

Z
v
¡
k +X,λRεk1−ε + S −X, z0

¢
dF

)
.

For σ 6= 1, v is still of the form

v (k, S, z) = w (s, z) k1−σ,

where w (s, z) = v (1, s, z), and where w satisfies

w (s, z) = max
(r,x)∈Ω(s)

(
(z − x− r)1−σ

1− σ
+ (1 + x)1−σ β

Z
w

µ
λrε + s− x

1 + x
, z0
¶
dF

)
where

r =
R

k
and

Ω (s) = {(r, x) | x ≤ s+ λrε} .
We do not worry about the non-negativity of r because the Inada condition given
that ε < 1, and we ignore the constraint on the non-negativity of C because when
σ > 1 it is never violated. If z was firm specific and if seeds could not be stored,
this version of the model would be close to Klette and Kortum (2004) and Lentz and
Mortensen (2005).
The problem with this is that it introduces a Q-elastic supply of seeds, which will

limit somewhat how much Q can rise in booms. In sum, it will produce less variation
in Q, but maybe a more realistic seeds.
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8.6 The deterministic seeds model

Suppose z is a constant. Let

x =
X

k
and s =

S

k
.

Since k does not depreciate, x then equals the growth rate of k and of C. Let’s solve
for the constant-growth rate that would obtain in the absence of the constraint (5).
We shall call this the “desired” growth rate, xd. Then U 0 (Ct+1) /U

0 (Ct) = (1 + x)−σ

and the effective discount factor is

β̂ ≡ β (1 + x)−σ . (56)

An additional unit of capital produces z units for ever, and so optimal investment
leads to a Tobin’s Q of unity:

Q ≡
Ã

β̂

1− β̂

!
z = 1. (57)

Equations (56) and (57) can be solved for xd:

1 + xd = (β [1 + z])1/σ . (58)

The model collapses to the standard model if s goes off to infinity. We seek
parameter restrictions that will prevent this from happening. From (5),

xt ≤ min (z, λ+ st) (59)

This, however, is a short-run constraint, that holds at each t. If k were to grow faster
than λ, st would eventually become negative. To see this, combine (4) and (3) to get
S0 = S −X + λk and, hence,

st+1 =
λ+ st − xt
1 + xt

. (60)

It’s easy to show that λ is the maximal feasible long-run growth rate. Let ε be a
constant, and suppose that x = λ+ ε. Then

Lemma 8 For all s0 ≥ 0,

(i) ε > 0 =⇒ st → −∞
(ii) ε < 0 =⇒ st → +∞
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Figure 7: Comparative steady states for x and q when σ = 1.

Proof. (i) Let ε > 0. Then st+1 =
λ+st−x
1+x

= st−ε
1+x

< st − ε
1+x
, so that st <

s0−
¡

ε
1+x

¢
t→ −∞. (ii) let ε < 0. Then st+1 > st+

|ε|
1+x

so that st > s0+
|ε|
1+x

t→ +∞.

Desired growth exceeds λ if

[β (1 + z)]1/σ > 1 + λ,

which is also when the seeds constraint binds in every period. High values of z or β,
and low values of σ and λ make it more likely that this inequality will hold. Tobin’s
Q is just the present value of the marginal products of capital, Σ∞t=1β̃

t
z, i.e.,

Q =

Ã
β̃

1− β̃

!
z, where β̃ = β (1 + λ)−σ > β

¡
1 + xd

¢−σ
= β̂.

Values of Q above unity arise because consumption growth is lower than it would be
under xd; the rate of interest is thus lower, and this raises the present value of income
from capital above its cost.
The case σ = 1.–From (58), the desired investment and growth rate x is

xd (z) = βz − (1− β) ,

and Tobin’s Q is

Q (z) =

½
1 if xd (z) ≤ λ

β
1+λ−βz if xd (z) > λ

.

The value of z at which xd (z) = λ is 1
β
(1 + λ− β). Figure 7 plots xd (z) and Q (z).

Of course, x = min
¡
λ, xd [z]

¢
.
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Transitional dynamics in the deterministic case These are easier to analyze
if time is continuous. Let (k0, S0) be given, with S0 > 0. Let preferences beZ ∞

0

1

1− σ
e−ρtC1−σ

t dt.

Output is
zk = C +X,

the seed constraint reads
X ≤ S

and the laws of motion are

Ṡ = λk −X and k̇ = k +X

In the absence of the seed constraint we would have Ċ
C
= k̇

k
= z−ρ

σ
, and so we shall

assume that
λ <

z − ρ

σ
(61)

so that eventually the seed constraint must bind, and so that eventually we know
that X = λk. But we want to see how fast this happens from initial conditions. We
especially want the time path of Tobin’s Q, defined here as the discounted marginal
product of k:

Q = z

Z ∞

t

e−ρ(τ−t)
U 0 (Cτ)

U 0 (Ct)
dτ

In the limit, consumption will grow at the rate λ so that U 0(Cτ )
U 0(Ct)

= e−σλ(τ−t) and Q
will converge to

Q∞ = z

Z ∞

t

e−(ρ+σλ)(τ−t)dτ =
z

ρ+ σλ

where the rate of interest is
ρ+ σλ

which is less than z if (61) holds, so that Q∞ > 1. But if (61) does not hold, then
consumption grows at the rate z−ρ

σ
and Q∞ = 1.

This is a version of the exhaustible-resources problem. The Hamiltonian is

(zk −X)1−σ

1− σ
+ µX +m (λk −X) + n (S −X)

The optimality conditions are

X : − (zk −X)−σ + µ−m− n = 0

k : z (zk −X)−σ + λm = −µ̇+ ρµ

S : n = −ṁ+ ρm
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and the two constraints must hold.

The region [0, T ) where X < S.–This is the initial stage, for a finite time, call it
[0, T ]. In this region, n = 0 so that the last condition implies

mt = m0e
ρt for t < T

The first condition implies, on this region,

(zk −X)−σ = µ−m.

Substituting all this into the middle condition gives us

z
¡
µ−m0e

gt
¢
+ λm0e

ρt = −µ̇+ ρµ

which is the differential equation

µ̇ = (ρ− z)µ+ (z − λ)m0e
ρt

Now an equation of the form dx
dt
= Ax + Beρt has the solution x = C1e

At + B eρt

ρ−A .
Therefore

µt = C1e
(ρ−z)t +

(z − λ)m0

1 + z
eρt

The region [T,∞).–Here all the multipliers are constant. In particular

µ = Q∞ = 1 +m.
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