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Liquidity Biases in Asset Pricing Tests

Abstract

This paper examines how microstructure biases arising from “bid-ask bounce” affect empirical
asset pricing tests. The focus is mainly on tests of whether liquidity is priced, but the analysis
also provides new insights regarding tests of whether systematic risk is priced. We present theory
and simulation-based evidence indicating that bid-ask spreads and endogenous trade or no-trade
decisions lead to biases in observable risk and return measures that affect the reliability of asset
pricing tests. The most robust finding is that these frictions can lead to upward bias in estimates
of the return premium for illiquidity. We exploit the fact that CRSP has reported closing quotes
for Nasdaq National Market System stocks since 1983 to verify empirically that the estimated
return premium related to the bid-ask spread is significantly larger when returns are computed
from closing prices rather than quote midpoints. We also document that, depending on research
design, microstructure considerations potentially obscure the relation between average returns
and betas. We discuss possible methodological corrections for these microstructure biases, and
conditions under which they may be effective.



I. Introduction

A substantial recent literature has addressed the question of whether liquidity affects asset

returns. Amihud and Mendelson (1986) and Acharya and Pedersen (2005), among others,

present theoretical models implying that illiquidity is priced as a security characteristic and/or a

risk factor. However, models presented by Constantinides (1986), Heaton and Lucas (1996), and

Vayanos (1998) imply that the potential effects of illiquidity on prices should not be substantial,

because agents will adjust their portfolio trading frequencies to mitigate illiquidity costs.1

Numerous papers have addressed the issue empirically, and the emerging consensus (Amihud,

Pedersen, and Mendelson (2005)) appears to be that liquidity does affect asset returns.

This paper examines how microstructure biases arising from “bid-ask bounce” affects

empirical asset pricing tests. The focus is mainly on tests of whether liquidity is priced, but

the analysis also provides new insights regarding tests of whether systematic risk is priced. We

present theory, simulation-based evidence and empirical evidence relying on CRSP data for

Nasdaq National Market System (NMS hereafter) stocks indicating that bid-ask spread and

endogenous trade or no-trade decisions lead to biases in observable risk and return measures

that affect the reliability of asset pricing tests. The most robust finding is that these frictions

can lead to upward bias in the estimated return premium for illiquidity, measured as a security

characteristic by bid-ask spreads. We show that the bias in mean returns can be avoided

under certain assumptions if researchers employ quote midpoint returns, make an explicit

adjustment to transaction returns for bid-ask bounce, or employ log transaction returns. We

also document that, depending on research design, microstructure considerations potentially

obscure the relation between average returns and betas.

The microstructure-based biases we study arise because most empirical asset pricing studies

rely on return series that are created from transaction prices. In the Center for Research

in Security Prices (CRSP) daily and monthly databases, the closing price reflects the last

transaction prior to the close if trading occurred that day, or (the opposite of)2 the closing
1However, Hasbrouck (2004, p.154) notes that actual share turnover is an order of magnitude larger than that

implied by Constantinides’ analysis.
2For Nasdaq NMS securities CRSP always reported the negative of the bid-ask midpoint prior to November

1, 1982, and for Nasdaq Small Cap securities CRSP always reported the quote midpoint prior to June 15, 1992.
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quote midpoint if no trading occurred.3 Microstructure theory implies that market buy orders

are typically completed at an effective ask price that exceeds the true value of the asset, while

market sell orders are completed at a bid price that is less than the true asset value. As

a consequence, when trade occurs, observed returns differ from true returns due to “bid-ask

bounce”.

In addition to allowing for bid-ask bounce, we endogenize trading decisions by assuming

that investors compare the potential gain from trade to the cost of trading, and on some days

choose to refrain from trading. In the presence of non-trading, the relation between observable

bid-ask spreads and bid-ask bounce is complex. Wider spreads lead to greater bid-ask bounce

when trades occur, but also discourage trading, ceteris paribus. On days without trade the

reporting of the quote midpoint reduces the amount of bid-ask bounce in the observed time

series of returns. We show that under some assumptions bid-ask bounce can be greater for

securities with narrower bid-ask spreads. More generally, our analysis shows that the biases in

asset pricing tests attributable to bid-ask bounce need not be monotone in observable spreads.

Several of the results obtained here build on the Blume and Stambaugh (1983) insight that

bid-ask bounce imparts an upward bias to mean returns measured from transaction prices, due

to Jensen’s inequality. We extend their analysis to include the effect of endogenous non-trading.

More importantly, we study the effects of bid-ask spread and non-trading on inferences drawn

from tests of whether both beta risk and illiquidity are priced.4 In addition to addressing effects

on mean returns, we document that that bid-ask bounce leads to bias in beta estimates. Further,

bid-ask bounce increases the noise in beta estimates. This is relevant because the widely-used

Fama and MacBeth (1973) method and similar procedures involve regressions of returns on
3Compustat, Datastream, Worldscope, and Compustat Global and Emerging markets also report daily returns

computed from closing prices. Unlike CRSP, on non-trading days Datastream reports again the prior closing
price.

4Lesmond, Ogden, and Trzcinka (1999) also consider the effects of trading costs on the decision to refrain
from trading. However, the focus of their study is on how the observed frequency of non-trading can be used
to infer the magnitude of trading costs. They do not consider how bid-ask bounce or non-trading affects asset
pricing tests. The biases in asset pricing tests documented here are also distinct from those noted by Keim (1989)
or Ferson, Sarkissian, and Simin (1999). Keim (1989) documents that some calendar-based empirical patterns
in stock returns are attributable to systematic clustering of transaction prices at either the bid or the ask. In
contrast, our analysis assumes that transactions occur randomly at either the ask or bid. Ferson et al. document
that biases can arise in asset pricing tests when researchers form portfolios on the basis of stock price attributes
that are found in the data to be related to returns. We document that biases related to bid-ask bounce are
actually most pronounced when the analysis is conducted at the individual security rather than the portfolio
level.
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estimated rather than true betas.5 Measurement error in regressors will most typically bias

coefficient estimates toward zero. Thus, the increased noise in beta estimates attributable to

bid-ask bounce can cause a downward bias in Fama-MacBeth risk premium estimates that is

distinct from the effect of microstructure-induced bias in the beta estimates.

Recent studies, e.g. Bessembinder (2003), have reported that quoted spreads on U.S. equity

markets are quite narrow, particularly subsequent to the 2001 shift from fractional to decimal

pricing. This evidence might be viewed as suggestive that measurement errors attributable to

bid-ask bounce are a minor concern. However, bid-ask spreads reported for earlier years by

Chalmers and Kadlec (1998) for NYSE/AMEX stocks and by Fortin, Grube, and Joy (1989)

for Nasdaq stocks are markedly wider than spreads estimated from the recent data. Further,

researchers have and will continue to study asset pricing and liquidity in non-U.S. markets,

which generally have wider spreads.6 Also, quoted spreads need only apply to orders up to the

quote size, so larger orders may be completed at average prices outside the quotes. We are

concerned with temporary changes in transaction prices resulting from actual orders, including

large institutional orders.

To illustrate the potential magnitude of the microstructure biases, we conduct a series of

simulations. The key advantage of a simulation approach is that we know the true relation

between returns, betas, and liquidity, and we can assess whether estimates obtained when

applying versions of the Fama-MacBeth method to the simulated data reveal the true pricing

structure or not. The simulations rely on spreads calibrated to those reported for actual U.S.

markets, and indicates that microstructure biases in asset pricing tests can be substantial. The

most robust finding of the simulations is that bid-ask spread can appear to be positively related

to average returns even when it is not. We also exploit the fact that CRSP has reported

closing quotes for Nasdaq NMS stocks since 1983 to verify empirically that estimated premia

for illiquidity are significantly larger when returns are computed from closing prices rather than

quote midpoints.

Finally, we document that the increased noise in beta estimates attributable to microstruc-
5Shanken and Zhou (2006) report that the Fama-MacBeth methodology is applied in at least 735 papers.
6For example, Table 2 in Jain (2001) indicates bid-ask spreads that average 6.10% as recently as year 2000 for

a sample of forty seven non-U.S. markets that includes both developed and developing economies.
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ture effects is sufficient that the accompanying errors-in-variables problem can, depending on

research design, lead to significant downward biases in the market price of beta risk. This

effect is most pronounced when the cross-sectional Fama-MacBeth regressions are estimated by

regressing individual security returns on estimated individual security betas or when portfolio

returns are regressed on estimated portfolio betas, as in Eleswarapu (1997) and Fama and French

(1996). However, the bias is minimal when individual security returns are regressed on betas

estimated on a portfolio basis, as in Fama and French (1992). Since Fama and French (1992)

do not detect a significant premium on beta after controlling for firm size, we conclude that

microstructure biases alone do not explain the empirical failure of the CAPM.

II. The Related Literature

The relation between average returns and measures of liquidity has been the subject of

considerable research interest. Stoll and Whalley (1983) first suggested that transaction costs

are a “missing factor” in empirical tests of the Capital Asset Pricing Model (CAPM). Amihud

and Mendelson (1986) develop a theory that implies that average returns should increase with

spreads, and report evidence consistent with their implications for NYSE-listed stocks. However,

Eleswarapu and Reinganum (1993) find a statistically significant relation between average return

and bid-ask spread for NYSE stocks only in January. Chen and Kan (1996) report that the

Amihud and Mendelson (1986) findings are specific to the multivariate methodology they employ,

and that application of the Fama and MacBeth method in the same data does not result in a

reliable return-spread relationship. Chalmers and Kadlec (1998) examine the amortized spread

(which incorporates also investors’ holding periods), for NYSE and AMEX stocks and find

that the relation between average returns and illiquidity is stronger for amortized than for

unamortized spreads. Barclay, Kandel and Marx (1998) find that transaction costs significantly

reduce trading volume, but do not detect a significant effect on prices.

Eleswarapu (1997) tests the Amihud and Mendelson (1986) model using Nasdaq stocks. His

results support the model and are much stronger than for the New York Stock Exchange (NYSE),

as reported by Chen and Kan (1989) and Eleswarapu and Reinganum (1993). Amihud (2002)

introduces a measure of illiquidity that relies only on return and trading volume measures, and
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can therefore be computed from most daily databases, in the absence of data on bid-ask spreads.

He provides evidence of a significant positive relation between average returns and this illiquidity

measure for NYSE common stocks over the interval 1964-1997.

In addition to the studies that focus on illiquidity as a potentially-priced stock characteristic,

Pastor and Stambaugh (2003) and Acharya and Pedersen (2005) provide evidence that

systematic liquidity risk affects average returns. Korajczyk and Sadka (2006) provide an

integrated analysis documenting that both systematic liquidity risk and levels of idiosyncratic

liquidity affect average returns, while Fujimoto and Watanabe (2006) use a regime-shifting model

to document that liquidity risk varies over time and that the estimated liquidity risk premium

is larger at times of high return sensitivities to an aggregate liquidity factor. Bekaert, Harvey

and Lundblad (2005) find that in emerging markets unexpected liquidity shocks are positively

correlated with contemporaneous returns and negatively correlated with the dividend yield,

consistent with liquidity being a priced factor.

The current paper also relates to the literature on nonsynchronicity. Scholes and Williams

(1977), Dimson (1979) and Cohen et al. (1983) show that nonsynchronous trading leads to bias

in betas estimated by standard procedures, and introduce techniques that provide consistent

beta estimates, under their assumptions. However, these authors do not consider the effect of

bid-ask bounce. We document that implementing the method recommended by Scholes-Williams

to correct beta estimates for the effects of nonsynchronous trading does not generally mitigate

the biases that arise in asset pricing tests due to bid-ask bounce. This result is to be expected,

as nonsynchronous trading differs from the nontrading effect studied here, which arises even

if securities trade at the same time, as in batch trading. CRSP data on days with trading is

affected by both non-synchronicity and bid-ask bounce, while CRSP data on non-trade days is

affected by neither.

Finally, our analysis is related to that of Brennan and Wang (2006), who also consider how

return measurment errors can affect asset pricing tests. Like Blume and Stambaugh (1983),

they rely on a Jensen inequality argument to establish that mean observed returns are upward

biased when observed prices differ from underlying value. However, Brennan and Wang focus

on market pricing errors, due for example to investors’ underreaction to new information, as the
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source of the measurement error, while we assume markets are efficient in the sense that quote

midpoints are equal to true values, so that the return measurement error is solely attributable

to bid-ask bounce. Both analyses lead to the implication that the estimated return premium

associated with illiquidity is likely to be upward biased. In Brennan and Wang the conclusion

follows from the observation that mispricing, and hence measured return biases, are likely to

be greater for illiquid stocks due to impediments to arbitrage, while in our case the conclusion

arises directly from bid-ask bounce, even without mispricing. The bias in the illiquidity premium

estimate obtained in actual data potentially includes both effects.

III. A Model of Returns and Betas with Microstructure Frictions

The analysis of mean returns presented here follows Blume and Stambaugh (1983), except

that we also allow for endogenous nontrading. We also assess how bid-ask bounce affects

covariances and beta estimates, issues which Blume and Stambaugh did not address. The

simulation results reported in Section V addresses estimation error as well.

Assume that the true return for security i in excess of the risk free interest rate in period t

is generated by the following stochastic model:

ri,t = βirM,t + ei,t,(1)

where rM,t is a normal random variable with E [rM,t] ≥ 0 and variance var [rM,t], that is

independently and identically distributed across t. The disturbance term ei,t is also independent

and identically distributed E [ei,t] = 0 with variance var [ei,t] for all i and t. Further, rM,t and

ei,τ are independent for all i, t and τ . Hence, rM,t is a common factor affecting all securities

and ei,t reflects zero-mean security-specific information. Denote the true price at time t of stock

i as vi,t, the price at which, in the absence of transaction costs, a share of stock could be both

bought and sold.

The true price evolves as:

vi,t = vi,t−1 (1 + ri,t) .(2)

The observed closing price, vo
i,t, deviates from the true price vi,t due to bid-ask spread.
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Define δi,t as the signed half spread relative to the true price. It is positive for market buy

orders and negative for market sell orders. We assume that δi,t is symmetric for buy and sell

orders, or equivalently that the midpoint of the effective bid and ask prices is the true price,

vi,t. Assuming that each security trades every period, the observed price, vo
i,t can be expressed as:

vo
i,t = (1 + δi,t) vi,t.(3)

We assume that E [δi,t] = 0, that δi,t is independently distributed across t, and that δi,t is

independent of vi,τ for all τ . The relative total bid-ask spread (not signed) at period t for

security i is 2 |δi,t|.

We assume that investors will compare the cost of trading to their perceived benefits of doing

so. To allow for endogenous no-trade decisions, we introduce a variable, c, that quantifies the

potential gain from trade. Investors will trade only if the percentage trading cost is less than c.

We also introduce the variable δ̄i,t:

δ̄i,t = δi,tI {|δi,t| ≤ c} ,(4)

where I {.} is an indicator variable equal to unity when −c ≤ δi,t ≤ c, i.e. when trade occurs,

and zero otherwise. Consistent with the reporting conventions of the CRSP database, we assume

that when δ̄i,t = 0, i.e. no trade occurs, the researcher observes the midpoint.

Using Eq.(2), Eq.(3) and Eq.(4) the observed return, ro
i,t, in the case of endogenous

nontrading is:

ro
i,t =

vo
i,t − vo

i,t−1

vo
i,t−1

=

(
1 + δ̄i,t

)(
1 + δ̄i,t−1

) (1 + ri,t)− 1.(5)

Taking expectations of Eq.(5) gives7:
7If however δ̄i,t is not independent of price then taking expectations yields an extra term:

E
�
ro

i,t

�
= E

�
1 + δ̄i,t

1 + δ̄i,t−1

�
{1 + E [ri,t]}+ cov

�
1 + δ̄i,t

1 + δ̄i,t−1

, ri,t

�
− 1.
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E
[
ro
i,t

]
= E

[
1 + δ̄i,t

1 + δ̄i,t−1

]
{1 + E [ri,t]} − 1.(6)

We show in the appendix that the first expectation on the right side of Eq.(6) exceeds one

due to Jensen’s inequality, i.e. that bid-ask bounce imparts an upward bias to observed mean

returns. The upward bias in mean returns is attributable to the fact that f(x) = 1/x is convex

in x. Following Blume and Stambaugh (1983) the bias in mean returns can be approximated as:

E
[
ro
i,t

]
≈ E [ri,t] + var

[
δ̄i,t

]
.(7)

where var
[
δ̄i,t

]
denotes the variance of δ̄i,t and measures the amount of bid-ask bounce. If

securities trade every period those with wider bid-ask spreads will have higher bid-ask bounce.

In the case of endogenous nontrading, i.e. when δ̄i,t is zero at some periods, the relation between

bid-ask spread and bid-ask bounce is more complex. We next provide some results regarding

the amount of bid-ask bounce with endogenous nontrading.

The variance of δ̄i,t can be expressed as:

var
[
δ̄i,t

]
= E

[
δ2
i,tI {|δi,t| ≤ c}

]
− {E [δi,tI {|δi,t| ≤ c}]}2

=
∫ c

−c
x2

i f (xi) dxi −
(∫ c

−c
xif (xi) dxi

)2

,(8)

where f (xi) is the density function of δi,t for security i. From the fact that δi,t has a symmetric

density, i.e. f (xi) = f (−xi) it follows that the second term on the right hand side in equation

(8) is:

∫ c

−c
xif (xi) dxi = 0.

Hence, Eq.(8) transforms into:

var
[
δ̄i,t

]
=

∫ c

−c
x2

i f (xi) dxi.(9)
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The variable var
[
δ̄i,t

]
quantifies the amount of bid-ask bounce in observed returns, given

that securities sometimes do not trade. The amount of bid-ask bounce depends both on spread

widths and traders’ potential gains from trade, c. To obtain more detailed implications requires

additional structure. We analyze some possible relations between spread widths and bid-ask

bounce in the Appendix, showing that in some circumstances securities with narrower spreads

can have more bid-ask bounce, and that in general the relation between the amount of bid-ask

bounce and bid-ask spreads need not be monotone.

We next assess how bid-ask bounce affects measures of return covariances and systematic

risk. The covariance between the observed returns for security i, ro
i,t and security j, ro

j,t, derived

in the appendix, is:

cov
[
ro
i,t, r

o
j,t

]
=

{
1 + var

[
δ̄j,t−1

]} {
1 + var

[
δ̄i,t−1

}]
βiβjvar [rM,t] ,(10)

which is an increasing function of the bid-ask bounce of both security i and security j. Summing

over i and j in Eq.(10) gives the variance of the observed equal-weighted market return:

var
[
ro
M,t

]
=

1
N2

var [rM,t]
N∑

i=1

{
1 + var

[
δ̄i,t−1

]}
βi

N∑
j=1

{
1 + var

[
δ̄j,t−1

]}
βj .(11)

A standard market model regression using observed returns would not provide an estimate

of true security i beta, but rather would provide an estimate of:

βo
i =

1
N

∑N
j=1

{
1 + var

[
δ̄i,t−1

]} {
1 + var

[
δ̄j,t−1

]}
βiβjvar [rM,t]

var
[
ro
M,t

] .

Using Eq.(11) the above expression simplifies to:

βo
i =

N
{
1 + var

[
δ̄i,t

]}
βi∑N

j=1

{
1 + var

[
δ̄j,t−1

]}
βj

.(12)

Examining this expression, betas obtained from observed return will be increased relative

to true betas for securities with higher-than-average bid-ask bounce, and vice versa. The bias

documented in Eq.(12) arises from bid-ask bounce, which was not considered in the analyses of
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nonsynchronous trading of Scholes and Williams (1977) or Dimson (1979), and arises even when

all securities trade (or not) at the same moment.

In summary, from Eq.(7) and Eq.(12), securities with high bid-ask bounce will tend to have

both their estimated mean returns and their estimated betas biased upwards. Further, the bid-

ask bounce is a function of the bid-ask spread. The potential for spurious results in asset pricing

tests involving returns, beta estimates, and spreads is readily apparent.

The magnitude of the relative bias in the observed beta estimate can be approximated as:

βo
i

βi
≈ 1

N

var [rM,t]
∑N

j=1

{
1 + var

[
δ̄j,t−1

]}
βj

var
[
ro
M,t

] {
1 + var

[
δ̄i,t−1

]}
.(13)

Substituting Eq.(11) into Eq.(13) gives:

βo
i

βi
≈ N

1 + var
[
δ̄i,t

]∑N
j=1

{
1 + var

[
δ̄j,t−1

]}
βj

.(14)

Thus, the relative bias in beta is larger for securities with high bid-ask bounce. The

covariance across stocks between the bias in observed beta and total spread is:

cov

[
βo

i

βi
, 2|δ̄i,t|

]
= 2Ncov

[
1 + var

[
δ̄i,t

]∑N
j=1

{
1 + var

[
δ̄j,t−1

]}
βj

, |δ̄i,t|

]
.(15)

Further, the covariance across stocks between the bias in relative returns and the bias in

relative betas can be expressed as,

(16)

cov

E
[
ro
i,t

]
E [ri,t]

,
βo

i

βi

 = cov

[
E [ri,t] + var

[
δ̄i,t

]
E [ri,t]

, N
1 + var

[
δ̄i,t

]∑N
j=1

{
1 + var

[
δ̄j,t−1

]}
βj

]
.

Since the security i bid-ask bounce appears in the numerator of both terms in the covariance

on the right side of this expression, we can infer that bid-ask bounce will tend to induce a

spurious positive relation between observed returns and observed beta. Further, the covariance

between the bias in expected returns and the total spread can be expressed as:
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cov

E
[
ro
i,t

]
E [ri,t]

, 2|δ̄i,t|

 = cov

[
E [ri,t] + var

[
δ̄i,t

]
E [ri,t]

, 2|δ̄i,t|

]
.(17)

Since the variance and the absolute value of δi,t appear in the two terms within the covariance

on the right side of this expression, we can also anticipate the possibility that spurious relations

between observed returns and average spreads can arise.

In summary, securities with more bid-ask bounce will tend to have both their average

returns and their beta estimates biased upward. This implies the potential for upward bias

in estimated relations between mean returns, betas, and any measure correlated with bid-ask

bounce. However, due to non-trading, the relation between observable bid-ask spreads and

bid-ask bounce need not be monotone.

IV. Potential Solutions

We have shown that bid-ask bounce biases both mean returns and beta estimates. In this

section we consider some solutions that researchers might adopt, assumptions under which the

solutions may be appropriate, and discuss practical limitations on adopting these solutions.

A. Quotation Midpoint Returns

We assume in our theoretical analysis that the quote midpoint is equal to the true value

of the security. If this assumption is accurate, then a simple empirical solution is to compute

returns from quote midpoints instead of from reported closing prices. Unfortunately, this solution

may be difficult to implement due to data availability. Quotation data for stocks listed on the

NYSE and Nasdaq is available from the Trade and Quote (TAQ) database from 1993 onward.

However, as noted in the prior section, a lack of statistical power is an important issue in asset

pricing applications, and the available time series of TAQ-based quotation returns may not be

sufficient for many applications. CRSP reports closing quote midpoints for Nasdaq NMS stocks

from November 1983 onward, providing a somewhat longer time series for this subset of stocks.

We report in Section VI below the results of some tests of whether there is a return premium
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associated with the bid-ask spread using this data source.

Further, while the assumption that the quote midpoint is equal to the true asset value is

analytically convenient for presenting a model of biases arising from bid-ask bounce, it is not

clear that the assumption is accurate for actual data. Many models (e.g. Ho and Stoll, (1980))

imply that liquidity providers will move quotations away from asset value in order to manage

inventory. Further, as Brennan and Wang (2006) emphasize, return measurement errors arising

from market misvaluations may also bias tests of the relation between average returns and

illiquidity measures.

B. Adjust Closing Returns for Bid-Ask Bounce

Eq.(7) in the preceding section shows that the bias in the mean return for a given stock is

approximately equal to var
[
δ̄i,t

]
. Blume and Stambaugh (1983), assuming that securities trade

each period and that the bid-ask spread is constant over time for a given stock, show (their

expression (7)) that var
[
δ̄i,t

]
is equal to the square of half the proportional bid-ask spread.

Under their assumptions the bias in mean returns (though not the bias in beta estimates) can

be approximately eliminated by deducting this quantity from every return observation.8

However, securities do not trade every period, and the bid-ask spread is not constant

over time, implying that a simple adjustment such deducting the square of half the average

proportional bid-ask spread is unlikely to yield zero bias when implemented in actual data. On

a more positive note, if time series of both trade and quotation data are available then, assuming

that the quote midpoint equals the true security value at the time of the last trade, δ̄i,t can be

measured for security i on day t as the difference between the last trade price and the quote

midpoint. The variance of δ̄i,t can then be estimated from a time series of observations for a

given security. We report in Section VI the results of implementing this correction in Nasdaq

NMS data, for which both quotations and trade prices are available.
8Amihud and Mendelson (1980) reference expression (7) in Blume and Stambaugh, and report that they

implement a correction for bid-ask bounce as a sensitivity test. However, they are not specific as the correction
implemented. To our knowledge, Amihud and Mendelson are the only authors who report implementing any sort
of correction for bid-ask bounce.
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C. The Use of Continuously Compounded Returns

As noted in Section III, the bias in mean returns stemming from bid-ask bounce is

attributable to Jensen’s inequality. Notably, this bias does not exist under reasonable

assumptions if the focus is on continuously compounded rather than holding period returns.

Taking expectations of the logarithms of both sides of Eq.(6), we have:

E
[
ln

[
1 + ro

i,t

]]
= E [ln [(1 + δi,t)]]− E [ln [(1 + δi,t−1)]] + E [ln [1 + ri,t]]

Assuming further that δi,t’s are identical it follows that E [ln [(1 + δi,t)]] = E [ln [(1 + δi,t−1)]]

then we have:

E
[
ln

[
1 + ro

i,t

]]
= E [ln [1 + ri,t]] ,

implying that the mean of the observed continuously compounded returns equals the mean of

the true continuously compounded returns.

The preceding insight implies that the inference problems in asset pricing tests attributable

to upward bias in mean returns (though not those attributable to bias in betas) stemming

from bid-ask bounce can be avoided by using continuously compounded rather than simple

returns. However, this solution is appropriate only if the asset pricing theory being tested

makes predictions regarding mean continuously compounded returns, as in Merton (1971).

It is not appropriate when testing theories, e.g. the discrete time Capital Asset Pricing

Model or the Arbitrage Pricing Theory, whose implications regard mean holding period

returns. Ferson and Korajczyk (1995) articulate several reasons that it is not appropriate

to use continuously compounded returns when testing discrete-time asset pricing models,

including: (1) that wealth depends on the simple return to the investors’ portfolios, (2)

that continuously compounded portfolio returns are not the portfolio-weighted averages of

the securities’ continuously compounded returns, and most importantly (3) that the mean

continuously compounded return is less than the mean simple return, with the differential

increasing in the return variance. We have verified using simulations that estimates of the
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price of beta risk are downward biased if returns are generated by a discrete time Capital Asset

Pricing Model, but tests are conducted using continuously compounded returns. Nevertheless,

we also report as a sensitivity test in Section VI the results obtained when Fama-MacBeth tests

are conducted in the Nasdaq NMS data, using continuously compounded returns.

V. Simulation Evidence

To quantify the direction and the magnitude of the potential biases in asset pricing

applications that arise from bid-ask bounce and non-trading, we create a series of simulated

data sets in which underlying parameters are known, and then obtain empirical estimates of

the parameters from the simulated data. Shanken and Zhou (2006) also report results of

asset pricing simulations, but with a different focus. Their intent is to evaluate the relative

merits of several alternative estimation techniques (including the Fama-MacBeth approach),

but without consideration of return measurement errors. Our intent is to compare the outcomes

of asset pricing tests conducted using the most common empirical methods, with and without

measurement errors attributable to bid-ask bounce and endogenous nontrading.

Each simulated dataset contains return data covering 43 years (similar to the widely-studied

CRSP daily dataset) for 1500 stocks. Some researchers, including Amihud (2002), Ang, Chen,

and Xing (2006) and Lewellen and Nagel (2006), have studied asset pricing relations using daily

return data. However, most asset pricing studies focus on monthly returns. We therefore focus

primarily on the results of asset pricing tests conducted in simulated monthly returns.9 The

returns series span 516 months. The simulations are repeated 100 times, allowing us to consider

both the mean and the volatility of the parameter estimates.
9Though we report results for simulated monthly returns, we caution that the biases and measurement errors

attributable to bid-ask bounce are even more important in daily data. CRSP has recently made available daily
returns for NYSE stocks dating to December 1925. We anticipate that the issues discussed here will be particularly
important in potential asset pricing studies that rely on this data.
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A. The simulated data, and beta estimates

Within each simulation, the return on the common factor, rM,t and the true return to stock

i in period t, are created as:

rM,t = γM + ηM,t

ri,t = βirM,t + γs (si − s̄) + ηi,t

where βi is stock i’s true beta coefficient, si is the spread parameter for stock i, s̄ is the mean

of the si distribution, γs and γM are premia for illiquidity and for market risk, respectively,

ηi,t is a firm-specific disturbance, and ηM,t is the random component of the common factor

return.10 Each disturbance term is generated as a zero-mean random normal variable. When

simulating monthly returns the firm-specific and market standard deviations are 4.5% and 5.5%,

respectively. The βi are generated as normal random variables11 with mean 1.0 and standard

deviation of 0.4, with the betas independent of other variables.

To obtain reasonable assessments of the potential biases attributable to bid-ask bounce it

is particularly important to select bid-ask spread parameters that are representative of actual

spreads in the data typically used to test asset pricing models. We rely on estimates of spreads

for NYSE and AMEX stocks as reported by Chalmers and Kadlec (1998) and for Nasdaq stocks

as reported by Fortin, Grube, and Joy (1989). In particular, Table 1, Panel B of Chalmers

and Kadlec (1998) reports average effective spreads (absolute value of trade price less quote

midpoint) in percent for ten deciles of NYSE/AMEX securities, estimated over the interval 1983

to 1992. Similarly, Table 1, Panel B of Fortin, Grube, and Joy reports average inside (lowest ask

from any dealer minus highest bid from any dealer) spreads for five quintiles of Nasdaq stocks
10The market-wide premium γM is constant across all simulations. The factor rM,t is the same across securities

for each period t within each simulation, but varies across t and across simulations. Unique spread, βi and ci

parameters are assigned for each stock in each simulation, but within a simulation these parameters are constant
across time periods, t.

11The cross-sectional standard deviation of the betas is in line with the estimates reported by Blume (1971)
and Kolb and Rodriguez (1990).
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over the period July 1980 to December 1985.12

We construct observed return series based on two research scenarios. The first is that asset

pricing tests are conducted using NYSE and AMEX securities, in which case spreads are assigned

to individual stocks based on parameters as identified in Table I, Panel A, such that simulated

mean spreads match the means by stock deciles as reported by Chalmers and Kadlec. The second

scenario focuses on tests conducted using fifty percent Exchange-listed (NYSE and AMEX)

stocks and fifty percent Nasdaq stocks. In this case spreads are assigned to individual stocks

based on parameters identified in Table I, Panel B, such that spreads for the first half of the

simulated sample correspond to mean spreads reported by Chalmers and Kadlec, while spreads

for the second half of the sample correspond to mean spreads by quintile as reported by Fortin,

Grube, and Joy. The focus on simulated spreads that match empirical estimates from the 1980s

and early 1990s is likely to be conservative, in the sense that spreads were likely wider during

earlier decades.

We consider return series where neither beta nor spread is priced (γM = 0 and γs = 0) as

well as series where beta or both beta and spread are priced. When simulating monthly returns

we allow for premia of γM = 0.8%, and γs = 6.0%. The beta premium of 0.8% per month

equates to about 9.6% per year for a stock with a beta of one. The spread premium of 6.0% per

month equates to an annual premium of about 6% for a stock in the widest Chalmers-Kadlec

spread decile relative to a stock with an average bid-ask spread near zero (the annual premium

is computed as 6% times the .083 average spread for this decile, times 12).

Observed return series are then constructed from the true return series as follows. For each

stock i the actual spread on day t, δi,t, is a random draw from the uniform distribution on

the interval [−si, si]. We assume for the simulations reported that securities always trade. We

have also conducted simulations that incorporate endogenous trade or no-trade decisions, with

parameters selected to induce non-trading at frequencies consistent with those observed in the

actual data, and verified that our conclusions are not alterred. The observed return ro
i,t, is

12The use of effective spread measures for NYSE and AMEX stocks is likely conservative, in that this measure is
computed on a trade-by-trade basis. To the extent that large orders are split into smaller trades this measure likely
understates total trading costs for the order. Using quoted spreads for Nasdaq stocks may overstate execution
costs to the extent that institutions could negotiate trade prices inside the quotes. However, quotes were only
binding for a fixed number of shares (typically 1000), and larger orders may also have paid larger execution costs.
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computed from Eq.(5). The time series of observed and true market returns are computed as

the simple cross-sectional averages of observed and true security returns.

We consider the results of asset pricing tests when using several distinct measures of beta.

While research must necessarily be conducted using the observable data, the simulations allow

us to gain additional insights into the sources of biases in asset pricing tests by also using beta

measures that would not be observable in real data. The beta measures we examine include:

• The true beta. This can be used in conjunction with true returns to assess the statistical

power of an estimation technique under ideal circumstances. Further, it can be used

to assess whether a particular empirical methodology leads to biased results even in the

absence of microstructure considerations.

• The estimated true beta. This is the estimate obtained from a market model regression of

true stock returns on true market returns. By comparing to results obtained with the true

beta, this can be used to assess the impact of estimation error in betas, in the absence of

any other measurement problems.

• The computed beta. This is the beta obtained by computing Eq.(12). This can be used to

assess the effect of biases in beta estimates that arise from bid-ask bounce and non-trading,

in the absence of estimation error.

• The estimated observed beta. This is the beta estimate obtained by a market model

regression of observed security returns on observed market returns. It corresponds to the

estimate that would be obtained by a researcher using CRSP return data, and is subject

to both microstructure biases and estimation error.

• The Scholes-Williams beta. This is the beta estimate obtained if one implements the

Scholes and Williams (1977) method to estimate beta, using observed security returns

and observed market returns. This can be used to assess whether the Scholes-Williams

correction improves inference.
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B. Simulated Asset Pricing Tests When Securities Always Trade

Tables II through V report results obtained when implementing versions of the Fama and

MacBeth (1973) method under varying assumptions regarding spread widths, and assuming that

securities always trade.13 The research designs selected here are intended to be similar to those

that are widely used in the literature. However, since all parameters are stable across time within

any simulation we omit those aspects of research designs (e.g. the use of beta estimates obtained

over rolling five year windows, illiquidity measures estimated over the most recent year or scaled

by market liquidity) that are intended to accommodate time variation in parameters. The Tables

report mean coefficient estimates and mean t-values across the one hundred simulations, as well

as standard errors of the mean estimates. On each Table, Panel A reports results obtained when

both beta and spread are priced, while Panel B reports results obtained when neither is priced.

For results reported in Part I of panels A and B the cross-sectional regression includes only beta,

while for results reported in Part II of each panel the cross-sectional regression includes both

beta and spread.

B.1. Fama-MacBeth Estimation in Individual Securities

Tables II and III report results obtained when implementing the Fama-MacBeth approach in

individual securities, with spreads calibrated to NYSE/AMEX levels and NYSE/AMEX/Nasdaq

levels, respectively. The first 5 years of simulated monthly data are used to estimate beta

coefficients for each of the 1500 stocks. We then run cross-sectional regressions of individual

security returns on betas, with and without including the stock specific spread measure, si, for

each of the remaining time periods. Final estimates from each simulation are obtained as the

time series mean and t-statistic of the monthly cross-sectional parameter estimates.

Several key results can be observed on Table II. First, and most important, the estimated

premium on the spread is upward biased in all specifications that rely on observed rather than

true returns. Note that this result is obtained when spreads are assigned randomly to securities,

so it cannot reflect correlations between spreads and any priced variable. Focusing on Panel
13We do not mimic the original Fama-MacBeth procedure precisely, but rather choose research designs to match

recent implementations of their procedure, including the approaches of Fama and French (1992) and Eleswarapu
(1997).
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B.II, where returns do not contain a true spread premium, the estimated spread premium

averages about 3.1% per month, with an average t-statistic exceeding 7.5. The mean spread

premium exceeds the true parameter of zero by over one hundred times the standard error of

the mean. Consistent with the theory developed in Section III, bid-ask bounce resulting from

spreads calibrated at NYSE/AMEX levels lead to a strong but spurious observed cross-sectional

relation between average returns and spreads.

Results reported in Column (1) of Table II verify that the Fama-MacBeth procedure can,

in principle, reveal true asset pricing parameters on average. When true returns are regressed

on true betas the estimated premium on beta risk is 0.78% (both with and without the spread

included in the regression), which differs from the true parameter of 0.80% by less than one

standard error. Similarly, the average estimated premium on the spread reported in column (1)

of Panel A.II is 5.96%, which is close to the true parameter of 6.0%.

However, even in the idealized situation where returns and betas are perfectly measured,

statistical power is an issue. Although the average t-statistic for the beta premium reported

in column (1) of Panel A.1 exceeds 3.0, there is substantial variation across the one hundred

simulations. Despite the inclusion of a relatively large (0.8% per month or 9.6% per year) beta

premium in the simulated return data, in fifteen of the 100 simulations the estimated t-statistic

on the beta premium is less than 1.96, so a researcher would have failed to detect the true

positive relation between average returns and beta at the conventional 5% significance level.

The finding that the power of the Fama-MacBeth technique to detect beta pricing relations

is low is broadly consistent with results reported by Affleck-Graves and Bradfield (1993) and

Shanken and Zhou (2006).

Comparing results across Columns (1) and (2) of Table II reveals that estimation error is also

a potentially important issue. When using betas estimated by OLS regressions of true monthly

returns on the true market return instead of true betas in the Fama-MacBeth regressions, the

estimated risk premium reported in Panel A.I is reduced from 0.781% per month to 0.729% per

month. This result can be understood in terms of a standard errors-in-variables (EIV) analysis,

where the coefficient on a variable measured with error (beta) will be biased toward zero, ceteris

paribus. Shanken and Zhou (2006) and Chen and Kan (2004) also document downward bias
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attributable to EIV in risk premium estimates obtained by use of the Fama-MacBeth method.

They note that this bias persists even if the cross-sectional regressions are estimated by generalize

least squares or maximum likelihood techniques.

Of course, in practice researchers do not have the option of using true returns to estimate

betas, but must rely on observed returns. The Fama-MacBeth coefficient estimates obtained

from regressing observed monthly returns on observed betas are biased further toward zero.

In particular, the beta risk premium estimate obtained when regressing observed returns on

observed betas as reported in column (5) of Panel A.II is 0.710% per month, compared to

0.729% in column (2) and 0.781% in column (1).

However, note also the results in columns (3) and (4) of Panel A.II. When observed monthly

returns are regressed on either true betas or computed betas, the downward bias in the estimate

of the market price of beta risk is no longer observed. We can therefore conclude that the

downward bias in the estimated market price of beta risk observed in column (5) of Panel A.II

is attributable to estimation error in betas that is made worse by bid-ask bounce, as opposed to

bias in monthly betas that is attributable to bid-ask bounce.

Comparing results across Table III and Table II reveals that the inclusion in the simulated

sample of securities with spreads representative of Nasdaq stocks worsens the biases. The upward

bias in the estimated spread premium jumps to about 8.8% per month (Panel B.II. of Table III),

as compared to 3.1% per month when the simulated sample included only NYSE and AMEX

securities. Further, the downward bias in the estimated premium for beta risk is worsened; for

example the estimated beta premium when regressing observed returns on betas estimated from

observed returns drops from 0.71% in column (5), Panel A.II of Table II to 0.60% on Table III.

Implementing the Scholes-Williams correction when estimating betas in observed returns

does not eliminate the microstructure-related biases in the asset pricing tests. In fact, the

downward bias in the estimate of the beta premium is worsened, as the coefficient estimates

reported in column (6), Panels A.I and A.II of Tables II and III are yet lower than the

corresponding estimates reported in column (5), where betas were estimated without the Scholes-

Williams correction. Further, the upward bias in spread premium estimates is not mitigated by

use of Scholes-Williams betas. The ineffectiveness of the Scholes - Williams correction is to be
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expected, as the correction was not designed to correct the effects of bid-ask bounce, which are

present in the simulated (as well as real, e.g. CRSP) data. Rather, the correction is intended

to address nonsychronicity, which affect observed returns differently than either bid-ask bounce

or nontrading.

We do not report the results of implementing the Scholes-Williams method in subsequent

Tables, since the conclusion that the Scholes-Williams correction is not generally useful in

correcting for the effects of bid-ask bounce remains the same. Also, since the results are most

often repetitive, we do not report results obtained when using true returns and true betas,

observed returns and computed betas, or observed returns and true betas on Tables that follow,

but simply mention these results when noteworthy.

B.2. Fama-MacBeth Estimation in Portfolios

Researchers at least since Fama and MacBeth (1973) have been aware that measurement

errors inherent in the use of estimated betas can cause downward bias in risk premium estimates

obtained in cross-sectional regressions. This consideration among others motivated the use of

portfolios rather than individual stocks to estimate betas, under the reasoning that diversification

would reduce measurement errors for portfolio betas. Accordingly, we adopt portfolio approaches

for the remainder of this study.

Some researchers, including Fama and MacBeth (1973) and Eleswarapu (1997), form

portfolios of stocks, and estimate premia by cross-sectional regressions of portfolio returns on

estimated portfolio betas. Other researchers, including Amihud (2002), Fama and French (1992),

and Easley, O’Hara, and Hvidkjaer (2002) assign estimated portfolio betas to all stocks in

a portfolio, and estimate premia by cross-sectional regressions of individual stock returns on

portfolio betas. We assess the effects of microstructure biases using a version of each approach,

referring to the former as the “Portfolio Return/Portfolio Beta” approach and the latter as the

“Individual Return/Portfolio Beta” approach.

The details of our implementation of the “Portfolio Return/Portfolio Beta” approach are

generally similar to the research design used by Eleswarapu (1997), whose paper is of particular

interest due to the finding of a strong positive cross-sectional relation between mean returns and
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bid-ask spreads. In particular, we form forty nine portfolios by first assigning stocks to seven

portfolios based on estimated (by OLS in the first five years of observed returns) betas, and then

separating each beta portfolio into seven spread portfolios based on the si parameter. Mean

portfolio returns are computed on a monthly basis as the equal-weighted average of the portfolio’s

component stock returns, and the portfolio spread is computed as the mean of the portfolio’s

component stock spreads. The estimated portfolio beta is obtained by an OLS regression of

portfolio returns on market returns, using the first five years of monthly data. Premia for beta

risk and spread are estimated by cross-sectional monthly regressions (excluding the first five

years) of portfolio returns on estimated portfolio betas and spreads.

Table IV reports results obtained when we implement the “Portfolio Return/Portfolio Beta”

approach in simulated return data where spreads are calibrated to NYSE/AMEX levels (columns

1 and 2) and to NYSE/AMEX/Nasdaq levels (columns 3 and 4). The broad conclusion that

can be drawn is that the Portfolio Return/Portfolio Beta approach reduces, but only slightly,

the magnitude of the various microstructure biases. Specifically, the premium on the spread

estimated from observed returns for NYSE/AMEX stocks when the true premium is zero is

reduced from about 3.11% on Panel B.II of Table II to 2.86% on Panel B.II of Table V. The

corresponding figures for the simulated NYSE/AMEX/Nasdaq sample indicate a reduction in

the bias on the spread premium estimate from 8.83% to 8.10%. However, the upward bias in

the spread premium remains highly significant in a statistical sense, as the mean estimated

spread premium continues to exceed the true parameter of zero by over one hundred times

the standard error of the mean in each sample. The downward bias in the estimated beta

premium attributable to errors-in-variables is essentially unchanged by the shift to the portfolio

return/portfolio beta approach.

The results regarding the pricing of the spread parameter in the simulated NYSE / AMEX /

Nasdaq sample are of particular interest, since the methodology is very similar to that employed

by Eleswarapu (1997), who reported strong evidence of a positive relation between average

observed returns and bid-ask spreads. The estimated bias on the spread premium of 8.10% in

this sample is large in economic terms. Fortin, Grube, and Joy (1989) estimate the average

spread for the largest-spread quintile of Nasdaq stocks to be 23.7%. The point estimates in
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column (4), Panel B.II of Table V therefore equate to an estimated monthly return premium for

this portfolio of 0.237x8.1 = 1.92%, as compared to stocks with a spread near zero. The point

estimates reported here actually exceed those reported by Eleswarapu (1997, Table III), which

average about 3.5%. This reflects in part that we at this point continue to assume that securities

always trade, while the actual data includes non-trading, which mitigates bid-ask bounce. Also,

Eleswarapu uses Nasdaq stock data over the 1973-1990 period. CRSP return data for Nasdaq

NMS stocks was based on quote midpoints rather than trade prices prior to November, 1982.

We next turn our attention to the level of microstructure biases observed when using the

“Individual Return/Portfolio Beta” approach. Our implementation of this approach is similar

to the research design employed by Fama and French (1992). More specifically, we form one

hundred portfolios by first assigning stocks to ten portfolios based on estimated (by OLS in

the first five years of observed returns) betas, and then separating each beta portfolio into ten

spread portfolios based on the si parameter. Mean portfolio returns are computed on a monthly

basis as the equal-weighted average of component stock returns. The estimated portfolio betas

are obtained by OLS regressions of portfolio returns on market returns, using the full time series

of monthly data. The estimated portfolio beta is assigned to each stock in the portfolio. Premia

for beta risk and spread are estimated as the time series mean of coefficients obtained in cross-

sectional monthly regressions (still excluding the first five years, to avoid increasing the effective

sample size as compared to prior approaches) of portfolio returns on estimated portfolio betas

and individual stock spreads. Table V reports results obtained when we implement this method

in simulated return data where spreads are calibrated to NYSE/AMEX levels (columns 1 and

2) and NYSE/AMEX/Nasdaq levels (columns 3 and 4).

The theory developed in Section III indicated the possibility of an upward bias in the beta

risk premium estimate, due to both returns and betas for stocks with more bid-ask bounce

being upward upward biased. This upward bias is weakly apparent in the average beta premium

estimate of 0.84%, as reported in Column (4) of Panel A.I. That the upward bias in the risk

premium estimate reflects bias in the betas and not just the upward bias in observed returns

can be verified by comparing to the corresponding estimate obtained when regressing observed
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returns on betas estimated from true returns, which is 0.77% (not reported in the Table).14

The key insight that arises from comparing results reported on Table V to corresponding

results obtained when we used the “Portfolio Return/Portfolio Beta” approach as reported on

Table IV is that the use of individual returns and portfolio betas essentially eliminates the

downward bias in the beta risk premium estimate. Each mean beta risk premium reported in

Panel A of Table V is within about 1.1 standard errors of the true parameter of 0.80%. Thus

our simulation evidence supports the Fama and French (1992, p. 432) conjecture that “. . . the

precision of the full-period post-ranking portfolios betas, relative to the imprecise beta estimates

that would be obtained for individual stocks, more than makes up for the fact that true betas

are not the same for all stocks in a portfolio.”15 However, in contrast to the improved results

regarding estimation of the beta risk premium, the bias in the estimated spread premium is not

lessened by the Individual Stock/Portfolio Beta approach.

C. How Large Must Spreads be to Introduce Bias?

The simulation results reported in Sections B and C above indicate that bid-ask bounce

consistently leads to upward bias in estimated premia for illiquidity, when spreads are calibrated

to those actually observed during the 1980’s. A natural question is whether such bias could be

avoided by focusing on samples with narrower spreads, either by restricting the analysis to more

recent data or by omitting stocks with large spreads. To shed some light on this issue we report

on Table VI a set of analyses where stocks are excluded from the simulated sample as a function

of spread widths. These results are based on the Individual Return/Portfolio beta method, with

all securities trading each day, observed returns regressed on betas estimated from observed

returns, and an actual spread premium equal to 6.0%.

The first row of Table VI reproduces results reported in Table V, Panel A.II., Column 4.
14To gain additional insight as to the magnitude of the potential bias in betas attibutable to bid-ask bounce,

we use the simulated monthly return data underlying Table V, sort stocks into 10 portfolios by spread, and then
compute the beta bias within each portfolio as 100*(true beta-computed beta)/computed beta. We document
an upward bias in the computed beta of 1.58% in the high-spread portfolio and a downward bias in beta for the
low-spread portfolio of 0.34%. These biases would be larger in simulated daily data.

15We investigate whether the reduced EIV bias stems from the use of portfolio beta estimates in lieu of individual
stock beta estimates, or from the use of the full sample rather than just five years to estimate the betas. We find
that portfolio betas estimated using only the first five years perform almost as well as betas estimated from the
full sample. We therefore conclude that the reduced bias in our simulations is largely attributable to the former
explanation.
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The mean estimated spread premium of 14.92% exceeds the true premium of 6.0% by 450 times

the standard error of the mean. The second row of Table VI reports results when ten percent of

stocks have been excluded from the sample, the third row reports results when twenty percent

of stocks are excluded, etc. Stocks are excluded sequentially based on average spread widths as

reported on Panel B of Table I. The first set excluded is comprised of the Nasdaq 5th quintile

(average spread 23.7%), the second set excluded is comprised of the Nasdaq 4th quintile (average

spread 12.1%), the third set excluded is the Nasdaq 3rd quintile (average spread 7.3%), the fourth

set excluded is comprised of the NYSE/AMEX 5th quintile (average spread 6.4%), etc.

The results on Table VI indicate that the bias in the spread premium declines rapidly as

the widest-spread stocks are excluded from the analysis. When only the widest-spread decile

is excluded the estimated spread premium declines to 10.21%, as compared to 14.92% when all

stocks were included. Excluding the second widest-spread decile further reduces the estimated

spread premium to 8.88%. When the analysis includes only the narrowest-spread decile (the

first NYSE/AMEX quintile), the estimated premium of 6.25% is only slightly greater than the

true parameter of 6.0%.

However, statistical power to detect the true positive relation between returns and spreads

also declines rapidly as securities are omitted from the analysis. This reduction in power reflects

both the smaller sample size and the reduced cross-sectional variation in spreads. The tradeoff

between reduced bias and reduced power is illustrated vividly when focusing on results obtained

when eighty percent of sample stocks are excluded (i.e. only the narrowest 40% of NYSE/AMEX

stocks are included). In this case the average estimated spread premium across the one hundred

simulations is 6.97%. Though the magnitude is relatively small, the mean is still upward biased,

exceeding the true parameter of 6.0% by 1.78 times the standard error of the mean. At the same

time, the average t-statisic on the spread is only 1.20 across the 100 simulations. In 77 of the 100

individual simulations the t-statistic on the spread is less than 1.96, implying that a researcher

would have failed to detect the actual positive spread premium at conventional significance levels.

We therefore conclude that the upward bias in the estimated spread premium can be reduced,

but not eliminated, by excluding wide-spread securities, but at a cost in statistical power such

that the researcher may well not be able to detect a true positive illiquidity premium if it exits.
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VI. Empirical Evidence from Nasdaq

To this point, we have relied on simulation evidence, the results of which indicate that biases

in asset pricing tests arising from microstructure considerations can be substantial. To assess

the magnitude of microstructure-based biases using actual data requires that we compare results

obtained using observed returns to results obtained using true returns, which unfortunately

cannot be observed. However, the CRSP database reports closing bid and ask quotations as

well as closing trade prices for Nasdaq NMS (National Market System) stocks subsequent to

November l, 1982. The magnitude of the biases discussed here can be assessed by comparing

results of asset pricing tests conducted in closing trade returns to those obtained using closing

midpoint returns, at least to the extent that quotation midpoints can be viewed as reasonable

proxies for true asset values.

We construct a sample consisting of Nasdaq NMS stocks from November 1982 through

December 31, 2005. We include only ordinary common shares (CRSP share code shrcd =

10, 11, 12). The sample includes daily returns computed by CRSP from closing prices (or

midpoints on nontrading days), as well as daily returns that we compute from quotations.16

Monthly returns are computed by compounding the daily returns within each month. The

percentage spread for each stock is calculated by averaging the daily spread relative to the

quote midpoint. Stocks are excluded from a given month if closing (trade or quote midpoint)

data is available for less than fifteen days. We also exclude the one percent of stock/days with

the largest absolute difference between the closing trade price and the closing quote midpoint,

as these likely reflect errors in the closing quotation data.

We implement asset pricing tests using the methodology of Eleswarapu (1997), Table III.

Specifically, we form forty nine equal weighted portfolios. Stocks are sorted into portfolios based

on (1) the stock’s average spread in the previous year and (2) the stock’s beta estimated using

the preceding 36 months. The portfolio spread in each month of the cross-sectional regression

is the average of the firms’ spreads the prior month. The portfolio beta is estimated using the
16We obtain quotations from the CRSP data as follows. If the CRSP variable prc is positive then the ask is set

equal to the CRSP variable nmsask and bid is set equal to the CRSP variable nmsbid. If prc is negative the ask
is set equal to the CRSP variable askhi and the bid is set equal to the CRSP variable bidlo. Midpoints are the
simple average of the ask and bid quotes. Midpoint returns are computed from midpoints, after adjustments for
cash dividends, distributions, and splits as reported by CRSP.
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entire 240-month test period. A cross-sectional regression of portfolio return on portfolio beta

and average portfolio bid-ask spread is estimated for each month of the test period, and final

estimates are the time series means of the monthly estimates.

Results are reported on Table VII. The first row reports results based on returns reported by

CRSP, which rely on trade prices on those days with trading and quote midpoints on non-trading

days. Consistent with the results reported by Eleswarapu (1997), we estimate a positive (0.422)

and statistically significant (t-statistic = 2.01) cross-sectional relation between average returns

and average bid-ask spreads for Nasdaq NMS stocks. However, when we repeat the Fama-

MacBeth regressions using quote midpoint returns we no longer observe any significant relation

between mean returns and mean spreads: the estimated coefficient is -0.22, with a t-statistic

of -0.52. These results are consistent with the theory and simulation evidence presented here

implying that bid-ask bounce biases upwards the estimated relation between average returns and

bid-ask spreads. The results are also consistent with the reasoning that there is no relationship

between mean returns and illiquidity. However, the sample employed contains a narrow set

of stocks observed over a relatively short interval, implying that the absense of an observed

relation after adjustments for microstructure biases could be sample-specific. Indeed, He and

Kryzanowski (2006) report a positive and significant illiquidity premium for Canadian stocks,

even when employing quote-midpoint returns.

We also assess the effect of implementing the other two potential corrections for bid-ask

bounce discussed in Section IV. The third row of Table VII reports results obtained when

the Fama-MacBeth regressions are implemented in continuously compounded returns, created

for each stock day as the natural logarithm of one plus the return reported by CRSP. This

correction also yields an estimate of the spread premium indistinguishable from zero (0.056,

with a t-statistic of 0.16).

The fourth row of VII reports results obtained when each individual stock return is adjusted

by deducting an estimate of var
[
δ̄i,t

]
. δ̄i,t is measured for each stock-day as the percentage

difference between the closing trade price and the closing quote midpoint, and the variance of

the measured δ̄i,t is then computed for each stock-year. Adjusted returns are those reported by

CRSP less the variance of δ̄i,t for that stock-year. Results reported on the fourth row of Table
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VII also indicate the absence of a significant cross-sectional relation between returns adjusted

for bid-ask bounce and spreads (coefficient = -0.099, t-statistic = -1.13).

In summary, we estimate relations between average stock returns and average bid-ask spreads

in one of the few databases where both closing trade prices and closing quote midpoints are

available. Consistent with the model and the simulation results developed here, we find evidence

that bid-ask bounce in returns computed from trade prices biases upwards the estimated relation

between average returns and bid-ask spreads.

VII. Conclusion and Further Research

Empirical studies that use the CRSP data to examine relations between average return,

risk, and liquidity rely on observed return measures that are constructed from a combination of

closing trade prices (which are affected by bid-ask bounce) and closing quote midpoints (which

are not). Our analysis shows that bid-ask bounce biases both mean return and beta measures,

and also increases noise in beta estimates, and that each of these effects potentially imparts

biases in asset pricing tests. Further, the relation between the biases attributable to bid-ask

bounce and observable bid-ask spreads need not be monotone, as it depends on those factors

that determine non-trading.

To illustrate the potential magnitude of the microstructure biases, we conduct a series of

simulations, where parameters are calibrated to the CRSP data. The key advantage of a

simulation approach is that we know the true relation between returns, betas, and liquidity.

The most robust finding of the simulations is that bid-ask spread can appear to be positively

related to average returns even when they are not. We also assess via simulation whether

a researcher can avoid the biases documented here by excluding securities with wide spreads

from the analysis. Results indicate that the upward bias in the estimated spread premium can

be reduced, but not eliminated, by excluding wide-spread securities, but at a cost in statistical

power such that the researcher may well not be able to detect a true positive illiquidity premium

if it exits.

We also examine data for Nasdaq NMS securities after 1983, for which CRSP reports both

closing trade prices and closing quote midpoints. By comparing results obtained when using
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closing price returns to those obtained using closing quote midpoint returns, we verify empirically

that bid-ask bounce biases upward the estimated relation between returns and bid-ask spreads.

We document that the increased noise in beta estimates attributable to microstructure

effects is sufficient that the accompanying errors-in-variables problem can, depending on research

design, lead to significant downward biases in the market price of beta risk. However, the bias

is minimal when individual security returns are regressed on betas estimated on a portfolio

basis, as in Fama and French (1992). Since Fama and French (1992) do not detect a significant

premium on beta after controlling for firm size, we conclude that microstructure biases alone do

not explain the empirical failure of the CAPM.

We consider a series of possible cures for the biases that arise due to bid-ask bounce. Two

of the possible approaches, the use of quote midpoint returns or a direct adjustment of returns

for the amount of bid-ask bounce, require data on both trade prices and quotations. Quotation

databases that span enough years to be useful for asset pricing tests are not readily available. The

third approach is to use continuously compounded rather than simple returns. While this can

be implemented in any database, it is only appropriate when testing models with implications

for continuously compounded returns, not when testing models like the discrete-time CAPM

that have implications regarding holding period returns.

The results reported here need not imply that illiquidity has no effect on average asset

returns. However, the results do imply that the estimated empirical relations between mean

returns and illiquidity measures reported in the literature are likely to be larger than the true

economic relations.

Our analysis of biases in asset pricing tests with regard to illiquidity is limited to only one

asset characteristic, i.e. bid-ask spread. Since the results indicate the likelihood of obtaining an

upward biased coefficient estimate on this characteristic, a natural question is whether biased

results might also be obtained in tests of whether other measures of liquidity as firm characteristic

or measures of liquidity risk are priced. Additionally, the question arises as to whether asset

characteristics that might be correlated with bid-ask bounce such as firm size may also appear

to be priced when they are not. Further, since bid-ask bounce also increases observed return

volatility, our results may have relevance for the recent literature (see, for example Spiegel and
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Wang (2005) and the papers referenced there) that assess whether idiosyncratic return volatility

is priced.
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Appendix

Equation (7):

We have that:

E
{
ro
i,t

}
= E

{
1 + δ̄i,t

1 + δ̄i,t−1

}
[1 + E {ri,t}]− 1 =

= E
[
1 + δ̄i,t

]
E

[
1

1 + δ̄i,t−1

]
[1 + E {ri,t}]− 1.

because δi,t’s and consequently δ̄i,t’s are independent.
Given Jensen’s inequality, i.e. if f (x) is concave then Ef (x) ≤ f (Ex) and if f (x) is convex

then Ef (x) ≥ f (Ex). The function f (x) = 1/x is convex, thus, E (1/x) ≥ 1/Ex. Thus,

E

[
1

1 + δ̄i,t−1

]
≥ 1

E
[
1 + δ̄i,t−1

] .

It follows that

E

{
1 + δ̄i,t

1 + δ̄i,t−1

}
= E

[
1 + δ̄i,t

]
E

[
1

1 + δ̄i,t−1

]
≥

E
[
1 + δ̄i,t

]
E

[
1 + δ̄i,t−1

] =
1 + E

[
δ̄i,t

]
1 + E

[
δ̄i,t−1

] = 1

Therefore given the last expression E
[
ro
i,t

]
> E [ri,t]. Further, using a Taylor series:

E

[
1

1 + δ̄i,t−1

]
= E

[
1− δ̄i,t−1 + δ̄2

i,t−1 − . . .
]
≈ 1 + var

[
δ̄i,t−1

]
,(A.1)

where var
[
δ̄i,t−1

]
denotes the variance of δ̄i,t. If the third- and higher-ordered odd moments of

δ̄i,t are zero then the variance in Eq.(A.1) provides a lower bound for the bias induces by the
bid-ask effect. Eq.(A.1) assumes that δ̄i,t is small. Combining the above equation with Eq.(6)
and dropping the cross product term gives Eq.(7). This argument requires −1 < δ̄i,t−1 < 1.

Bid Ask Spreads vs. Bid Ask Bounce
Assume that actual spreads are uniformly distributed. In particular, δi,t is uniformly

distributed on the interval [−si, si]. For the moment we assume that

c ≤ si,(A.2)

for all i, which implies that each security sometimes does not trade.
Given the uniform distribution assumption, the average unsigned spread for security i is

equal to si. In particular, E [spreadi,t] = 2E |δi,t| = si. If quotations are observable and those
trades that do occur are priced at the quotes, then si can be estimated as the average (across
both trading and non-trading intervals) quoted spread. If trades occur every period but at prices
other than the quotes, then si corresponds to the average effective spread (twice the percentage
absolute difference between trade price and value). If trade prices can differ from the quotes and
securities endogenously do not trade on some dates then the average effective spread observed
in the data will be less than si, due to the censoring of observations when spreads are widest.

The amount of bid-ask bounce given endogenous nontrading in Eq.(9) can be reexpressed
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as:

var
[
δ̄i,t

]
=

1
2si

∫ c

−c
x2

i dxi =
x3

i

6si

∣∣∣∣c
−c

=
c3

3si
.(A.3)

By comparison, the bid-ask bounce in the case when security i always trades is:

var [δi,t] =
∫ si

−si

x2
i f (xi) dxi =

1
2si

∫ si

−si

x2
i dxi =

x3
i

6si

∣∣∣∣si

−si

=
s2
i

3
.(A.4)

From Eq.(A.2), Eq.(A.3) and Eq.(A.4) it follows that:

var
[
δ̄i,t

]
≤ var [δi,t] ,(A.5)

formalizing that non-trading reduces bid-ask bounce. Now assume that for security j, δj,t has a
uniform distribution on the interval [−sj , sj ]. Analogous to Eq.(A.3),

var
[
δ̄j,t

]
=

c3

3sj
.

Assuming further that si ≤ sj , i.e. that the average spread for security i is less than for
security j, it follows that:

var
[
δ̄j,t

]
≤ var

[
δ̄i,t

]
.(A.6)

Thus, we have what may appear to be a counterintuitive result. If the gains from trade
are constant across securities, spreads are uniformly distributed, and spreads for all securities
sometimes exceed the gains from trade, then the security with a wider average quoted spread
will actually have less bid-ask bounce in observed returns. This occurs because securities with
wider average spreads will trade less frequently, leading to more frequent observation of the
quote midpoint.

We next consider the case where all securities are potentially subject to nontrading, but
some securities always trade because their spread never gets wide enough to cause nontrading.
Assume that for security k, δk,t has a uniform distribution on the interval [−sk, sk], and that
sk ≤ c ≤ si ≤ sj . Thus, security k always trades while securities i and j are subject to
endogenous nontrading. Analogous to Eq.(A.4):

var
[
δ̄k,t

]
= var [δk,t] =

s2
k

3
.(A.7)

With endogenous nontrading the relationship between the bid-ask bounces for security i and
j is given by Eq.(A.6). The inequality

var
[
δ̄k,t

]
≥ var

[
δ̄i,t

]
,

can, using Eq.(A.3) and Eq.(A.7) be restated as:

c ≤ 3

√
s2
ksi.

Thus, as long as the above inequality is true the security with a smaller average quoted
bid-ask spread will have greater bid-ask bounce in observed returns, and vice versa.

The preceding analysis relied on the assumption that the gain from trade, c, is the same
across all securities. This may be reasonable if c reflects liquidity needs; cash can be raised
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equally well by selling any security. If, however, c is motivated by information then c could well
vary across assets. One simple but useful specification is to assume that for any security i the
gain to trade is related to the average quoted spread:

ci = g (si) .(A.8)

While it is simplistic to link ci and si mechanically, it seems plausible that these variables
would naturally be related. For example, spreads and gains from trade are likely to both be
linked to the frequency with which investors have non-public information.

Assume further that si ≤ sj . Consider first the possibility that g (.) is a decreasing function,
so that gains from trade are greater for low-spread securities. Then, g (si) ≥ g (sj), and using
Eq.(A.3) and Eq.(A.8) it follows that inequality Eq.(A.6) is always true. In this case securities
with high bid-ask spread will continue to have less bid-ask bounce.

Alternately, consider the possibility that g (.) is an increasing function, so that gains from
trade are greater for high-spread securities. Then, g (si) ≤ g (sj). In this case, if

g (x)
x

is a nondecreasing (decreasing) function then securities with high bid-ask spread will have low
(high) bid-ask bounce. Higher average spreads for securities with greater gains from trade might
arise because information asymmetries increase both spreads and gains from trade. Since this
scenario is plausible, this analysis implies that, while it is possible to specify the direction of
the asset pricing biases caused by larger bid-ask bounce, it may not possible to make simple
inferences about the magnitude of bid-ask bounce and the direction of microstructure biases
in asset pricing tests on the basis of observable bid-ask spreads. The relations will depend on
detailed parameters and observed non-trading frequencies.

Equation (10):

Let’s derive an expression for cross-covariance. Given that

cov
(
ro
i,t, r

o
j,t

)
= E

[
ro
i,tr

o
j,t

]
− E

[
ro
i,t

]
E

[
ro
j,t

]
.(A.9)

Define

x =
1 + δ̄i,t

1 + δ̄i,t−1
; y =

1 + δ̄j,t

1 + δ̄j,t−1
.(A.10)

The cross-covariance could be obtained by first calculating the uncentered moment:

E
[
ro
i,tr

o
j,t

]
= E [{x (1 + ri,t)− 1} {y (1 + rj,t)− 1}] =

= E [xy] + E [xyrj,t] + E [xyri,t] + E [xyri,trj,t]− E [x (1 + ri,t)]− E [y (1 + rj,t)] + 1

The second term on the right hand side in Eq.(A.9) could be expressed as:

E
[
ro
i,t

]
E

[
ro
j,t

]
= {E [x] {1 + E [ri,t]} − 1} {E [y] {1 + E [rj,t]} − 1} =

= E [x] {1 + E [ri,t]}E [y] {1 + E [rj,t]} − E [x] {1 + E [ri,t]} − E [y] {1 + E [rj,t]}+ 1.

The common factor induces contemporaneous cross-sectional correlation between the virtual
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returns of securities i and j. Using the fact that

cov (ri,t, rj,t) = βiβjvar [rM,t]

and Eq.(A.10) and Eq.(A.1) then yields the following:

cov
(
ro
i,t, r

o
j,t

)
=

{
1 + var

[
δ̄i,t

]} {
1 + var

[
δ̄j,t

]}
βiβjvar [rM,t](A.11)

Equation (12):
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Table I. Bid-Ask Spread Parameters Used in the Simulations.

For each individual stock i the parameter si is assigned as a random draw from a uniform distribution on the interval
from the indicated lower to upper bound. The (unsigned) half-spread on day t for stock i is a random draw from a
uniform distribution on the interval 0 to si. The average half-spread for stock i is therefore si/2, while the average
full spread is si. Parameters in Panel A are selected so that mean spreads for each set of stocks match means for
deciles of NYSE/AMEX stocks as reported by Chalmers and Kadlec (1998). Parameters in Panel B are selected so
that mean spreads for the first five sets of stocks match means for NYSE/AMEX securities, while mean spreads for
the second five sets of stocks match means for quintiles of Nasdaq securities, as reported by Fortin, Grube and Joy
(1989).

Panel A: When replicating NYSE-AMEX spreads
Spread Spread Spread

Stocks Lower Upper Mean Portfolio Replicated
Bound Bound

1-150 0.0040 0.0060 0.0050 NYSE/AMEX 1st Decile
151-300 0.0060 0.0080 0.0070 NYSE/AMEX 2nd Decile
301-450 0.0080 0.0092 0.0086 NYSE/AMEX 3rd Decile
451-600 0.0092 0.0120 0.0106 NYSE/AMEX 4th Decile
601-750 0.0120 0.0144 0.0132 NYSE/AMEX 5th Decile
751-900 0.0144 0.0176 0.0160 NYSE/AMEX 6th Decile
901-1050 0.0176 0.0216 0.0196 NYSE/AMEX 7th Decile
1051-1200 0.0216 0.0356 0.0286 NYSE/AMEX 8th Decile
1201-1350 0.0356 0.0548 0.0452 NYSE/AMEX 9th Decile
1351-1500 0.0548 0.1116 0.0832 NYSE/AMEX 10th Decile

Panel B: When replicating NYSE-AMEX-Nasdaq spreads
Spread Spread Spread

Stocks Lower Upper Mean Portfolio Replicated
Bound Bound

1-150 0.00400 0.00800 0.00600 NYSE/AMEX 1st Quintile
151-300 0.00800 0.01120 0.00960 NYSE/AMEX 2nd Quintile
301-450 0.01120 0.01800 0.01460 NYSE/AMEX 3rd Quintile
451-600 0.01800 0.03020 0.02410 NYSE/AMEX 4th Quintile
601-750 0.03032 0.09832 0.06432 NYSE/AMEX 5th Quintile
751-900 0.01200 0.03200 0.02200 Nasdaq 1st Quintile
901-1050 0.03200 0.05600 0.04400 Nasdaq 2nd Quintile
1051-1200 0.05600 0.09000 0.07300 Nasdaq 3rd Quintile
1201-1350 0.09000 0.15200 0.12100 Nasdaq 4th Quintile
1351-1500 0.15200 0.32200 0.23700 Nasdaq 5th Quintile
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Table II. Fama-MacBeth analysis using 1500 individual securities, when securities
always trade and spreads are calibrated to NYSE/AMEX levels.

Monthly returns are regressed on betas, with and without inclusion of spreads, and premia are estimated as the time
series mean of the monthly estimates. The Table reports the average premium in percent, average t-statistic, and
the standard error of the mean premium across 100 simulations. The columns report results based on: Col 1: True
returns and true betas, Col 2: True returns and betas estimated by OLS from true returns, Col 3: Observed returns
and betas computed from text expression 12, Col 4: Observed returns and true betas, Col 5: Observed returns and
betas estimated by OLS from observed returns, Col 6: Observed returns and betas estimated by the Scholes-Williams
method from observed returns.

(1) (2) (3) (4) (5) (6)
Return measure True True Obs. Obs. Obs. Obs.
Beta measure True Est.True Computed True Est.Obs Est.SW

Panel A: When beta (premium = 0.8%) and spread (premium = 6.0%) are priced
A.I. Returns regressed on beta only

Mean Beta Premium 0.780 0.729 0.782 0.781 0.711 0.605
Mean t-statistic (3.03) (3.04) (3.03) (3.03) (3.04) (3.03)

Standard Error of Mean 0.025 0.023 0.025 0.025 0.023 0.021
A.II. Returns regressed on beta and spread

Mean Beta Premium 0.781 0.729 0.783 0.782 0.710 0.605
Mean t-statistic (3.04) (3.04) (3.04) (3.04) (3.04) (3.03)

Standard Error of Mean 0.025 0.023 0.025 0.025 0.023 0.020
Mean Spread Premium 5.962 5.956 9.093 9.117 9.066 9.089

Mean t-statistic (25.99) (25.76) (22.52) (22.57) (22.24) (22.23)
Standard Error of Mean 0.027 0.028 0.027 0.027 0.033 0.034

Panel B: When neither beta or spread is priced
B.I. Returns regressed on beta only

Mean Beta Premium -0.018 -0.017 -0.018 -0.019 -0.015 -0.014
Mean t-statistic (-0.07) (-0.07) (-0.07) (-0.07) (-0.07) (-0.07)

Standard Error of Mean 0.025 0.023 0.025 0.025 0.023 0.019
B.II. Returns regressed on beta and spread

Mean Beta Premium -0.018 -0.017 -0.018 -0.018 -0.015 -0.014
Mean t-statistic (-0.07) (-0.07) (-0.07) (-0.07) (-0.07) (-0.07)

Standard Error of Mean 0.025 0.023 0.025 0.025 0.022 0.019
Mean Spread Premium -0.037 -0.035 3.081 3.080 3.084 3.086

Mean t-statistic (-0.17) (-0.16) (7.69) (7.69) (7.62) (7.61)
Standard Error of Mean 0.027 0.027 0.027 0.027 0.028 0.028
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Table III. Fama-MacBeth analysis using 1500 individual securities, when securities
always trade and spreads are calibrated to NYSE/AMEX/Nasdaq levels.

Monthly returns are regressed on betas, with and without inclusion of spreads, and premia are estimated as the time
series mean of the monthly estimates. The Table reports the average premium in percent, average t-statistic, and
the standard error of the mean premium across 100 simulations. The columns report results based on: Col 1: True
returns and true betas, Col 2: True returns and betas estimated by OLS from true returns, Col 3: Observed returns
and betas computed from text expression 12, Col 4: Observed returns and true betas, Col 5: Observed returns and
betas estimated by OLS from observed returns, Col 6: Observed returns and betas estimated by the Scholes-Williams
method from observed returns.

(1) (2) (3) (4) (5) (6)
Return measure True True Obs. Obs. Obs. Obs.
Beta measure True Est.True Computed True Est.Obs Est.SW

Panel A: When beta (premium = 0.8%) and spread (premium = 6.0%) are priced
A.I. Returns regressed on beta only

Mean Beta Premium 0.779 0.727 0.818 0.776 0.652 0.528
Mean t-statistic (3.03) (3.03) (3.15) (2.99) (3.26) (3.14)

Standard Error of Mean 0.025 0.024 0.027 0.027 0.022 0.021
A.II. Returns regressed on beta and spread

Mean Beta Premium 0.781 0.729 0.788 0.784 0.604 0.505
Mean t-statistic (3.04) (3.04) (3.03) (3.02) (3.03) (2.99)

Standard Error of Mean 0.025 0.023 0.025 0.025 0.020 0.018
Mean Spread Premium 5.986 5.982 14.952 15.018 14.924 14.967

Mean t-statistic (77.66) (77.00) (43.39) (43.47) (43.07) (43.16)
Standard Error of Mean 0.009 0.009 0.018 0.018 0.024 0.023

Panel B: When neither beta or spread is priced
B.I. Returns regressed on beta only

Mean Beta Premium -0.018 -0.017 0.003 -0.024 0.020 0.002
Mean t-statistic (-0.07) (-0.07) (0.01) (-0.09) (0.10) (0.02)

Standard Error of Mean 0.025 0.023 0.026 0.026 0.020 0.017
B.II. Returns regressed on beta and spread

Mean Beta Premium -0.018 -0.016 -0.015 -0.019 -0.008 -0.012
Mean t-statistic (-0.07) (-0.07) (-0.06) (-0.07) (-0.05) (-0.07)

Mean of St. Errors of Coeff. 0.025 0.023 0.025 0.025 0.019 0.016
Mean Spread Premium -0.014 -0.014 8.825 8.824 8.826 8.826

Mean t-statistic (-0.19) (-0.18) (26.16) (26.09) (25.98) (25.99)
Standard Error of Mean 0.009 0.009 0.018 0.018 0.019 0.019
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Table IV. Fama-MacBeth analysis using Portfolio Return/Portfolio Beta approach,
when securities always trade.

Monthly returns are regressed on betas, with and without inclusion of spreads, and premia are estimated as the
time series mean of the monthly estimates. The Table reports the average premium in percent, average t-statistic,
and the standard error of the mean premium across 100 simulations. Columns (1) and (2) report results for a
simulated NYSE/AMEX sample, while columns (3) and (4) report results for a simulated NYSE/AMEX/Nasdaq
sample. Results in columns (1) and (3) are obtained using true returns and betas estimated from true returns, while
results in columns (2) and (4) are obtained using observed returns and betas estimated from observed returns.

NYSE/AMEX NYSE/AMEX/Nasdaq
(1) (2) (3) (4)

Return measure True Obs. True Obs.
Beta measure Est.True Est.Obs Est.True Est.Obs

Panel A: When beta (premium = 0.8%) and
spread (premium = 6.0%) are priced

A.I. Returns regressed on beta only
Mean Beta Premium 0.729 0.711 0.728 0.655

Mean t-statistic (3.04) (3.04) (3.03) (3.26)
Standard Error of Mean 0.023 0.023 0.024 0.023

A.II. Returns regressed on beta and spread
Mean Beta Premium 0.730 0.711 0.730 0.611

Mean t-statistic (3.04) (3.04) (3.04) (3.04)
Standard Error of Mean 0.023 0.023 0.023 0.019
Mean Spread Premium 5.952 8.838 5.981 14.165

Mean t-statistic (24.19) (22.86) (72.37) (46.17)
Standard Error of Mean 0.028 0.033 0.009 0.023

Panel B: When neither beta or spread is priced

B.I. Returns regressed on beta only
Mean Beta Premium -0.016 -0.015 -0.016 0.019

Mean t-statistic (-0.07) (-0.07) (-0.07) (0.09)
Standard Error of Mean 0.023 0.023 0.023 0.020

B.II. Returns regressed on beta and spread
Mean Beta Premium -0.016 -0.015 -0.016 -0.006

Mean t-statistic (-0.07) (-0.07) (-0.07) (-0.03)
Standard Error of Mean 0.023 0.023 0.023 0.019
Mean Spread Premium -0.037 2.858 -0.014 8.096

Mean t-statistic (-0.15) (7.44) (-0.17) (26.89)
Standard Error of Mean 0.028 0.029 0.009 0.019
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Table V. Fama-MacBeth analysis using Individual Return/Portfolio Beta approach,
when securities always trade.

Monthly returns are regressed on betas estimated from the full sample, with and without inclusion of spreads, and
premia are estimated as the time series mean of the monthly estimates. The Table reports the average premium in
percent, average t-statistic, and the standard error of the mean premium across 100 simulations. Columns (1) and
(2) report results for a simulated NYSE/AMEX sample, while columns (3) and (4) report results for a simulated
NYSE/AMEX/Nasdaq sample. Results in columns (1) and (3) are obtained using true returns and betas estimated
from true returns, while results in columns (2) and (4) are obtained using observed returns and betas estimated from
observed returns.

NYSE/AMEX NYSE/AMEX/Nasdaq
(1) (2) (3) (4)

Return measure True Obs. True Obs.
Beta measure Est.True Est.Obs Est.True Est.Obs

Panel A: When beta (premium = 0.8%) and
spread (premium = 6.0%) are priced

A.I. Returns regressed on beta only
Mean Beta Premium 0.777 0.776 0.776 0.836

Mean t-statistic (3.04) (3.04) (3.03) (3.29)
Standard Error of Mean 0.025 0.025 0.026 0.027

A.II. Returns regressed on beta and spread
Mean Beta Premium 0.777 0.776 0.778 0.771

Mean t-statistic (3.04) (3.04) (3.04) (3.03)
Standard Error of Mean 0.025 0.025 0.025 0.025
Mean Spread Premium 5.96 9.077 5.980 14.916

Mean t-statistic (25.96) (22.48) (77.34) (43.30)
Standard Error of Mean 0.027 0.027 0.009 0.019

Panel B: When neither beta or spread is priced

B.I. Returns regressed on beta only
Mean Beta Premium -0.017 -0.017 -0.017 0.026

Mean t-statistic (-0.07) (-0.07) (-0.07) (0.10)
Standard Error of Mean 0.025 0.025 0.025 0.026

B.II. Returns regressed on beta and spread
Mean Beta Premium -0.017 -0.017 -0.017 -0.013

Mean t-statistic (-0.07) (-0.07) (-0.07) (-0.05)
Standard Error of Mean 0.025 0.025 0.025 0.024
Mean Spread Premium -0.037 3.082 -0.013 8.288

Mean t-statistic (-0.16) (7.70) (-0.18) (26.18)
Standard Error of Mean 0.027 0.027 0.009 0.019
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Table VI. The Threshold of Spread-Induced Bias: Fama-MacBeth analysis using the
Individual Return/Portfolio Beta approach, when some wide-spread securities are

excluded from the analysis.

The analysis replicates that of Table 6, column 4, where monthly observed returns are regressed on betas estimated
from observed returns and spreads. The first row is based on the full sample of 1500 simulated securities, while each
subsequent row reports results after excluding another 10 percent of the sample, beginning with the widest average
spreads reported on Panel B of Table 2. Premia are estimated as the time series mean of the monthly estimates, and
the Table reports the average premium in percent, average t-statistic, and the standard error of the mean premium
across 100 simulations.

NYSE/AMEX/Nasdaq
When beta (premium = 0.8%) and spread (premium = 6.0%) are priced

Mean Mean Standard Mean Mean Standard
Beta t-statistic Error of Spread t-statistic Error of

Premium Mean Premium Mean
All 0.771 (3.03) 0.025 14.916 (43.30) 0.019

10% stocks excluded 0.771 (3.02) 0.024 10.214 (31.47) 0.020
20% stocks excluded 0.775 (3.03) 0.025 8.879 (23.84) 0.026
30% stocks excluded 0.775 (3.03) 0.025 8.746 (18.11) 0.030
40% stocks excluded 0.777 (3.03) 0.025 7.773 (11.88) 0.055
50% stocks excluded 0.776 (3.03) 0.025 7.200 (6.70) 0.099
60% stocks excluded 0.777 (3.03) 0.025 7.413 (5.43) 0.116
70% stocks excluded 0.776 (3.02) 0.025 7.298 (2.73) 0.257
80% stocks excluded 0.776 (3.00) 0.025 6.968 (1.20) 0.544
90% stocks excluded 0.773 (2.96) 0.025 6.252 (0.41) 1.561
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Table VII. Empirical evidence from Nasdaq 1983-2005

Reported are results of implementing cross-sectional Fama-MacBeth regressions of monthly returns to forty nine
portfolios on estimated portfolio betas and bid-ask spreads. Data is for Nasdaq NMS stocks over the 1983 to 2005
interval. The methodology closely follows Eleswarapu (1997), Table III, Specification (B). Portfolios are formed on
the basis of average bid-ask spreads during the prior year, and estimated betas over the prior three years. Closing
price returns are those reported by CRSP based on the last trade if trade occurred or the closing quote midpoint if
not. Quote midpoint returns are constructed from closing quotations, adjusted for dividends and stock distributions.
Log returns are the natural logarithm of one plus the reported CRSP returns. Delta is defined for each stock day as
the percentage difference between the closing trade price and the closing quote midpoint, and the variance of delta
is computed for each stock/year. Adjusted returns are CRSP-reported returns less the variance of delta for that
stock/year. Coefficients reported are the time-series means of the monthly cross-sectional regression estimates, with
corresponding t-statistic.

Mean Mean
Beta Spread

Premium Premium
(Mean t-statistic) (Mean t-statistic)

Simple Returns, from Closing Prices 0.096 0.422
(1.01) (2.01)

Simple Returns, from Closing Quote Midpoints -0.204 -0.223
(-1.00) (-0.52)

Log Returns, from Closing Prices -0.063 0.056
(-0.44) (0.16)

Simple Returns, from Closing Prices, Less Var(delta) 0.040 -0.099
(1.18) (-1.13)
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