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ferences in default ex posure, w hich arise w ith: (1 ) contractual incom pleteness, and (2 )
heterog eneity am ong insureds. H eterog eneity is req uired, because it underm ines the
effi ciency of a m echanical pro rata div ision of assets that tak es place in the ev ent of
insurer insolv ency .
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1 Introduction

Recent disaster experience has produced a flurry of economic inquiry into catastrophe in-

surance markets. E specially puzz ling is the apparent incompleteness of catastrophe risk

transfer: T he price of risk transfer seems high, risk is not spread evenly among insur-

ers in the manner suggested b y Borch’s [1] groundb reaking theoretical result, and, in stark

contrast to Arrow’s well-known characterization of optimal insurance contracts, reinsurance

consumers do not purchase coverage for high layers of risk. Froot [5 ] documents these

puzz les and fi ngers various market imperfections as possib le explanations.

M any ob servers view the catastrophe b ond as a promising vehicle for overcoming imper-

fections in the reinsurance market. In this view, the catastrophe b ond opens a direct channel

for catastrophe risk to flow to the capital markets, sidestepping the frictions present in the

reinsurance market and connecting those who need protection with well-funded investors

eager to provide it. H owever, others are skeptical that catastrophe securitization will b e a

panacea. Bouriaux and S cott [2] argue that the terms of securitization are unlikely to b e

attractive to b uyers of terrorism coverage and note that, in general, the record of risk-linked

capital market instruments has not b een encouraging. Indeed, catastrophe b ond issuance

to date has b een underwhelming, even in the aftermath of events that were expected to

“ push” issuance. W hile it is far too early to write an epitaph for the catastrophe b ond, the

experience to date does raise questions ab out its theoretical foundations and its likely future

role.
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On closer inspection, the catastrophe bond concept seems paradoxical and almost atavis-

tic. Its current form features full collateralization and links principal forfeiture only to

specific risks, thereby retreating from the fundamental, time-tested concept of diversifica-

tion that allows insurers to protect insured value far in excess of the actual assets held as

collateral. In a world where frictional costs (e.g., due to taxes, regulations, moral hazard,

etc.,) make capital costly to hold, diversification allows reinsurers to economize on costly

collateral. V iewed in this light, a fully collateralized capital instrument seems an unlikely

competitor for traditional reinsurance products.

This paper examines this issue by developing a theory of risk collateralization. Specif-

ically, we study the effi cient division of risk-bearing assets between reinsurance company

assets and catastrophe bond principal (both of which can be used to “collateralize” promises

to indemnify consumers). In a narrow sense, the analysis confirms the intuition suggested

above. When reinsurance companies can write any type of contract with their insureds

and frictional costs associated with catastrophe bond principal are identical to those asso-

ciated with assets held in reinsurance companies, catastrophe bonds are at best redundant

instruments, and at worst welfare-reducing. Intuitively, if the insurer has complete freedom

to vary indemnity payments to consumers in every state of the world, it can engineer any

possible catastrophe bond pay-out through its contracts.

However, this result is a narrow one, because reinsurers and insurers face contracting

constraints in practice. In particular, the contracts typically promise an indemnity payment
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contingent on the policyholder’s experience and do not ordinarily specify rules ex ante for

who gets what in the event of insolvency. In bankruptcy, it is often assumed that the receiver

will use mechanical rules that assign payouts to insureds on a pro-rata basis that depends on

the size of claims relative to assets, or on a first-come-first-served basis. Whatever the rule,

companies either do not have the ability or, for practical reasons, do not attempt to specify

the rule contractually. As a result, assets are eff ectively distributed according to inflexible

mechanical rules under bankruptcy.

These constraints on asset distribution under default open up a role for catastrophe bonds,

even if insurance company assets and catastrophe bond principal have similar frictional

costs. When insureds and risk are homogeneous, insurance contracts are similar, and pro

rata rules perform well. Heterogeneity, however, exposes the shortcomings of pro rata rules

by misallocating assets in the bankruptcy state. Pro rata allocations can be suboptimal

when some insureds are more concerned about the bankruptcy state than others, and this

will generally be the case: Reinsurance buyers hold policies of diff ering quality even when

purchasing these policies from the same reinsurer. Even if the reinsurer were rated “A”— on

the basis, say, of being below some threshold expected policyholder deficit— this is just an

average across policyholders. If policyholders have diff erent risk profiles, some will be more

exposed to default than others, meaning that some are eff ectively holding “A+ ” policies (or

better), and some are holding “A-” policies (or worse). Those that have greater exposure

to bankruptcy risk may desire greater collateralization of their potential claims than can be
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provided under mechanical rules. This need opens up a role for catastrophe bonds in the

risk transfer market.

We show that catastrophe bonds can improve the welfare of insureds when reinsurers

face constraints on the distribution of assets in bankruptcy, and when they must insure a

heterogeneous group of risks. Catastrophe bonds can smooth out capital allocations made

ragged by the risk of bankruptcy. Put differently, reinsurance capital may weakly dominate

the catastrophe bond in terms of raising average policy quality, but such capital can be

rendered a blunt instrument by bankruptcy laws. Catastrophe bonds can improve welfare

for those insureds most exposed to bankruptcy risk.

The paper is laid out as follows. We begin by providing some historical background on

the catastrophe bond as an insurance vehicle. We then develop a simple two consumer model

of optimal risk transfer to analyze the trade-off between reinsurance equity and catastrophe

bonds. Finally, we generalize our results to the case of N consumers.

2 Background

At the end of 2004, catastrophe bond issuance was running around $ 1 billion per year, with

outstanding principal in the neighborhood of $ 5 billion.1 These numbers are dwarfed by

the comparable figures for reinsurance equity, but, in its short life, the catastrophe bond

1Source: The Growing Appetite for Catastrophe Risk: The Catastrophe B ond M arket at Y ear-E nd 2 0 0 4 ,

MMC Securities.
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market is still evolving and, in particular, moving toward higher layers of risk. While the

first catastrophe bonds linked forfeiture of principal tied to the issuer’s actual losses (an

indemnity trigger), the typical issue today is done by a reinsurer with forfeiture of principal

tied either to industry losses, model output, or to specific parameters of the disaster (e.g.,

the strength of an earthquake centered in a certain geographic region). Moreover, it is not

uncommon for today’s deals to feature multiple event triggers—requiring two or more major

disasters within a short time period to trigger principal forfeiture (see Woo [8 ]).

The theory of the insurance firm has made a great deal of progress in understanding

the joint determination of multiple line pricing, capital allocation, and the firm’s overall

default risk. Myers and Read [7 ], Zanjani [9], and Cummins et al. [3] study various aspects

of this problem. The first two papers derive formulae for allocating capital costs across

policyholders based on each policyholder’s contribution to the firm’s default risk (or default

value) at the margin. However, these models considered the default risk of the firm as a

w h o le. Less progress has been made in studying differences across policyholders in their

exposure to default.

These differences across policyholders though are central to the value of catastrophe

bonds. If the object of interest is a single default-related financial target for the company as

a whole—such as the expected policyholder deficit per dollar of liabilities—a dollar held in

the form of a catastrophe bond cannot possibly be preferable to one held as company equity.

Since the dollar held as equity will be available in all states of the world, it will be available
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to pay for all of the losses that will be covered by a catastrophe bond and some losses that

are not covered by the catastrophe bond.

To understand how catastrophe bonds can be used, we must move beyond thinking of a

single default-related financial target for the insurance company. Instead, we must think

about the company’s policies as having varying levels of quality, corresponding to varying

levels of exposure to default, and how catastrophe bonds and equity have distributional

consequences for recoveries by different policyholder groups in states of default.

3 Optimal Collateralization with Two Consumers

For expositional purposes, we begin by studying the collateralization problem in a world

with just two insureds. We later show how the results from this model generalize to a model

with multiple insureds.

3.1 The E nv ironment

Consider a world with two consumers. Each risks a loss of fixed size, but the actual loss

size and probability may differ across the consumers. Specifically, suppose that consumer 1

loses L1 with probability p1, while consumer 2 loses L2 with probability p2. We develop

our results under the assumption that the risks are independent, but this assumption is not

necessary for most of the results (excepting those in Section 4.1).
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There are two risk transfer technologies available to insure against losses. First, the

consumers can set up an insurance company and issue themselves insurance policies collat-

eralized by the assets of the company. Second, they can issue risk-linked securities (i.e.,

catastrophe bonds) that pay off (i.e., provide protection to the issuer) in the event of loss.

The insurance company is formed with assets of E, which represents capital contributed

by investors and premiums paid by policyholders. In either case, each dollar of assets results

in per unit frictional costs of δA. Consumers pay for these frictional costs, as well as the

expected value of claims associated with the insurance policies, with consumers 1 and 2

paying c1 and c2, respectively. In the event of a loss (or losses), the consumers can draw on

the assets to pay claims. When there are no losses, all assets revert to the investors.

Throughout our discussion, we think of “assets” as all the resources the insurer can use

to pay claims. Therefore, it includes both capital paid in by investors and premiums paid

in by consumers. For our purposes, the key characteristics of assets are their frictional cost,

and their availability for claims payment.

The consumers can separately issue catastrophe bonds to investors. The principal of the

bond is forfeited to the consumer in the event of a loss, but not otherwise. Let B1 and B2

be the bond issuance of consumers 1 and 2, respectively. Each dollar of bond principal

raised has the frictional cost δB, and investors also receive payment for expected losses, just

as with insurance company capital. We simplify matters by focusing on indemnity triggers

and thus avoiding the complexities of optimal trigger design (see Doherty and Mahul [4]).

7



This focus therefore abstracts from direct modeling of the costs associated with asymmetric

information, but such costs can be thought of as being embedded in the frictional cost δB.

Any difference in frictional cost (e.g., δA 6= δB) will obviously create a potential advantage

for one of the technologies, but we will start by considering the case where

δA ≡ δB ≡ δ.

Thus, we start by studying how the nature of preferences and risk affect the optimal mix of

the two risk transfer technologies.

3.2 Unconstrained Contracting

First, consider an unconstrained contracting world in which insurance policy indemnity pay-

ments are fully state-contingent. If consumer 1 suffers the only loss, she receives I1; if

consumer 2 suffers the only loss, she receives I2; if both suffer losses, consumers 1 and 2

receive I1

B
and I2

B
, respectively.

A Pareto efficient solution features bond issuance, state-contingent indemnity payments,

cost allocations, and capital distributed across the two risk transfer technologies in order

to maximize the weighted sum of expected utilities for both consumers. Without loss of

generality, we consider the symmetric Pareto optima, where each consumer receives equal

Pareto weight. Starting from this point, movements along the Pareto frontier can always be

effected using uncontingent transfers from one consumer to another. Formally, the problem
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is:

max
I1,I2,I1

B
,I2

B
B1,B2,c1,c2,E

p1p2{U1(W − L1 + I1

B − c1 + (1 − δ − p1)B1)+

U2(W − L2 + I2

B − c2 + (1 − δ − p2)B2)}

+ p1(1 − p2){U1(W − L1 + I1 − c1 + (1 − δ − p1)B1) + U2(W − c2 − (δ + p2)B2)}

+ p2(1 − p1){U1(W − c1 − (δ + p1)B1) + U2(W − L2 + I2 − c2 − (1 − δ − p2)B2)}

+ (1 − p1)(1 − p2){U1(W − c1 − (δ + p1)B1) + U2(W − c2 − (δ + p2)B2)}

(1)

subject to non-negativity constraints on the choice variables and the additional constraints

(with associated multipliers µi),

c1 + c2 ≥ δE + p1p2(I
1

B + I2

B) + p1(1 − p2)I1 + p2(1 − p1)I2 : [µE] (2)

E ≥ I1

B + I2

B : [µB] (3)

E ≥ I1 : [µ
1
] (4)

E ≥ I2 : [µ
2
] (5)

When δA ≡ δB ≡ δ and there are no constraints on the indemnity structure of insurance

policies, it is easy to show that catastrophe bonds are redundant risk transfer instruments.

In other words, catastrophe bonds cannot strictly improve total welfare relative to what can

be achieved with a reinsurance company. This follows from the ensuing theorem, which
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shows that the welfare level associated with any putative issuance of catastrophe bonds can

be replicated by some reinsurance-only solution that eschews catastrophe bonds.

Theorem 1. Let B∗

1
, B∗

2
, I∗

1
, I∗

2
, I1∗

B , I2∗

B , c∗
1
, c∗

2
, E∗ be a set of op timal choices maximizing so-

cial welfare as defi ned in the P areto p rob lem in (1 ). If B∗

1
6= 0 or B∗

2
6= 0, there exists

another set of choices B∗∗

1
, B∗∗

2
, I∗∗

1
, I∗∗

2
, I1∗∗

B , I2∗∗

B , c∗∗
1

, c∗∗
2

, E∗∗ that also maximize social wel-

fare with B∗∗

1
= 0 and B∗∗

2
= 0.

P roof (S ketch). Let E∗∗ = E∗ + B∗

1
+ B∗

2
, I∗∗

1
= I∗

1
+ B∗

1
, I∗∗

2
= I∗

2
+ B∗

2
, I1∗∗

B = I1∗

B + B∗

1
,

I2∗∗

B = I2∗

B +B∗

2
, c∗∗

1
= c∗

1
+(δ +p1)B

∗

1
, c∗∗

2
= c∗

2
+(δ +p2)B

∗

2
, B∗∗

1
= 0, and B∗∗

2
= 0. It is easy

to verify that these alternative choices yield equivalent welfare and satisfy all constraints.

This result obtains, because any catastrophe bonds can be replicated at equal or lesser

cost by putting assets in the insurance company and manipulating the indemnity payments

(if the insurance company faces no contracting constraints).

3.3 Contracting Constraints and the R ole of Catastrophe Bonds

There is no point to catastrophe bond issuance when insurance companies have complete

freedom in designing state-contingent indemnity schedules, but such unconstrained contract-

ing is not realistic. Insurance contracts rarely specify loss payments that are contingent on

the losses of other insureds. Of course, there are contract features such as policyholder divi-

dends and assessment provisions that distribute aggregate loss experience across consumers,
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and annual rate changes could be interpreted as an implicit means of accomplishing the

same. However, policyholder dividends and assessment provisions are relatively unimpor-

tant in property/ casualty insurance (and especially reinsurance) as a whole. Moreover, even

where such features are used, they seem to be relatively crude retrospective premium adjust-

ments rather than the detailed configurations of indemnity payments that are theoretically

possible.

In particular, typical insurance contracts do not specify distinct indemnification schedules

in states of default. Contracts specify the payment in the event of a loss. The actual

payment will obviously depend on the loss experiences of other insureds in the event of

insolvency, but the nature of that dependence hinges on mechanical rules (e.g., a pro rata

payment scheme, or a “first come, first served” scheme). The allocation of company resources

in the event of bankruptcy is typically not addressed in the individual contracts.

To capture this, we impose the constraint that payments to each individual in the joint-

loss state must be a fixed fraction f of payments in the single-loss states, where f is fixed for

both consumers. If the firm chooses f = 1, it holds enough assets to eliminate bankruptcy

risk. If, however, f < 1, this indicates that claimants will be paid at equivalent rates on the

dollar during bankruptcy, according to the firm’s available assets. Constraints such as this
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can create an opportunity for catastrophe bonds. Formally, the problem now becomes:

max
I1,I2,B1,B2,c1,c2,E,f

p1p2{U1(W − L1 + fI1 − c1 + (1 − δ − p1)B1)+

U2(W − L2 + fI2 − c2 + (1 − δ − p2)B2)}

+ p1(1 − p2){U1(W − L1 + I1 − c1 + (1 − δ − p1)B1) + U2(W − c2 − (δ + p2)B2)}

+ p2(1 − p1){U1(W − c1 − (δ + p1)B1) + U2(W − L2 + I2 − c2 − (1 − δ − p2)B2)}

+ (1 − p1)(1 − p2){U1(W − c1 − (δ + p1)B1) + U2(W − c2 − (δ + p2)B2)}

(6)

s .t. c1 + c2 ≥ δE + p1p2f(I1 + I2) + p1(1 − p2)I1 + p2(1 − p1)I2 : [µE] (7)

E ≥ fI1 + fI2 : [µB] (8)

E ≥ I1 : [µ
1
] (9)

E ≥ I2 : [µ
2
] (10)

Since indemnity payments in the joint-loss state must be less than assets, the firm will make

joint-loss payments according to the mechanical rule:

Payout to Consumer i = E

(

Ii

I1 + I2

)

(11)

At this contract-constrained optimum, the following first order conditions obtain:2

2We use shorthand for the utility of consumption. U
j,k
i is the utility of consumer i in state j, k : j = 0
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[B1] : p1p2

∂ U
1,1
1

∂ W
(1 − δ − p1) + p1(1 − p2)

∂ U
1,0
1

∂ W
(1 − δ − p1)−

p2(1 − p1)
∂ U

0,1
1

∂ W
(δ + p1) − (1 − p1)(1 − p2)

U
0,0
1

∂ W
(δ + p1) ≤ 0

(1 2 )

[B2] : p1p2

∂ U
1,1
2

∂ W
(1 − δ − p2) + p2(1 − p1)

∂ U
0,1
2

∂ W
(1 − δ − p2)−

p1(1 − p2)
∂ U

1,0
2

∂ W
(δ + p2) − (1 − p1)(1 − p2)

∂ U
0,0
2

∂ W
(δ + p2) ≤ 0

(1 3 )

[c1] : −p1p2

∂ U
1,1
1

∂ W
− p1(1 − p2)

∂ U
1,0
1

∂ W
− p2(1 − p1)

∂ U
0,1
1

∂ W
− (1 − p1)(1 − p2)

∂ U
0,0
1

∂ W
= −µE

(1 4 )

[c2] : −p1p2

∂ U
1,1
2

∂ W
− p1(1 − p2)

∂ U
1,0
2

∂ W
− p2(1 − p1)

∂ U
0,1
2

∂ W
− (1 − p1)(1 − p2)

∂ U
0,0
2

∂ W
= −µE

(1 5 )

[E] : −δµE + µB + µ
1
+ µ

2
= 0 (1 6 )

[I1] : p1p2f
∂ U

1,1
1

∂ W
+ p1(1 − p2)

∂ U
1,0
1

∂ W
− µEp1 − µB − µ

1
+ (1 − f)(µB + µEp1p2) = 0 (1 7 )

[I2] : p1p2f
∂ U

1,1
2

∂ W
+ p2(1 − p1)

∂ U
0,1
2

∂ W
− µEp2 − µB − µ

2
+ (1 − f)(µB + µEp1p2) = 0 (1 8 )

[f ] : (I1 + I2)(µB + p1p2µE) = p1p2

(

∂ U
1,1
1

∂ W
I1 +

∂ U
1,1
2

∂ W
I2

)

(1 9 )

indicates that consumer 1 experienced no loss, while j = 1 means that consumer 1 experienced a loss; k

performs a similar function for consumer 2 . F or example, U
1,0

2
represents the utility of consumer 2 in the

state where consumer 1 has a loss and consumer 2 has no loss.
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The first-order condition for I1 ca n b e rew ritten a s:

p1p2

∂U
1,1
1

∂W
+ p1(1− p2)

∂U
1,0
1

∂W
− µEp1 − µB − µ

1
= −(1− f)[µB + p1p2µE − p1p2

∂U
1,1
1

∂W
)] (20)

S u b stitu ting the first-order condition for E tra nsform s this into:

p1p2

∂U
1,1
1

∂W
+ p1(1− p2)

∂U
1,0
1

∂W
− µE(p1 + δ) = −(1− f)[µB + p1p2µE − p1p2

∂U
1,1
1

∂W
)]− µ

2
(21)

N otice tha t the left-ha nd side of this eq u a tion is ex a ctly eq u a l to the m a rg ina l u tility of B1.

F ina lly , su b stitu ting the first-order condition for f into the rig ht-ha nd side y ields:

p1p2

∂U
1,1
1

∂W
+ p1(1 − p2)

∂U
1,0
1

∂W
− µE(p1 + δ) =

(1 − f)p1p2

[

∂U
1,1
1

∂W
−

∂ U
1,1

1

∂ W
I1 +

∂ U
1,1

2

∂ W
I2

I1 + I2

]

− µ
2

(22)

The ex p ression on the rig ht-ha nd side cha ra cterizes the m a rg ina l u tility of ca ta strop he b onds

for a g ent 1. M ore g enera lly , the m a rg ina l u tility of b ond issu a nce b y a g ent i is:

Ri = (1 − f)p1p2

[

∂U
1,1
i

∂W
−

∂ U
1,1

1

∂ W
I1 +

∂ U
1,1

2

∂ W
I2

I1 + I2

]

− µj (23)

To u ndersta nd the circu m sta nces u nder w hich ca ta strop he b onds a re w elfa re-im p rov ing ,
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it is useful to imagine (23) as representing the marginal utility of catastrophe bonds in

an equilibrium that features only insurance policies. P ut diff erently, this marginal utility

answers the question: C an the “ bond-free” solution to (6) be improved upon by an issuance

of bonds? 3

E quation (23) shows that a necessary condition for bond issuance to be strictly welfare-

improving is for
∂U

1,1

1

∂W
6=

∂U
1,1

2

∂W
.4 In other words, in the joint-loss state (where the insurance

company defaults), one consumer must value coverage more than the other. Intuitively, if

both consumers valued coverage in the joint loss state equally, catastrophe bond issuance

would have no advantage over increasing the capitalization of the insurance company. This

benefit of bond issuance (the first term on the right hand side of (23) for the high-valuation

consumer) is rising in the probability of joint-loss occurrence (p1p2) and the size of the default

“ haircut” (1−f) applied to the indemnity payment. The consumer with the higher valuation

will then enjoy a potential benefit associated with bond issuance, while the lower-valuation

consumer cannot possibly benefit from bond issuance.

The benefit may still be outweighed by an important potential drawback , which is cap-

tured in the second term on the right-hand side of (23). This term is positive if the indemnity

payment to the other consumer in the single-loss state is constrained by the asset holdings of

3If the second-order conditions hold globally, this is equivalent to determining whether the equilibrium
with bonds dominates the equilibrium without them.

4P ut diff erently, the brack eted term must be non-zero. N ote that the brack eted term represents
∂U

1,1

i

∂W

minus a weighted average of
∂U

1,1

1

∂W
and

∂U
1,1

2

∂W
. T hus, it can either be 1) zero for both consumers, or 2) positive

for one consumer and negative for the other.
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the insurance company. If this is the case, there are opportunities for diversification benefits

associated with risk transfers to the insurance company that were not optimal to pursue. If

this term is zero, however, there are no remaining opportunities for diversification across the

two consumers, and this key disadvantage of the catastrophe bond will not be in play at the

margin.

3.3.1 Homogenous Risk and Preferences

The foregoing discussion suggests that asymmetries in preferences or risk across consumers

will be needed to create opportunities for issuance of catastrophe bonds, and this is in fact

turns out to be the case under binary risk. W hen risk and preferences are identical across

consumers, catastrophe bonds are redundant securities even when insurance contracting is

constrained as described above.

H omogenous risk, preferences, and Pareto weights imply a symmetric solution, and

this means that marginal utilities for each consumer will be equal in the joint loss state.

Then, (23) reduces to:

Ri = −µj ≤ 0.

Thus, it is evident that catastrophe bonds will be strictly suboptimal if there are remaining

opportunities for diversification within the insurance company. That is, it cannot be optimal

for a catastrophe bond to be issued if the assets in the insurance company are insuffi cient
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to indemnify either consumer in the single loss state. If this were the case, the rewards to

increasing the insurance company assets and simultaneously increasing indemnity payments

to both consumers would exceed the rewards to catastrophe bond issuance.

If opportunities for diversification have been exhausted (i.e., µ
1

= µ
2

= 0), then R1 =

R2 = 0. While this does imply that catastrophe bond issuance is not necessarily suboptimal,

it does not imply that catastrophe bond issuance is necessary. In the region where diversifi-

cation possibilities have been exhausted, both consumers are being fully indemnified in the

single-loss state— and additions to insurance company capital thus serve only to collateral-

ize payments in the joint-loss state. In such a circumstance, catastrophe bonds could be

used in conjunction with insurance policies and insurance equity to yield an optimum, but

this optimum is not unique and can be replicated without catastrophe bonds. Catastrophe

bonds are viable when dealing with risk that is undiversifiable in this case, but not essential.

This following theorem proves the result more formally:

Theorem 2. Suppose p1 = p2 = p, L1 = L2 = L, a n d id en tica l utility fun ction s. L et

B∗

1
,B∗

2
,I∗

1
,I∗

2
,I1∗

B ,I2∗

B ,c∗
1
,c∗

2
,E∗ be a set of optim a l choices m a xim izin g socia l w elfa re a s d e-

fi n ed in the P a reto problem in (6 ). If B∗

1
6= 0 or B∗

2
6= 0, there exists a n other set of

choices B∗∗

1
,B∗∗

2
,I∗∗

1
,I∗∗

2
,I1∗∗

B ,I2∗∗

B ,c∗∗
1

,c∗∗
2

,E∗∗ tha t a lso m a xim ize socia l w elfa re w ith B∗∗

1
= 0

a n d B∗∗

2
= 0.

P roof (Sketch). We start by proving that, with homogenous risk and preferences, a symmet-

ric solution (with I∗

1
= I∗

2
, B∗

1
= B∗

2
, c∗

1
= c∗

2
) dominates an asymmetric one.
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Suppose the opposite and denote the (asymmetric) optimal choices that maximize 6 by

I∗

1
, I∗

2
, B∗

1
, B∗

2
, c∗

1
, c∗

2
, E∗. D efine:

V1(I, B, c) = p2U1(W − L + fI − c + (1 − δ − p)B) + (1 − p)2U1(W − c − (δ + p)B)

+ p(1 − p)U1(W − L + I − c + (1 − δ − p)B) + p(1 − p)U1(W − c − (δ + p)B)

(24)

V2(I, B, c) = p2U2(W − L + fI − c + (1 − δ − p)B) + (1 − p)2U2(W − c − (δ + p)B)

+ p(1 − p)U2(W − L + I − c + (1 − δ − p)B) + p(1 − p)U2(W − c − (δ + p)B)

(25)

Since the consumers are ex ante identical, the solution is reversible in the sense that

quantities allocated to each consumer could be swapped. In other words, the maximized

objective function

V1((I
∗

1
, B∗

1
, c∗

1
) + V2(I

∗

2
, B∗

2
, c∗

2
)

is equivalent to:

V2((I
∗

1
, B∗

1
, c∗

1
) + V1(I

∗

2
, B∗

2
, c∗

2
)

Now consider alternative choices formed by equally weighting the optimal choices for the
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two consumers, as in:

Iθ = 0.5 ∗ I∗

1
+ 0.5 ∗ I∗

2
,

Bθ = 0.5 ∗ B∗

1
+ 0.5 ∗ B∗

2
,

cθ = 0.5 ∗ c∗
1
+ 0.5 ∗ c∗

2
.

Eθ = E∗

It is easily verified that these alternative choices satisfy the constraints satisfied by I∗

1
, I∗

2
, B∗

1
, B∗

2
, c∗

1
,

and c∗
2
. B U T concavity of the utility functions allows us to apply J ensen’s Inequality, im-

plying that:

V1(Iθ, Bθ, cθ) + V2(Iθ, Bθ, cθ) >

0.5 ∗ V1(I
∗

1
, B∗

1
, c∗

1
) + 0.5 ∗ V1(I

∗

2
, B∗

2
, c∗

2
) + 0.5 ∗ V2(I

∗

1
, B∗

1
, c∗

1
) + 0.5 ∗ V2(I

∗

2
, B∗

2
, c∗

2
) =

V1((I
∗

1
, B∗

1
, c∗

1
) + V2(I

∗

2
, B∗

2
, c∗

2
)

(26)

which implies the contradiction: The alternative symmetric choices yield a higher objective

function value than the asymmetric choices while still satisfying the constraints. Thus,

solutions under homogenous preferences and risk cannot be asymmetric.

With a symmetric solution, let E∗∗ = E∗ + B∗

1
+ B∗

2
, I∗∗

1
= I∗

1
+ B∗

1
, I∗∗

2
= I∗

2
+ B∗

2
,

c∗∗
1

= c∗
1

+ (δ + p1)B
∗

1
, c∗∗

2
= c∗

2
+ (δ + p2)B

∗

2
, B∗∗

1
= 0, and B∗∗

2
= 0. It is easy to verify

that these alternative choices yield equivalent welfare and satisfy all constraints. G oing
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further, it is possible for a symmetric solution without catastrophe bond issuance to strictly

dominate one with issuance if the optimal equity level is less than 2L.

3.3.2 Heterogeneous Losses

Equation 23 implies that catastrophe bonds are optimal for at most one consumer, and will

be written for the consumer with the higher marginal utility of consumption in the joint-loss

state. We now prove a theorem demonstrating that, all else equal, this will be the consumer

with the larger loss. We begin with the following useful lemma.

Lemma 3. Suppose p1 = p2 = p, L1 > L2, and consumers have identical utility functions.

In an reinsurance-only equilibrium, I1 > I2 or I1 = I2 = E.

Proof. We first prove that I1 ≥ I2. A ssume instead that I1 < I2, so that µ
2
≥ 0 and µ

1
= 0.

In this case, L1−fI1 > L2−fI2. Since µ
1

= 0, µ
2
≥ 0, and p1 = p2, the first order conditions

for I1 and I2 imply that:

p1p2f
∂U

1,1
1

∂W
+ p1(1 − p2)

∂U
1,0
1

∂W
≤ p1p2f

∂U
1,1
2

∂W
+ p2(1 − p1)

∂U
0,1
2

∂W
(27)

The above expression can only be true if c1 < c2. This then implies that
∂U

0,1

1

∂W
<

∂U
1,0

2

∂W
and

∂U
0,0

1

∂W
<

∂U
0,0

2

∂W
. These conditions, coupled with the first order conditions for c1 and c2 imply

that

p2p1

∂U
1,1
1

∂W
+ p1(1 − p2)

∂U
1,0
1

∂W
> p2p1

∂U
1,1
2

∂W
+ p2(1 − p1)

∂U
0,1
2

∂W
(28)
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Inequalities 27 and 28 can coexist only if (1 − f)p1p2

∂U
1,1

1

∂W
> (1 − f)p1p2

∂U
1,1

2

∂W
, which implies

in turn that
∂U

1,1

1

∂W
>

∂U
1,1

2

∂W
. Applied to inequality 27, this implies that

∂U
1,0

1

∂W
<

∂U
0,1

2

∂W
. The

latter implies that I1 + c1 − L1 > I2 + c2 − L2. Since L1 > L2, and since we proved above

that c1 < c2, this implies that I1 > I2. This is a contradiction. Therefore, I1 ≥ I2.

Suppose instead that I1 = I2 = I. Clearly, if I < E, the expression in 27 holds at

equality, and a contradiction is derived exactly as above. Therefore, if I1 = I2 = I, it follows

that I = E.

With this lemma in hand, we can now prove the following theorem.

Theorem 4. Suppose p1 = p2 = p, L1 > L2, and consumers have identical utility functions.

Let B∗

1
, B∗

2
, I∗

1
, I∗

2
, I1∗

B , I2∗

B , c∗
1
, c∗

2
, E∗ be a set of optimal choices maximizing social welfare as

defined in the Pareto problem in (6). T his must imply that B∗

1
≥ 0 and B∗

2
= 0.

Proof. L emma 3 implies that, under the conditions of the theorem, I1 ≥ I2 in an equity-only

optimum. We now decompose the proof into the analysis of two cases for the equity-only

optimum: I1 > I2, and I1 = I2.

Suppose I1 > I2. Since µ
2

= 0 and µ
1
≥ 0, B∗

1
> 0 and B∗

2
= 0 if

∂U
1,1

1

∂W
>

∂U
1,1

2

∂W
in

an equity-only optimum. Therefore, suppose that
∂U

1,1

1

∂W
≤

∂U
1,1

2

∂W
in an equity-only optimum.

Since µ
1
≥ 0, µ

2
= 0, and p1 = p2, the first order conditions for I1 and I2 imply that:

p1p2f
∂U

1,1
1

∂W
+ p1(1 − p2)

∂U
1,0
1

∂W
≥ p1p2f

∂U
1,1
2

∂W
+ p2(1 − p1)

∂U
0,1
2

∂W
(29)
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Since
∂U

1,1

1

∂W
≤

∂U
1,1

2

∂W
, inequality 29 implies that

∂U
1,0

1

∂W
≥

∂U
0,1

2

∂W
. Therefore, it must be true

that I1 − L1 − c1 ≤ I2 − L2 − c2. However, since
∂U

1,1

1

∂W
<

∂U
1,1

2

∂W
, it must also be true that

fI1 −L1 − c1 > fI2 −L2 − c2. These two conditions can only be met if (1− f)I1 < (1− f)I2,

but this contradicts the case we are considering.

The second case is that in which I1 = I2. B∗

1
≥ 0 and B∗

2
= 0 if

∂U
1,1

1

∂W
>

∂U
1,1

2

∂W
in an

equity-only optimum. To prove this, assume that
∂U

1,1

1

∂W
≤

∂U
1,1

2

∂W
in an equity-only optimum.

In this case, L1 − fI1 > L2 − fI2, and L1 − I1 > L2 − I2. The only way the first order

conditions for c1 and c2 could hold at equality in the presence of these conditions would be

if c1 < c2. This then implies that
∂U

0,1

1

∂W
<

∂U
1,0

2

∂W
and

∂U
0,0

1

∂W
<

∂U
0,0

2

∂W
. These conditions, coupled

with the first order conditions for c1 and c2 imply that

p2p1

∂U
1,1
1

∂W
+ p1(1 − p2)

∂U
1,0
1

∂W
> p2p1

∂U
1,1
2

∂W
+ p2(1 − p1)

∂U
0,1
2

∂W
(30)

Inequality 30, coupled with our assumption that
∂U

1,1

1

∂W
≤

∂U
1,1

2

∂W
, implies that

∂U
1,0

1

∂W
>

∂U
0,1

2

∂W
.

Therefore, I1 − L1 − c1 < I2 − L2 − c2, but since
∂U

1,1

1

∂W
≤

∂U
1,1

2

∂W
, it must be true that

fI1−L1− c1 ≥ fI2−L2− c2. These two conditions can only be true if (1−f)I1 > (1−f)I2,

which is a contradiction in this case.

Corollary 5. Under the conditions of Theorem 4, B∗

1
= 0 only if I1 = I2 = E.

Proof. The analysis of the I1 > I2 case in the proof of theorem 4 demonstrated that
∂U

1,1

1

∂W
>

∂U
1,1

2

∂W
in the equity-only optimum. Moreover, since µ

2
= 0 in this case, the return to a
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catastrophe bond must be strictly positive. Finally, Lemma 3 demonstrated that I1 = I2 = I

only if I = E, completing the proof.

3.3.3 Frictional Costs

The results above investigated the pure risk-spreading characteristics of bonds versus insurer

assets. Equation 23 can be rewritten for the case of different frictional costs simply as:

Ri = (1 − f)p1p2

[

∂U
1,1
i

∂W
−

∂U
1,1

1

∂W
I1 +

∂U
1,1

2

∂W
I2

I1 + I2

]

− µj + µE(δA − δB) (31)

If bonds are cheaper than insurer assets (δB < δA), one dollar of bond issuance lowers

the frictional cost of insurance provision. Note, however, that frictional costs are but one

element of the return to catastrophe bonds.

If frictional costs are generated purely by intrinsic costs, this is a sufficient characteri-

zation of the problem. However, if taxation and regulatory policy contribute to frictional

costs, it is important to study them further. Catastrophe bonds are often advanced as a

method for sidestepping the frictions in the reinsurance market. But, of course, a different

set of frictional costs exist in the catastrophe bond market. The key policy question con-

cerns whether supply-side initiatives to promote catastrophe risk transfer are best focused

on the frictional costs in the reinsurance market or those in the catastrophe bond market.

At first glance, it seems that the opportunities for welfare gains are much greater when

reducing frictional costs in the reinsurance market. The value of reducing the frictional
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costs of insurer assets by one unit is the derivative of the Lagrangian with respect to δA, or,

VA ≡ µEE,

while an analogous reduction in the frictional costs of catastrophe bond principal yields

VB ≡ µE(B1 + B2).

Thus, the marginal benefit of reducing frictional costs in each market is directly proportional

to the assets deployed in the respective market: Since far more collateral is held in the

form of reinsurer assets than the form of catastrophe bond principal, the marginal impact

of frictional cost reductions in the reinsurance market should be far greater than similar

reductions in the catastrophe bond market.

O n the other hand, the cost side of the policy equation—i.e., what resources must be

sacrificed to reduce frictional costs in each market—is less clear. Indeed, the frictional cost

reduction technologies could differ substantially across the markets. In particular, since

the catastrophe bond market is young, there may be “low hanging fruit.” For example,

investments in investor education or primary and secondary bond market infrastructure

could offer much larger frictional cost reductions in the catastrophe bond market than could

be possible in the more mature reinsurance market.

However, it is important to stress that frictional costs constitute only one dimension of the
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competition between catastrophe bonds and reinsurance equity, so frictional cost reductions

will not necessarily translate perfectly into corresponding movements in market performance.

In particular, the drawback of diversification inefficiencies (the second term on the right-hand

side of (31)) could dominate any frictional cost advantage held by the catastrophe bond.

4 Multiple Consumers

The intuition of the two-person model can be recovered in an N person model. We start

with the simple example of homogenous risk and preferences before tackling the notational

complexity of the general case.

4.1 Homogenous Risk and Preferences

An approach analogous to that used in the two person case (see Theorem 2) can be used to

establish that the solution under homogeneity will be symmetric across consumers. With

this focus, the choice problem can be simplified in recognition that all consumers have the

same contracts and bond issuance. We set p1 = p2 = p and L1 = L2 = L and seek to solve:

max
B,I,E,c,{fl}

N
∑

l= 0

(

N

l

)

pl(1 − p)N−l









l ∗ U(W − L + flI + (1 − δ − p)B − c)+

(N − l) ∗ U(W − (δ + p)B − c)








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subject to the following constraints, with their associated multipliers,

[µ] : Nc ≥ δE +
N

∑

l=0

(

N

l

)

pl(1 − p)N−llflI (32)

[λl] : lflI ≤ E, ∀l (33)

[φl] : fl ≤ 1, ∀l (34)

The contracting constraints are embodied in the fl factors (which are equivalent to 1 − r

in the two person case),which allow the indemnity payments to be scaled back in any state

of the world (e.g., in states of default), but restricts any discounting to apply evenly across

policyholders. Note that fl is allowed to vary with l, the number of insureds experiencing a

loss.

The first order conditions for this problem are as follows (where we use the notation U
′

l

to denote the marginal utility of a consumer who experienced a loss along with l − 1 other

consumers, and Ū
′ is marginal utility in the no loss state):
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[B] :
N

∑

l=0

(

N

l

)

pl(1 − p)N−l

[

lU
′

l
(1 − δ − p) − (N − l)Ū ′(δ + p)

]

≤ 0 (3 5 )

[c] :
N

∑

l=0

(

N

l

)

pl(1 − p)N−l

[

−lU
′

l
− (N − l)Ū ′

]

+ Nµ = 0 (3 6)

[I] :
N

∑

l=0

(

N

l

)

pl(1 − p)N−l

(

U
′

l
− µ

)

lfl −
∑

lflλl ≤ 0 (3 7 )

[E] : −δµ +
∑

λl ≤ 0 (3 8 )

[fl] :

(

N

l

)

pl(1 − p)N−l

(

U
′

l
− µ

)

lI − λllI − φ
l
= 0 (3 9 )

N ote that the optimality condition for [c] can b e used to rewrite [B] as:

−(δ + p)Nµ +
N

∑

l=0

(

N

l

)

pl(1 − p)N−llU
′

l
= −δµ +

N
∑

l=0

(

N

l

)

pl(1 − p)N−l

(

l

N

)

[U ′

l
− µ] ≤ 0.

(4 0)

T o rewrite this, we relied on the fact that, with N consumers,

p = p1(1 − p)N−1 + (N − 1)p2(1 − p)N−2 + ... + pN =
N

∑

i=1

(

N − 1

i − 1

)

pi(1 − p)N−i,

A nd, going further, that:
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Np = N

N
∑

i=1

(

N − 1

i − 1

)

pi(1−p)N−i = N

N
∑

i=1

N − 1!

N − i!i − 1!
pi(1−p)N−i =

N
∑

i=1

(

N

i

)

ipi(1−p)N−i

B ut [E] can be rewritten as:

−δµ +
N

∑

l=0

(

N

l

)

pl(1 − p)N−l [U ′

l
− µ] ≤ 0, (41)

which is identical to the left hand side of (40) except for the weights
(

l

N

)

.

Note further that 1) [fl] implies that [U ′

l
− µ] ≥ 0 for all l 6= 0, and 2)

(

l

N

)

< 1 for l < N ;

(

l

N

)

= 1 for l = N. This implies that left hand side of (40) will be strictly less than the left

hand side of (41) unless U ′

l
− µ = 0 for l < N.

In other words, in a result that echoes the two person case, cat bond issuance will

be strictly suboptimal except in one particular case where it is just eq uiv alent to insurance

policies. The social planner will be indiff erent between an insurance-only eq uilibrium and one

featuring cat bonds if consumers are fully indemnifi ed in ev ery state of the world except the

state where every o n e experiences a loss. If the social planner fi nds it desirable to indemnify

consumers in this manner, she will be indiff erent between cat bonds and insurance policies

as a means of prov iding additional cov erage in the N -loss state.

Thus, the N consumer example exposes the extreme disadv antage of cat bonds with re-

spect to div ersifi cation. E v en if catastrophe bonds were cheaper than eq uity (i.e., if δB < δA),

28



they could still be strictly suboptimal if the welfare-maximizing solution involved tolerance

of default beyond the absolute worst case scenario of N losses.

4.2 General Case

W e start by introducing notation. D efine a row vector x of length N, with the elements

all tak ing a value of zero or one: x(i) = 1 means that C onsumer i experienced a loss,

while x(i) = 0 means that she did not. L et Ω denote the set of all such vectors of length N

with the elements tak ing values of one or zero. Each element of Ω corresponds to a complete

description of one possible state of the world. The entire set Ω contains all possible such

states. The following set definitions are useful:

Ωi = {x : x(i) = 1},

the set of all states in which agent i suffers a loss, and

Γ (x) = {i : x(i) = 1},

the set of all agents that suffer a loss in state x.

Additionally, the probability of state x can be defined as,

P r(x) =
∏

i∈Γ(x)

pi

∏

i /∈Γ(x)

(1 − pi).
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We can now define utility for Consumer i as

EUi =
∑

x∈Ωi

Pr(x)Ui (W − L + f
x
Ii + (1 − δ − pi)Bi − ci)+

∑

x/∈Ωi

Pr(x)Ui (W − (δ + pi)Bi − ci) ,

where f
x

represents the proportion of the indemnity payment actually paid in state x.

The Pareto problem can now be written as:

max
E ,{Bi},{ci},{Ii},{fx}

∑

i

EUi

subject to:

[µ] :
∑

ci ≥ δE +
∑

x∈Ω



Pr(x)f
x

∑

i∈Γ(x)

Ii



 (42)

[λ
x
] : f

x

∑

i∈Γ(x)

Ii ≤ E, ∀x (43)

[φ
x
] : f

x
≤ 1, ∀x (44)

The optimality conditions are as follows (where we use the notation Ux

i to denote the

utility of consumer i in state x):
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[Bi] :
∑

x∈Ωi

Pr(x)
∂ Ux

i

∂ W
(1 − δ − pi) −

∑

x/∈Ωi

Pr(x)
∂ Ux

i

∂ W
(δ + pi) ≤ 0 (45)

[ci] : −
∑

x∈Ω

Pr(x)
∂ Ux

i

∂ W
+ µ = 0 (46)

[Ii] :
∑

x∈Ωi

Pr(x)f
x

(

∂ Ux

i

∂ W
− µ

)

−
∑

x∈Ωi

f
x
λ

x
= 0 (47)

[E] : −δµ +
∑

x∈Ω

λ
x

= 0 (48)

[f
x
] :

∑

i∈Γ(x)

Pr(x)Ii

(

∂ Ux

i

∂ W
− µ

)

− λ
x

∑

i∈Γ(x)

Ii − φ
x

= 0 (49)

We start by observing that φ
x

= 0 for all states x (i.e., ∀x, the constraint f
x
≤ 1 fails to

bind). To see this, multiply [Ii] by Ii and sum over i to obtain:

N
∑

i=1

∑

x∈Ωi

Pr(x)f
x
Ii

(

∂ Ux

i

∂ W
− µ

)

−
N

∑

i=1

∑

x∈Ωi

f
x
Iiλx

= 0 (50)

Next, multiply [f
x
] by f

x
and sum over x to obtain:

∑

x∈Ω

∑

i∈Γ(x)

Pr(x)f
x
Ii

(

∂ Ux

i

∂ W
− µ

)

−
∑

x∈Ω

∑

i∈Γ(x)

f
x
Iiλx

−
∑

x∈Ω

f
x
φ

x
= 0 (51)

After noting that Γ(x) is a null set for the state where nobody experiences a loss (i.e., where x

is a vector of zeroes), it is evident that the first two terms of (50) are equal to the first two
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terms of (51),5 implying that
∑

x∈Ω f
x
φ

x
= 0. Thus, it is clear that φ

x
= 0 for all x.

We now derive the N -consumer analog of (23)— marginal utility of catastrophe bond

issuance for the case of two consumers. After multiplying by f
x
, using the above result

on φ
x
, and rearranging, note that [f

x
] can be written as:

∑

i∈Γ(x)

Pr(x)wx

i f
x

(

∂Ux

i

∂W
− µ

)

− f
x
λ

x
= 0,

where

wx

i =
Ii

∑

i∈Γ(x) Ii

.

S umming over x ∈ Ωi :

∑

x∈Ωi

Pr(x)f
x





∑

j∈Γ(x)

wx

j

∂Ux

j

∂W
− µ



 −
∑

x∈Ωi

f
x
λ

x
−

∑

x∈Ωi

f
x
φ

x

∑

j∈Γ(x) Ij

= 0,

which is the same as [Ii] except that
∂ U x

i

∂ W
in each state is replaced by

∑

i∈Γ(x) wx

i
∂ U x

i

∂ W
(a

weighted average of the marginal utilities of all consumers who lost in that state). In

summary, we have

∑

x∈Ωi

f
x
λ

x
=

∑

x∈Ωi

Pr(x)f
x





∑

j∈Γ(x)

wx

j

∂Ux

j

∂W
− µ



 . (52)

5Intuitively, the summations
∑

N

i= 1

∑

x∈Ωi rep resent the sum of all states in w hich ag ent i suff ers a loss,

summed across all ag ents i. T his is eq uivalent to the sum of all ag ents suff ering a loss in state x, summed

a c ro ss a ll sta tes x, w h ich is dep ic ted b y th e do ub le summa tio n
∑

x∈Ω

∑
i∈Γ (x).
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Note that we did not need to multiply by f
x
. O mitting this step leads to:

∑

x∈Ωi

λ
x

=
∑

x∈Ωi

P r(x)





∑

j∈Γ (x)

wx

j

∂ U x

j

∂ W
− µ



 (5 3)

W ork ing with [Bi] and [ci] yields the following recharacterization of [Bi] :

Ri = −(δ + pi)µ +
∑

x∈Ωi

P r(x)
∂ U x

i

∂ W
≤ 0.

T he fi rst term is the marg inal cost of issuance— inc luding both the fric tional cost per dollar

of collateral and the ex pected loss on the bond— and the second term is the marg inal benefi t,

which amounts to an ex tra dollar of consumption in all of the loss states. A dding the left-

hand side of the fi rst order condition [Ii] to the abov e ex pression, and noting that pi =

∑

x∈Ωi P r(x)) yields the following :

Ri =
∑

x∈Ωi

P r(x) [1 − f
x
]

(

∂ U x

i

∂ W
− µ

)

+
∑

x∈Ωi

f
x
λ

x
− δµ.

or

Ri =
∑

x∈Ωi

P r(x) [1 − f
x
]

(

∂ U x

i

∂ W
− µ

)

+
∑

x∈Ωi

[f
x
− 1 ] λ

x
+

∑

x∈Ωi

λ
x
− δµ.

S ubstituting in from [E] yields:

33



Ri =
∑

x∈Ωi

Pr(x) [1 − f
x
]

(

∂Ux

i

∂W
− µ

)

+
∑

x∈Ωi

[f
x
− 1] λ

x
−

∑

x/∈Ωi

λ
x
.

Subtracting (53) from (52) and substituting in the resulting expression for
∑

x∈Ωi [f
x
− 1] λ

x

yields:

Ri =
∑

x∈Ωi

Pr(x) [1 − f
x
]





∂Ux

i

∂W
−

∑

j∈Γ(x)

wx

j

∂Ux

j

∂W



 −
∑

x/∈Ωi

λ
x

(54 )

This is exactly analogous to the two person case. C atastrophe bonds can be useful only

for those consumers for whom the expected marginal utility of consumption in multiple loss

states exceeds the average of other consumers experiencing a loss in those states (i.e., the

first term on the right hand side is positive). M oreover, the viability of catastrophe bonds

also depends on having exhausted diversification possibilities, as captured in the second

term on the right hand side. If that term is positive, it means those possibilities still exist:

There are other consumers who might enjoy benefits from increasing the capitalization of

the insurance company, and this makes it more diffi cult for the catastrophe bond to be the

preferable instrument for addressing the the risk transfer needs of the consumer in q uestion.

5 C o n c lu sio n s

In theory, catastrophe bonds can potentially be useful to ameliorate the eff ects of the con-

tracting constraints faced by insurers. These constraints include the diffi culty of writing
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contracts that can be enforced at a company’s insolvency, or of contracts that are contingent

on the loss experiences of other insureds. These constraints can bind when insureds are

heterogeneous. Therefore, catastrophe bonds can be welfare-improving when: (1) R einsur-

ers face constraints on contracting, and (2) Insureds are heterogeneous. We have derived

these results from models of efficient collateral allocation with two or more insureds, when

the frictional costs associated with catastrophe bond issuance mirror those associated with

holding assets in insurance companies.

If catastrophe bond issuance is a cheaper option (with respect to frictional costs), ad-

ditional opportunities for welfare-improvement arise. H owever, because of the catastrophe

bond’s relative inefficiency in the realm of diversification, it is possible for the catastrophe

bond to be cheaper and still inefficient. Thus, while frictional costs associated with un-

derdeveloped market infrastructure and the basis risk faced by issuers are often fingered as

the main roadblocks to growth in the catastrophe bond market, this analysis suggests that a

more fundamental obstacle—costs deriving from the instrument’s full collateralization—may

ultimately place limits on its potential in the absence of further innovation.

The binary risk model used in this paper, of course, is too crude to allow detailed analysis

of the microstructure of risk transfer—including how different layers of risk are allocated

across the two instruments. We plan to address this in future research by studying the

optimal collateralization of risk transfer in settings where the loss distributions have weight

on more than two outcomes.
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