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Abstract

We model the market for venture capital. VCs have the expetise to assess
the profitability of projects, and have liquidity to finance them. The scarcity
of VCs enables them to internalize their social value, so that the competitive
equilibrium is socially optimal. This optimality obtains on an open set of
parameter values.
The scarcity of VCs also leads to an equilibrium return on venture capital

higher than the market rate, but our preliminary estimates show this excess
return to be negligible. The ability to earn higher returns makes VCs less
patient when waiting for a project to succeed; this explains why companies
backed by venture capitalists reach IPOs earlier than other start-ups and why
they are worth more at IPO.

1 Introduction

Venture capitalists (VCs) draw the highest returns on their investments from ventures
that succeed early. When a venture-backed company has its IPO or is acquired at
a very young age, the rate of return that the VC earns is very high (Guler 2002,
Cochrane 2005). The longer the wait until success, the lower the return, and ventures
that are terminated before success entail losses. As a result, VCs look to exit early
and devote their capital and time to new, young ventures since it is they that offer
the highest returns.
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Information about costs and revenues of a venture fund’s portfolio companies is
more plentiful for those that succeed or that are terminated early on in their lives.
Older companies that have not yet IPO’d or been sold but that are not yet terminated
are, however, a drain on the venture fund and typically entail negative returns. Since
the winners are not known ahead of time, the overall return on a venture portfolio
is an average over all these companies, determined largely by the distribution of the
waiting time until success and the waiting time until termination. We use a model
to estimate these two distributions and come up with an overall VC return. We find
that VC returns are essentially at the market rate, the latter typically taken to be
the rate on the S&P 500 portfolio. Returns to investing in private equity (of which
venture funds are a subset) are similar to those on the S&P 500, though there is wide
variation among funds (Kaplan and Schoar 2005). Any difference between the two
represents VC compensation and the payment of direct costs of managing the funds.
The above-normal rate of return that venture capital earns derives, in our model,

from its scarcity. In fact, VCs reject most of the proposals that they receive, which
suggests that the demand for venture capital far exceeds its supply. In light of this,
two questions naturally arise concerning efficiency. First, given that venture capital
is scarce and given that a VC wishes to exit early, does the VC allocate capital
efficiently, or does he underfund older ventures? I.e., if a venture has not met with
success by a certain point, does the VC terminate it too early?
Second, if an entrepreneur knows that a VC will terminate unsuccessful projects

early, who applies for VC backing? How poor must an entrepreneur be before she
will agree to submitting her project to a venture that may terminate earlier than
she would herself terminate it if only she had the funds? If her project is hard for a
non-expert — such as a bank — to evaluate, an entrepreneur may not be able to get
a bank loan or other debt financing. A VC may be her only recourse for obtaining
such funds. But if the VC demands a large share of the project’s proceeds and if
he also threatens to cut off financing early if the project has not yet succeeded, the
entrepreneur may avoid such a deal. Perhaps only the poorest entrepreneurs will seek
VC backing, and one wonders if that is efficient.
Thus the two efficiency questions that we address are (i) the efficiency of con-

tracts between VCs and entrepreneurs and (ii) the efficiency of project selection into
venture-backed and non-venture-backed (or “solo”) projects. We build a model in
which the outcome is socially efficient in both dimensions.
We estimate the model and the private return to venture capital. It is likely that

only some part of the VC’s costs are observed in the data. In particular, the time cost
involved in the initial screening and negotiation is missing in the cost data. One then
needs a model to calculate the implied returns. Moreover, some of the return data are
available only for projects below a certain age, and some assumption is needed about
the distribution of waiting times until success for higher ages. Our model enables us
to estimate the return to venture capital which turns out to be roughly the market
rate which we take to be seven percent. VCs may command a higher rate of return
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because they are scarce. They are scarce because, presumably, it is costly to generate
the human capital, the expertise that it takes to be a good VC.
The model fits fairly well some data on project returns, successes and terminations

in a group of 1400 venture-backed companies. It also explains why VCs terminate
maturing companies earlier than they would otherwise last. The reason is the scarcity
of VCs and the resulting high rate of return that they can, in equilibrium, command
on the projects that they back. This makes them impatient and leads them to more
quickly terminate a not-yet-successful venture. Establishing the link precisely requires
an analysis of equilibrium in the market for VCs.
Sketch of the model.–In the model, a project entails start-up costs and contin-

uation costs. Whether it is backed by a VC or not, the project has a start-up cost
that must be paid before any information about its quality can come in. After that,
continuation costs must be paid until the project succeeds or is terminated. Start-up
costs entail only capital, but continuation costs entail capital and effort: funds must
be supplied and the entrepreneur must exert effort without interruption until the
project yields fruit. Project quality in the model has two dimensions: The size of the
return, and the waiting time until the return is realized. Neither dimension is known
before a contract between a VC and an entrepreneur is signed. After the contract is
signed, however, some uncertainty is resolved. After that, either party can, at any
time, terminate the project. The entrepreneur can do so by withholding effort, and
the VC can do so by withholding capital. The optimal contract is set up so that
when a project is terminated, both are better off: The entrepreneur no longer wishes
to exert effort, and the VC no longer wishes to lend.
Notes on the literature.–In the theoretical work, some analyses of question (i),

notably Bergemann and Hege (1998, forthcoming), deal with a single VC and a
single entrepreneur, with their outside options taken as given, and their efficiency
implications hinge on the social optimality of the alternative payoffs. In contrast,
our model places venture capitalism in a market equilibrium context where outside
options are endogenous. We further discuss this paper in the light of our analysis at
the end of Section 3.
A market equilibrium is what Holmes and Schmitz (1990) analyze. Their model

also determines the reward to firm founders as a function of their scarcity relative to
firm developers, or, rather, the scarcity of founding talent relative to managing talent.
Their outcome is necessarily optimal because the businesses are traded competitively,
and there is no venture capitalist involved.
Our model explains why VC’s earn high returns on firms that succeed quickly, and

why venture-backed ventures have higher IPO values. We match other features of the
data on ventures — we shall describe those in section 4 on the properties of equilibrium.
There, we shall also discuss some other models that differ in their implications for
efficiency, namely, Muller and Inderst (2004), andMichelacci and Suarez (2004). None
of these papers deals with the decision that an entrepreneur faces, namely, whether
to seek venture backing or to finance the project in some other way. Ueda (2004)
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studies this choice in a model where the cost implicit in VC financing is the possibility
of having the VC use the information to set up a competing business.
On question (ii) we focus on how an entrepreneur’s wealth influences her decision

about whether to seek VC backing. Not surprisingly, the wealthy entrepreneur does
not need VC backing and will go it alone, whereas the poor entrepreneur has no
choice but to seek VC backing. On this point, closest to what we do is Basaluzzo
(2004), who analyzes partnerships when there are liquidity constraints — his results
are similar in that poor entrepreneurs choose to search for partners, with whom they
share the ownership and control of their firms. Basaluzzo also studies entrepreneurs’
incentives to save, as does Buera (2004). Examples of empirical work on the subject
are Lerner (1994), Gompers (1995) and Guler (2003).
It seems fair to say that the work on venture capital consists of theoretical work

on the one hand, and empirical work on the other, and not much by way of fitting
equilibrium models to the data to see how well they do quantitatively. Cochrane
(2004) deals mainly with pricing the income streams to VCs, but takes those income
streams to be exogenous.

Plan of the paper.–The next section describes the model, and Section 3 derives
the equilibrium contract and shows that the competitive outcome is efficient. Section
4 derives several empirical implications of the model and discusses evidence, mostly
from the Corporate Finance literature. Section 5 solves an example by hand and fits it
to longitudinal data on VC investments, spanning 1989-2000, and their performance
outcomes. Section 6 concludes the paper and the Appendix describes the data and
the estimation procedure.

2 Model

There is a measure x of infinitely lived VCs, each able to borrow unlimited amounts
of money at the rate r. There if also an inflow at the rate λ of potential projects,
each in the possession of a different entrepreneur. The entrepreneurs cannot borrow,
and have initial wealth w which is distributed according to the CDF Ψ (w). An
entrepreneur can have at most one idea, ever.

A Project
A project can be undertaken by an entrepreneur alone, in which case she must

rely on her own wealth only, or together with a VC. For the project to succeed, it
requires an immediate payment of a cost C, and after that it also requires k units
of investment and a units of effort by the entrepreneur at every instant up until the
project yields a return. The project yields a return π at time τ , where both π and
τ are random variables, independent of one another.1 Let F denote the distribution

1The independence assumption simplifies the algebra but is inessential for the results until we
reach the prediction summarized in Figure 6. We shall coment further on it then.
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of τ , and f the corresponding density. Let h denote the hazard rate corresponding
to F , that is h = f/ (1− F ). We assume that the hazard rate h has a bell-shape. It
first increases, then decreases. In other words, as time passes without the realization
of π, the agents first become more optimistic about a quick realization of π, but then
they become more and more pessimistic.2 These assumptions seem to fit the facts at
least roughly; Lerner (1998, p. 738) writes:

Immediately after a new venture is financed, the probability that there
will be significant information inflows is actually likely to be quite low:
the entrepreneur is in all probability focusing on the early development of
his businesses. At some point thereafter, however, the probability that in-
formation will arrive increases dramatically: e.g., the results of the clinical
trial will emerge, the prototype will be either be successfully developed or
not, or the manufacturing yields from the new production line will become
known.

If the project is either not invested into or effort is not exerted, the project cannot
yield a positive return, ever. Neither party knows π and τ , but their distributions
are common knowledge. In a venture-backed firm, after the contract is signed and
after a cost C is incurred, π becomes known to both parties. This is where the VC
has the advantage over a bank which lack the needed expertise and cannot learn π
before date τ . However, no information about τ is received. In a solo venture, the
entrepreneur alone incurs C at the outset, and thereby she learns π. Since the solo
entrepreneur also has to pay C, it is not a project-screening cost but should instead
be thought of as a lumpy initial investment.

Let G denote the distribution of π, and g the corresponding density. The expected
social value to implementing projects is assumed to be positive.

Preferences
The entrepreneur and the VC are risk neutral and both discount the future at the

rate r. The VC maximizes the expected discounted present value of his net income.
The entrepreneur maximizes the expected discounted present value of her income
minus her disutility, at, from exerting effort.

We choose units of a and k so that the amounts required to keep the project alive
sums up to one: a+k = 1. This normalization has no bearing on the analysis because
a doubling of all costs and benefits leaves unchanged all the variables that we shall
consider, namely the duration of projects and their rates of return.

Market Structure
2Our theoretical results also hold if the hazard declines monotonically throughout.
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When an entrepreneur gets an idea, she has to decide whether to invest with a
bank (at a risk-free interest r), or to seek VC-backing, or to go solo, i.e., to implement
her project alone. This decision is irreversible.

Suppose at time t there is a measure n of VCs who is not in a contractual re-
lationship with entrepreneurs and a measure of m of entrepreneurs who wishes to
be financed by a VC. Then the number min {n,m} of VCs and entrepreneurs are
randomly matched and can enter into a contractual relationship.

Timing

1. Entrepreneur chooses whether to (i) invest her wealth with a bank, (ii) develop
her project on her own, or (iii) sign with a VC, in which case they sign a
contract that we describe in detail presently

2. Under option (ii) or (iii) a cost C is paid immediately

3. π is fully revealed but not τ

4. No further signals come in about τ until it is realized

Contracting
Feasible Contracts –. The contract the VC can offer to the entrepreneur consists

of a pair of positive numbers: (p, s). The number p is an up-front payment the
entrepreneur pays the VC right after signing a contract. The number s, specifies
how to share the return if the project succeeds. If the project yields return π, the
entrepreneur gets sπ and the VC gets (1− s)π. Neither the effort of the entrepreneur
nor the investment of the VC can be contracted on. On the other hand the payments
p and sπ are enforceable.
After the transfer p, this is a pure equity contract. We could allow for more com-

plicated contracts, where s depends on τ and π. We shall show, however, that these
simple contracts already induce socially efficient decisions. Moreover, the equilibrium
outcome of a game with more complicated contracts would be identical to ours.
Timing of the Contractual Relationship –First, the VC offers a contract, (p, s) ,

to the entrepreneur. If the entrepreneur refuses the contract the game between these
two parties ends; the entrepreneur has to leave the market and invest with a bank,
the VC seeks to be matched with an other entrepreneur. If the entrepreneur signs
the contract she pays p to the VC up front. We interpret p as the amount that the
entrepreneur pays towards financing C. The VC will finance the remaining part of C
and both parties then immediately learn the value of π.

After a length of time t, if the return has not yet been realized, both parties must
decide whether to continue supporting the project or not. That is, the entrepreneur
has to decide whether to exert effort and the VC has to decide whether to invest.
One can assume that the parties can observe the history of investments and effort up
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to time t, when making these decisions.3 If either party decides not to support the
project the game between the two parties ends, otherwise it continues. When it does
end, the VC is free to devote his time to another project. The entrepreneur, on the
other hand, must leave the market and invest with a bank.

If the project yields a return π at time t, the entrepreneur gets sπ the VC gets
(1− s)π and the game ends between the two parties. Again, the VC seeks to be
matched with new entrepreneurs, and the entrepreneur leaves the market.

Banks
In our model, the only role of the banks is to guarantee a risk-free interest rate, but

they do not finance projects. This is because VCs are assumed to have two advantages
over banks. First, banks lack the expertise of the VCs which is necessary to learn π
after paying the cost C. Hence banks can only learn π at the date of success, τ , but
not before. Second, banks also lack the monitoring ability of the VCs which ensures
that the entrepreneurs do not divert investment to private consumption. As a result,
banks do not offer contracts to entrepreneurs, for otherwise anybody could pretend
to be an entrepreneur and the banks would make negative profit.

2.0.1 Comment on the informational structure

Before analyzing the model, let us comment on the informational structure .
First, why insist on the fixed cost C being paid before the VC or the entrepreneur

sees π? And, second, why is there no advance information on τ?
On the one hand, it is much easier to treat the case where information is symmetric

about π. But more to the point, if the VC or the entrepreneur knew τ or π before
paying C it would be hard reconcile the following three facts.

1. The VC accepts about one percent of the proposals that he gets

2. The overall return on venture funds is not significantly higher than the S&P
500 return

3. A large fraction of the companies never reach IPO or acquisition and impose
losses on the VC

The payment of C before τ and π are known means that returns on some ventures
can be negative, while on others they can be astronomically high. The payment of
k and a while waiting for success leads to terminations of ventures that have not yet
succeeded.

3So as to avoid coordination problems, we assume that at time t the VC observes the history
of efforts on the interval [0, t] and that the entrepreneur observes the history of investments on the
interval [0, t).
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3 Analysis

First, we characterize the socially optimal outcome of our model. Then we show that
this outcome is the unique outcome in the competitive market conditional on some
distributional assumption on the wealth of the entrepreneurs.

3.1 Socially Optimal Decisions

Our strategy of characterizing the socially optimal outcome is the following. First,
we analyze the optimal decision regarding the time an individual project should be
supported. This decision depends on whether the project is venture-backed , or sup-
ported by a solo entrepreneur. Second, we characterize the socially optimal decision
whether an entrepreneur should go solo, seek VC-backing, or invest with a bank.

3.1.1 The termination problem of a venture-backed project

The VC has “unlimited wealth” the transfer of which over periods he values at the
market rate of interest r. His time, however, can be devoted to only one project at
a time, and this is where the bottleneck will arise. How long should the VC and the
entrepreneur support a project? Since the value π is learnt at time zero, we derive
the optimal time until the project should be supported, denoted by T ∗ (π).
Let W denote the social value of a free VC. Once π is known and C has been

sunk, the planner solves

V (π) ≡ max
T

Z T

0

µ
π +W − 1

h (t)

¶
e−rtf (t) dt+ e−rT (1− F [T ])W (1)

An interior solution for this problem, T ∗ (π), must solve for t the first-order condition

0 =

µ
π +W − 1

h (t)

¶
f (t)− f (t)W − r (1− F [t])W

= π − 1 + rW

h (t)
,

i.e.,

h (t) =
1 + rW

π
.

The local second-order condition is h0 (T ∗ (π)) < 0. The bell-shaped hazard rate as-
sumption guarantees that the local second-order condition is also sufficient, as shown
in Figure 1.
Notice however, that T may be at a corner: π may be so low that the project

yields a negative return. Let πmin be the smallest value of π for which it is worth
supporting the project. A project should be funded if and only if V (π) ≥ W . That
is, πmin solves
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(1+rW)/π1

(1+rW)/π2

T*(π1) T*(π2)

h(t)

t

Inadmissible portion of h(t)

(1+rW)/πmin

T*(πmin)

Figure 1: The determination of T ∗ (π)

V (π) =W. (2)

Therefore the optimal stopping time of funding a project of quality π, T ∗ (π) is defined
as follows

T ∗ (π) =

½
h−1

¡
1+rW

π

¢
if π > πmin,

0 otherwise.
(3)

3.1.2 The solo entrepreneur’s termination problem

For the solo entrepreneur we assume that π is also drawn from the same G as the
venture-backed projects’ π. More controversially, we shall assume that π is drawn
independently of w; in doing so we implicitly shut off any influence that the en-
trepreneur’s wealth may exert on the scale of businesses, an effect that Evans and
Jovanovic (1989) highlight. On the other hand, an entrepreneur’s wealth will gener-
ally raise the probability that the project survives, an effect that Holtz-Eakin et al.
(1994) document.

First we solve for the optimal stopping time of a solo entrepreneur, TS (π), who
has enough money to finance her project forever. Then T S (π) solves the following
maximization problem:

max
T

Z T

0

µ
π − 1

h (t)

¶
e−rtf (t) dt.

9



Hence, TS (π) is either equal to zero (if the value of the previous maximization prob-
lem is negative), or satisfies the first-order condition, h

¡
T S (π)

¢
= 1/π, along with

the second-order condition h0
¡
T S [π]

¢
< 0. Let πSmin denote the smallest realization

of π, which should be supported by a solo entrepreneur with no budget constraint.
Hence,

T S (π) =

½
h−1

¡
1
π

¢
if π > πSmin,

0 otherwise.
(4)

Next, we turn to solving the decision regarding a solo entrepreneur’s project. The
law of motion for the solo entrepreneur’s wealth (assuming she does not consume out
of it but only covers her business expenses)

dwt

dt
= rwt − k

for t < T , where wt denotes the wealth of the entrepreneur’s wealth at time t. The
solution is

wt =
k

r
+

µ
w0 − C − k

r

¶
ert. (5)

This is because at time zero, she has to incur the cost C in order to learn π, so that
initial wealth is effectively w0−C. Let τ (w) be the date at which a solo entrepreneur’s
wealth runs out conditional on no success until then. In other words, the function
τ (w) is the project’s maximum financial life if it does not succeed. Then τ (w) solves
for t the equation k/r + (w − C − k/r) ert = 0. Its solution is

τ (w) =

(
1
r
ln
³

k
k−r(w−C)

´
if w < k

r
+ C

+∞ otherwise
(6)

The date-zero value of the solo entrepreneur’s decision problem now is

q (π,w0) (7)

≡ max
T

Z min(τ,T )

0

µ
π + wt −

1− k

h (t)

¶
e−rtf (t) dt+ (1− F [min (τ , T )]) e−rmin(τ,T )wmin(τ,T )

using (5).

If the entrepreneur drops a project immediately, she ends up with w − C. Since
q is increasing in π, πmin (w) solves

q (π,w) = w − C. (8)

10



Differentiating (7), the solo entrepreneur’s FOC in the region where T < τ (w) is

0 =

µ
π + wT −

1− k

h (T )

¶
f (T )− f (T )wT − (1− F [T ]) rwT + (1− F [T ]) (rwT − k)

=

µ
π − 1− k

h (T )

¶
f (T )− (1− F [T ]) k

=

µ
π − 1

h (T )

¶
f (T ) ,

i.e.,

π =
1

h (TS)
.

Therefore, if the value of this problem is positive, then the solution ismin
¡
τ [w] , T S (π)

¢
,

otherwise it is zero. Let πmin (w) denote the smallest realization of π for which
q (π,w) ≥ w−C. That is, πmin (w) is the lowest-quality project that an entrepreneur
with initial wealth w will be willing to pursue further. Any project quality below
πmin (w) she would terminate at once. Then the optimal stopping time, TS, of a solo
entrepreneur with initial wealth w is defined as follows

TS (π) =

½
h−1

¡
1
π

¢
if π > πmin (w) ,

0 otherwise.
(9)

Although w enters its definition, we suppress it in the notation.

Since q is increasing in both arguments, πmin (w) is decreasing in w. That is, richer
entrepreneurs will be willing to pursue lower quality projects. We refer now Figure 2
which is the solo entrepreneur’s counterpart to the planner’s version of the same thing
in Figure 1. The decision rule in (9) is similar to the socially optimal rule in (4). One
point about (9) should be clarified with the help of the figure: Since 1/πmin is higher
for wealthier entrepreneurs, and so terminations at youngest strictly positive ages will
be observed among the richest entrepreneurs. But this does not mean that the rich
entrepreneurs are less patient. The interval [πmin (w1) , πmin (w2)] consists of projects
that entrepreneur 2 would terminate right away, but that entrepreneur 1 begins to
terminate only at date T S (πmin [w1]) > 0. Conditional on π, however, termination
dates are not affected by w, as illustrated by the point TS (π) which does not depend
on w.

The Socially Optimal Financing Mode
Equations (3) and (9) characterize the optimal decisions on individual projects

given the decisions regarding the financing mode. It remained to determine whether
an entrepreneur should go solo, seek VC-backing, or invest with a bank. Next, we
restrict attention to the question whether an entrepreneur with wealth w should go
solo or invest with a bank if VC-backing was not an option. We shall show that
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1/π

TS(π)

h(t)

t

1/πmin(w1)

TS(πmin[w1])

1/πmin(w2)

TS(πmin[w2])

w1 > w2

Figure 2: The determination of TS
w (π) for two different wealth levels

there is a cutoff level of wealth, w∗, above which the entrepreneur should go solo and
otherwise should invest with a bank. Finally, we characterize those entrepreneurs
who should get VC-backing.

The problem of an entrepreneur with limited wealth is that if she goes solo she
might run out of money. That is, although it is socially optimal to support a project,
a solo entrepreneur is unable to do so because of her liquidity constraint. Indeed, the
social value of a VC in our model comes from his ability to finance poor entrepreneurs.
Hence, those entrepreneurs should be matched with VCs who do not have enough
liquidity to finance their own projects for long enough time. We shall assume that
there are many poor entrepreneurs, with wealth below w∗, who would invest with
a bank instead of going solo in the absence of VCs. Then, in the socially optimal
outcome VCs are backing only (some of the) entrepreneurs that have wealth less than
w∗.

Going Solo vs. Investing with a Bank. –From (6), τ 0 (w) = k − r [w − C] /k.
Differentiating the function q, defined by (7), with respect to w yields

∂q (π,w)

∂w
=

(
1 +

³
k−r[w−C]

k

´³
π − 1

h(τ [w])

´
e−rtf (τ [w]) if w <

¡
k
r
+ C

¢ ³
1− e−rT

S(π)
´

1 otherwise.
.

(10)
The expected social value of a solo entrepreneur with wealth w is

QS (w) =

Z
q (π,w) dG (π) .
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Lemma 1 For w < k/r + C,
∂QS

∂w
> 1.

The intuition behind the statement of this lemma is the following. A budget-
constrained entrepreneur can use an additional dollar to prolong the time of sup-
porting her project, instead of using it for consumption. The marginal value of
consumption would be exactly one. Since sometimes it is socially efficient to finance
the project longer than the budget-constrained entrepreneur can afford, her marginal
value for a dollar exceeds one.
Proof. By (10), dQS/dw ≥ 1, and it is strictly greater than unity whenever there

are at least some realizations of π such that w is not enough to support the project up
to the socially optimal time. But T S (π) is unbounded if π is. Therefore, dQS/dw > 1
whenever w < k/r + C.
On the other hand, if w ≥ k/r + C, the entrepreneur can finance her project

indefinitely if she wants. Since by assumption the expected social value of a project
is positive, QS (w) > w whenever w > k/r + C. Indeed, we have

Lemma 2 For w ≥ k
r
+ C,

QS (w) = w + σ where σ ≥W
¡
1−Eπ,te

−rmin(t,T∗(π))¢ ≥ 0. (11)

An entrepreneur with w > k/r + C can already support her project as long as it
is socially optimal. She would use an additional dollar for consumption. Hence, her
value for an additional dollar is exactly one, explaining why QS (w) = w + σ.
Proof. A rich-enough entrepreneur generates surplus

σ = −C +
Z TS(π)

0

µ
π − 1

h (t)

¶
e−rtf (t) dt

= −C +Eπ

(Z TS(π)

0

e−rt
µ
π +W − 1

h (t)

¶
f (t) dt−W

Z TS(π)

0

e−rtf (t) dt

)

≥ −C +Eπ

(Z T∗(π)

0

e−rt
µ
π +W − 1

h (t)

¶
f (t) dt−W

Z T∗(π)

0

e−rtf (t) dt

)
.

The second equality holds because we just added and subtractedW
R TS(π)
0

e−rtf (t) dt.
The inequality holds because although T ∗ (π) is a feasible policy for the entrepreneur,
TS (π) is the optimal one. But, as we show later in (13),W is defined by the following
equation

W = −C +Eπ

(Z T∗(π)

0

µ
π +W − 1

h (t)

¶
e−rtf (t) dt+We−rT

∗(π) (1− F [T ∗ (π)])

)
.
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QS(w) 

w
w*

C
r
k
+

Lifetime 
value 

Payoff 
if solo 

payoff  
with bank  

 C 0 

σ
450 

Figure 3: The determination of w∗

Therefore

σ ≥ W −WEπ

(
e−rT

∗(π) (1− F [T ∗ (π)]) +

Z T∗(π)

0

e−rtf (t) dt

)

W −WEπ

(Z ∞

T∗(π)

e−rT
∗(π)f (t) dt+

Z T∗(π)

0

e−rtf (t) dt

)
= W −WEπ

Z ∞

0

e−rmin(t,T
∗(π))f (t) dt =W

¡
1−Eπ,te

−rmin(t,T ∗(π))¢ .
The marginal solo entrepreneur.–Thus we have shown that QS (w) must look as

drawn in Figure 3. It starts from zero when w = C because at w = C, right after
paying C, the entrepreneur would have no money left to continue supporting the
project; thus QS (C) = 0. As w reaches k/r+C, QS (w) reaches w+ σ which, in the
case where T ∗ (π) > 0 for some π is strictly above the 450 line. We shall argue that
from the Intermediate Value Theorem it follows that there exists a unique value of
wealth, denoted by w∗, that solves the equation

QS (w) = w. (12)

Thus w∗ is the wealth of the poorest solo entrepreneur. Figure 3 depicts the choice
between going solo and investing with a bank and the determination of w∗. The
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payoff, QS (w) is continuous in w and is not defined if w < C because the entrepreneur
cannot pay the cost C. That w∗ is unique follows because by Lemma 1 ∂QS/∂w > 1
for w < k/r + C, and because QS

¡
k
r
+ C

¢
> k/r + C. This latter inequality holds,

because the social value of a project is strictly positive. Therefore, at the point where
the QS curve intersect with the 45-degree line, the slope of QS strictly exceeds unity.
(Recall from Lemma 1 and Lemma 2 that the slope of QS turns into one only at
k/r + C.)

Who Should get VC-backing and the Value of a free VC–We turn to the deter-
mination of W . We maintain the assumption that VCs finance those entrepreneurs
who would otherwise not go solo but with invest with a bank. (Later, we provide a
condition on the wealth distribution of the entrepreneurs which guarantees that this
is indeed socially optimal.) Hence, the social value of a free VC is determined by the
following equation

W = −C +
Z ∞

0

Z T∗(π)

0

µ
π +W − 1

h (t)

¶
e−rtf (t) dtdG (π) (13)

+W

Z
e−rT

∗(π) (1− F [T ∗ (π)]) dG (π) .

From this

W =
−C +

R∞
0

R T∗(π)
0

³
π − 1

h(t)

´
e−rtf (t) dtdG (π)

1−
R∞
0

R∞
0
max (e−rt, e−rT∗(π)) f (t) dtdG (π)

. (14)

To see that (14) indeed uniquely defines W , note that when W is zero, the right-
hand side is positive. This is because if W = 0, T ∗ = TS and the social value
of a project is positive. If W goes to infinity the right-hand side becomes negative
because T ∗ converges to zero, and hence the−C part will dominate. Finally, since the
right-hand side is decreasing and continuous in W , the existence of unique solution
is guaranteed by the Intermediate Value Theorem.

The average duration of the average venture-backed project, t̄, can be computed
as follows

t̄ =

Z Z ∞

0

min (t, T ∗ [π]) f (t) dtdG (π) .

At any point in time, there is a measure x/t̄ of free VCs. Recall that at any instance
of time there is an inflow of λ of new entrepreneurs. Among them there is a measure
of λΨ (w∗) who has so little wealth that, in the absence of VCs, would choose to
invest with a bank. If x/t̄ ≤ λΨ (w∗) then it is indeed socially optimal to match the
VCs with these entrepreneurs for whom it would otherwise not be socially optimal to
go solo.

The following proposition summarizes our findings:

Proposition 1 If λΨ (w∗) > x/t̄, the socially optimal outcome is defined as follows:

15



(i) An entrepreneur with initial wealth w > w∗ goes solo. A measure of x/t̄
entrepreneur gets VC-backing at every instance of time, each of them with wealth less
than w∗. The rest of them invest with a bank.
(ii) The termination decision of a venture-backed project is determined by (3),

and that of the solo project is by (9).

3.2 Competitive Outcome

In what follows we show that under some conditions on the distribution, Ψ, of en-
trepreneurs’ wealth, the socially optimal outcome is implemented as a competitive
equilibrium. Recall, that the social value of a free VC, W , plays an important role
in determining the socially optimal decisions. In order that the VC makes optimal
decisions, it is essential that his market value (when he is free) should be exactly W .
But this implies that the VC must have enough market power to be able to extract
all the surplus from individual projects. We guarantee this market power to the VCs
by assuming that there are more entrepreneurs who is willing to seek VC-backing
than VCs. In other words, we assume that λΨ (w∗) is large enough compared to the
available free VCs, x/t̄.

But this is not the whole story. Recall, that in our model there is a double-
sided moral hazard problem at work. Neither the effort of an entrepreneur, nor the
investment of a VC is contractible. Hence, the VC must be able to provide a contract
to the entrepreneur which induces the socially efficient termination decisions by both
parties and, in addition, enables the VC to extract the whole surplus.

Recall, a contract consists of two numbers (p, s), where p is paid by the entrepre-
neur before π is realized, and s is the sharing rule upon the realization of π. We shall
show that if the sharing rule is

s∗ =
a

1 + rW
,

the termination rules of both parties are indeed the socially optimal ones. But how
can the VC extract the whole surplus from the entrepreneur?

Let QV C (s) denote the continuation value to the entrepreneur from a contract
specifying sharing rule s, conditional on both parties supporting the project up to
T ∗ (π) . Then

QV C (s) =

Z Z T∗(π)

0

µ
sπ − a

h (t)

¶
e−rtf (t) dtdG (π) .

Hence, the contract that enables the VC able to extract the total surplus from a
project must specify an up-front payment

p∗ = QV C (s∗) . (15)
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Figure 4: The equilibrium allocation of entrepreneurs to activities

The selection of entrepreneurs into activities.–Entrepreneurs’ choices of the mode
of investment are described in Figure 4. The fraction of entrepreneurs that wishes
to get VC backing is Ψ (w∗). But of these, the fraction that can also afford to pay
p∗ is just Ψ (w∗) − Ψ (p∗). This is the area “bank or VC” in Figure 4. Hence the
distributional assumption we need is

Ψ (w∗)−Ψ [p∗] >
x

λt̄
. (16)

Theorem 1 If (16) holds, the socially optimal outcome is also a competitive equilib-
rium outcome supported by the following strategies:
(i) A VC always offers the contract (p∗, s∗) . If the contract is accepted, he follows

the socially optimal decisions, defined by (3).
(ii) An entrepreneur with wealth w ≥ w∗ goes solo, and follows the socially optimal

termination rule defined by (9).
(iii) An entrepreneur with wealth w ∈ (p∗, w∗) seeks VC-backing with probability

x/ (t̄λ (Ψ (w∗)−Ψ (p∗))) and invests with a bank otherwise. Entrepreneurs seeking
VC backing accept the contract offered by the VC, and follow the socially optimal
decisions defined by (3).
(iv) An entrepreneur with wealth w ≤ p∗, invests her money with a bank.

Notice that (16) requires that w∗ be larger than p∗. This turns out to be so
because we have the following two Lemmas:
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Lemma 3
p∗ =

(1− k)

1 + rW
C (17)

Proof. The proof is contained in the seven lines preceding eq. (51) of the Ap-
pendix.

Lemma 4
w∗ > p∗. (18)

Proof. Using (12) and the fact that QS (C) = −C (after paying C, the entrepre-
neur would have no money left to continue supporting the project), we have w∗ > C.
But from (17) C =

¡
1+rW
1−k

¢
p∗ > p∗. These two inequalities imply (18)

Notice that in the equilibrium described above, the VCs extracts all the surplus
from individual projects.4 The condition λ (Ψ (w∗)−Ψ (p∗)) ≥ x/t̄ guarantees that
(i) there are enough poor entrepreneurs who prefers not to go solo, but (ii) among
these entrepreneurs, there are enough who has enough cash in hand to pay the VC
up front the expected surplus of the project, p∗. Since the VCs extracts all the social
surplus from the projects, their market value will be exactly the social value of a VC,
W .
The equilibrium is further described in Figure 5. The Figure takes the equilibrium

features of the contract as given, except for p. That is, as p varies, s is held fixed at
s∗. Figure 5 may be explained as follows:

1. If there were no VCs, a total of Ψ (w∗) entrepreneurs would simply abandon
their projects and invest their wealth with banks, and the remaining 1−Ψ (w∗)
would go solo as shown in Figure 3.

2. Since investing with a bank offers the entrepreneur zero rents, the entrepreneurs’
demand for VCs is infinitely elastic at p∗ up to the point Ψ (w∗)−Ψ (p∗) ; the
poorest Ψ (p∗) entrepreneurs could not afford the fee.

3. At any p higher than p∗, no one would demand VC services. At any p below
this value, the payoff to going with a VC would strictly dominate that of going
to a bank. But not all Ψ (w∗) of the entrepreneurs could afford to sign with
a VC; an entrepreneur must have w at least as large as p and there would
develop a demand for VC’s of at least5 Ψ (w∗)− Ψ (p). This is also where the
demand curve has a kink because a reduction in p below p∗ raises continuously
the number of entrepreneurs that can afford the up-front fee p and are willing
to sign with a VC.

4Moreover, once terminated by a VC, the entrepreneur would not wish to continue the project
alone (either through self finance or bank finance) because the VC retains his equity in the project
even after ceasing to invest in it. Thus the entrepreneur’s reward would not rise, but her costs
would, and so she would strictly prefer to stoip right away.

5We say “at least” because once p < p∗, some entrepreneurs with w > w∗ (i.e., some of those
that would choose the solo option if p were equal p∗) will demand VC backing.
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3.3 Proof of Theorem 1

First, we prove that given the decision about the financing mode, the entrepreneurs’
as well as the VCs’ decisions regarding the termination time of a project are indeed
socially optimal. That is, we prove the second part of claims (i), (ii), and (iii) of
Theorem 1. If an entrepreneur decides to go solo, then she is the one who incurs all
the costs related to the project, but she also enjoys all the potential benefits. In other
words her costs and benefits are identical to the social costs and benefits, hence she
obviously follows the socially optimal decision rules describe by (9). Therefore, we
only have to show that if a project is venture backed, the entrepreneur and the VC
both follow the socially optimal decision rule defined by (3).
Second, we show that given the decisions regarding the individual projects, the

decisions regarding the financing mode are as described in the first parts of claims
(ii), (iii), and (iv) of the theorem.
Since the VCs extracts all the surplus they obviously have no incentive to offer

different contracts.

Incentive Compatibility of the Contract (p∗, s∗)
We analyze the incentives of the agents to support the project after a contract

(p, s) is signed and both parties learn the value of π.
Entrepreneur.–Suppose first, that the entrepreneur trusts that the project is

always financed by the VC, and that she will get sπ if the project is successful. Since
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the project has no salvage value, if it is terminated the entrepreneur gets zero as her
terminal payoff. Recall, new ideas occur only to new entrepreneurs. Therefore she
solves

V E (π) ≡ max
T

Z T

0

µ
sπ − a

h (t)

¶
e−rtf (t) dt. (19)

If the solution, T e (π) , is interior it is defined by the corresponding first-order con-
dition:

h
¡
TE (π)

¢
=

a

sπ
. (20)

The local second-order condition, which is also is also the sufficient condition, is again
h0 (T e (π)) < 0. Finally, if the value of the maximization problem is negative, she does
not start to exert effort.

VC.– Recall, the market value of a free VC, that is the expected payoff of a VC
who is not yet in a contractual relationship with an entrepreneur is just W . Suppose
now, that the VC trusts that the project is always supported by the entrepreneur,
and he gets (1− s)π, if the project succeeds. The VC’s maximization problem after
signing the contract is

V V C (π) = max
T

Z T

0

µ
(1− s)π +W − k

h (t)

¶
e−rtf (t) dt+ e−rT (1− F [T ])W. (21)

In other words, the VC can find a new project immediately after one is over (whether
it was terminated or whether it succeeded). If the solution, T V C (π), is interior, it
must solves the first-order condition

h
¡
T V C (π)

¢
=

k + rW

(1− s)π
. (22)

The sufficient condition is again h0
¡
T V C (π)

¢
< 0. If the value of the maximization

problem in (21) is less than W , the VC does not start to invest into the project.

Incentive compatibility.– The agents stop supporting the project at the same
moment if and only if h

¡
T V C (π)

¢
= h

¡
TE (π)

¢
. From (20) and (22) it follows that

this equality holds if and only if

a

sπ
=

k + rW

(1− s)π
.

But this requires that
s =

a

(a+ k + rW )
. (23)
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Optimality.– Recall from (3) that the socially optimal termination decision,
T ∗ (π), satisfies h (T ∗ (π)) = (1 + rW ) /π. Hence, in order to achieve the socially
optimal rule, we need that

a

sπ
=
1 + rW

π
.

Given the incentive-compatible s in (23), we need that

a+ k + rW = 1 + rW.

But this is true since a+ k = 1.

It remained to show that, if s is defined by (23), the minimum value of π which
makes the RHS of (1) at leastW , i.e., πmin, is the same as the value of π which makes
the RHS (21) at least W , and that the RHS of (19) is nonnegative. That is

Lemma 5 Let πmin solve (2). If s is defined by (23), then (i) V V C (πmin) = 0 and
(ii) V E (π) = 0

(proved in the Appendix).
Since V V C and V E are increasing in π, the Lemma implies that both are nonneg-

ative for all π ≥ πmin. Thus we have shown that if s = a/ (a+ k + rW ), then both
(20) and (22) become just (3). That is, for all π, TE (π) = T V C (π) = T ∗ (π). This
implies that the VC as well as the entrepreneur support the project up until it is
socially optimal to support it. This shows the second parts of claims (i) and (iii) of
the Theorem, to the effect that both parties follow the socially-optimal termination
decisions defined in (3).

The Choice of Financing Mode of an Entrepreneur
We now show the first parts of claims (ii) and (iii) and claim (iv) of Theorem 1.
Suppose first, that an entrepreneur has initial wealth w ≤ p∗. Since w < w∗, she

is better off putting her money into the bank instead of going solo. Furthermore, she
cannot contract with a VC, because she does not have enough liquidity to pay the
VC p up-front. Hence, she invests with the bank.

Suppose that w ∈ (p, w∗). Since w < w∗, entrepreneur is still better off by
investing with a bank instead of going solo. However, she has enough wealth to
pay p∗ to the VC. Since the VCs extract all the surplus from the projects, these
entrepreneurs are indifferent between seeking VC-backing or investing with a bank.
So they can randomize according the claim (iii) of Theorem 1.

If w > w∗, the entrepreneur will go solo, since QS (w) > w, and her other options
all provide her with a payoff of w.

Discussion of the efficiency result
The fact that the equilibrium contract induces the socially optimal stopping time

may seem surprising at first, because there is a two-sided moral hazard problem in our
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model. Notice however, that if s = a/ (a+ k + rW ), then the objective function of
the entrepreneur is simply a times the objective function of the social planner. True
enough, when the entrepreneur solves her maximization problem, she only cares about
her own cost, a, instead of the social cost a + k. However, if s = a/ (a+ k + rW ),
then the entrepreneur cares only about her own benefit, [a/ (a+ k + rW )]π, instead
of the social benefit π. Both the cost and the benefit in the maximization problem
of the entrepreneur are down-scaled by a compared to the social surplus function.
Therefore they are maximized at the same value of T .

Two assumption to guarantee that the socially optimal outcome is also supported
as a competitive equilibrium. First, there must be few VCs relative to the number of
entrepreneurs that seek VC-backing. And, second, among these entrepreneurs there
must be sufficiently many that have enough liquidity to pay QV C (s∗) up-front.

The first assumption is crucial to our result. This assumption provides the VCs
with market power. They are able to offer contracts that enable them to extract the
full social surplus. That is why the market value and the social value of a free VC
are the same.

The assumption regarding the number of rich entrepreneurs among those who
would not go solo is far less important. More complicated contracts would make
it possible to extract surplus from entrepreneurs who do not have enough cash in
hand to start with. Recall, that we have restricted attention to contracts which
specify a time-independent sharing rule, that is s cannot depend on the time when
the project succeed. The VCs could extract surplus from a more liquidity constrained
entrepreneur by offering contracts when this sharing rule is increasing. Recall that
with the fixed s the entrepreneur was only indifferent between exerting effort and
shirking at the time of termination, but strictly preferred to exert effort anytime
before. If s was allowed to change over time, the entrepreneur could have been
made indifferent between working and shirking at any time before the termination
of the project, and by such contracts surplus could have been extracted from poor
entrepreneurs too.

Discussion of work on efficiency in the market for venture capital
Bergemann and Hege (1998, forthcoming) argue that dynamic contracts between

entrepreneurs and VCs is inefficient relative to first best. In their model the project
succeeds with some probability in each period, and the payoff is proportional to the
invested funds. As in our setup, as time passes without success, agents down-date
their prior, that is, they become more and more pessimistic. The main difference is
that Bergemann and Hege (1998) focus on the following moral hazard problem: The
entrepreneur can divert the invested funds to private consumption (with or) without
the VC observing it. The trade-off the entrepreneur then faces is the following: On
the downside, if she diverts the funds, she reduces the probability that the project
succeeds. On the upside, if she diverts the funds: (1) she benefits directly by con-
suming them, (2) she potentially prolongs the time that she gets the stream of funds.
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The main result of Bergemann and Hege (1998) is that the optimal contract specifies
a decreasing stream of funds. The project is supported for a time that is shorter than
would be socially efficient, and the project gets less funds. The reason stems from
the trade-off described above. The investment stream should be specified such that
the entrepreneur has no incentive to divert it. If it is decreasing, the entrepreneur
understands that if she diverts it, then: (1) the payoff upon success decreases (recall
it is proportional to the size of the funds), and (2) the future stream of funds is less
attractive, because it is decreasing 6

Inderst and Muller (2004) and Michelacci and Suarez (2004) build search models
and assume that Nash bargaining divides the rents between the VC and the en-
trepreneur. As is the case in search models with a matching function, the “Hosios
condition” (which states factor shares in the constant-returns-to-scale matching func-
tion should equal the factors’ relative bargaining strength) must hold in order that
the equilibrium be efficient. It is pure coincidence if that equality should obtain, and
so generically these models imply inefficiency of equilibrium — policies that change
incentives for entry by one side or the other can generally improve the sum of the
payoffs. In our model, by contrast, efficiency holds on an open set of all parameter
values; although (16) is not in terms of primitives, it is seen that w∗, p∗, and t̄ are
continuous in the parameters of the model, and, hence, that there is a range of all
parameters for which the condition holds.

Our model takes the relative numbers of entrepreneurs and VCs as exogenous.
Since VCs get the full social value of their capital, if we endogenized venture capital
we would expect that an optimal amount of it would be created. Entrepreneurs receive
a zero return on their ideas. Indeed, the marginal social value of another entrepreneur
with an idea is zero — because society does not have a free VC to finance her idea, the
entrepreneur would generate as much social benefit if she were invest her wealth with
a bank. Figure 5 shows, however, that the poorest Ψ (w∗) entrepreneurs receive no
value from their ideas and, in a model in which getting ideas took resources, would
have no incentive to devote any effort to invention. In that case, optimality would
survive only if entrepreneurs received ideas about projects incidentally, say through
learning by doing, or if they were born with ideas.

4 Empirical implications

This section lists some qualitative implications of the model and compares them with
evidence from the Corporate Finance literature. The next section presents estimates
of the model.

6Lerner (1998) has argued that Bergemann and Hege’s assumption that the manager can divert
funds is unrealistic because the VC usually monitors activities in his firms on a weekly and sometimes
on a daily basis, attend monthly board meetings and so forth.
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4.0.1 Value at IPO

Hochberg (2004) finds that venture-backed firms are worth more at IPO than non-
venture-backed firms. We shall show that this is true if the non-venture-backed firm
is managed by a wealthy solo entrepreneur. Consistent with us, the minimum value
in Table 1 is smaller for the non-venture-backed sample: proceeds were smaller by a
factor of two thirds, and size by a factor of almost four
The average value of a venture-backed company that succeeds at age t isE

¡
π| T V C (π) ≥ t

¢
.

Similarly, the average value of a firm a wealthy solo entrepreneurs which succeeds at
age t is E

¡
π| TS (π) ≥ t

¢
. Notice that both T V C and TS are increasing. Hence, in

order to conclude E
¡
π| T V C (π) ≥ t

¢
≥ E

¡
π| TS (π) ≥ t

¢
it is enough to show that

T V C (π) ≤ TS (π), which is what the next Proposition does.

Proposition 2
T V C (π) ≤ TS (π) . (24)

The intuition behind this proposition is the following. The number of VCs is
smaller than the number of entrepreneurs. This provides VCs with market power
and a high equilibrium return on their investment, which in turn, makes the VCs’
opportunity cost of supporting projects high. As a result, VCs are impatient with
projects that have not yet succeeded.
Proof. Whenever π is such that T S (π) > 0 (i.e., so that T S has an interior

solution), then h is decreasing at TS. If T V C (π) > 0, then h is also decreasing at
T V C and a comparison of (4) and (3) implies TS (π) > T V C (π). Then (24) holds if
TS (π) = 0 =⇒ T V C (π) = 0, i.e., if

πmin ≥ πSmin (w) for w ≥ C + k/r (25)

We now prove that (25) holds.
Recall, πSmin solves Z TS(π)

0

µ
π − 1

h (t)

¶
e−rtf (t) dt = 0. (26)

Also recall that πmin solves V (πmin) =W . Since V is increasing, it is enough to show
that V

¡
πSmin

¢
≤W .

V
¡
πSmin

¢
=

Z TV C(πSmin)

0

µ
πSmin +W − 1

h (t)

¶
e−rtf (t) dt+ e−rT

V C ¡
1− F

£
T V C

¤¢
W

=

Z TV C(πSmin)

0

µ
πSmin −

1

h (t)

¶
e−rtf (t) dt+

Z ∞

0

We−rmin{t,TV C(πsmin)}f (t) dt

≤
Z TS(πSmin)

0

µ
πSmin −

1

h (t)

¶
e−rtf (t) dt+

Z ∞

0

We−rmin{t,TV C(πSmin)}f (t) dt

=

Z ∞

0

We−rmin{t,TV C(πSmin)}f (t) dt ≤W ,
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where the first equality follows from TS being the solo’s optimal termination rule
(and not T V C), and the last equality from (26).
Note that this proposition compares the terminations of venture-backed firms

with the terminations of solo firms run by wealthy entrepreneurs. We cannot rank
terminations of venture-backed firms with those of entrepreneurs with w < C + k/r,
because the latter are sometimes forced into terminations for lack of money.7

4.0.2 Terminations

Proposition 2 showed that for each π, venture-backed firms are terminated faster than
a solo one. But we wish to also compare the hazard rates for the two kinds of firms
because this is how much of the evidence is presented. We now turn to the definition
of these hazards.
The C.D.F.s of terminations.–Let Φ (t) be the CDF of terminations, and let

the density be φ (t). Now π ∼ G (π) and the low-π projects are terminated first —
see Figure 6. By (3), π = (1 + rW ) /h

¡
T V C (π)

¢
, and so the fraction of projects

terminated by date t (conditional on no success until date t) is Pr (T ≤ t | τ ≥ t) ≡
Φ (t). Thus the C.D.F. of terminations for the venture-backed sample is

ΦV C (t) =

⎧⎪⎪⎨⎪⎪⎩
0 for t = 0

G (πmin) for t ∈
³
0, h−1

h
1+rW
πmin

i´
G
³
1+rW
h(t)

´
for t ≥ h−1

³
1+rW
πmin

´
.

(27)

whereas for the solo sample it is

ΦS (t) =

⎧⎪⎪⎨⎪⎪⎩
0 for t = 0

G (πmin [w]) for t ∈
³
0, h−1

h
1

πmin(w)

i´
G
³

1
h(t)

´
for t ≥ h−1

³
1

πmin(w)

´
.

(28)

Note that it is conditional on no success. The termination hazard for the venture-
backed firms therefore is

ψV C (t) ≡ φV C (t)

1− ΦV C (t)
=

⎧⎪⎪⎨⎪⎪⎩
∞ for t = 0

0 for t ∈
³
0, h−1

h
1+rW
πmin

i´
(1 + rW ) γ

³
1+rW
h(t)

´³
−h0(t)
[h(t)]2

´
for t ≥ h−1

³
1+rW
πmin

´
.

(29)

7The quality of venture capital is homogeneous in our model, hence there is no reason for the VC
to try to signal higher ability by taking actions that to outsiders seem successful. “Grandstanding”
is said to occur when VC sends companies to an IPO before their time in the hope of establishing
a reputation for being able to quickly guide companies to success. A reputable VC can more easily
open new funds. Our model does not explain grandstanding, but the finding thatW > 0 is certainly
consistent with it.
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where

γ (π) ≡ g (π)

1−G (π)

is the hazard rate of the profit distribution. For solo firms the hazard ψS ≡ φS

1−ΦS is

ψS (t, w) =

⎧⎪⎪⎨⎪⎪⎩
∞ for t = 0

0 for t ∈
³
0, h−1

h
1

πmin(w)

i´
γ
³

1
h(t)

´³
−h0(t)
[h(t)]2

´
for t ≥ h−1

³
1

πmin(w)

´
.

(30)

Thus the wealthy solo entrepreneur will tolerate projects of quality lower than venture-

backed entities will. On the other hand, we cannot say if the poor solo entrepreneurs
would also tolerate lower-quality projects than VC’s because πSmin (w) is decreasing
in w, so that the wealthy entrepreneur makes fewer immediate terminations than
the poor entrepreneur. In other words, we don’t know whether πSmin (w) < πmin for
w < k/r+C, and so we cannot say if immediate terminations are higher for venture-
backed or for solo-run projects. In addition, poorer entrepreneurs might run out of
money and must terminate sooner.

In words the previous proposition says that as long as they are rich enough, solo
entrepreneurs will bring their firms to market later than VCs, and when they do, their
companies will on average be less valuable. Some of the evidence on venture-backed
firms vs. other startups is roughly in the form

Pr (Termination) = a0 + a1 ·Venture Dummy + a2 · Firm Age + .... (31)

The venture dummy is set to equal one if the company is venture backed and zero
otherwise. Sometimes “Age” variable is replaced by investment round; the two are
highly correlated. The inclusion of age gives the regression the interpretation of a
hazard rate. Proposition 2 then tells us that at least when firm age is zero, a1 is
positive.

Only with further restrictions is (31) with a1 > 0 is a good approximation globally
to what our model implies.

Proposition 3 When γ is non-decreasing, then for w ≥ C + k/r,

ψV C (t) ≥ ψS (t, w)

for all t for which ψV C and ψS are both positive.

Proof. The relation in (25) prevents us from being able to rank 1+rW
πmin

and 1
πmin(w)

.
Therefore we cannot say which hazard becomes positive first. From (29) and (30),
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ψV C = ψS = 0 for t ∈
³
0, h−1

h
max

³
1

πmin(w)
, 1+rW

πmin

´i´
and both are positive for

t ≥ h−1
h
min

³
1

πmin(w)
, 1+rW

πmin

´i
. On this region,

ψV C (t)

ψS (t, w)
=
1 + rW

γ
³

1
h(t)

´γµ1 + rW

h (t)

¶
≥ 1 + rW

because γ is non-decreasing.
In the example that we estimate, G (π) is assumed to be exponential so that γ is

a constant. Therefore it will have the property that ψV C > ψS, i.e., that the hazard
of terminations is higher for venture-backed firms. The population of solo firms being
compared is, however, those with w ≥ C + k/r.

4.0.3 Survival to IPO

Our model does not distinguish types of success; bringing a product to market
and having an IPO are equivalent. Ber and Yafeh (2004) find that the probabil-
ity of survival until the IPO stage is higher for venture-backed companies. which,
in our notation(i) Hellmann and Puri (2000) find that venture-backed companies
are quicker to market their products. Translated into our notation, (i) says that
τ , the date of success, occurs earlier for venture-backed companies, and (ii) says
that the probability that τ occurs before termination is higher for a venture-backed
company. In our model, the outcome is ambiguous. For a given π, the VC’s stop-
ping time is min

¡
τ , T V C [π]

¢
. For that same π, the entrepreneur’s stopping time

is min
¡
τ , τ [w] , TS [π]

¢
. On the one hand, T V C (π) < TS (π). But on the other,

T V C (π) may exceed τ (w). The latter may happen for those entrepreneurs with
w ∈ (w∗, k/r + C) ; they may run out of money before reaching their optimal ter-
mination date TS (π). Thus, whether venture-backed projects are terminated earlier
or later depends on the distribution of wealth. Given that in the population of en-
trepreneurs w is distributed according to the CDF Ψ (w), the precise condition is as
follows:

Proposition 4 If

1−Ψ

µ
k

r
+ C

¶
> Ψ

µ
k

r
+ C

¶
−Ψ (w∗) , (32)

the median venture-backed firm is likely to (i) be terminated more quickly, (ii) be worth
more at IPO than the median solo firm and (iii) succeed more quickly conditional on
not being terminated.

Proof. (i) and (ii) follow because when (32) holds, the median w satisfies the
conditions of Proposition 3. (iii): For the same reason, for the median solo firm, by
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(24), T V C (π) ≤ TS (π) for each π. If it is going to succeed, then, a venture-backed
project π must do so earlier than a solo project. And since the ex-ante distribution
of π, G (π) is the same for venture-backed and solo firms, venture-backed successes
are quicker than solo successes.
These claims all follow for the simple reason that when (32) holds, the median

solo firm has its w above k/r + C and will be more patient with any project than a
venture-backed firm would be.

4.0.4 Good projects receive more investment rounds

Gompers (1995) finds that bad projects tend to be identified early and get dropped,
and that it is the good projects that receive more investment. This happens in our
model: The amount that the VC expects to invest is increasing in π. First of all,
projects with π ≤ πmin receive no investment beyond the initial outlay C. For a
project with π > πmin, investment proceeds for T V C (π) rounds, a number that solves
the equation

h (T ) =
1 + rW

π
. (33)

At the point of intersection h0 < 0, as shown by the solid line in Figure 1. The dashed
portion is not admissible because the second-order conditions fail. When the solution
exists,

∂T

∂π
= − h (T )

h0 (T )
> 0,

so that the maximum number of investment stages rises with the project’s quality.
We now illustrate this in Figure 6. Until date t = h−1 ([1 + rW ] /πmin), no projects
are being terminated, and successes are drawn from the distribution G (π | π ≥ πmin).
Projects to the left of πmin are terminated right away. At t = h−1 ([1 + rW ] /πmin),
the truncation point, (1 + rW ) /h (t) starts to move to the right. Thus the conditional
mean of the projects that are funded rises. Let Γt (π) be the distribution of π among
projects that bear fruit at date t. Then for t larger than the value at which the mode
of h occurs (so that the condition h (t) = 1+rW

π
represents a maximum),

Γt (π) =
G (π)−G

³
max

n
πmin,

1+rW
h(t)

o´
1−G

³
max

n
πmin,

1+rW
h(t)

o´ (34)

for π ≥ max
n
πmin,

1+rW
h(t)

o
. For t below the mode,

Γt (π) =
G (π)−G (πmin)

1−G (πmin)
(35)

for π ≥ πmin.
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Figure 6: Good projects receive more investment rounds

This is where the assumption that π and τ are independent has bite. A sufficient
negative correlation between the two would overturn the result. If high-π projects
also had low-enough τ ’s, but if the low-π projects were still worth supporting for a
while, it would be the bad projects that receive more investment rounds.

4.0.5 The VC’s rate of return

Cochrane (2004) and Guler (2003) find that the rate of return VCs receive falls with
the age of the project at completion. Cochrane computes the rate of return, and Guler
computes the internal rate of return (IRR). These are slightly different concepts in
the present model, so let us now derive them.
The rate of return on projects that succeed at age t.–Calculating rates if return

is easy because the returns all come at the same date t. All that is needed, then, is
to bring all costs (which are distributed over [0, t]) into date-zero dollars, i.e., to take
their present value discounted at the rate r. The VC gets a fraction (1− s∗) of the
payoff, The present value of all costs net of the transfer p∗ would be

R t
0
ke−rudu+C−p∗

where p∗ is defined in (15). On a project of quality π, the realized rate of return,
R (t, π) would solve the equation

eR(t,π)t =
(1− s∗)R t

0
ke−rudu+ C − p∗

π (36)

Now π differs over projects that succeed at t, and their distribution depends on t,

29



being ever more truncated from the left as shown in Figure 6. Since the π’s differ, so
do the returns. When collapsing a distribution of returns Two concepts are used in
the literature. The geometric rate of return, call it RG (t), given by the formula

RG (t) =

Z
R (t, π) dΓt (π) , (37)

is just the average of the rates of return. The arithmetic rate of return satisfies the
equation

RA (t) = ln

Z
eR(t,π)dΓt (π) .

Neither RG nor RA can be said to be correct or incorrect; each attempts to measure,
in a single number, the properties of a distribution. because the function eR is convex
in R, Jensen’s inequality implies that RA (t) ≥ RG (t), with strict inequality if Γt has
positive variance. 8

In a finite sample of projects with their π’s drawn from Γt, the realized RG (t)
and RA (t) would deviate from their theoretically-predicted values, but Cochrane has
a fairly large sample, at least for the successes registered fairly early on in the firms’
lives. Over sufficiently many projects that lasted t periods and succeeded, this would
roughly be the realized rate of return.

The IRR on projects that succeed at age t.–Parallel to the definition of the rate
of return in (36), we can define the internal rate of return on the quality-π project
that matures at t; call it IRR(τ , π), as solving the equation

eIRR(t,π)t =
(1− s∗)R t

0
ke−IRR(t,π)udu+ C − p∗

π. (38)

Note the difference in the denominators of (36) and (38). Note that we can, once
again, have an arithmetic and geometric concepts of the IRR. We shall not fit the
IRR in this paper although Guler (2003) calculates it in her paper for the companies
in her sample.

Proposition 5 R (t, π) and IRR(t, π) are strictly increasing in π and strictly de-
creasing in t

8For instance (and this is Cochrane’s assumption, but it is not consistent with our model,
as is evident from Figure 6), if Γt (π) were the normal distribution, then R (t, π) would be nor-
mally distributed with mean RG (t), and with a variance the we shall denote by V art (R). ThenR
eR(t,π)dΓt (π) = eR

G(t)+ 1
2V art(R), and we would then have

RA (t) = RG (t) +
1

2
V art (R) .

30



Proof. From (36), lnR (t, π) = 1
t

³
ln [(1− s∗)π]− ln

hR t
0
ke−rudu+ C − p∗

i´
and

the claim for R follows. Multiplying both sides of (38) by the denominator of its RHS
leads to Z t

0

keIRR(t,π)(t−u)du+ eIRR(t,π)t (C − p∗) = (1− s∗)π.

By Lemma 3,[ C−p∗ = kC
1+rW

> 0. Therefore The LHS is increasing in IRR(τ , π) and
in t. The RHS is increasing in π, and so the claim for IRR follows as well.
Unfortunately, while for π fixed, R (t, π) is declining in t , we cannot prove in

general that RG (t) and RA (t) decline in t. The reason is the selection effect on
π that Figure 6 portrays. Projects that last longer are subject to more stringent
selection — the truncation point (1 + rW ) /h (t) moves to the right as the products
age. This positive selection effect may offset the fact that older projects have higher
cumulative costs. In the estimated model the denominator effect easily dominates,
and RG and RA both decline rapidly with t.

The relation between the rate of return and the IRR.–For completeness, we shall
add a tangential result. In the (empirically relevant) parameter range for which the
IRR exceeds the outside rate of interest, r, the IRR also exceeds the rate of return:

Lemma 6 For each (τ , π),

IRR (t, π) > R (t, π) if and only if IRR (t, π) > r.

Proof. Since IRR(t, π) > r, e−IRR(t,π)u < e−ru for all u ≥ 0. Then the denomina-
tor in (38) is smaller than the denominator in (36) and the claim follows.
The rate of return on all projects.–When calculating the VC’s rate of return, we

are concerned with the rate of return on all projects. To do so, first we hold t fixed:
Of all projects that last exactly t periods, a fraction h(t)

h(t)+ψ(t)
succeed, and the rest

fail. To compute the rate of return on all projects that end at date t, we simply
would multiply the RHS of (36) and (38) and then proceed as before. This would
lower the estimated rate of return on a project that ends at t roughly by a factor of

h(t)
h(t)+ψ(t)

.

The excess rate of return on venture capital.–Denote by CPV the EPV of the
costs of all the projects that the VC will bear in his lifetime; it satisfies the equation

CPV = C +
1− k

R
e−rt |dS (t)|
r

+ CPV

Z
e−rt |dS (t)|

Therefore the VC’s lifetime reward as a fraction of the lifetime costs of all the projects
that he will oversee is W

CPV
, and its flow value is

εV C ≡ r
W

CPV
, (39)
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having the dimensions of the excess rate of an return.

The excess rate of return on solo projects.–Although we do not observe returns
on solo projects, they are implied by the estimated model. These depend on w; the
model implies that wealthier entrepreneurs should receive higher returns Let Cw

PV be
the PV of costs on an entrepreneurial project:

Cw
PV = C +

1−
R
e−rmin(t,τ [w]) |dS (t)|

r
,

where SS (t) = (1− F [t])
¡
1− ΦS [t]

¢
, where τ (w) is defined in (6) and where ΦS is

defined in (28). The rate of return of the entrepreneur in excess of r is

ε (w) = r
QS (w)− w

Cw
PV

. (40)

The denominator is always strictly positive, because Cw
PV ≥ C. At the point w∗,

where the entrepreneur is indifferent between going solo and investing with a bank or
VC, the excess return is zero, i.e., ε (w∗) = 0. Since ∂QS(w)

∂w
> 1, the numerator rises

with w, but so does the denominator. It rises with the entrepreneur’s level of wealth.
The excess return becomes flat at the point C + k/r, i.e., the point where the solo
entrepreneur ceases to be liquidity constrained in any state of the world, i.e., for any
realization of π.

4.0.6 The entrepreneur’s stake

When fitting the entrepreneur’s share s∗ = 1−k
1+rW

in the firm’s equity, we shall use
Kaplan and Stromberg’s (2003, Table 2) numbers for cash flow rights, i.e., the fraction
of a portfolio company’s equity value that different investors and management have
a claim to. Pooling over all rounds, the mean claim of founders 31.1%, that of VCs
is 46.7%, and that of other non-VC investors is 22.2%. Since our model does not
include non-VC investors, we constrain s∗ to the share of founders in claims other
than those of the outside investors. That is we should have s∗

s∗ ≈ 31.1

31.1 + 46.7
= 0.40. (41)

In the model, once the entrepreneur signs the contract with the VC, her share
of the project drops from unity to s∗, where it remains until the end. Lerner (1994,
Table 5) and Kaplan and Stromberg (2003, Table 8) find that the greatest dilution
of the entrepreneur’s equity stake occurs in the first financing round. Contrary to
the model, however, it appears that s continues to fall as the project ages, though at
a decelerating rate. The fall is accompanied by a rise in the number of VCs in the
syndicate.
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5 Estimating the model

The estimation uses only a venture-backed sample and therefore henceforth we drop
the superscript V C when possible. Before getting to the example, we derive the
distribution of termination times and the distribution of contract durations or the
“Survivor Function.”

Contract duration.–The survival of contracts requires that neither a success nor
a termination has taken place. Let t denote the date of the “event” that the firm
experiences. The event is either a success or a failure, but not both. Only one
event per firm can occur. For some firms no event occurs and these are called the
“survivors.” That is, if τ is date of success and T (π) is the date of termination, then
t = min (τ , T [π]) . Since τ and π are independent random variables, the CDF of t is
1− S (t) , where

S (t) = (1− F [t]) (1− Φ [t]) (42)

is the Survivor function — the fraction of firms surviving past age t.

The data.–Our data (described in the Appendix) include a distribution of T
(terminations) and the distribution of τ (successes) for about 1400 firms, and data on
internal rates of return for VC’s by age of project completion. We also use information
on the VCs’ rate of return by age of completed project.

5.0.7 Pareto-exponential example

We now estimate a five-parameter example which leads to simple formulas, some of
which are derived in the Appendix. One object is to estimate W and based on that
estimate we shall derive the excess rate of return on venture capital. We note that we
shall not truncate the waiting time distribution at 10 or 12 years when the venture
fund closes. We shall assume that the VC maintains his interest in a company beyond
the fund-closing date, and that he can continue to fund it and collect on any return
that it generates. This is a important part of the portfolio, containing more than a
quarter ( 365

1355
= 0.27) of all the firms.

Fitting investment flows.–We shall fit C and k to the data on the investment
profile, i.e., the sequences of investment rounds, but converted to flows of investment
as a function of time. The sizes of the rounds are reported in Appendix Table A2. The
conversion procedure is also described there. But the parameters C and k affect other
variables such as termination rates as well, which is why the fits to the investment
profiles do not look as close as they would be if C and k were chosen to fit the
investment series alone. Also, we fit the model to the series of age-t investments
relative to first-year investments.

Fitting the success hazard, h.–For the waiting-time to success we choose a dis-
tribution the hazard of which peaks at 4.5 years, as does the empirical hazard ĥ
(see Appendix Table A1) and which is continuous. A two-parameter distribution
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that achieves this is the mixture, with weights ρ
2+ρ

and 2
2+ρ

respectively, of a Beta
distribution on [0, tmin] and a Pareto distribution on [tmin,∞):

F (t) =
ρ

2 + ρ

µ
min (t, tmin)

tmin

¶2
+ I[tmin,∞)

2

2 + ρ
FP (t) ,

where

FP (t) = 1−
µ

t

tmin

¶−ρ
, for t ≥ tmin. (43)

Its hazard rate is continuous and has the essential features of the bell shape in Figures
(1) and (2). Then for t < tmin, the density is f (t) = 1

tmin

2ρ
2+ρ

t
tmin
, and therefore (see

the Appendix 3 for the derivations),

h (t) =

(
1

tmin

2ρt−1mint

2+ρ−ρt−2mint2
for t < tmin

ρ
t

for t ≥ tmin.
(44)

Fitting the termination hazard, ψ.–We assume that G (π) = 1 − e−λπ to reflect
the well-known tendency for payoffs to be right-skewed. Our assumption that the
social planner wants to pay C and use VC’s to support projects will be met if λ is
small enough so that the mean π, which equals 1

λ
, is large enough compared to C and

k. Thus the model’s five parameters are ρ, tmin, λ, k, and C. With these functional
forms for f and G, the terminations hazard in (30) now reads

ψ (T ) =

⎧⎨⎩
∞ for T = 0
0 for T ∈ (0, ρ̃πmin)
λ
ρ̃

for T ≥ ρ̃πmin

, (45)

where
ρ̃ =

ρ

1 + rW
.

Thus, ψ assumes only three values. Initially, the hazard is infinite: The mass-point of
immediate terminations is

¡
1− e−λπmin

¢
.When plotting, we spread this mass over the

first period. Thereafter, no terminations occur for a while, and then the terminations
hazard becomes λ (1 + rW ) /ρ, for ever. The parameter ρ raises h thereby making a
project more attractive at any age and, for that reason, ρ lowers ψ. The estimation
procedure actually fits S (t) and not ψ (t), because together with h (t), S (t) implies
ψ (t). In any case the fits of both variables are reported visually in Figure 7.

Fitting the rates of return.–We shall fit only RG (t) as given in (37). Substituting
the functional forms for h andG into (34) and (35), we compute Γt and then substitute
that into the expression for RG (and, if needed, for RA).

Fitting s∗ as in (41).–We fit s∗ = 1−k
1+rW

to the Kaplan-Stromberg numbers as
described in (41)
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Altogether, then we fit five series, and plot six of them. We assume that r = 0.07
— roughly the return on equity. We maintain the assumption that a + k = 1, which
means that our estimates are in units of total marginal costs per year. We divide
the empirical investment flows by the first-year investment flow, and fit the model to
that series. This makes all the implications homogeneous of degree zero in the vector¡
a, k, λ−1, C,W

¢
.9 The parameters are ρ, tmin, λ, k and C. The estimation algorithm

is described in the Appendix.

5.0.8 Estimates

The estimation procedure and the data sources are described in the Appendix. We
present two sets of estimates which deal differently with the investment series which
was especially hard for the model to fit. The first set of estimates places a high
penalty on fitting the investment numbers whereas the second does not and, as a
result, the fit of the remaining series improves dramatically.

Estimate 1.–The first set of parameter estimates are reported in Table 1A, and
some statistics of interest are reported in Table 1B. The fit is described Visually in
Figure 7.

Estimate # 1: Parameters and Statistics

Param. Est.
ρ 2.13
tmin 1.8
λ 0.23
k 0.98
C 2.0

Table 1A: Estimate 1

Values of endogenous variables, etc.
Lifetime value of VC = W 0.00
Payment to VC = p∗ 0.03
Marginal project for the VC = πmin 2.63
Immediate terminations = 1− e−λπmin 0.45
Average project quality = E (π) = λ−1 4.37

Table 1B: Estimate 1

The fit is not great, but maybe not bad for a model that has only 5 parameters.
The following points on Estimate 1 are of note:

1. In all panels but the third, age is measured as the number of years elapsed since
the date of first investment. This is the concept that the model dictates, for

9For instance, the terminations hazard would really be λ (a+ k +W ) /ρ, and it is homogeneous of
degree zero as claimed. The absolute values of these variables would then be obtained by multiplying
them by µ

1

k̂

¶
X (Average investment per unit of time in periods 2 and beyond) .

=

µ
1

0.86

¶
(4.8) = $5.58 million

using the estimate k̂ = 0.86 from Table 2A.
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Figure 7: Estimate #1: Data (dashed line) and model (solid line) when
the penalty on investment-profile deviations is relatively high; ρ =
2.13, tmin = 1.8, λ = 0.23, k = 0.98, and C = 2.0
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it assumes that a constant investment flow must be made in order to keep the
firm alive.

2. Panel 1.–The vertical axis measures the geometric rate of return in hundreds
of percentage points. The dashed line is Cochrane’s the average log return
by company age given in Table A3. The highest returns are on projects that
succeed early. The model (solid line) overpredicts the early returns by a factor
of almost two

3. Panel 2.–The predicted investment flow is 1 in the first year of life, and k
C+k

thereafter.

4. Panel 3.–This version of the model also badly underpredicts s∗, by a factor of
20

5. Panels 4-6.–The dashed lines in these three panels represent the data from the
last three columns of Appendix Table A1 for the ratio #left/1355, for ĥ, and
for ψ̂. The model underpredicts survival (Panel 4). Too many exits happen
early on. This is mainly because the model overpredicts early successes (Panel
5) and, to a lesser extent, because it also overpredicts early terminations (Panel
6): The date-zero termination hazard is undefined because a mass of 1−e−λπmin
firms are terminated immediately. We spread this mass, estimated at 0.45,
evenly over the first year of the firm’s life, and this is the spike in Panel 6.

Estimate 2.–The model has a hard time fitting the investment numbers as well
as all the other series. The parameters of best fit for the other series involve a high
estimate of C, so that the first year’s investment flow, C + k, is very high relative to
the investment flow in later years, k. We note the following:

1. Panel 1.–The model no longer overpredicts the early returns, but this comes
at the cost of underpredicting the later returns by a factor of almost two

2. Panel 2.–The predicted investment flow is much too front-loaded and fits badly.

3. Panel 3.–Here there is substantial improvement, though s∗ is still under-
predicted by a factor of 3

4. Panels 4-6.–The fit here is not much more reasonable. The model still un-
derpredicts survival (Panel 4), but by much less than before. Now the model
overpredicts only the early successes (Panel 5) and fits much better the ter-
minations (Panel 6): Now, a much smaller number of firms, 15 percent, are
terminated immediately.
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Estimate # 2: Parameters and Statistics

Param. Est.
ρ 0.52
tmin 1.8
λ 0.025
k 0.86
C 18.8

Table 2A: Estimate 2

Values of endogenous variables, etc.
Lifetime value of VC = W 0.19
Payment to VC = p∗ 2.52
Marginal project for the VC = πmin 6.74
Immediate terminations = 1− e−λπmin 0.15
Average project quality = E (π) = λ−1 40.35

Table 2B: Estimate 2

The excess rate of return on venture capital.–One thing common to both sets of
estimates is that VCs get very little excess return. Evaluating (39), the VC’s excess
return is negligible under both sets of estimates:

εV C ≡ r
W

CPV
=

½
0 under Estimate 1,
(0.07) 0.19

21.8
= 0.001 under Estimate 2.

,

The excess rate of return on solo projects.–Evaluating (40), TOBECOMPLETED.

5.0.9 Discussion of the empirical results

Our estimates should be interpreted as the return to a VC fund before VC com-
pensation and portfolio-management charges are deducted. Once this is done, our
estimates would be closer to the return on the S&P 500.Our estimates imply VC re-
turns that are pretty much in line with estimates of returns to private equity. Kaplan
and Schoar (2005) find that returns to private equity are, on average, similar to those
on the S&P 500, but that there is a large variation among funds. At the high end
of the distribution, Ljungqvist and Richardson find a return of 5% in excess of the
S&P 500. Lerner, Schoar and Wong (2005) find that funds earn more if they employ
experienced VCs. Thus the human capital of VCs acts to raise the returns of funds
that have more such capital, and that the above-normal returns are partly explained
by a scarcity of good fund managers, as our model stresses.

We do not explain the heterogeneity of the returns on the venture funds. In our
model, venture capital is homogeneous, though differences could easily be introduced.
For instance, an experienced VC would have better signals about a project’s likely
success, which would lead to a more favorable distribution of waiting times, F , and
of payoffs, G. Panel 1 of Figures 7 and 8 shows that returns drop off quickly as the
waiting time increases so that an ability to bring successes forward seems to have a
very high return.

Venture funds usually run for 10-12 years, during which time capital is tied up.
The illiquidity of the investment may also partly explain why returns are above nor-
mal. Our model does not include this force; the VC values earnings at the rate r and
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Figure 8: Estimate #2: Data (dashed line) and model (solid line) when
the penalty on investment-profile deviations is relatively low; ρ =
0.52, tmin = 1.8, λ = 0.25, k = 0.86, and C = 18.8
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never needs to cash out early. The venture fund may close in its tenth year, but we
assume that the VC retains his position in the 27 percent of firms that are still left
in his portfolio.

Everyone is risk-neutral, so that the covariance of the venture funds with the
market portfolio plays no role. Because of the high-tech nature of the portfolio firms,
payoffs to their having IPOs or being acquired are correlated with the Nasdaq more
than with the S&P 500. Gompers and Lerner (1997, Exhibit 1) report a correlation
of .60 with the S&P 500.

One should be able to show that the wealthiest entrepreneurs earn a higher rate
of return on their projects than a VC does. We are thus linking the VC returns
to those of solo entrepreneurs, and find (TO BE COMPLETED, REMAINDER OF
THE PARAGRAPH MAY NOT APPLY) that the VCs are in the right tail of the
distribution, but not at the very top of it. equity. If one takes, as we have, r to
be the return on the S&P 500, then the model implies that all solo entrepreneurs
should earn at least that much of a return. If one allows for risk aversion, and for the
fact that solo entrepreneurs’ assets are highly concentrated in their own businesses
and more risky than the S&P 500, then both solo and venture-backed entrepreneurs
would be predicted to earn more than the S&P 500. This seemingly contradicts
recent evidence in Moskowitz and Vissing-Jorgensen (2002) that returns to private
equity are no higher than the returns to public equity. 10On the other hand, ....an
extrapolation of venture-backed returns onto the returns implied for the population
of solo entrepreneurs. This exercise should be qualified by noting that the types of
solo entrepreneurs whose projects may ever get on VCs’ radar screens are not typical
of all projects run by entrepreneurs.

6 Conclusion

We estimated a model of the market for venture capital in which VCs were scarce
relative to the number of potential projects. This led a high equilibrium return on
VC capital and a tendency for venture-backed companies reach IPOs earlier, and to
be worth more at IPO than other start-ups. The equilibrium turned out to be socially
optimal.

We used the estimated model to infer the rate of return on venture capital and
on entrepreneurship, the latter rising with the entrepreneur’s wealth. The VC is near
the top of the distribution of project returns, but not at the very top; the wealthiest
solo entrepreneurs expect to earn more (TO BE CHECKED).

10One could allow non-pecumiary benefits to going solo, i.e., to being one’s own boss, in the form of
a smaller value of a for solo projects than for venture-backed projects. A satisfactory comparison to
other activities would model a lower disutility of effort if it is devoted to entrepreneurship (whether
venture-backed or solo) than if it is devoted to wage work.
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7 Appendix

7.1 Data and the estimation algorithm

The data on τ and T .–These data are from the VentureExpert database provided
by Venture Economics, and are described in detail by Guler (2002). The following
table summarizes the data on successes and terminations. Age is measured as the
number of periods since the date of first investment.

age ipo acq term #evnts #left ĥ ψ̂
0 12 8 0 20 1355 0.01 0.00
1 39 19 119 177 1335 0.04 0.09
2 54 49 103 206 1158 0.09 0.09
3 65 42 61 168 952 0.11 0.06
4 67 47 50 164 784 0.15 0.06
5 27 24 36 87 620 0.08 0.06
6 22 23 20 65 533 0.08 0.04
7 16 11 19 46 468 0.06 0.04
8 5 10 17 32 422 0.04 0.04
9 0 5 6 11 390 0.01 0.02
10 2 4 6 12 379 0.02 0.02
11 0 1 1 2 367 0.00 0.00
12 0 0 1 1 365 0.00 0.00

Table A1
The last three columns are plotted as the dashed lines in panels four (there normalized
by dividing by 1355), five, and six of Figures 7 and 8.
The data on average investment by round.–These are from Guler 2003 (Table 6,

column 2) of are reported in Table A2

Investment round 1 2 3 4 5 6 7 8 9 10 11 12
Amount ($ millions) 6.5 5.3 5.5 7 8.4 6.4 5.9 8.2 3.4 8.1 3.4 3.4

Table A2

Because the model has k paid per unit of time and C at the outset, we need to convert
these into spending per year. By comparing the speed of terminations we arrived at
the conversion factor for converting rounds into flows. If Ij is the average amount
invested in round j, we convert this into a flow It = θtIt, where11

θt ≡
1

1.25
− 1
5

µ
1

1.25
− 1

1.5

¶
t.

11Between the first and the sixth round,the termination hazard falls from 0.12 to 0.08. On the
other hand, between year 1 and year 6, the termination hazard falls from 0.09 to 0.04. Thus the
ratio of the two hazards rises from 12

9 = 1.25 to 8
4 =

1
2 . As a rough calculation, then, initially,

rounds are once every 1.25 years, and by year 6, they are once every 1.5 years.
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Corrected in this way, and then normalized by dividing by year-1’s investment flow,
these numbers are plotted as the dashed lines in panels two of Figures 7 and 8.

The data on R.–These come from Cochrane (2004) Table 6d. They are annual-
ized log returns and we reproduce them in Table A3:

Annualized log returns, percent
Age bins

1-6mo 6-12mo 1-2yr 2-3yr 3-4yr 4-5yr 5yr-∞
Average R 2.01 1.22 0.73 0.52 0.39 0.27 0.15

Table A3

The data are also plotted as the dashed line in the first panels of Figures 7 and 8.

Composition of firms by sector.–The companies in the sample were in high-tech
sectors. Table A4 reports their industry composition:

Industry Group # Companies Percent
Computer Related 496 36.6
Non-High-Technology 287 21.2
Communications and Media 202 14.9
Medical/Health/Life Science 183 13.5
Biotechnology 114 8.41
Semiconductors/Other Elect 73 5.39

Table A4

Computations.–Here is how we calculated the hazards:

1. Column 6, “# left” is the empirical counterpart of (1− F [t]) (1− Φ [t]), i.e., of
S (t) in (42).

2. Column 7, “ĥ” is the ratio (ipo + acq)/(#left). So, e.g., the value of this
ratio at age 1 is 39+19

1335
= 0.043, its value at age 2 is 54+49

1158
= 0.089, and so on.

We now show that this is the empirical counterpart of h (t). The sum of the
columns (ipo + acq) we interpret as the number of successes at date t among
firms for whom T > t. The probability of τ = t and its surviving beyond t is
f (t) (1− Φ [t]). Therefore we equate these two concepts:

(ipo + acq) = f (t) (1− Φ [t]) .

Therefore as calculated in Column 7, the “success hazard” is

ipo + acq
# left

=
f (t) (1− Φ [t])

(1− F [t]) (1− Φ [t])
=

f (t)

1− F (t)
= h (t) .
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3. Column 8, “ψ̂” is the ratio (term)/(#left). This is the empirical counter-
part of ψ (t); to see why, note that term is the number terminated at date
t among firms for whom T ≥ t and τ ≥ t. The probability of T = t and
τ ≥ t is Φ0 (t) (1− F [t]). Therefore we equate the two concepts: (term)
= Φ0 (t) (1− F [t]) whereupon, as calculated in Column 8, the “termination
hazard” is

term

# left
=

Φ0 (t) (1− F [t])

(1− F [t]) (1− Φ [t])
=

Φ0 (t)

1− Φ [t]
= ψ (t) .

Solving for the marginal project, πmin.–As Figure 6 shows, projects for which
π < πmin are terminated at once, whereas for the rest, T is determined by (33), so
that

T (π) =

½
0 for π < πmin
ρ̃π for π ≥ πmin.

(46)

In (1), an integration by parts leads toZ T

0

e−rtf (t) dt = − e−rt (1− F [t])
¯̄T
0
+ r

Z T

0

e−rt (1− F [t]) dt

= 1− e−rT (1− F [T ]) + r

Z T

0

e−rt
f (t)

h (t)
dt,

so that when substituted into (1) yields

V (π) ≡W +max
T

Z T

0

µ
π − 1 + rW

h (t)

¶
e−rtf (t) dt

Substituting the Pareto form for h, the social surplus that project π delivers is

V (π)−W = −
Z t0

0

e−rtdt+

Z ∞

t0

e−rtmax

µ
0, π − t

ρ̃

¶
ρtρ0t

−1−ρdt

= −(1− e−rt0)

r
+ ρtρ0

Z ∞

t0

e−rt
µ
π − t

ρ̃

¶
t−1−ρdt. (47)

The marginal project πmin therefore solves V (π) = W . Substituting π = t/ρ̃ on the
RHS of (47), we see that V (t0/ρ̃) < W ; since V is increasing in π,

πmin >
t0
ρ̃
.

Therefore terminations will not start until some time after t0. In other words, after
the initial burst of terminations at T = 0 we should, for a while, see successes only,
and only later should terminations begin.
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The distribution of terminations.–Then (27) gives us

Φ (T ) =

⎧⎨⎩
0 for T = 0
1− e−λπmin for T ∈ (0, ρ̃πmin)
1− e−(

λ
ρ̃ )T for T ≥ ρ̃πmin

which, for T ≥ ρ̃πmin is also exponential. The hazard of this distribution is (45). In

the estimations, we assign the mass point 1− e−λπmin of terminations to year 1. This
is to account for the lag with which Guler’s (2003) detects a termination; she declares
a company as terminated 482 days (sixteen months) after it received its last financing
round and no other event occurred after this round.
Contract duration.–From (43) and (42), S (t) = (1− F [t]) (1− Φ [t])

S (t) =

⎧⎪⎪⎨⎪⎪⎩
1 for t = 0
e−λπmin for 0 < t < t0¡

t0
t

¢ρ
e−λπmin for t ∈ (t0, ρ̃πmin)¡

t0
t

¢ρ
e−(

λ
ρ̃ )t for t ≥ ρ̃πmin

. (48)

The geometric rate of return.–The mean geometric return of successes between
two points in time a and b predicted by the model can be obtained analytically using
(37) and the density of τ :

R
[a,b]
G =

Z b

a

RG(t)f(t)dt

The IRR.–Figuring out the IRR requires that we calculate p (the up-front pay-
ment the VC makes to the entrepreneur). Evaluating (??) and (15) we have the
following implicit function for the IRR, defined as R, taking as parametrically given
the age of success, t:

e−Rt
µ

ρ

ρ+ ψ (t)

¶
k + rW

1 + rW
E

µ
π | π ≥ t

ρ̃

¶
−
Z t

0

ke−Rudu+ p∗ − C = 0,

where

p∗ = Q (s∗) =

Z Z T (π)

0

µ
aπ

1 + rW
− a

h (t)

¶
e−rtf (t) dtdG (π)

p∗ =
1− k

1 + rW
tρ0

Z ∞

πmin

Z ρ̃π

0

µ
π − t

ρ̃

¶
e−rtρt−(1+ρ)dtλe−λπdπ −

Z t0

0

(1− k) e−rtdt. (49)

(we must subtract separately the costs incurred over (0, t0) which the first integral
does not capture). For t ∈ [0, 1), however, the formula must be adjusted to Φ (1) −
Φ (t0)

e−R (1− Φ0) (1− t0)

µ
ρ

ρ+ ψ (t0)

¶
k + rW

1 + rW
E

µ
π | π ≥ t0

ρ̃

¶
−
Z 1

0

ke−Rudu+p∗−C = 0
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where Φ0 = e−λπmin is the number terminated right away (and on these alone R =
−∞). But these are mixed with the successes that occur during the first year, and
when averaged, they still produce a positive R. For t > t0, the equation to be
solved has two functional forms, depending on which formula in (45) applies We shall
estimate ρ, λ, k,W, t0 and C.
We program V (π) as follows

V (π) = max
A,R

∙
sup
T>0

½Z T

t0

(π +W +
1

r
)e−rtf(t)dt+ (1− F (T ))e−rT (W +

1

r
)− 1

r

¾
,W

¸
−C

VC Value and termination policy.–The value to the VC of an accepted project
with payoff π and terminated at T is

Va(T |π,W ) =
Z T

t0

h
(π +W )e−rt −

Z t

0

e−rsds
i
f(t)dt

+ (1− F (T ))(e−rTW −
Z T

0

e−rtdt)

=

Z T

t0

h
(π +W )e−rt − (1− e−rt)/r

i
f(t)dt

+ (1− F (T ))(e−rTW − (1− e−rT )/r)

=

Z T

t0

(π +W +
1

r
)e−rtf(t)dt+ (1− F (T ))e−rT (W + 1/r)− 1

r

The optimal stopping time solves

dVa(T |π,W )
dT

= 0 = e−rTf(T )

µ
π − 1 + rW

h (T )

¶
, if T > t0.

For the Pareto distribution T = πρ/(1 + rW ), and so

Va(π,W ) = ρtρ0

Z T

t0

(π +W +
1

r
)
e−rt

tρ+1
dt+ (1− F (T ))e−rT (W +

1

r
)− 1

r

Estimation Strategy.–The set of unknown parameters is {t0, ρ, λ,W, k}. To esti-
mate them we fix t0 = 1.812 and then estimate the remaining unknowns by minimizing
the residual sum of squares given in (50). To compute the RSS we follow the following
steps:

1. Using {ρ, t0, λ,W} compute πmin from Va(πmin;W ) =W ;

12Note that the highest sensible value for this parameter is below 2 – if we choose a value above
2, then the model will predict zero terminations for projects of age 1 to 2. In subsequent versions
of the paper, we also want to maximize with respect to this parameter within reasonable bounds.
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2. Using {ρ, t0, λ,W, πmin} compute C according to

C =

Z ∞

πmin

h Z T

t0

e−rt(π +W +
1

r
)f(t)dt+ (1− F (T ))e−rT (W +

1

r
)
i
g(π)dπ

− (1−G(πmin))(W +
1

r
)

3. Using {ρ, t0, λ,W, k, πmin} compute p∗ via

p∗ =(1− k)

Z ∞

πmin

h Z T

t0

e−rt
³ π

1 + rW
+
1

r

´
f(t)dt+ (1− F (T ))

e−rT

r
)
i
g(π)dπ

− (1− k)(1−G(πmin))/r

4. Using {ρ, t0} compute ht, t = 0, 1, .., 12 according to the formula given in sec-
tion 7.3. For the first two periods, we calculate the hazard as follows to obtain
a higher degree of precision:

ht =
F (t)− F (t− 1)

F (t− 1) ,

where F (t) is the distribution function of successes obtained from the model.

5. Using {ρ, t0, λ,W, πmin} compute the survival function, St, t = 0, 1, .., 12;

S(t) =

⎧⎨⎩ 1, t = 0
e−λπmin , t ∈ (0, t0)
(t0/t)

ρe−λmax(πmin,t(1+rW )/ρ), t ∈ [t0,∞)

6. Using {ρ, t0, λ,W, k, πmin, p
∗, C} compute the predicted average geometric rate

of return R̂t, t = 0.5, 1, 2, 3..5,. as described in (7.1).

7. The predicted investment profile is I1 = 1 and It =
k

C+k
for t = 2, 3...13.

8. The predicted share of the entrepreneur in the profit πis

s∗ =
1− k

1 + rW
.

9. Compute criterion function

RSS = w1

12X
t=0

(ĥt − ht)
2 + w2

12X
t=0

(Ŝt − St)
2 + w3

13X
t=1

(R̂t −Rt)
2 (50)

+w4

13X
t=1

(Ît − It)
2 + w5(ln(ŝ

∗/s∗))2 + w(ln(Ŵ/W ))2
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For the estimation we choose r = 0.07. We use two different weighting schemes:
one that penalizes deviations from the empirical cost profile rather heavily (wC =
(4, 1, 5, 2, 0.2, 0)13), and another one that puts a less heavy weight on costs but penal-
izes if W goes to close to zero (wW = (4, 1, 5, 0.2, 0.2, 0.1)). This yielded the estimates
reported in Table 2A.

Estimates of R, S, and h are plotted in Figures 7 and 8.

Details on how C and p∗ were computed.–The formula for C is

C =

Z ∞

πmin

Va(π,W )g(π)dπ − (1−G(πmin))W

=

Z ∞

πmin

"Z T (π)

t0

³
π +W +

1

r

´
e−rtf(t)dt+ (1− F (T (π)))e−rT (π)

³
W +

1

r

´
− 1

r

#
g(π)dπ

− (1−G(πmin))W

= S2 +
³
W +

1

r

´
(S1 + S3 − 1 +G(πmin)),

where

S1 =

Z ∞

πmin

Z T (π)

t0

e−rtf(t)dt g(π)dπ

S2 =

Z ∞

πmin

π

Z T (π)

t0

e−rtf(t)dt g(π)dπ

S3 =

Z ∞

πmin

(1− F (T (π)))e−rT (π)g(π)dπ

Then, similarly,

p∗ = (1− k)(S2/(1 + rW ) +
1

r
(S1 + S3 − 1 +G(πmin)))

= (1− k)(S2 +
³
W +

1

r

´
(S1 + S3 − 1 +G(πmin)))/(1 + rW )

= (1− k)C/(1 + rW ) (51)

Note that most of the integrals in these formulae do not have closed-form solutions.
However, most of them involve integration against a function of type e−rt. After a
simple change of variable, Laguerre Quadrature can be used to calculate integrals

13Although it looks like w3 is smaller than w1 and w2, it is, in its effect on the estimates, a larger
than w1 weight because the range of R exceeds the range of h by a factor of 10, and it is comparable
to w2 because the range of R exceeds the range of S by a factor of two.
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of this type to a very high degree of precision. We use 30 nodes to calculate these
integrals. Checks with Monte-Carlo integrals showed that the error in the calculations
are of negligible order. To obtain the predicted geometric rate of return for projects
succeeding between two points a and b, we evaluate the geometric return RG(t) for a
number of equally spaced points xi on [a, b]and sum the obtained values using weights
f(xi)/(F (b)− F (a)).

We use a line-search method to minimize RSS with respect to the parameters
of the model. Due to the complexity of the model, we cannot use arguably supe-
rior optimization methods based on analytical gradients. However, the minimization
process proved to be rather robust; the algorithm converged to the same solution
for more than 10 randomly chosen starting points for each of the weighting schemes.
Using numerical gradients and standard errors of the moments we try to match, it
is possible to obtain (approximate) standard errors for our estimators. This is an
important next step in this project.

7.2 Proof of Lemma 4

(i) Notice that, given that a project is supported up to time T ,

V (π)− V V C (π) =

Z T (π)

0

µ
π − 1

h (t)
−
∙
(1− s)π − k

h (t)

¸¶
e−rtf (t) dt

=

Z T (π)

0

µ
π − 1

h (t)
−
∙µ
1− a

1 + rW
π

¶
− k

h (t)

¸¶
e−rtf (t) dt

= a

Z T (π)

0

µ
1

1 + rW
π − 1

h (t)

¶
e−rtf (t) dt (because 1− k = a).

Multiplying through by (1 + rW ) /a,

0 = V (π)− V V C (π) ⇐⇒

0 =

Z T (π)

0

µ
π − 1 + rW

h (t)

¶
e−rtf (t) dt

=

Z T (π)

0

µ
π − 1

h (t)

¶
e−rtf (t) dt+W

Z T (π)

0

−re−rt (1− F [t]) dt. (52)

Now, integrating by parts, one can rewrite the last expression in the previous equality
chain asZ T (π)

0

−re−rt (1− F [t]) dt = e−rt (1− F [t])
¯̄T (π)
0

+

Z T (π)

0

e−rtf (t) dt

= e−rT (π) (1− F [T (π)])− 1 +
Z T (π)

0

e−rtf (t) dt(53)
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Substituting from (53) into (52) we see, that (52) reads

0 =

Z T (π)

0

µ
π − 1

h (t)

¶
e−rtf (t) dt+W

Ã
e−rT (π) (1− F [T (π)])− 1 +

Z T (π)

0

e−rtf (t) dt

!

=

Z T (π)

0

µ
π − 1

h (t)

¶
e−rtf (t) dt+W

Ã
e−rT (π) (1− F [T (π)]) +

Z T (π)

0

e−rtf (t) dt

!
−W

=

Z T (π)

0

µ
π +W − 1

h (t)

¶
e−rtf (t) dt+We−rT (π) (1− F [T (π)])−W

=
1

a
(V (π)−W ) .

Therefore (52) and (53) imply that

0 = V (π)− V V C (π) ⇐⇒ 0 = V (π)−W (54)

Since V (πmin) =W , this implies claim (i) .

(ii) If s = a/ (a+ k + rW ) thenZ T

0

µ
a

a+ k + rW
π − a

h (t)

¶
e−rtf (t) dt

=
a

1 + rW

Z T

0

µ
π − 1 + rW

h (t)

¶
e−rtf (t) dt.

But this is exactly V (π)−V V C (π) (see (52)) which, by claim (i) of this Lemma was
shown to be zero at πmin. ¥

7.3 Derivation of the hazard for the estimated example

We use n as the exponent in order to clarify the algebra, and write the mixing
parameter as µ. Then

F (t) = (1− µ)

µ
min (t, tmin)

tmin

¶n

+ I[tmin,∞)µF
P (t) ,

Then For t < tmin, f (t) =
1

tmin
(1− µ)n

³
t

tmin

´n−1
, and therefore

f (t)

1− F (t)
=

1

tmin

(1− µ)n
³

t
tmin

´n−1
1− (1− µ)

³
t

tmin

´n = 1

tmin

(1− µ)nt1−nmin t
n−1

1− (1− µ) t−nmint
n

=
(1− µ)nt1−nmin t

n−1

tmin − (1− µ) t1−nmin t
n
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and

lim
t%1

f (t)

1− F (t)
=

1

tmin

1− µ

µ
n

For t ≥ tmin

f (t)

1− F (t)
=

µρtρmint
−ρ−1

1−
∙
(1− µ) + µ

µ
1−

³
t

tmin

´−ρ¶¸
=

µρtρmint
−ρ−1

1− 1 + µ− µ+ µ
³

t
tmin

´−ρ
=

ρtρmint
−ρ−1

µ− µ

µ
1−

³
t

tmin

´−ρ¶ = ρ

t

Therefore the hazards are equal at tmin if

1

tmin

1− µ

µ
n =

ρ

tmin
,

i.e., if

µ =
1

1 + ρ
n

After setting n = 2, this leads to µ = 2
2+ρ
, 1− µ = ρ

2+ρ
, and, hence for t < tmin,

f

1− F
=

1

tmin

(1− µ)nt1−nmin t
n−1

1− (1− µ) t−nmint
n
=

1

tmin

ρ
2+ρ

nt−1mint

1− ρ
2+ρ

t−2mint
2
=

1

tmin

2ρt−1mint

2 + ρ− ρt−2mint
2

which leads to to (44).
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