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Abstract

Policy makers are increasingly relying on emissions trading programs to address environ-
mental problems caused by air pollution. If polluting �rms in an emissions trading program
face di¤erent economic regulations and investment incentives in their respective industries,
emissions markets may fail to minimize the total cost of achieving pollution reductions. This
paper analyzes an emissions trading program that was introduced to reduce smog-causing
pollution from large stationary sources (primarily electricity generators) in 19 eastern states.
I develop and estimate a random-coe¢ cients discrete choice model of a plant�s environmental
compliance decision. Using variation in state-level electricity industry restructuring activity,
I identify the e¤ect of economic regulation on pollution permit market outcomes. There are
two important �ndings. First, plants in states that have restructured electricity markets are
less likely to adopt more capital intensive compliance options. Second, this economic regu-
lation e¤ect, together with a failure of the permit market to account for spatial variation in
marginal damages from pollution, have resulted in increased health damages. Had permits
been de�ned in terms of units of damages instead of units of emissions, more of the man-
dated emissions reductions would have occurred in restructured electricity markets, thereby
avoiding on the order of hundreds of premature deaths per year.
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1 Introduction

When the U.S. federal government �rst began regulating major sources of air pollution in the

1960s, the conventional approach to meeting air quality standards involved establishing maximum

emissions rates or technology-based standards for regulated stationary sources. At that point, the

idea of establishing a cap on total permitted emissions, distributing tradeable pollution permits

to regulated sources, and letting a market coordinate pollution reduction among regulated �rms

was just beginning to take hold among a small group of economists (Coase, 1960; Crocker, 1966;

Dales, 1968; Baumol and Oates, 1971). Over the past few decades, the environmental regulatory

landscape has changed dramatically. Today, the �cap and trade� approach to regulating point

sources of pollution is the centerpiece of air pollution regulation in the United States, and it is a

key component of the proposed policy response to global climate change (Foss, 2005).

Economists have long pointed out that an e¢ cient pollution permit market minimizes the

total social cost of meeting an exogenously determined cap on emissions. In the �rst-best permit

market equilibrium, each �rm chooses a level of pollution abatement such that the marginal cost of

reducing pollution is set equal to the social marginal bene�t from emissions reduction at the �rm.

There are two important assumptions underlying economic arguments for the e¢ ciency of permit

markets that are unlikely to be satis�ed by many existing and proposed cap and trade (CAT)

programs.1 The �rst pertains to the objectives of the �rms regulated under CAT programs; the

second to the terms of permit trading. I assess the consequences of violating these two assumptions

in practice using a unique data set from a major U.S. Nitrogen Oxide (NOx) emissions trading

program (the NOx State Implementation Plan (SIP) Call). I �nd that inter-state variation in

economic regulation, together with the failure of the permit market to account for spatial variation

in marginal damages from pollution, have distorted investment in pollution controls away from

the �rst-best, thereby reducing the e¢ ciency of the CAT approach.

In a formal proof of the existence of a cost e¤ective permit market equilibrium, it is typically

assumed that all �rms have the same objective function (Montgomery, 1972). Although �rms are

assumed to di¤er in terms of the price they receive for their products, costs of production, and

costs of reducing emissions (indeed, it is this heterogeneity that gives rise to gains from permit

trading), it is assumed that all �rms are essentially solving the same cost minimization problem

when deciding how to comply with CAT regulation.

In fact, �rms in the same pollution permit market may approach the choice of how to comply

with a CAT program very di¤erently. The vast majority of the emissions regulated under CAT

1Several assumptions are required to demonstrate the e¢ ciency of cap and trade programs. These include: zero
transaction costs, perfectly competitive permit markets, perfect enforcement and compliance, perfectly competitive
product markets and pro�t maximizing (or cost minimizing) behavior. In a multiple-receptor, non-uniformly mixed
pollutant case, economists further assume an �exposure�or damage based permit system.
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programs come from electricity generators.2 The recent wave of electricity industry restructuring

in the United States has resulted in signi�cant inter-state variation in electricity industry economic

regulation. Thus, in addition to having di¤erent production and abatement costs, generators in

the same CAT program face di¤erent economic regulation and investment incentives depending

on the nature of their electricity market.

Hence, the �rst question I address: have di¤erences in electricity market regulation a¤ected

how coal plant managers chose to comply with a multi-state NOx emissions trading program?3 I

develop and estimate a random-coe¢ cients logit (RCL) model of the �rm�s compliance choice that

controls for unit-level variation in compliance costs and allows for correlation across choices made

by the same plant manager. I �nd that plants in restructured electricity markets were less likely

to choose more capital intensive compliance options as compared to similar plants operating in

regulated electricity markets. More capital intensive compliance options are associated with signif-

icantly greater emissions reductions. Unfortunately, because of relatively poor air quality in states

with restructured electricity markets, these are precisely the states where pollution reductions are

most needed.

These results are particularly troubling because pollution permit markets, as they are cur-

rently designed, fail to re�ect considerable spatial variation in marginal bene�ts from pollution

reductions. Currently, all major cap and trade programs are �emissions-based�: a permit can be

used to o¤set a unit of pollution, regardless of where in the program region the unit is emitted.

Designing a program in this way presumes that the health and environmental damages resulting

from the permitted emissions are independent of where in the regulated region the emissions occur.

A growing body of scienti�c evidence indicates that this is not the case for NOx, which is classi�ed

as a �non-uniformly mixed�pollutant because damages from increased NOx emissions depend on

the location of the source ( Lin et al., 2002; Mauzerall et al., 2005).

This leads to the second key assumption underlying the e¢ ciency of permit market equilibria

that is often violated in practice. Economists have traditionally assumed that CAT programs

regulating non-uniformly mixed pollutants will be �exposure-based�(i.e., permits will be de�ned

in terms of units of damages) rather than emissions-based (Montgomery, 1972; Tietenberg, 1974).

In the second part of the paper, I evaluate the consequences of violating this assumption in a

case where inter-state variation in electricity market regulation has the potential to exacerbate

the ine¢ ciencies associated with emissions-based trading. The estimates of the RCL compliance

2All of the emissions regulated under the Acid Rain Program and over 90% of the emissions regulated under
the NOx SIP Call come from electricity generators. The cap and trade program laid out in the proposed Mercury
Rule applies exclusively to the electricity sector.

3The paper focuses exclusively on the compliance decisions of coal-�red electricity generators. Although only
31% of the units regulated under the SIP Call are coal plants, 85% of the point source NOx emissions regulated
under the program comes from coal plants.
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choice model are used to assess whether an exposure-based market design would have signi�cantly

a¤ected the spatial distribution of NOx emissions permitted under the SIP Call. I derive parame-

ters of conditional distributions speci�c to each plant manager. Drawing from these conditional

distributions, I predict the compliance choices that these plant managers most likely would have

made had the NOx emissions market been designed to re�ect spatial heterogeneity in marginal

damages from pollution.

I �nd that the decision to adopt an emissions-based program (versus a damage-based permit

market designed to achieve the same total emissions) has substantially increased daily NOx emis-

sions in areas where air quality problems are most severe. Epidemiological studies consistently

�nd a statistically signi�cant association between NOx related air quality problems and increased

mortality and morbidity (Grypares, 2004; WHO, 2003). In a recent study, Mauzerall et al. (2005)

estimate that shifting 11 tons of NOx emissions per day from a relatively �low damage�location

(North Carolina, a state that has not restructured its electricity market) to a �high damage�area

(Maryland, a state that has restructured its electricity industry) over ten days will result in the

loss of approximately one human life. I �nd that exposure-based permit trading would have moved

as much as 300 tons of NOx per day out of high damage areas and into low damage areas where

the pollution does less damage.4

These �ndings are relevant to three related areas of the literature. First, a number of authors

have asked the broad question: how e¤ective are existing U.S. cap and trade programs? Most have

focused exclusively on the Acid Rain Program (ARP) that was established in 1990.5 This is, to

my knowledge, the �rst paper to evaluate the performance of the �next generation�of major US

CAT programs, the NOx SIP Call, which is second only to the ARP in terms of size and scope.

Second, strands of both the industrial organization and environmental economics literatures

have considered the e¤ects of economic regulation and industry structure on �rms� investment

decisions.6 Previous empirical work that considers how economic regulation in electricity mar-

kets has a¤ected �rms�CAT compliance choices has focused predominantly on the Acid Rain

Program.7 Because the Acid Rain Program started before restructuring began, these papers use

4This daily shift in NOx emissions would only occur during �ozone season�(May-September) when the the NOx
SIP Call is in e¤ect. Firms do not need to purchase permits to o¤set uncontrolled emissions occuring outside ozone
season because NOx related air quality problems are less severe during the cooler months of the year.

5Papers analyzing the operation and performance of the Acid Rain Program include: Joskow et al.(1998),
Schmalansee et al.(1998), Stavins (1998) and Keohane (2005).

6Hannan and McDowell (1984) and Genesove (1999) �nd that increased competition slows the adoption of new
technologies, whereas Levin et al.(1987) �nd that increasing competitive pressures has a positive e¤ect on the rate
of technology adoption and di¤usion. In the environmental economics literature, several papers have illustrated
how, in theory, economic regulation can undermine the ability of a pollution permit market to operate e¢ ciently
(see Bohi and Burtraw, 1992; Carlson et al., 1998; Coggins and Smith, 1993; Fullerton et al., 1997).

7Mansur (2004) is an exception. He considers how market concentration in restructured electricity markets
a¤ects �rms�short run compliance decisions under the Ozone Transport Commission�s NOx Budget program.
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more subtle variations in cost recovery rules and coal protection measures to identify an e¤ect

of electricity market regulation on compliance choices. Results have been mixed.8 I revisit this

question post-restructuring, now that there is signi�cantly more interstate variation in electric-

ity industry regulation and investment incentives, and thus increased potential for variation in

economic regulation to undermine the e¢ ciency of the permit market.

Finally, there is a growing literature that considers non-uniformly mixed pollution permit

trading.9 In previous empirical work, deterministic models of the compliance decision that assume

strict cost minimization on behalf of all �rms have been used to assess ex ante the merits of

imposing spatial constraints on NOx permit trading.10 The analysis presented here allows for a

more realistic ex post evaluation of alternative, exposure-based permit market designs. Unlike

previous studies, I �nd that the adoption of exposure-based NOx permit trading would have

delivered signi�cant health bene�ts. This result is particularly relevant to the debate that is

currently taking place over the design of future emissions trading programs.11

The next two sections describe the emissions trading program, electricity market regulation,

and restructuring in the United States. Section 4 describes the data and presents summary

statistics. Section 5 introduces a model of the �rm�s compliance decision. Estimation results are

presented in Section 6. In Section 7, I use the model to simulate compliance decisions under

exposure-based trading. Section 8 concludes.

2 The NOx State Implementation Call

The NOx State Implementation Plan (SIP) Call was introduced by the U.S. Environmental Pro-

tection Agency (EPA) in 1998 to facilitate cost e¤ective emissions reductions of NOx from large

stationary sources through the introduction of an emissions trading program. NOx emissions

contribute to the formation of ozone.12 High ambient ozone concentrations have been linked to

increased mortality, increased hospitalization for respiratory ailments, irreversible reductions in
8Bailey (1998) tests whether permit market participation (measured at the state level) is a¤ected by how

favorable an electricity market regulator has been to shareholder interests. She �nds very limited evidence. Keohane
(2005) �nds no discernable e¤ect of economic regulation on the decision to install a scrubber. Conversely, Arimura
(2002) and Sotkiewicz (2003) do �nd evidence that economic regulations a¤ected ARP compliance decisions.

9Analytical papers that consider imposing spatial constraints on trading and related alternative market designs
include Duggan and Roberts (2002), Hahn (1990), and Krupnick et al. (1983).
10Farrell et al. (1999) consider imposing geographic constraints on NOx permit trading in the Northeast and

conclude that the bene�ts do not justify the costs. Krupnick et al.(2000) argue that there is no clear bene�t to
spatially di¤erentiated NOx trading.
11In March of 2005, the EPA issued two new, large scale emissions trading programs, both of which regulate

non-uniformly mixed pollutants and are emissions-based. One of these programs, the Mercury Rule, has been
particularly controversial because the proposed market fails to re�ect spatial variation in damages from pollution.
12NOx reacts with carbon monoxide and volatile organic compounds (such as hydrocarbons and methane) in the

presence of sunlight to form ozone in the lower atmosphere.
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lung capacity, reductions in agricultural yields and increased susceptibility of plants to disease

and pests. Recent epidemiological studies indicate that health impacts increase linearly with in-

creasing ozone concentrations (US EPA, 2003; Steib et al., 2003, as cited in Mauzerall et al.,

2005).

The NOx SIP Call was designed to help northeastern states come into attainment with the

Federal 1-hour and 8-hour federal ozone standards of 120 ppb and 80 ppb respectively. Figure 1

illustrates how, during high ozone episodes, signi�cant portions of the northeast can fail to attain

the Federal standard (OTAG, 1997). The dashed line outlines the 19 state region regulated under

the NOx SIP Call. The arrows represent transport wind vectors. Surface ozone concentrations are

a function of both in situ ozone production and pollutant transport; both are signi�cantly a¤ected

by prevailing meteorological conditions. Many states that are in attainment with Federal ozone

standards were included in the SIP Call program because their NOx emissions contribute to the

non-attainment problems of downwind states. Although some states contribute signi�cantly more

than others to the ozone non-attainment problem, the NOx SIP Call applies uniform stringency

across all 19 states.

The NOx SIP Call mandated a dramatic reduction in average NOx emissions rates.13 In the

period between when the SIP Call was upheld by the US Court of Appeals (March 2000) and

the deadline for full compliance (May 2004), �rms had to make costly decisions about how to

comply with this new environmental regulation.14 To comply, �rms can do one or more of the

following: purchase permits to o¤set emissions exceeding their allocation from other �rms, install

one of several types of NOx control technology, or reduce production at dirtier plants during ozone

season.

Two factors that are likely to �gure signi�cantly in a manager�s compliance decision are the

up-front capital costs associated with retro�tting a plant with a particular NOx control technol-

ogy, and the anticipated variable compliance costs. The capital costs, variable operating costs,

and emissions reduction e¢ ciencies associated with di¤erent compliance alternatives vary signi�-

cantly, both across NOx control technologies and across generating units with di¤erent technical

characteristics.

Figure 2 is a graphical illustration of the compliance choice faced by one particular unit in

the sample. Each of the eight points plotted in �xed cost ($/kW) variable cost (cents/kWh) space

corresponds to a di¤erent compliance �strategy�. With the exception of the �no retro�t�option

(i.e., the �rm will rely entirely on the permit market to comply with the program), all of the

13Pre-retro�t emissions rates at a¤ected coal plants were, on average, three and a half times the emissions rate
on which the aggregate cap was based (0.15 lbs NOx/mmbtu).
14Coal plants in 9 Northeastern states had to achieve compliance by May 2003; plants in the Southeastern states

had to comply by May 31 2004.
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compliance strategies involve some sort of technology retro�t.15 Variable costs include the costs

of operating the control technology plus the costs of purchasing permits to o¤set uncontrolled

emissions.16

There are two important things to note about this choice set, which is very typical of choice

sets in the sample. First, compliance strategies di¤er signi�cantly in terms of costs and emissions

reductions. Second, the most capital intensive compliance options (i.e., those incorporating selec-

tive catalytic reduction technology) are associated with signi�cantly greater emissions reductions.

The speci�c control technologies available to a given unit, the number of choices in a unit�s

choice set, and the costs associated with each compliance option vary considerably across coal-�red

units of di¤erent vintages and boiler types. Compliance options that incorporate Selective Cat-

alytic Reduction (SCR) technology can reduce emissions by up to ninety percent. NOx emissions

rates can be reduced by thirty-�ve percent through the adoption of Selective Non-Catalytic Re-

duction Technology (SNCR). Pre-combustion control technologies such as low NOx burners (LNB)

or combustion modi�cations (CM) can reduce emissions by �fteen to �fty percent, depending on

a boiler�s technical speci�cations and operating characteristics.

3 Electricity Industry Restructuring and the Compliance

Decision

In this section, I brie�y describe the process of electricity industry restructuring in the United

States, and I introduce the hypothesis that the type of electricity market in which a coal plant

is operating (i.e., restructured versus regulated) signi�cantly a¤ects the choice of how to comply

with the NOx SIP Call.
15In restricting the choice set to the points in this �gure, I implicitly assume that the unit will not achieve

compliance by reducing production, and that the unit will comply perfectly with the program. Because all units are
equipped with continuous emissions monitoring equipment, it is reasonable to assume full compliance; compliance
among coal-�red units was 100 percent in 2004 (EPA, 2005). The assumption that production levels at these
coal-�red units will not be signi�cantly a¤ected by this environmental regulation also �nds empirical support. This
assumption is discussed in detail in Section 6.3.
16Using detailed unit-level data, estimates of capital costs and variable compliance costs can are generated for

each unit, for each NOx control technology. These calculations assume a permit cost of $2.25/lb NOx. This was
the average futures permit price (per lb NOx) in the years leading up to the SIP Call. Permits started trading in
early 2001 in anticipation of the SIP Call Rule. A discussion of how these cost estimates are generated is included
in Section 4.
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3.1 Regulation in the US Electricity Industry

Until the mid 1990s, over ninety percent of electricity in the United States was generated by verti-

cally integrated investor-owned utilities (IOUs), most of whom were operating as local monopolies

regulated by state public utility commissions (PUCs) (Markiewicz et al., 2004). The remainder

was supplied by government entities or cooperatives. Traditionally, the most widely used form of

regulation has been �rate of return�regulation. In lengthy rate hearings, the PUC sets rates so as

to allow the utility to recover prudently incurred operating costs and earn a �fair�rate of return

on its rate base (the value of assets less depreciation).

In their seminal paper, Averch and Johnson (1962) illustrate how, under certain conditions,

a �rm subject to rate of return regulation will �nd it pro�table to employ more capital relative to

variable inputs (including labor and fuel) than is consistent with cost minimization. A signi�cant

share of the regulation literature has since been devoted to elaborating upon and testing this

result.17 Attempts to empirically test the AJ e¤ect using data from the US electricity industry

have met with mixed results. Courville (1974), Spann (1974) and Hayashi and Trapani (1976)

�nd support for the hypothesis, whereas Boyes (1976) does not.

Partly in response to the debate over the AJ capital bias, the nature of electricity market

regulation began to change. �Incentive�or �performance based�regulation (PBR) became increas-

ingly common throughout the 1970s, 1980s and early 1990s in an e¤ort to strengthen incentives

for increased e¢ ciency.18 Electricity industry restructuring was initiated in the early 1990s. Pro-

ponents of restructuring argued that replacing rate hearings and fuel adjustment clauses with the

discipline of a competitive market would increase e¢ ciency and bring rates down.

Ownership structure and operating incentives have dramatically changed in states that have

restructured their electricity industries. In the interest of encouraging competition among gener-

ators, state restructuring legislation has required or encouraged utilities to divest the majority of

their thermal generation assets to non-utility generation companies that are not subject to cost

of service regulation. Generators submit bids (prices and quantities) that they are willing to pro-

duce in a given hour; Independent System Operators (ISOs) combine these bids and intersect the

17Joskow(1974) provides an excellent survey of the earlier Averch and Johnson literature. He argues that the AJ
model does not "capture the essence of actual regulatory processes". He concludes that empirical evidence is often
inconsistent with the AJ model, although he notes that "during periods of rising average costs, A-J type biases
may begin to become important." This study considers such a period: the introduction of the NOx SIP Call raised
the average cost of generating electricity at coal plants signi�cantly.
18Performance based regulation is a broadly de�ned concept that refers to any regulatory mechanism that at-

tempts to link pro�ts to desired performance objectives (such as improved operating e¢ ciency, improved environ-
mental performance or cost minimizing procurement). Ratemaking under PBR is typically a two-step process.
First, rates are established based on the utility�s prudently incurred and projected costs; �rms are still entitled
to earn a fair rate of return. Second, the utility is given �nancial incentives to reduce these costs and increase
operating e¢ ciency.
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aggregate supply curve with demand in order to determine the wholesale market clearing price.

In states that have introduced retail choice, local utilities no longer have monopoly over local

customers.

All �fty states held hearings to assess the bene�ts of restructuring. In the end, only nineteen

states restructured their electricity industries. Several factors determined a state�s decision. First,

most states that decided against restructuring had less to gain because their rates were relatively

low to begin with. Rates were low because these states had access to low cost hydro and coal

generation, had made little or no investment in nuclear power, and had fewer long-term �xed price

contracts with independent power producers that had been encouraged under the 1978 Public

Utility Regulatory Policy Act (Bushnell and Wolfram, 2005; Van Doren and Taylor 2004). Ando

and Palmer (1998) �nd evidence that the availability of pro�table nearby export markets also

increased the probability that a state would pass restructuring legislation. Finally, California�s

high pro�le energy woes raised serious doubts among those states who had yet to pass restruc-

turing legislation as to whether restructuring would deliver a net gain (politically or otherwise).

Momentum behind restructuring fell �at after the California electricity crisis in 2000.

3.2 Compliance Choices in Regulated Markets

In regulated electricity markets, the environmental compliance decisions of regulated �rms were

likely in�uenced by PUC regulations governing capital and variable cost recovery. In each of the

seven states that fall under the SIP Call and that have not enacted electricity industry restruc-

turing, �rms have successfully sought rate base adjustments in order to recover costs of capital

required to invest in NOx control equipment, and to allow shareholders to earn a return on eq-

uity.19 Firms have also won approval for various kinds of rate adjustment clauses or rate freezes

which allow them to recover costs associated with purchasing NOx permits, operating pollution

control equipment, and pre-approved construction work in progress.20

Although state regulators have allowed electricity generators to earn a positive rate of return

on capital investments in pollution control equipment and recover the average costs of operating

pollution controls and purchasing permits (pro�ts from the sale of permits are also passed through

to rate payers), the opportunity costs of using or holding allocated allowances are not re�ected in

regulated rates. Regulated �rms have an incentive to choose compliance options that require more

19In a recent survey, regulators report allowing up to three additional points on the return of shareholder equity
for investment in pollution reduction equipment at coal plants, in addition to what would otherwise be earned on
prudent investments (NARUC 2004).
20For details on PUC rulings in these case, see: Charleston Gazette, 2004; Electricity Daily, 2003; Megawatt

Daily, 2003; NARUC, 2004; Platts Utility and Environment Report 1999, 2000a, 2000b, 2001a, 2001b, 2002a,
2002c, 2002d, 2002f; PR Newswire, 2002; Southeast Power Report, 2000.
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capital investment relative to pollution permit �inputs�than is consistent with cost minimization.

3.3 Compliance Choices in Restructured Markets

Responses to a recent survey of electricity market regulators are illustrative of the di¤erences in

how compliance costs, and large investments in pollution control technology in particular, are

recovered in restructured versus regulated electricity markets (NARUC, 2004).21 When asked

about regulating or supporting improvements in the environmental performance of existing coal-

�red electricity generation, commissioners in regulated electricity markets indicated that their role

is to �allow regulated utilities to recover costs of compliance with applicable Federal, State and

local environmental requirements.�In response to the same question, commissioners in states with

restructured electricity industries stated that it was not their job to regulate generation facilities:

�We have no current direct statutory obligation to support improved environmental performance

of generation facilities.�

In the absence of a regulator willing to guarantee that large investments in pollution control

equipment will be recovered, the consequences of making such investments are very uncertain in re-

structured electricity markets. Since restructuring began, concerns have been raised about whether

restructured wholesale energy and operating reserve markets would allow generating companies to

recover �xed costs of production (Joskow 2003).22 During the period when these compliance deci-

sions were being made (2000-2004), it was unclear how di¢ cult it would be to recover investments

in pollution controls in restructured wholesale electricity markets.

The e¤ect of the NOx SIP Call on average wholesale prices in a restructured electricity market

is a function of the variable (per kWh) compliance costs among the price-setting or �marginal�

generating units. Because coal-�red units typically have low operating costs relative to other units

in the electricity market, they are typically inframarginal.23 The generating units that most often

set the wholesale electricity price (gas and oil plants) tend to have signi�cantly lower environmental

compliance costs as compared to coal. Average wholesale electricity prices during ozone season

2160 public utility commissioners in 19 states were surveyed. The survey was conducted in 2003 by the National
Association of Regulatory Utility Commissioners (NARUC), the National Association of State Energy O¢ cials
(NASEO) and the Environmental Council of States (ECOS). The stated purpose of the survey was " to collect
and describe di¤erent state approaches and/or incentives for improved environmental performance of fossil-based
electricity generators" (NARUC, 2004).
22In some markets, market-power mitigation policies, price caps, and other market interventions have kept

wholesale prices below the level needed to stimulate investment in new capacity (Bushnell, 2005). Several ISOs
have had to introduce side payments to help generators recover their capital investments in generating capacity.
23A unit will generally operate when its marginal costs of production are less than or equal to the last unit

dispatched to serve the load. Because coal-�red units typically have low operating costs relative to other units in
the electricity market, they are normally operated to serve the minimum load of a system; they run continuously
and produce electricity at an essentially constant rate. Increases in variable environmental compliance costs at
these "base load" plants will not signi�cantly a¤ect the wholesale electricity price or the plants�capacity factors.
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will not increase to re�ect the average coal-�red unit�s environmental compliance costs. As one

industry analyst has observed �coal plants will still be dispatched, but their (pro�t) margins will

be less.�24

The concept of �option value�has been developed in the context of irreversible investment

decisions when the future consequences of making the investment are uncertain (Dixit and Pindyck,

1994; Arrow and Fisher, 1974; Fisher and Hanemann, 1987). Investments in capital intensive

pollution control equipment such as SCR are, for all practical purposes, irreversible. Consider a

simple case where a coal plant manager in a restructured electricity market faces a binary choice

of investing in SCR or relying on the permit market to o¤set uncontrolled emissions. Once the

investment in SCR has been made, it cannot be reversed, regardless of the information that the

manager will later obtain regarding future electricity prices and his ability to recover environmental

compliance costs. Conversely, if the manager chooses to rely on the permit market for compliance,

he has much more control over the environmental compliance costs he will incur going forward. In

hours when electricity prices are too low to allow him to recover variable environmental compliance

costs, he can choose not to operate. He can also choose to invest in SCR later on, once some of the

regulatory and price uncertainty has been resolved (in fact, because of over-investment in SCR in

the years leading up to the SIP Call, no further investment in pollution controls will be required to

comply with the program). This �exibility creates economic option value in restructured markets,

but not in regulated electricity markets where �rms are allowed a positive rate of return on their

investments.

In addition to the uncertainty about recovering environmental compliance costs, higher costs

of capital made securing �nancing for a large capital investment in NOx control technology rela-

tively more costly for �rms in restructured electricity markets (Business Wire 2003; Platts Utility

Environment Report, 2002e). Credit rating changes in the energy sector were overwhelmingly

negative over the time period in which plant managers were having to make their compliance

decision.25 This negative trend has a¤ected generators operating in restructured industries dis-

proportionately. Whereas the ratings of merchant energy companies and some companies with a

signi�cant degree of non-core activities have fallen drastically, most regulated utilities have been

a¤ected to a far lesser extent (Business Wire, 2001; Business Wire, 2004a; Business Wire, 2004b).

24"High Coal Costs Put the Squeeze On Power Plants."Matthew Dalton; The Wall Street Journal ; June 29, 2005.
25Downgrades outnumbered upgrades 65 to 20 in 2000; that ratio was up to 182 to 15 in 2002. In 2003, 18

percent of �rms were non-investment grade (Senate Committee on Energy and Natural Resources, 2003).
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3.4 Industry Structure and Environmental Compliance

Firms in regulated electricity markets have incentives to adopt more capital intensive pollution

control equipment. In restructured markets, considerable uncertainty about future electricity

market conditions and poor credit ratings have reduced the appeal of capital intensive compliance

options. The hypothesis that type of electricity market in which a coal plant is operating will

signi�cantly a¤ected the choice of how to comply with the NOx SIP Call follows directly from

these di¤erences in economic regulation and investment incentives.

Ideally, in the interest of empirically testing for a relationship between economic regulation

and the environmental compliance decision, coal plants would be randomly assigned to either a

restructured or a regulated electricity market. This would guarantee that the type of electricity

market in which a coal plant is operating was pre-determined and completely exogenous to �rms�

environmental compliance decisions. Although this controlled experiment did not occur, two im-

portant factors make it possible to causally relate di¤erences in economic regulation to di¤erences

in compliance choices.

First, the timing of the NOx SIP Call and electricity industry restructuring was such that

a state�s restructuring status was completely pre-determined. All 19 states that were ultimately

included in the NOx SIP Call held hearings to consider restructuring their respective electricity

industries between 1994 and 1998. By 1999, restructuring bills had been passed in 12 of these

states and D.C. By 2000, the remaining 7 states had all o¢ cially resolved not to move forward

with electricity restructuring (EIA).26 Consequently, when the courts upheld the NOx SIP Call

and the terms of environmental compliance were �nally established, plant managers knew what

type of electricity market they would be operating in.

Second, the coal plants serving restructured markets are extremely similar to those serving

regulated markets. Because the circumstances that determined a state�s electricity industry re-

structuring status were independent of the operating characteristics of existing coal generation,

there is no reason to expect that physical factors a¤ecting coal plants�NOx control costs (such as

plant age or boiler technology type) should di¤er signi�cantly across electricity market types. Em-

pirical analysis presented in the following section demonstrates the physical similarities between

the two sub-populations of coal plants.

26Of the 19 states that are a¤ected by the NOx SIP Call, 12 have restructured their electricity industries: CT,
DE, IL, MA, MD, MI, NJ, NY, OH, PA, RI and VA. The remaining 7 chose not to go forward with restructuring:
AL, IN, KY, NC, SC, TN, WV.
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4 A First Look at the Data

4.1 Data description

The data set includes the 702 coal-�red generating units that are regulated under the NOx SIP

Call. Of these, 322 are classi�ed as �regulated� for the purpose of this analysis. Regulated

plants include those subject to PUC regulation in states that have chosen not to restructure their

electricity industries, and any state or municipally owned and operated facilities in restructured

markets. The results presented here are generated using data from 632 units. Compliance costs

for the remaining 70 coal �red units cannot be generated due to data limitations.27

I do not directly observe the variable compliance costs and �xed capital costs or the post-

retro�t emissions rates that plant managers anticipated when making their decisions. I can,

however, generate detailed, unit-speci�c engineering estimates of these variables using detailed

unit-level and plant-level data. In the late 1990s, to help generators prepare to comply with

market-based NOx regulations, the Electric Power Research Institute28 developed software to

generate cost estimates for all major NOx control options available to coal-�red boilers, conditional

on unit and plant level characteristics. The software has been used not only by plant managers,

but also by regulators to evaluate proposed compliance costs for the utilities they regulate (Himes,

2004; Musatti, 2004; Srivastava, 2004). For the purpose of this research, I obtained a license to

use this software (EPRI, 1999b).

Cost estimation requires detailed data on over 80 unit and plant level operating characteristics

(such as boiler dimensions, pre-retro�t emissions rates, plant operating costs, etc.). With these

data inputs, the software can be used to generate boiler-speci�c variable costs and �xed cost

estimates for each viable compliance option. Post-retro�t emissions rates are estimated using the

EPRI software, together with EPA�s Integrated Planning Model (US EPA 2003). A detailed data

appendix is available on the author�s website (http://are.berkeley.edu/~fowlie).29

27These units appear on states� lists of coal-�red units in the NOx SIP Call, but appear only sporadically in
EPA, EIA and Platts databases. These units appear to be signi�cantly smaller and younger on average. The mean
capacity is 22 MW compared to the sample average capacity of 252 MW (only 22 of the excluded units reporting).
The mean age is 14 years, compared to a sample average of 36 years (only 4 of the excluded units reporting).
28The Electric Power Research Institute (EPRI) is an organization that was created and is funded by public and

private electric utilities to conduct electricity industry relevant R&D.
29Sources of these data include EPA�s Continuous Emissions Monitoring System (CEMS) database, the EPA�s

National Electric Energy System (NEEDS) database, the Energy Information Administration (forms 423, 767, 860
and 861), Platts Basecase database, Alstom Engineering, Babcock Power, Riley Power Inc., Raftelis Financial
Consultants and the Bureau of Labor Statistics.
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4.2 Summary Statistics

Figures 3a and 3b summarize the observed compliance choices for units in restructured and regu-

lated electricity markets in terms of MW of installed capacity (87,828 MW in regulated markets

and 88,370 MW in restructured markets).30 A signi�cantly larger proportion of the coal capacity

in unrestructured markets has been retro�t with SCR (the control option that is the most capital

intensive and delivers the most signi�cant emissions reductions). Conversely, in restructured mar-

kets, a greater proportion of capacity has either not been retro�tted, or has been retro�tted with

controls that can achieve only moderate emissions reductions (such as combustion modi�cations

or SNCR). These data are consistent with, but not proof of, the hypothesis introduced in the

previous section.

There are several reasons why we might observe di¤erences in compliance strategy choices

across electricity market types. Perhaps the most appealing explanation would be that this permit

market is e¢ ciently coordinating investment in pollution controls such that the plants with the

lowest control costs are installing control equipment, and that SCR costs happen to be relatively

high in restructured markets. Put di¤erently, it is possible that these di¤erences can be explained

by di¤erences in unit-speci�c compliance costs.

Table 1 presents summary statistics for unit-level operating characteristics that signi�cantly

a¤ect compliance costs: nameplate capacity, plant vintage, pre-retro�t emissions rates, pre-retro�t

heat rates and pre-retro�t summer capacity factor. Overall, these two groups of coal generators

look extremely similar. The one dimension in which these two groups do di¤er somewhat is the

pre-retro�t emissions rate which is lower on average among units in restructured markets. This

is to be expected; because of persistent air quality problems in the Northeast, these plants have

historically been subject to more stringent pollution regulation prior to the SIP Call.

Table 2 presents means and standard deviations of the capital and variable costs (estimated at

the unit level) for the most commonly adopted NOx control technologies. There are no signi�cant

di¤erences in average costs across the two electricity market types. Average costs are slightly

higher for units in more regulated electricity markets. This is likely due to the fact that plants

with higher pre-retro�t emissions rates tend to have higher retro�t costs.

These summary statistics indicate that the unit characteristics that help determine compli-

ance costs, and the compliance costs themselves, are distributed similarly within the two sub-

populations of coal �red units. Consequently, it is unlikely that variation in compliance costs

30Units are required to report what type of NOx control technology they will be using to comply with the NOx
SIP Call to two federal agencies (the EIA and EPA).Units in these two di¤erent groups were equipped with very
similar NOx controls at the time the SIP Call was promulgated. Over 80% of capacity in both types of markets had
some type of low NOx burners. 5% of capacity in restructured markets and 7% of capacity in regulated markets had
installed some type of combution modi�cation or over�re air ports. Only 1% of capacity in restructured markets
had been retro�t with SCR as of 2000. No SCR retro�ts had taken place in regulated markets.
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across these two groups is su¢ cient to explain the observed di¤erences in compliance strategy

choices.

5 An Empirical Model of the Compliance Choice

In this section, I develop an empirical model of a plant manager�s choice between mutually exclusive

approaches to complying with this emissions trading program. The purpose of specifying the

model is twofold. First, it provides a framework to test whether economic regulation a¤ects the

environmental compliance choice. Second, the model provides a means to evaluate how these

plant managers would have responded to a permit market designed to re�ect spatial variation in

marginal damages from pollution (see Section 6).

This analysis focuses exclusively on the compliance choices that were made in the years

leading up to the compliance deadline (2000-2004).31 Put di¤erently, it is the decision of how

to achieve compliance during the early years of the NOx SIP Call that is modeled. Because it is

di¢ cult to identify the precise point in this four year period at which this decision was made, these

compliance choices are modeled as static decisions.32 There is arguably a dynamic component to

the compliance strategy choice that is ignored by this speci�cation. Plants could postpone the

decision to invest in pollution controls until after the NOx SIP Call program has taken e¤ect, once

more information is available about permit market conditions and rivals�investment in pollution

control equipment. However, due to over-investment in SCR in anticipation of the SIP Call, the

decisions analyzed here will likely determine regional emissions patterns to a signi�cant extent for

the foreseeable future (Natural Gas Week, 2004).

The manager of unit n faces a choice among Jn compliance strategy alternatives (indexed by

j; j = 1:::Jn). The observed outcome of this choice is yn; a scalar indicating the chosen compliance

strategy. Plant managers are assumed to choose the compliance strategy that minimizes the

unobserved latent variable Cnj. The deterministic component of Cnj is a weighted sum of expected

annual compliance costs vnj, the expected capital costs Knj associated with initial retro�t and

31Past research has cautioned against trying to identify di¤erences in the underlying propensity to adopt a new
technology using choices observed over a short time period. Particularly in the case of a "lumpy", capital intensive
technology, the pattern of technology di¤usion across �rms can be driven by di¤erences in opportunities to adopt
(Rose and Joskow, 1984). Fortunately, the NOx SIP Call eliminates temporal variation in technology adoption
opportunity by design; every coal plant manager was forced to make a decision of how to comply with the program
during the four years between when terms of compliance were o¢ cially established and when full compliance was
required of all plants.
32Because of labor shortages and a limited number of towercranes needed to complete SCR retro�ts, many plants

reported delays of several years between when they made their compliance decision and when the pollution control
retro�t was completed (Cichanowicz, 2004; Midwest Construction, 2005). Consequently, the dates when pollution
control retro�ts are completed or when NOx control choices are reported to the press or to Federal agencies (which
I can observe) are noisy measures of when the compliance decision was actually made.
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technology installation, and a constant value �j that varies across technology types :

Cnj = �j + �
v
nvnj + �

K
n Knj � "nj; (1)

where vnj = (Vnj + �mnj)Qn (2)

The variable cost (per kWh) of operating the control technology is Vnj. The variable costs asso-

ciated with o¤setting emissions (per kWh) with permits is equal to the permit price � multiplied

by the post-retro�t emissions rate mnj.33 Expected average annual compliance costs are obtained

by multiplying estimated per kWh variable costs by expected seasonal production Qn.

Expected seasonal electricity production at a unit is assumed to be independent of the com-

pliance strategy being evaluated. Anecdotal evidence suggests that managers used past summer

production levels to estimate future production, regardless of the compliance choice being evalu-

ated (EPRI, 1999a). I adopt this approach and use the historical average of a unit�s past summer

production levels ( �Qn) to proxy for future ozone season production. Empirical support for this

assumption is presented in section 6.3.

It is likely that the compliance choice characteristics that are relevant to the compliance

decision are not limited to observable cost characteristics. Technology constants �j capture un-

observed, intrinsic technology preferences or biases such as widely held perceptions regarding the

reliability of a particular type of NOx control technology. A stochastic component "nj is included

in the model to capture the idiosyncratic e¤ect of unobserved factors.

My objective is to test whether the type of electricity market in which a �rm is operating has

signi�cantly a¤ected the compliance decision. This reduced form model has just enough structure

to capture the di¤erences in responsiveness to capital costs and policy sensitive variable costs across

units, and across electricity market types more generally. An alternative approach would involve

using a more detailed theoretical model of the �rm�s compliance decision to motivate the empirical

speci�cation. This would allow for a more structural interpretation of the estimated parameters.

However, it is not clear what model would most accurately capture the salient features of the

average �rm�s compliance decision. This model is su¢ ciently general to accommodate a variety of

possible objectives.34

33The unit-speci�c, compliance strategy-speci�c estimates of Kni and Vni are generated using the EPRI cost
estimation software described in section 4.1. Emissions rates (which also vary across units and control technologies)
are estimated using the software and accompanying documentation and EPA�s IPM model (US EPA 1998d), in
addition to other sources in the technical literature which are discussed in the data appendix.
34For example, in the case of regulated plants, it is most common to assume that managers maximize pro�ts

subject to regulatory constraints (Averch and Johnson, 1962; Bohi and Burtraw, 1992). However, several alternative
management objectives have been suggested, including maximizing returns on investment, maximizing output,
maximizing revenues and maximizing reliability of supply (Bailey and Malone, 1970).
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5.1 The Conditional Logit Model

I �rst estimate a conditional logit (CL) model of the compliance decision; conditional on observed

unit characteristics, coe¢ cients are not permitted to vary across plants. The "nj are assumed

to be iid extreme value and independent of the covariates in the model. This stochastic term is

subtracted from (versus added to) the deterministic component of costs in order to simplify the

derivation of choice probabilities implied by this model.35

The closed form expression for the probability (conditional on the vector of coe¢ cients � and

the matrix of covariates Xn) that the nth �rm will choose compliance strategy i is:

P (yn = ijXn; �) =
e��

0Xni

JnX
j=1

e��
0Xnj

: (3)

This conditional choice probability is derived in Appendix 1. The number of choices in the nth

unit�s choice set is Jn: Choice sets vary across units depending on the type of NOx controls the

unit had installed prior to the NOx SIP Call and the boiler type (not all NOx control technologies

are appropriate for all boilers). Although �fteen di¤erent compliance strategies are observed in

the data, the most alternatives available to any one unit is ten. With the obvious exception of the

�no retro�t�option, all of the observed compliance strategies chosen by plant managers involve

some combination of eight di¤erent NOx control technologies.

5.2 The Random Coe¢ cient Logit Model

The advantage of the CL model is its simplicity; choice probabilities can be evaluated analytically.

Unfortunately, this simplicity comes at a cost. First, this model does not account for random

variation in tastes or response parameters; conditional on observed plant characteristics, the co-

e¢ cients in the model are not allowed to vary across choice situations. However, these generating

units are very heterogeneous. There are likely to be factors a¤ecting how plant managers weigh

compliance costs in their decision-making that we do not observe. Examples include a plant�s

costs of capital, managerial attitudes towards risk, contractual arrangements, and subtle varia-

tions in PUC cost recovery rules. To the extent that there is signi�cant variation in unobserved

determinants of the compliance choice, errors will be correlated and CL coe¢ cient estimates will

be biased.
35These choice probabilities are very similar to the standard logit choice probabilities derived under assumptions

of random utility maximization (McFadden, 1973). The assumption that the error term is subtracted (versus
added) from the deterministic component of the model greatly simpli�es the derivation of choice probabilities (see
Appendix 1).
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The second limitation has to do with the panel structure of data used to estimate the model.

While I only observe one compliance choice for each coal-�red boiler or �unit�, an electricity

generating facility or �plant�can consist of several physically independent generating units, each

comprising of a boiler (or boilers) and a generator. Some plants only have one boiler, but there can

be as many as ten boilers at a given plant. It seems reasonable to assume that the same manager

made compliance decisions for all boilers at a given plant. The CL model cannot accommodate

this correlation across choice situations associated with the same decision maker.

Finally, the functional form assumptions underlying the CL model (i.e., the assumption that

the stochastic term is iid extreme value) imply the infamous �independence of irrelevant alterna-

tives�(IIA) property. The associated substitution patterns are very restrictive and unrealistic.

The random-coe¢ cient logit (RCL) model, a generalization of the CL model, does a better

job of accommodating unobserved response heterogeneity and relaxes the troublesome iid error

structure assumption. This speci�cation allows one or more of the model parameters to vary

across plants. I assume that the variable cost coe¢ cient (�v) and the capital cost coe¢ cient (�K)

are distributed in the population according to a bivariate normal distribution. Allowing these

coe¢ cients to vary randomly across plants accommodates unobserved heterogeneity in responses

to changes in compliance costs.

I maintain the assumption that the unobserved stochastic term "nj is iid extreme value and

independent of � and Xnj. To accommodate the panel nature of the data, the (unobserved) �

vectors are allowed to vary across managers according to the density f(�jb;
), but are assumed to
be constant over the choices made by a manager.36 Thus, the coe¢ cient vector for each manager

(indexed by m) can be expressed as the sum of the vector of coe¢ cient means b and a manager-

speci�c vector of deviations �m: Because the �m are assumed to be equal across choices made by

the same manager (at the same plant), the unobserved component of anticipated costs is correlated

within a plant. This does not imply that the errors corresponding to all choices faced by a single

manager are perfectly correlated; the extreme value error term still enters independently for each

choice.

Conditional on �m, the probability that a manager of a plant comprised of Tm units makes

the observed Ym compliance choices is:

36Alternatively, beta vectors could be held constant across all units, and across all plants owned by the same
parent company. Interviews with industry representatives indicate that it is sometimes the case that environmental
compliance decisions are made or in�uenced by the parent company (Whiteman, 2005). In future work, I will
estimate a model where cost coe¢ cients are allowed to vary across parent companies, but not across plants.
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P (Ym = ijXm; �m) =
TmY
t=1

e��
0
mXmit

JmtX
j=1

e��
0
mXmjt

; (4)

where i is a Tm � 1 dimensional vector denoting the set of observed choices. Here, the n sub-
script denoting the unit has been replaced by a unique mt pair. Unconditional choice probabilities

P (Ym = i) are derived by the integrating conditional choice probabilities over the assumed bivari-

ate normal distribution of the unobserved random parameters.

The standard RCL speci�cation assumes that the random coe¢ cients in the model are inde-

pendently distributed. It seems plausible that some plant managers might be more or less cost

sensitive in general; plant managers who weigh capital costs more (less) heavily in their compliance

decisions might also be more (less) sensitive to variation in variable operating costs. The model

is parameterized in terms of the Cholesky factor L of the covariance matrix 
; so as to allow the

two random cost coe¢ cients to be correlated.37

The unknown vector of coe¢ cient means b and covariance matrix 
 (easily recovered from

estimates of L) describe the distribution of the �m in the population. Parameter estimates are

those that maximize the following log likelihood function:

LL(b;
) =
MX
m=1

ln

1Z
�1

TmY
t=1

e��
0
mXmit

JmtX
j=1

e��
0
mXmjt

f(�jb;
)d�: (5)

Because this integral does not have a closed form solution, unconditional probabilities are

approximated numerically using simulation methods. The RCL estimates are those that maxi-

mize the simulated likelihood function. For each decision maker, 1000 two-dimensional vectors

of independent standard normal random variables are drawn. To simulate a random draw from

the bivariate normal density f(�v; �K jb;
), each vector of standard normals is multiplied by the
matrix L and the resulting product is added to the vector b: To increase the accuracy of the

simulation, pseudo-random Halton draws are used (Bhat 1998; Train, 2001).38

The value of the integrand [4] is calculated for each decision maker, for each draw. The

results are averaged across draws. The maxlik algorithm in Gauss is used to �nd estimates of the

parameters in b and L that maximize the simulated likelihood of the observed compliance choices.

37Because the covariance matrix is positive de�nite, it can be expressed as the product of the lower triangular
matrix L and its transpose.
38Researchers have found that using Halton draws (versus random draws) provide more uniform coverage over

the domain of the integration spaceand results in more accurate computation of probabilities for a given number
of draws. Bhat �nds that 125 Halton draws produces more accurate estimates than 2000 random draws.
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Gauss code is based on that developed by Train, Revelt and Ruud (1999). The derivation of the

analytic gradient that was used in these simulations is included in Appendix 2.

5.3 Manager Speci�c Parameters

The RCL estimates of b and 
 provide information about how the capital and variable cost

coe¢ cients are distributed in the population, but tell us nothing about where one manager lies in

the distribution relative to other managers. It seems we should be able to infer something about the

position of a particular manager in the population distribution based on the choices we observe that

manager making. Recent work has demonstrated how simulated maximum likelihood estimates

of random-coe¢ cient, discrete choice models can be combined with information about observed

choices in order to make inferences about where in the population distribution a particular agent

most likely lies (Allenby and Rossi, 1999; Revelt and Train, 2000; Train, 2003).39 Conditioning

on agents� observed choices has been found to considerably improve predictions in new choice

situations (Revelt and Train, 2000).

Following Train (2003), let the density describing the distribution of � in the population

of managers be denoted g(�jb;
): The probability of observing the mth manager making the

choice he does when faced with the compliance decision described by the matrix of covariates

Xm is given by [4]. This probability is conditional on information we cannot observe (�m). The

marginal probability of observing this outcome is P (YmjXm; b;
) = P (Ym = ijXm; �)g(�jb;
).
Let h(�ji; Xm; b;
) denote the distribution of �m in the sub-population of plant managers who,
when faced with the compliance choice set described by Xm would choose the series of strategies

denoted i. Using Bayes rule, this manager speci�c, conditional density of �m can be expressed as:

h(�ji; Xm; b;
) =
P (Ym = ijXm;�)g(�jb;
)
P (Ym = ijXm; b;
)

: (6)

These conditional distributions are implied by the maximum likelihood estimates of the pop-

ulation distribution parameters and the choices we observe. To illustrate this more explicitly, [6]

can be reformulated as:
39Alternatively, a �nite mixture logit (FML) model could have been estimated in order to obtain information

about where in the larger population distribution a particular type of manager lies. FML models accommodate
systematic heterogeneity by assigning the economic agents to separate behavioral groups/types or latent segments.
One limitation of these models is that they often cannot adequately capture all of the heterogeneity in the data
(Allenby and Rossi, 1999; Rossi et al. 1996). Consequently, I choose to estimate a RCL model and derive conditional,
manager-speci�c coe¢ cient distributions.
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h(�ji; Xm; b;
) =

TmY
t=1

e��
0
mXmit

JmtX
j=1

e��
0
mXmjt

g(�jb;
)

1Z
�1

TmY
t=1

e��
0
mXmit

JmtX
j=1

e��
0
mXmjt

g(�jb;
)d�

: (7)

These conditional distributions can be used to derive conditional expectations of functions of

�. For example, we are interested in knowing how the compliance choices made by these managers

would have di¤ered had the permit market been designed to re�ect spatial variation in marginal

damages from pollution. The expected probability that alternative iwill be chosen by the mth

manager in this counterfactual choice situation (denoted by T + 1) can be expressed as:

E[P (ym;T+1 = ijYm; Xm; b;
)] =

1Z
�1

Tm+1Y
t=1

e��
0
mXmit

JmtX
j=1

e��
0
mXmjt

g(�jb;
)

1Z
�1

TmY
t=1

e��
0
mXmit

JmtX
j=1

e��
0
mXmjt

g(�jb;
)d�

: (8)

A simulated approximation to this expectation is obtained by �rst drawing from the estimated

population distribution g(�jb;
) and then simulating conditional values of the counterfactual
choice probability for each draw. Because this approach involves integrating over the estimated

distribution of the random coe¢ cients in the population, this formulation accounts for sampling

and simulation error in estimates of b and 
. Integrals are simulated in the same way as for the

unconditional RCL choice probabilities.

6 Estimation

Tests of the hypothesis introduced in Section 3 can be formulated as a test of whether the coef-

�cients in the model di¤er signi�cantly across electricity market types. The two most common

approaches to comparing coe¢ cient estimates across groups involve either estimating a single

model that includes interactions between a dummy variable indicating group membership and the

covariates of interest, or estimating the models separately for the two groups.

There are problems with using the �rst approach in this application. In order to identify
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the logit model, all coe¢ cients have been scaled by the variance of the extreme value error term.

Consequently, pooling the data to estimate a single equation forces this variance to be equal

across groups (Allison, 1999). It is likely that the true variances of the extreme value terms di¤er

across market types.40 Monte Carlo experiments have illustrated that the most likely outcome

of estimating a single equation with interaction terms when the residual variances di¤er across

groups is that the slope coe¢ cients will be found not to di¤er even if they actually do, but it

is also possible to �nd an e¤ect when no e¤ect exists (Hoetker, 2003). Thus, the results from

estimating the model using pooled data are not emphasized here, although they are consistent

with the results obtained when separate models are estimated.41

The advantage of estimating the model separately for the two sup-populations of units is that

coe¢ cient estimates and standard errors are consistent within each group. Within a model, tests

of the signi�cance of a given coe¢ cient are valid; the ratio of the coe¢ cient and the variance of

the unobserved stochastic term will only be zero if the coe¢ cient is zero. While direct compar-

isons of coe¢ cients across groups are still confounded by the logit identi�cation assumption, such

comparisons can be informative if the pattern of coe¢ cient signi�cance varies across groups.

In addition to the variable compliance costs and capital compliance costs variables, an inter-

action term between capital costs and demeaned plant age is included in the model. Older plants

will likely use shorter investment time horizons; they can be expected to weigh capital costs more

heavily (i.e., the coe¢ cient on this interaction term is expected to be negative).42 To estimate

standard errors, the robust asymptotic covariance matrix estimator is used (Mc Fadden and Train,

2000).

40The unobservable factors that a¤ect the compliance choice (and that are captured by the extreme value term)
are likely to di¤er across restructured and regulated electricity markets. For example, variation in �rms� (un-
observed) cost of capital is likely an important determinant of the compliance choice in restructured electricity
markets, but not so important in regulated markets where there is less variation in costs of capital, and where
capital costs are passed directly through to customers. Subtle variations in cost recovery rulings likely a¤ect com-
pliance choices in regulated markets; this is not an issue in restructured markets. Because the error term captures
di¤erent unobserved variables in the restructured and regulated cases, the variance of this unobserved disturbance
term is also likely to di¤er across electricity market types.
41A single model is estimated using pooled data. Interactions between cost variables and a dummy variable

indicating a restructured electricity market are included in this model. Whereas the coe¢ cient on the uninteracted
capital cost variable is not statistically signi�cant, the estimated coe¢ cient on the interaction between capital costs
and the restructured market indicator is signi�cant at the 5% level and has the expected negative sign. These
results are consistent with the results discussed below.
42Several other speci�cations were also tried. For example, in the model estimated using data from restructured

electricity markets, cost variables were interacted with a dummy indicating that the plant had been divested. In the
regulated model, cost variables were interacted with dummy variables indicating whether the unit was a government
owned or investor owned plant. None of these interaction terms signi�cantly improved the �t of the model.
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6.1 Conditional logit model results

The �rst two columns of Table 3 report estimates for the more restrictive CL speci�cation

in which coe¢ cient values are not permitted to vary across plant managers. In both the restruc-

tured and regulated cases, a nested likelihood ratio test of this speci�cation against a benchmark

speci�cation that includes only technology speci�c constants indicates that including variable and

capital cost variables signi�cantly improves the �t of the model.43 The test statistics reported in

the last row of Table 3 are larger than the �2 statistic with 3 degrees of freedom and a p-value of

0.001.

All of the technology type constants are negative and signi�cant at the 1 percent level, regard-

less of whether the CL model is estimated using data from regulated or restructured markets.44

One interpretation of this result is that, relative to the baseline option of no control technology

retro�t, managers were biased against retro�ts in general (controlling for costs). These constants

are consistently larger in absolute value when the model is estimated using data from regulated

electricity markets. This could be due to a stronger average bias against technology retro�ts

among regulated �rms, a smaller variance of the unobserved residual among regulated �rms, or

some combination of these two factors.

The coe¢ cient on variable compliance costs is statistically signi�cant at the 1 percent level

and has the expected negative sign in both the regulated and restructured electricity market cases.

These results indicate that expected variable compliance costs are an important factor a¤ecting

the plant�s compliance choice.

When the model is estimated using data from restructured electricity markets, the coe¢ cient

on capital costs is statistically signi�cant and has the expected negative sign. An increase in

the capital cost of a compliance option decreases the probability that the option will be chosen

by a plant in a restructured electricity market. However, when the model is estimated using

data from regulated electricity markets, the coe¢ cient estimate is positive and is not statistically

signi�cantly di¤erent from zero, suggesting that capital costs might not be an important factor in

the compliance decisions regulated plants.

One way to get around the scaling problem that confounds direct comparisons of these coef-

43The �t of the nested (or more restricted) model can be evaluated using a chi-square statistic. This test statistic
is calculated by taking twice the absolute di¤erence in the log likelihoods for the two models. If signi�cant, (degrees
of freedom are equal to the di¤erence in the number of parameters between the two models), the nested model
should be rejected (Bhat, 1998).
44I include only three technology �xed e¤ects for the three major categories of NOx controls: Post-combustions

pollution control technologies (SNCR and SCR), Combustion Modi�cations (CM) and Low NOx Burner (LNB)
technologies. Although cost estimates and emissions reduction estimates were generated for sub-classes of these
categories (for example, there are four di¤erent types of low NOx burners in the data), including a more complete
set of technology �xed e¤ects did not improve the �t of the model.
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�cients across groups is to compare ratios of coe¢ cients.45 The �v : �K ratio has a particularly

intuitive interpretation. Totally di¤erentiating [1] and setting it equal to 0, we see that this ratio

can be interpreted as a measure of capital bias; it is the amount that a manager is willing to

pay in increased up-front capital costs in order to avoid a one dollar increase in annual variable

compliance costs. The point estimate of the di¤erence in the ratios implied by the two sets of

CL coe¢ cients indicates that �rms in restructured markets are, on average, more biased against

capital intensive compliance options.46

6.2 Random Coe¢ cient Logit Results

Results from estimating the RCL model are presented in the third and fourth columns of Table

3. Estimated standard deviations of the two random coe¢ cients are statistically signi�cant. The

results of a nested likelihood ratio test imply that, in both the restructured and regulated cases,

allowing for response heterogeneity signi�cantly improves the �t of the model. The signi�cant

increase in the absolute value of the variable and capital cost coe¢ cient estimates is further

evidence that the variation in random parameters constitutes a signi�cant portion of the variance

in (unobserved) anticipated compliance costs.47 These results suggest that cost coe¢ cients do

vary signi�cantly across managers in regulated and restructured markets, even after unit age is

controlled for. These RCL estimates are robust to various optimization routines and variation in

the number of pseudo-random draws used in the simulations.

When the model is estimated using data from restructured markets, the means of both the

capital and variable compliance cost coe¢ cients are negative and signi�cant at the 1 percent level.

The estimated standard deviations are also large in absolute value and statistically signi�cant,

indicating that there is unobserved variation in responsiveness to changes in compliance costs.48

45In linear models, the Wald test is typically used to test the equality of two sets of coe¢ cients. Although a Wald
test statistic was calculated (the test statistic is 35.75 with a p-value < 0.0001), it is of very limited use. In the
linear case, the corresponding test statistic will have an asymptotic chi-square distribution with degrees of freedom
equal to the number of restrictions eing tested. However, the asymptotic chi-square distribution provides a poor
approximation to the test statistic associated with the same test in a discrete choice model context. Furthermore,
di¤erences in these vectors of coe¢ cients could be driven by di¤erences in scale factors.
46Because the estimate of the capital cost coe¢ cient among regulated plants is imprecisely estimated and indis-

tinguishable from zero, the estimated �v : �K ratio is hard to interpret.
47In the RCL speci�cation, unobserved variation is decomposed into an extreme value stochastic term and

variance of the random parameters. In the CL model, all unobserved variation in anticipated costs is captured
by the extreme value stochastic term. Consequently, normalizing coe¢ cients by the variance of the extreme value
component of the disturbance will make RCL parameters larger in absolute value if a portion of unobserved variation
is captured by the random parameter variances.
48There are several possible explanations for this variation, including variation in costs of capital and variation in

managers�risk aversion. In an e¤ort to attribute some of this variation to observable plant characteristics (such as
plant size and whether or not the plant had been divested), other interactions were also tested, but none improved
the �t of the model.
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The negative and signi�cant coe¢ cient values on the capital cost/age interaction term indicates

that older plants weighed capital costs more negatively in their compliance decision, presumably

because of shorter investment time horizons.

Di¤erent results are obtained when the model is estimated using data from regulated mar-

kets. The point estimate for the capital cost coe¢ cient is substantially smaller than the point

estimate obtained using data from restructured markets, and is not statistically signi�cant at the

1 percent or 5 percent level. Because less of the unobserved variation is captured by the ex-

treme value disturbances in the RCL model, di¤erences in coe¢ cients across models are less likely

to be driven by di¤erences in residual variances.49 The standard deviation of the coe¢ cient is

signi�cant, suggesting that there is unobserved heterogeneity in how responsive managers are to

variation in capital costs. The capital cost/age interaction term is signi�cant and has the expected

negative sign. Among older regulated plants, the capital cost coe¢ cient does become signi�cant,

possibly because regulators are unlikely to approve a major capital investment in pollution control

equipment if the plant is very old and expected to retire soon. The variable cost coe¢ cient is

also statistically signi�cant and negative when the model is estimated using data from regulated

electricity markets.

The RCL estimates of the moments of the distribution of � in the population are com-

bined with the observed choices in order to derive the parameters of manager speci�c conditional

distributions. The population parameter estimates b̂ and 
̂ are substituted into [7] and the �rst

and second moments of these conditional distributions are calculated (using the same matrix of

Halton draws that were used to estimate [5]). Table 4 presents the summary statistics for the

estimated moments of these 221 manager-speci�c distributions.

If the model is correctly speci�ed, the average of the means of the manager speci�c conditional

distributions (the ��ms) should be very close to the estimated population means. This is true in

most cases, suggesting that the normality assumptions are appropriate, with the possible exception

of the variable cost coe¢ cient in restructured markets. Model speci�cations that assumed a

log-normal distribution for this coe¢ cient failed to converge.50 The standard deviations of the

49It is also worth noting that the estimated technology constants are larger in absolute value when the model
is estimated using data from regulated markets, as compared to restructured markets. These constants are meant
to represent average biases for or against a particular technology type; there is no reason to expect managers in
a regulated market should be any more biased against, for example, low NOx burner technology, as compared
to a manager of a similar plant in a restructured electricity market. A likely explanation for the di¤erences in
the coe¢ cient estimates is that the variance of the residual variation captured by the extreme value error term
is smaller in regulated electricity markets. If this is the case, the observed absolute di¤erence in cost coe¢ cient
estimates across models will under estimate the di¤erence in the true cost coe¢ cients.
50It is common in the literature to assume that cost coe¢ cients are lognormally distributed, so as to ensure

the a priori expected negative domain for the distribution (costs enter the model as negative numbers). Hensher
and Greene(2002) discuss some of the drawbacks of assuming a lognormal distribution. Several other researchers
report having problems with log-normal speci�cations (see Revelt and Train, 1998; Brownstone and Train, 1999).
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conditional means are signi�cantly larger than zero, suggesting that variation in the conditional

means captures a signi�cant portion of the total estimated variation (Revelt and Train, 2000).

The elasticities implied by the model estimates provide a more intuitive characterization of

the responsiveness of compliance decisions to changes in compliance costs. Table 5 presents av-

erage elasticities with respect to both own capital costs and own average ozone season variable

compliance costs for the most commonly observed compliance choices. Elasticities for each choice

situation are calculated using point estimates of the means of the corresponding manager-speci�c

conditional distributions. These summary statistics indicate that choice probabilities in restruc-

tured markets are signi�cantly more sensitive to changes in compliance costs in general, and capital

costs in particular. For example, the model predicts that a one percent increase in the capital cost

of an SCR retro�t, holding all else equal, will result in a 5.7 percent decrease in the probability

that SCR will be chose by the unit in a restructured electricity market, versus a 1.3 percent de-

crease if the unit is in a regulated market. The corresponding variable cost elasticities are 1.8 and

1.3 respectively.51

As in the CL case, the ratios of the RCL estimates of the cost coe¢ cients �v : �K are compared

across electricity market types. A direct comparison of ratios of coe¢ cients across groups is possible

because the scale parameter cancels out. Recall that this ratio can be interpreted as a measure of

willingness to pay (WTP) in increased, up-front capital costs for a one dollar decrease in annual

compliance costs. Using the RCL model estimates of the average population parameters, the point

estimates of this ratio are $2.29 and $5.96 in restructured and regulated markets, respectively.

On average, managers in restructured electricity markets were willing to tolerate higher variable

operating costs in order to avoid having to make larger up-front investments as compared to

managers in regulated electricity markets.

Making statistical inferences about the di¤erence between these two WTP estimates requires

estimating the variances of these ratios. Unfortunately, standard approaches to estimating the

variance of a function of random variables (such as using the delta method or a bootstrap) are

inappropriate here.52 Given two normally distributed random variables �̂
v
and �̂

K
, both with

Speci�cations that assumed log normally distributed cost coe¢ cients were tested, but resulted in a failure to reach
convergence.
51Because these elasticities are nonlinear functions of the levels of the explanatory variables and the parameter

estimates, comparisons of these e¤ects across market types are also confounded by the normalization of the logit
coe¢ cients by potentially unequal error variances.
52The delta method is often used to estimate the standard error of ratio statistics, based on a �rst order Taylor

series expansion of the ratio centered at the mean of b. The delta method estimates are $0.17 and $4.24 for
the standard errors of the restructured and regulated ratios respectively. These estimates are invalid, however,
because the variance of �v : �K is not well-de�ned. The same problem arises if a bootstrap is used to estimate the
standard errors of these WTP estimates. The estimated distribution of �K for both restructured and regulated
electricity markets overlaps zero. With enough samples, the bootstrap eventually generates estimates of �K that
are arbitrarily close to zero, implying in�nitely large WTP estimates.
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signi�cant densities at zero, the density of the ratio �̂
v
:�̂
K
can be expressed as a product of

a Cauchy density and a second, more complicated function (Marsaglia, 1965; Hinkley, 1969).

Because the integral of a Cauchy distribution does not converge, the density of this ratio does not

have a well-de�ned variance.53

This WTP measure can also be estimated at the unit level using manager-speci�c coe¢ cient

estimates. The ratio �vm : (�
K
m + �

KA
m � Ant) is estimated for each unit. Two distributions of ratio

estimates are generated, one for each market type. The mean and standard deviation of this WTP

for an incremental reduction in annual compliance costs among units in restructured markets is

$2.22 (� = $12:61); the mean and standard deviation of the ratio in regulated markets is $6.58

(� = $16:58): On average, managers in restructured electricity markets are more biased against

capital intensive compliance options; they are less willing to make larger up-front investments in

order to avoid higher annual compliance costs.54

6.3 Further Robustness Tests

A�nal test pertains to how plant managers formed their expectations about future production:

In the preceding analysis, I have assumed that production expectations are independent of the

compliance alternative being evaluated; the average of a unit�s past summer production levels in the

years preceding the compliance decision �Qn is used to proxy for expected ozone season production.

Because coal generation tends to serve load on an around-the-clock basis, the capacity factors of

most coal plants are unlikely to be signi�cantly a¤ected by a compliance-related change in variable

operating costs.23 However, if �Qn consistently under (or over) estimates what managers actually

expected, the variable operating cost measures will be biased.

It is impossible to know whether all plant managers used �Qn to approximate Qn in their

53In a 1978 paper, Zellner introduces a Minimum Expected Loss (MELO) estimator as a way to deal with the
problem of estimating ratios of population means and regression coe¢ cients. When these MELO estimates are
viewed as estimators, they are found to have �nite second moments. I use a relative squared error lost function
to generate estimates of this ratio using population parameter estimates. The ratio estimates are $3.36 (� = 2:20)
and $2.46 (� = 2:22) for the regulated and restructured markets respectively. These results are also consistent with
a larger negative capital bias among managers in restructured electricity markets.
54In the past, researchers have made some simplifying but restrictive assumptions in order to circumvent problems

associated with estimating the parameters of the distribution of a ratio of random parameters. One common
approach involves assuming that the coe¢ cient in the denominator is �xed (Hensher et al, 2004; Layton and Brown,
2000). This way, the distribution of the ratio is simply the distribution of the numerator rescaled. However, recent
work by Sonnier et al. (2005) shows that constraining the coe¢ cient in the denominator to be �xed in order
to get a ratio that is normally distributed results in an overestimate of the variance of the ratio, even when the
true variance is small. Other reseachers have reparameterized the RCL model so as to identify the ratio directly.
Reparameterization is accomplished by making alternative identi�cation assumptions. Rather than set the scale
parameter to one, one of the coe¢ cients in the model is restricted to equal one (Train and Weeks, 2004; Sonnier et
al. 2005). This approach is inappropriate for this application, where the capital cost and variable cost coe¢ cients
are likely to di¤er across models.
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decision making.55 However, unit level production data from the �rst ozone season can be used

to assess how well �Qn predicts the electricity production we do observe.56 The following equation

is estimated:

Q�n;04 = �0
�Qn + �j

JnX
j=1

Djn � �Qn + un; (9)

where Qn;04 is the observed production at unit n during the 2004 ozone season, Djn is an indicator

for whether unit n adopted pollution control technology j, and un is a random error term. A

robust covariance matrix estimator that accounts for within plant correlation in the error terms

is used.57 If unit-level production was signi�cantly a¤ected by �rms�compliance decisions, one or

more of the �j will be statistically signi�cant. A positive (negative) �j indicates that, on average,

�rms choosing compliance strategy j increased (decreased) their production relative to those units

who chose to rely entirely on the permit market for compliance.

I estimate the model separately for restructured and regulated markets. Results are reported

in Table 6. The coe¢ cient on �Qn is 1.03 when the model is estimated using data from the regulated

markets and very precisely estimated, whereas none of the interaction terms are signi�cant. This

implies that unit level production, on average, increased slightly in regulated markets once the

NOx SIP Call took e¤ect, but was not signi�cantly a¤ected by the compliance strategy chosen.

When the model is estimated using data from plants in restructured markets, the coe¢ cient on �Qn
is 1, also with a small standard error. Only the SCR interaction term is positive and signi�cant at

the �ve percent level; the SNCR coe¢ cient is signi�cant at the 10% level. This is an interesting,

but not surprising result. In restructured markets, units installing SCR slightly increased their

ozone season production on average, where as production levels at all other plants were generally

unchanged. Put di¤erently, those plants whose variable operating costs increased by relatively less

are called upon to generate relatively more often.

In regulated electricity markets, these results are supportive of the model assumptions. If

managers correctly anticipated how compliance decisions would a¤ect future production, they used

past ozone season production as a proxy for future production in their evaluation of all compliance

options. In restructured markets, managers who correctly anticipated that adopting SCR (and

possibly SNCR) could result in increased production (by a quantity denoted by �Qn) would have

changed their production expectations accordingly. This would increase annual compliance costs

55Anecdotal evidence indicates that managers used past summer production levels to estimate future production,
regardless of the compliance choice being evaluated (EPRI, 1999a).
56The �rst ozone season in which all coal-�red units had to comply was 2004. This is the only year for which

emissions data are currently available.
57There are several reasons why the error terms might be correlated across units in the same facility. For example,

an facility-wide outtage would a¤ect the production of all units at a plant.
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associated with SCR by �vn SCR = (Vn SCR + � � mn SCR)�Qn.58 Per kWh compliance costs

are relatively low for SCR (see Figure 2), so �vn SCR should be small. Because it is hard to

know whether managers correctly anticipated this increase, and because the increase is likely to

be small, the same assumptions regarding expected production are maintained for all units, for all

compliance strategies.

6.4 Summary of Estimation Results

There are two important implications of the empirical results discussed in this section. First,

unobserved heterogeneity in how plant managers respond to variation in compliance costs has

played a signi�cant role in determining environmental compliance choices under the NOx SIP Call.

Second, the coe¢ cient on capital costs appears to be substantially more negative among �rms in

restructured electricity markets, as compared to similar plants in regulated electricity markets

who are guaranteed a positive rate of return on their capital investments in pollution control

equipment. Unfortunately, because of the identi�cation assumptions underlying the logit model

and the di¢ culties associated with estimating the variance of a ratio of two random variables, there

is no completely satisfying way to formally demonstrate that capital cost coe¢ cients di¤er across

electricity market types. However, all of the empirical evidence strongly suggests that the negative

coe¢ cient on capital costs is substantially larger in absolute value when the model is estimated

using data from restructured electricity markets. Whereas we can easily reject the null hypothesis

that the capital cost coe¢ cient is greater than or equal to zero in the restructured market case,

we fail to reject this hypothesis when the model is estimated using data from regulated electricity

markets. When the ratio of the variable and capital cost coe¢ cient estimates are compared (hereby

eliminating the scale parameter that confounds direct comparisons of coe¢ cients across market

types), we �nd further support for the hypothesis that plants in restructured electricity markets

weigh capital costs more heavily in their compliance decisions.

58In fact, this increase in per kWh compliance costs would potentially be o¤set by increased revenues. Under the
assumption that expected production is independent of the compliance choice, revenues from the sale of electricity do
not vary across compliance alternatives and therefore drop out of the discrete choice model. If expected production

is higher conditional on adopting SCR, revenues will increase by an amount equal to
TnSCRX

tn SCR=1

qntnSCRPntnSCR ;where

tnSCR indexes the additional hours in which the nth unit would operate if it installed SCR, and Pnt is the electricity
price the nth unit expects to receive in hour t.

28



7 Implications of the Results

Estimation results suggest that economic regulation in the electricity market signi�cantly a¤ected

how plant managers chose to comply with the NOx SIP Call, and that managers in restructured

markets are more biased against more capital intensive compliance options, as compared to their

more regulated counterparts. Because capital intensive compliance options are associated with

signi�cantly greater emissions reductions, this implies that plants in restructured markets chose

�dirtier�compliance options. This section addresses the policy implications of these �ndings.

7.1 Implications for Permit Market Design

Ozone non-attainment problems are signi�cantly more severe in states that have restructured elec-

tricity markets, largely because of di¤erences in levels of industrial activity, population densities,

and meteorological conditions. Consequently, the health bene�ts from reducing NOx pollution are

signi�cantly greater in these states.59 Consider the health e¤ects of choosing to install selective

catalytic reduction (SCR) technology (the most capital intensive NOx control option) at a unit in

a regulated electricity market versus a unit in a restructured electricity market. An average unit

in the sample emitted 15 tons of NOx per day in 1999; retro�tting a single unit with SCR tech-

nology results in daily NOx reductions of 12 tons on average. A recent study �nds that shifting 11

tons of NOx emissions per day from a relatively �low damage�location (North Carolina, a state

that has not restructured its electricity market) to a �high damage�area (Maryland, a state that

restructured its electricity industry) over a ten day period results in the loss of approximately one

human life (Mauzerall et al., 2005).

Under the �rst-best pollution permit market outcome, the total social cost of achieving man-

dated emissions reductions is minimized. At each generating facility, the marginal cost of reducing

emissions is set equal to the damage caused by an incremental change in emissions at that facility;

pollution controls are installed where they deliver the greatest net bene�t. There are two factors

that can potentially distort equilibrium investment in pollution control equipment away from �rst

best. First, results presented in Section 6 indicate that plants in restructured electricity markets

are less likely to invest in pollution control equipment, as compared to similar plants in regulated

electricity markets. The e¢ ciency costs of this negative capital bias in restructured markets are

exacerbated by a second factor: the permit market�s failure to re�ect spatial variation in marginal

damages from pollution. The NOx SIP Call, like all major CAT programs in the United States,

is emissions-based. The regulatory constraint is de�ned in terms of pounds of pollution; a permit

59A cross-agency U.S. Government website, AIRNow, provides a good summary of the health e¤ects of ozone
exposure: http://airnow.gov/index.cfm?action=static.ozone2#3.
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is worth a pound of emissions, regardless of where the pound is emitted. Because the permit

market fails to re�ect spatial variation in bene�ts from reducing NOx emissions, there will likely

be insu¢ cient incentives for e¢ cient levels of investment in the regions where pollution controls

would deliver the largest health and environmental bene�ts.

Whereas environmental regulators have no control over the �rst factor (electricity market

regulation), they do have control over how pollution permit markets are designed. An alternative

approach designing permit markets involves setting a cap on total damages and establishing trading

ratios that determine the terms of interregional permit trading. To set up such a system, the

marginal damages resulting from increased NOx emissions in di¤erent regions of the regulated

area must be estimated. The trading ratio R corresponding to a particular region is set equal to

the estimated damages for that region divided by the damages in a designated numeraire region.

These regions can be as small as the available data on marginal damages allows. In the extreme

case, ratios would be set at the facility level.

The anticipated compliance costs de�ned in [1] can be rewritten as follows:

Cnj = �j + �
v
nvnj + �

K
n Knj � "nj; (10)

where vnj = (Vnj +Rn � � �mnj) �Qn

Under emissions-based trading, Rn = 1 8 n: The introduction of trading ratios that re�ect
spatial variation in marginal damages increases the marginal cost of polluting in areas where

pollution does the most damage, thereby increasing the incentives to install pollution controls

in relatively high damage areas. The e¤ect of trading ratios on compliance decisions, and thus

patterns of emissions, will depend on how responsive �rms�compliance choices are to changes in

variable compliance costs. If the bias of managers against capital intensive compliance options is

su¢ ciently strong in high damage areas, it could be that the use of trading ratios would not have

a¤ected compliance choices.

The EPA received over 50 responses when, during the planning stages of the NOx SIP Call, it

solicited comments on whether the program should incorporate trading ratios or other restrictions

on interregional trading in order to re�ect the signi�cant di¤erential e¤ects of NOx emissions

across states(FR 63(90): 25902). Most commentors supported unrestricted trading and expressed

concerns that �discounts or other adjustments or restrictions would unnecessarily complicate the

trading program, and therefore reduce its e¤ectiveness�(FR 63(207): 57460). These comments,

together with a simulation exercise which indicated that imposing spatial constraints on trading

would not signi�cantly a¤ect the location of emissions (US EPA, 1998a), led regulators to design

a single jurisdiction trading program in which all emissions are traded on a one-for-one basis.

In this section, I assess whether the bene�ts of NOx trading ratios could have justi�ed the
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added complexity ex post. Drawing from the manager-speci�c distributions of cost coe¢ cients

implied by the RCL estimates, I simulate the compliance choices that these managers most likely

would have made had the NOx emissions market been designed to re�ect spatial heterogeneity

in marginal damages from pollution. Unlike previous studies,60 I �nd that the decision to adopt

an emissions-based versus an exposure-based permit market has signi�cantly a¤ected the spatial

distribution of permitted emissions.

7.1.1 Simulating Exposure-Based Trading

De�ning trading ratios
Several assumptions had to be made in setting up the simulation of exposure-based NOx per-

mit trading. The �rst set of assumptions pertain to how the trading ratios are de�ned. Although

there was discussion of imposing spatial constraints on permit trading during the planning stages

of the NOx SIP Call, a complete proposal of appropriate jurisdictional boundaries or trading ratios

was unfortunately never established. However, there are two papers in the literature which esti-

mate marginal damages from incremental increases in NOx emissions in the Eastern United States

that provide some information on how these ratios might have been de�ned. Krupnick et al.(1998)

generate trading ratios for a subset of the states a¤ected by the NOx SIP Call.61 Averaged across

typical episodes, ratios range from 1 in low damage areas to 1.5 in high damage areas. I use this

ratio in simulating a more conservative exposure-based trading program. Less conservative ratio

estimates are provided in a more recent paper (Mauzerall et al., 2005).62 Based on this work, I

also consider an exposure-based trading system in which 5 permits are needed for every pound of

NOx emitted in high damage areas.

Ideally, trading ratios would incorporate all available information on how marginal damages

from NOx pollution vary across counties, municipalities, or even facilities. I was unable to obtain

60Farrell et al. (1999) consider imposing geographic constraints on NOx permit trading in the Northeast and
conclude that the bene�ts do not justify the costs. Krupnick et al. (2000) argue that there is no clear bene�t to
spatially di¤erentiated NOx trading.
61This paper looks at controlling NOx emissions in the Chesapeake Bay. The authors use an urban airshed model

to link regional changes in NOx emissions in di¤erent regions to regional, population weighted changes in ozone
concentrations. They use emissions and meteorological data from three "typical" �ve day ozone episodes in 1990
to estimate trading ratios. The authors note that 1990 was a "good" ozone year; their estimates of typical changes
in ozone concentrations attributable to sources are conservative.
62Mauzerall et al (2005) use a comprehensive air quality model (CAMx) to quantify the variable impacts that

a �xed quantity of NOx emitted from individual point sources can have on downwind ozone concentrations and
resulting population weighted health damages. Simulations were carried out using data from a 10 day period in
1995 (July 7-17). Considering fatality e¤ects only (i.e. ignoring morbidity) and using �o¤ the shelf�estimates of
the value of a statistical life, the estimated damage per ton of NOx emissions ranges from 1995 $10,700 to $52,800
depending on ambient temperature and location. This suggests that the appropriate trading ratios in high damage
areas could be as large as 5:1. Ratios that take morbidity and environmental damages into account would be even
larger.
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marginal damage estimates at this level of detail. �Low damage�states are de�ned to be those

that are either completely or marginally in attainment with the federal one hour and eight hour

ozone standards (according to the US EPA�s �Green Book�). �High damage� states are those

that include counties classi�ed as moderate, severe or serious under the one hour and eight hour

standards (EPA Green Book). Under exposure-based trading, I assume that a permit is required

to o¤set a pound of NOx in low damage areas; 1.5 permits (or 5 permits in the second scenario)

are required in high damage areas.

De�ning the baseline
A second set of assumptions have to do with establishing a baseline or benchmark against

which to compare simulated emissions under exposure-based trading. We are interested in knowing

how di¤erent spatial patterns of emissions would have been under exposure-based versus emissions-

based permit trading. One approach would be to use observed NOx emissions from coal-�red

units as a benchmark.63 However, because of signi�cant discrepancies between observed emissions

during the �rst ozone season64 and emissions predicted by the model under emissions-based permit

trading, this is not an appropriate basis for comparison.

Table 7 compares observed emissions from the �rst ozone season of the NOx SIP Call (2004)

to the emissions predicted by the model. The second and third columns report predicted emissions

conditional on observed choices and conditioned on simulated choices, respectively. Although the

model is reasonably accurate in predicting compliance choices, it does a poor job of predicting

emissions. Predicted emissions (based on predicted compliance choices) are 34% higher than

observed emissions overall and over 40% higher in states with restructured electricity markets.

A closer look at the data reveals three reasons for these discrepancies. First, the model

assumes that emissions rates (measured in lbs NOx/mmbtu) for those units that choose not install

any pollution controls will equal the unit�s average ozone season emissions rate over the period

1999-2002. In fact, emissions rates at units that chose to rely entirely on the permit market for

compliance fall by an average of 21% in the �rst ozone season, relative to past summers. This

relationship (between expected and observed emissions rates among plants who did not install

pollution controls) does not di¤er signi�cantly across electricity market types.65 Emissions rates

63Because approximately 85% of emissions regulated (and permits allocated) under the program come from coal-
�red generators, I capture the majority of the market when emissions from non-coal-�red units are considered
exogenous to the model. In future versions of the paper, this assumption will be released by assuming a range of
elasticities of permit supply/demand for the market segment that is not explicitly represented in the simulation
(i.e.,oil and gas-�red generators and industrial boilers). This simulation also treats the number of banked permits
as exogenous.
64Data is not yet available for subsequent ozone seasons. This �rst, full-compliance ozone season was only 122

days long. Future ozone seasons will be 153 days (May-September).
65The average decrease in NOx rates is 22% (with a standard deviation of 26%) in regulated markets and 19%

in restructured markets (with a standard deviation of 21%).
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at these plants were likely reduced by changing boiler conditions so as to reduce NOx formation

during combustion.

Second, the unit-speci�c, technology-speci�c, post-retro�t NOx removal rates assumed by

the model also appear to have been conservative. These are the same estimates that were made

available to plant managers while they were making their compliance decisions. Among units that

adopted some pollution control technology other than SCR, observed post-retro�t NOx emissions

rates are, on average, 27% below predicted post-retro�t NOx rates. Among units adopting SCR,

observed post-retro�t emissions rates are, on average, 41% below predicted rates in restructured

electricity markets and 28% below predicted rates in regulated markets. The reason for the

di¤erence across electricity market types is that several plants installing SCR reportedly were

unable to complete their SCR retro�ts in time for the �rst ozone season; most of these are in

regulated electricity markets. Consequently, observed NOx rates in the summer of 2004 greatly

exceeded the predicted NOx rates at these plants. The emissions rates at these plants, and the

proportion of permitted NOx emissions in states with regulated electricity markets, should decline

in future ozone seasons as SCR retro�ts are completed.

Finally, assumptions about unit-level heat rates (measured in mmbtu/kWh) also underesti-

mate ex post observed unit-level performance. The model assumes that future unit-level heat rates

will equal those observed in previous summers. On average, units performed more e¢ ciently in the

summer of 2004 than in past ozone seasons. When observed heat rates are regressed on predicted

heat rates and NOx control technology dummies, the coe¢ cient on predicted heat rates is 0.91

with a standard error of 0.01. None of the technology dummies are statistically signi�cant. Results

do not change when regression equations are estimated separately for regulated and restructured

markets.

Because observed emissions are signi�cantly lower than the emissions predicted by the model,

comparing emissions predicted under counterfactual exposure-based policy simulations with ob-

served emissions would be uninformative and misleading. Instead, baseline emissions (i.e., the

emissions associated with the observed, emissions-based permit trading program) are simulated

in the same way that emissions under counterfactual, exposure-based trading are simulated. The

simulation procedure is described below.

De�ning the cap
Under emissions-based trading, the number of permits distributed equals the total cap on

emissions. Assuming perfect compliance, the regulator has complete control over the total amount

of pollution that is emitted. Under a trading ratio system, the regulator cannot directly cap

emissions. The number of permits distributed equals the permitted damages. The total quantity

of permitted emissions will depend on which �rms use permits, and which �rms invest in pollution
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reduction. If more permits are used in low (high) damage areas, the total amount of pollution will

be greater (smaller) for a given cap.

To facilitate a comparison between emissions-based and exposure-based permit market de-

signs, I assume that the cap is de�ned in terms of emissions in both cases. Put di¤erently, I

simulate compliance choices and emissions under an exposure-based and emissions-based permit

markets that are designed to deliver the same total quantity of seasonal emissions (in terms of

pounds of NOx).

The baseline cap used in all simulation exercises is estimated as follows. The means of the

manager speci�c conditional distributions and the permit price that prevailed during the years in

which these compliance decisions were being made ($2.25/lb) are used to generate point estimates

of choice probabilities [4] under the baseline case of emissions-based permit trading (i.e., Rn = 1

for all n). For each unit, the compliance strategy with the largest choice probability is assumed

to be the chosen alternative. The corresponding estimates of unit-level ozone season emissions are

summed across units. The resulting quantity (measured in pounds of NOx per ozone season) is

the cap that is used in all of the simulation exercises described below.

7.1.2 Simulation

The econometric model is used to predict emissions under emissions-based and exposure-based

permit trading as follows:

1. The permit price � is initially set equal to the price that prevailed during the years in which

�rms were making their compliance decision ($2.25/lb).

2. A vector of coe¢ cients br is drawn from the distribution of the random coe¢ cients in the

population; r denotes the repetition (r = 1:::1000).

3. For each unit, the expected choice probabilities as de�ned in [8] are approximated for all

compliance available choices, conditional on the price � , the draw from the population dis-

tribution, the character and outcomes of previously observed choices of the corresponding

manager (Xm; Ym), and the assumed trading ratio Rm:

4. Unit level compliance choices for all choice situations faced by each manager are predicted.

Each unit is assumed to choose the compliance strategy with the highest expected choice

probability.

5. Seasonal emissions (measured in lbs of NOx) corresponding to the predicted choices are

calculated and summed across units.

6. If the total quantity of emissions equals the assumed cap, � is the equilibrium price and

the simulation stops. Equilibrium emissions in high damage areas and low damage areas are
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calculated.

7. If the total quantity of emissions exceeds (is less than) the cap, � is increased (decreased) by

$0.01. Steps 3-6 are repeated.66

This procedure is repeated 1000 times under the baseline case (emissions-based trading),

the conservative exposure-based trading case where R = 1:5 in high damage areas, and the less

conservative exposure-based trading case where R = 5 in high damage areas. Distributions of

predicted equilibrium emissions are generated for each scenario. Summary statistics are reported

in Table 8.

The model predicts an average reduction of 131 tons per day (6 percent) in emissions in the

high damage states under the �rst case, and an average reduction of 446 tons per day (22 percent)

in high damage states under the second, less conservative case. These results suggest that the

health damages that have resulted (and that will continue for the foreseeable future) from the

decision to adopt an emissions-based permit design are non-negligible. Allowing for the fact that

the model does over-predict emissions, a 6 to 22 percent decrease in observed emissions in high

damage areas translates to moving 123-452 tons of NOx emissions per day out of high damage

areas into low damage areas, depending on the chosen trading ratios. Recall that it has been

estimated that the number of lives lost due to ozone exposure can be reduced by moving only 11

tons per day over a period of 10 days out of high damage areas into low damage areas (Mauzerall

et al., 2005).

7.2 Implications for policy analysis

The planning models that are conventionally used by federal and state-level policy makers to an-

alyze proposed air pollution regulations make the simplifying assumptions that all �rms minimize

costs when choosing how to comply with a CAT program, and that all �rms minimize the same

cost function. Estimation results presented in the previous section are not supportive of these

assumptions. I �nd that there is signi�cant heterogeneity in how plant managers weigh costs in

their compliance decisions, and that responsiveness to costs varies with electricity market type.

Appendix 3 describes a second simulation exercise which examines the consequences of ignor-

ing both variation in electricity market regulation, and heterogeneity in response to cost changes

in the analysis of proposed air pollution regulations. The Integrated Planning Model (IPM) is a

dynamic linear programming model of fuel markets, emission markets, and electricity markets that

is used extensively by the EPA, state air regulatory agencies, utilities and other public and private

66If this iterative procedure arrives at a point where adding or subtracting a cent delivers aggregate emissions
on either side of the cap, the price that delivers the quantity of emissions just below the cap is chosen to be the
equilibrium price. Equilibrium emissions are calculated and the simulation stops.
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sector institutions to analyze proposed air pollution regulations. I use a deterministic model that

incorporates the relevant IPM assumptions and parameters to predict compliance choices and NOx

emissions under emissions-based trading. These emissions are compared against baseline emissions

(as de�ned in section 7.1). This deterministic model of cost minimizing plant managers signi�-

cantly over-predicts investment in pollution controls in restructured electricity markets. Predicted

daily NOx emissions are 260 tons below baseline emissions in high damage areas.

8 Summary and Conclusions

I have estimated a model of how plant managers chose to comply with a major U.S. NOx emissions

trading program. I �nd that economic regulation in the electricity market in which a power plant is

operating has signi�cantly a¤ected the environmental compliance decision. Plants in restructured

electricity markets are found to be less likely to install capital intensive pollution control technology

as compared to similar plants in regulated electricity markets who are allowed to earn a positive

rate of return on their investments in pollution control equipment.

This e¤ect of electricity market economic regulation on pollution control technology adoption

a¤ects permit market e¢ ciency in two ways. First, because the plants with the lowest pollution

control costs are not always the ones installing pollution controls, the permit market may fail to

minimize the total economic cost of meeting the exogenously determined emissions cap. Second,

because air quality problems are more severe in states that have restructured their electricity

markets, this e¤ect exacerbates the ine¢ ciencies associated with emissions-based trading of a non-

uniformly mixed pollutant. Thus, the total social cost associated with the permitted emissions is

not minimized.

The NOx SIP Call, like all major emissions trading programs in the United States, de�nes

permits in terms of emissions. In theory, exposure-based permit trading could reduce the e¢ ciency

costs of the negative capital bias in restructured electricity markets. The econometric model is

used to predict how technology adoption, and thus emissions, would have been di¤erent under an

exposure-based trading program designed to meet the same total emissions cap. The model pre-

dicts that 6-22 percent of permitted emissions (or 123-452 tons of NOx per day, based on observed

emissions in 2004) would have been moved out of high damage areas and into low damage areas

under a generally de�ned exposure-based program, relative to an emissions-based program. Recent

epidemiological research suggests that a spatial shift in emissions of this magnitude could reduce

premature deaths from ozone exposure by hundreds each year. There would also be additional

bene�ts, including reduced morbidity and reduced environmental damages. While this analysis

is somewhat limited in how accurately it can measure the precise number of tons of NOx that
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would move out of high damage areas and into low damage areas under exposure-based trading,

the ine¢ ciency of emissions-based permit trading is clear.

There are two important policy implications of this research. First, when there is signi�cant

spatial variation in marginal damages from pollution, permit markets should be designed to re�ect

this variation. This is particularly critical in situations where variation in economic regulation

across electricity markets is already reducing the probability that pollution controls will be installed

in the areas where they deliver the greatest social bene�ts.

Second, when policy makers are forecasting permit market outcomes, variation in economic

regulation and investment incentives across the a¤ected industries should be taken into account.

The models currently used by federal and state agencies to evaluate proposed air pollution regula-

tions make the simplifying assumptions that all electricity generators operate in perfectly compet-

itive electricity markets, and that all �rms minimize the same cost function when choosing how

to comply with environmental regulations. Results presented here demonstrate how these inaccu-

rate assumptions can result in over-prediction of investment in pollution controls in restructured

electricity markets.

The permit market ine¢ ciencies identi�ed here will likely plague future CAT programs. The

Mercury Rule and the Clean Air Interstate Rule, both �nalized in March of 2005, are scheduled to

take e¤ect in 2010. The former regulates mercury emissions from all U.S. coal plants. The latter,

meant to subsume the Acid Rain Program and the NOx SIP Call, regulates SO2 and NOx. Both

will a¤ect electricity generators in restructured and regulated electricity markets. Both propose

to use an emissions-based permit market to regulate a non-uniformly mixed pollutant.

This paper makes important preliminary steps in its empirical investigation of the merits of

exposure-based permit trading. More detailed data on spatial variation in marginal damages from

NOx pollution would allow for the simulation of compliance decisions under more informative

trading ratios. The work could also be extended to evaluate other spatial restrictions on permit

trading that have been proposed, such as zonal trading systems. These areas of inquiry are left

for future research.

Finally, I am working to incorporate the discrete choice model developed here into a more

comprehensive, discrete-continuous choice model of the �rm�s environmental compliance decisions.

With each passing ozone season, I am collecting unit-level emissions, production and fuel use data.

A discrete-continuous model of production and pollution decisions made once pollution control

technologies are installed and the environmental regulation constraints are binding will allow for a

more detailed analysis of how the incentives created by CAT programs a¤ect �rm decision making

in both the long and the short run.
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Appendix 1: Deriving the Conditional Logit Choice Probabilities Implied by Cost
Minimization

It is straightforward to show that for additive, iid extreme value (Type I) errors, the assumption of cost
minimization does not yield the standard CL choice probabilities due to the asymmetry of the assumed
distribution. In the standard Random Utility Maximization (RUM) logit model, the assumption of an
additive extreme value error term is motivated by a desire for simple closed-form expressions for choice
probabilities. Here I show that, in the context of cost minimization, assuming that the extreme value term
is subtracted from (versus added to) the deterministic component implies equally convenient expression
for choice probabilities. This closely follows the derivation of the standard RUM choice probabilities in
Train(2003).

The unit (denoted n) chooses from among Jn compliance alternatives. The cost that the unit associates
with each alternative is comprised of a deterministic component and a stochastic component:

Cni = �mXni � "ni;

where "ni is assumed to be independently, identically distributed type I extreme value. To derive the
choice probabilities, I assume that the unit chooses the compliance option that minimizes anticipated
compliance costs.(For ease of notation, the n subscript on the coe¢ cient vector � is dropped). Let Pni
be the probability that unit n chooses alternative i :

Pni = Prob (�0Xni � "ni < �0Xnj � "nj 8 j 6= i)
= Prob ("nj < �0Xnj � �0Xni + "ni 8 j 6= i)

The expression for the conditional choice probability :

Pnij"ni =
Y
j 6=i
F (�0Xnj � �0Xni + "ni)

=
Y
j 6=i
exp(� exp(�(�0Xnj � �0Xni + "ni)))

Unconditional choice probabilities are obtained by integrating over the distribution of "n :

Pni =

1Z
"=�1

Y
j 6=i
exp(� exp(�(�0Xnj � �0Xni + "ni))f("n) d"n

=

1Z
s=�1

Y
j 6=i
exp(� exp(�(�0Xnj � �0Xni + s)) exp(�s) exp(� exp(�s)) ds

Note that exp(� exp(�(�0Xnj � �0Xnj + s))) = exp(� exp(�s)): Making this substitution:
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Pni =

1Z
s=�1

Y
j

exp(� exp(�(�0Xnj � �0Xni + s)) exp(�s)ds

=

1Z
s=�1

exp�
X
j

exp(�(�0Xnj � �0Xni + s)) exp(�s)ds

=

1Z
s=�1

exp(� exp(�s))
X
j

exp(�(�0Xnj � �0Xni)) exp(�s)ds

We de�ne a variable t such that t = exp(�s)) dt = � exp(�s)ds: Making this substitution:

Pni =

1Z
s=0

exp(�t
X
j

exp(�(�0Xnj � �0Xni))dt

Evaluating this integral, we are left with:

Pni =
1X

j

exp(�0Xni)
exp(�0Xnj)

An alternative way of expressing this conditional choice probability:

Pni =

1
exp(�0Xni)X

j

( 1
exp(�0Xnj)

)
=

exp(��0Xni)X
j

exp(��0Xnj)
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Appendix 2: Analytical Gradients of the Likelihood Function

Here, the analytic derivatives of the simulated log-likelihood function (SLL) with respect to the means
of the random parameters and the elements of the lower triangular cholesky matrix (the ckl) are derived.
The contribution of the mth manager to the simulated log likelihood function is:

SLLm(�) = ln
1

R

RX
r=1

TmY
t=1

exp(��r0Xmitt)
JmX
j=1

exp(��r0Xmjtt)
(11)

� ln
1

R

RX
r=1

TmY
t=1

Lmitt(�
r)

The derivative of [11] with respect to a draw of the kth element of the vector of random parameters �r

is:

Gnk(�) =

@

�
ln 1

R

PR
r=1

YTm

t=1
Lmitt(�

r)

�
@�rk

=

@

�
1
R

PR
r=1

YTm

t=1
Lmitt(�

r)

�
@�rk

�
"
1

R

RX
r=1

TmY
t=1

Lmitt(�
r)

#�1

Let ymjt be an indicator variable that =1 if �rm m chooses alternative i in choice situation t, 0 otherwise.
To simplify the di¤erentiation, the choice probability Lmi(�r) is rewritten:

TmY
t=1

Lmitt(�
r) =

exp

0@ TmX
t=1

JmX
j=1

ymjtt(��r0Xmjtt)

1A
JmX
j=1

exp

 
TmX
t=1

��r0Xmjtt

!

Di¤erentiating this choice probability with respect to �rk :

@ [Lmi(�
r)]

@�rk
=

JmX
j=1

exp

 
TmX
t=1

��r0Xmjtt

!
TmX
t=1

JmX
j=1

ymjtt(�xmjttk)

0@exp
0@ TmX
t=1

JmX
j=1

ymjtt(��r0Xmjtt)

1A1A
24 JmX
j=1

exp

 
TmX
t=1

��r0Xmjtt
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Simplifying this expression:

@ [Lmi(�
r)]

@�rk
=

TmY
t=1

Lmitt(�
r)

2666664
JmX
j=1

exp

 
TmX
t=1

��r0Xmjtt

!
TmX
t=1

JmX
j=1

ymjtt(�xmjttk)

JmX
j=1

exp

 
TmX
t=1
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!

�
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exp
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��r0Xmjtt

!
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exp

 
TmX
t=1

��r0Xmjtt

!
3777775
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TmY
t=1
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Substituting into the original derivative:

Gnk(�) =

1
R
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r=1

YTm

t=1
Lmitt(�

r)

24 JmX
j=1

 
TmX
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!
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r)

I take a similar approach to �nd an expression for the analytic derivative of [11] with respect to an element
of the cholesky factor of the covariance matrix:

Gnk(c
r
kl) =

1
R

PR
r=1

YTm

t=1
Lmitt(�

r)

24 JmX
j=1

 
TmX
t=1

ymjtt �
YTm

t=1
Lmjtt(�

r)

!
(�xmjttk)(�rml)

35
1
R

PR
r=1

YTm

t=1
Lmitt(�

r)
;

where �rml is the element of the matrix of pseudo-random draws from the standard normal distribution
that corresponds to manager m, coe¢ cient l and repetition r.
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Appendix 3 : Simulations Using the IPM Based Deterministic Model

The Integrated Planning Model (IPM) is a dynamic linear programming model of fuel markets, emis-
sion markets, and electricity markets that is used extensively by the EPA, state air regulatory agencies,
utilities and other public and private sector institutions to analyze proposed air pollution regulations.
The model determines the least-cost method of meeting energy demands and peak energy requirements
subject to existing and proposed regulatory constraints.

The assumptions of the IPM model are very well documented.67 All electricity generators are as-
sumed to operate in perfectly competitive wholesale markets. Firms are assumed to minimize the costs of
meeting electricity demand, subject to resource availability and other operating and environmental reg-
ulation constraints. With respect to �nancing investments in pollution controls, the two most important
parameter values in model are the discount rate (5.34% for all �rms) and the capital charge rate (12%
for all �rms). The discount rate is used for calculation of net present values. The capital charge rate
takes into account the cost of debt, return on equity, taxes and depreciation. All �rms are assumed to
use a corporate �nancing structure when evaluating investments in environmental retro�ts. The assumed
lifespan of a coal plant is 65 years.

I combine these assumptions and parameter values with the unit-speci�c compliance cost estimates
and choice sets that were used in the estimation of the econometric model to calculate net present value
(NPV) compliance costs for each unit, for each compliance option. To reiterate, implicit in these NPV
estimates is the assumption that all �rms minimize the same cost function, and that the parameters of
this cost function are those assumed by the IPM model.

Emissions predictions under an emissions-based permit trading program are simulated as follows:

1. The permit price � is initially set equal to the price that prevailed during the years in which �rms
were making their compliance decision ($2.25/lb).

2. Compliance costs are predicted for all choices in a unit�s choice set, conditional on � and the assumed
parameters of the cost function (which do not vary across units). Each unit is assumed to choose
the compliance strategy that minimizes the net present value of compliance costs.

3. Seasonal emissions (measured in lbs of NOx) corresponding to the predicted choices are calculated
and summed across units.

4. If the total quantity of emissions equals the assumed cap, � is the equilibrium price and the simu-
lation stops. Equilibrium emissions in states with restructured electricity markets and states with
regulated electricity markets are calculated.

5. If the total quantity of emissions exceeds (is less than) the cap, � is increased (decreased) by $0.01.
Steps 3-6 are repeated.68

Results are presented in the table below. Relative to the benchmark case, this model under-predicts
emissions in high damage areas by 260 tons per day.

67The speci�c parameters and assumptions of the IPM model can be found at
http://www.epa.gov/airmarkets/epa-ipm.
68If this iterative procedure arrives at a point where adding or subtracting a cent delivers aggregate emissions

on either side of the cap, the price that delivers the quantity of emissions just below the cap is chosen to be the
equilibrium price. Equilibrium emissions are calculated and the simulation stops.
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Table A1: Simulation of Emissions-Based Trading Using IPM Assumptions

Baseline Deterministic IPM-based model

High damage area 2053 1791

NOx emissions (tons/day) (55)

Low damage area 2295 2555

NOx emissions (tons/day) (55)

Total 4347 4345

NOx emissions (tons/day) (6)

% NOx emissions in 47% 41%

high damage area (1)
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Figure 1: Ozone Transport and Non-Attainment (OTAG 1997)

Notes: Unfortunately, this map does not reproduce well in black and white. This �gure appears in color
in the version of the paper posted at http://are.berkeley.edu/ fowlie. When reproduced in gray scale, the
red/orange colors that indicate ozone concentrations in excess of 90 ppb are di¢ cult to distinguish from
the blue that indicates concentrations below 70 ppb. Darker regions in Florida, Maine, and parts of the
Midwest that are not included in the NOx SIP Call are blue; these areas meet Federal standards. Darker
regions in the Northeast and parts of Ohio and Indiana are orange and red. These are areas that often
fail to attain Federal standards during the summer.
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Figure 2: Estimated NOx Control Costs for a 512 MW T-Fired Boiler

Strategy code Technology lbs NOx/mmBtu

N No Retro�t 0.42

SN Selective Non-Catalytic Reduction (SNCR) 0.34

CM Combustion Modi�cation 0.33

L1 Low NOx Burners with over�re air option 1 0.31

L2 Low NOx Burners with over�re air option 2 0.28

L3 Low NOx Burners with over�re air options 1&2 0.26

SC Selective Catalytic Reduction (SCR) 0.13

L3S L3 + SCR 0.11
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Figure 3a: Compliance Choices of Units in Regulated Markets

Combustion Modifications No Retrofit
Low NOx Burners SNCR
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Figure 3b: Compliance Choices of Units in Restructured Markets
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Table 1: Summary Statistics by Electricity Market Type

Variable Restructured Regulated

# Units 310 322

# Facilities 113 108

Capacity (MW) 275 268

(243) (258)

Pre-retro�t NOx emissions (lbs/mmBtu) 0.50 0.54

(0.21) (0.22)

Pre-retro�t summer capacity factor (%) 64 67

(16) (13)

Pre-retro�t heat rate (kWh/btu) 11,376 11,509

(2153) (1685)

Unit Age (years) 37 36

(11) (11)

Notes: Standard deviations in parentheses. Summary statistics generated using the data from the 632

units used to estimate the model.
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Table 2: Compliance Cost Summary Statistics for Commonly Selected Control
Technologies

Capital Cost Per kWh

Technology ($/kW) operating

costs

(cents/kWh)

Restructured Regulated Restructured Regulated

Combustion 12.61 12.21 0.94 1.06

Modi�cation (4.87) (4.24) (0.38) (0.39)

Low NOx 29.72 31.16 0.64 0.64

Burners w/ (13.83) (20.55) (0.20) (0.16)

OFA

SNCR 16.60 19.16 0.97 1.03

(14.41) (21.88) (0.41) (0.38)

SCR 70.36 72.90 0.52 0.54

(21.02) (25.52) (0.31) (0.19)

Notes: Standard deviations are in parentheses.
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Table 3. Conditional and Random Parameters Logit Results
Conditional Logit Model RCL Model

Restructured Regulated Restructured Regulated
Technology Type Constants

�POST -1.89** -2.63** -1.35* -3.39**
(0.34) (0.38) (0.52) (0.59)

�CM -1.81** -2.20** -1.87** -2.48**
(0.26) (0.28) (0.30) (0.32)

�LNB -1.86** -2.15** -1.55** -2.49**
(0.33) (0.29) (0.37) (0.31)

Cost Variables
Annual compliance -0.30** -0.31* -1.21** -1.00**

costs (V) (0.09) (0.15) (0.26) (0.21)
($100,000)
Capital cost -0.06** 0.02 -0.53** -0.16

(K) (0.02) (0.06) (0.12) (0.10)
($100,000)
K*Age -0.003 -0.002 -0.22** -0.11*

(0.002) (0.003) (0.06) (0.05)

Cholesky 1 � -1.42** -0.51**
(�V ) � (0.30) (0.16)

Cholesky 2 � 0.30** 0.14**
(�K) (0.08) (0.05)

Cholesky 3 � 0.04 0.04
(o¤ diagonal) (0.11) (0.07)
# units 310 322 310 322
# facilities 113 108 113 108
Log-likelihood -431.2 -387.1 -359.4 -326.3
LR Test compare to technology constants compare to logit

103.94** 211.71** 143.66** 121.64**

Notes: Robust standard errors are in parentheses. *Indicates signi�cance at 5%. **Indicates signi�cance
at 1%.
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Table 4: Expected Means and Standard Deviations of Manager Speci�c Coe¢ cient
Distributions

Coe¢ cient Restructured Regulated
Population Average of conditional Population Average of conditional
parameter parameter parameter parameter
estimate estimates estimate estimates

Annual operating cost (V) -1.21** -1.13 -1.00** -1.00
($100,000) (1.00) (0.33)

Capital cost (K) -0.53** -0.54 -0.16 -0.16
($100,000) (0.19) (0.10)

Elements of the Cholesky factor L of 

Cholesky 1 -1.42** -0.94 0.51** 0.40
(�V ) (0.30) (0.07)

Cholesky 2 0.30** 0.23 0.14** 0.11
(�K) (0.04) (0.02)

Cholesky 3 0.04 0.07 0.04 0.002
(o¤ diagonal) (0.04) (0.01)

# plants 113 108

Notes: Standard deviations are in parentheses. *Indicates signi�cance at 5%. **Indicates signi�cance at
1%.
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Table 5: Average Own Capital Cost and Own Annual Compliance Cost Elasticities
for Commonly Selected Technologies

Technology Own capital cost elasticities Own annual cost elasticities

RESTRUCTURED REGULATED RESTRUCTURED REGULATED

Combustion -1.03 -0.25 -4.63 -4.40

Modi�cation

Low NOx Burners -1.25 -0.49 -3.75 -2.18

with over�re air

No retro�t � � -10.02 -8.19

SCR -5.74 -1.33 -1.75 -1.34

SNCR -1.07 -0.27 -7.56 -6.96

Notes: These elasticities are calculated using the point estimates of the means of the conditional coe¢ cient
distributions.
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Table 6: Testing the Independence of Ozone Season Production and Compliance
Strategy Choice

Restructured Regulated

Past ozone season 1.00** 1.03**

production (0.04) (0.01)

(average kWh)

Past production x -0.12 -0.04

Combustion modi�cation (0.07) (0.04)

Past production x 0.04 -0.04

low NOx burners (0.07) (0.05)

Past production x 0.09* -0.00

SCR (0.05) (0.03)

Past production x 0.08 0.02

SNCR (0.05) (0.02)

Observations 310 322

R-squared 0.97 0.97

Notes: Dependent variable is observed unit level production in June-September 2003. Standard errors
robust to within plant correlation are in parentheses.*Indicates signi�cance at 5%. **Indicates signi�cance
at 1%.
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Table 7: Observed and Predicted Average NOx Emissions (tons per day) by Market
Type

Observed Predicted j Predicted j
(2004 season) Observed Choices Predicted Choices

(BASELINE)

Restructured markets 1662 2272 2349

NOx emissions (tons/day) (64)

Regulated markets 1592 2022 1999

NOx emissions (tons/day) (64)

Total 3254 4294 4348

NOx emissions (tons/day) (6)

% Emissions in 51%� 53% 54%

restructured markets (0.5%)

Notes: Standard deviations are in parentheses.

�This distribution of emissions across regulated and restructured electricity markets may not be indicative
of patterns in future ozone seasons. Several units did not complete their SCR retro�ts in time for the
2004 ozone season. NOx emissions rates at these units, most of whom are located in regulated electricity
markets, will decline signi�cantly in future ozone seasons.

Table 8: Exposure-Based Trading Simulation Results

BASELINE Trading Ratio Case I Trading Ratio Case II

CASE (1:1.5) (1:5)

High damage area 2053 1924 1596

NOx emissions (tons/day) (55) (78) (146)

Low damage area 2295 2423 2750

NOx emissions (tons/day) (55) (78) (146)

Total 4347 4347 4346

NOx emissions (tons/day) (6) (7) (8)

% Emissions in 47% 44% 37%

High Damage Area (1) (1) (3)

Notes: Standard deviations are in parentheses.
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