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1 Introduction
Since the seminal papers by Vasicek (1977) and Cox, Ingersoll, and Ross (1985), there is a consensus

in the finance literature that term structure models should respond to three requirements: absence

of arbitrage opportunities and both econometric and numerical tractability. Models designed to

meet these criteria can be useful, for instance, in the pricing of fixed income derivatives and in the

assessment of the risks implied by fixed income portfolios. More recently, however, a number of

requirements have been added to the modeling of the yield curve dynamics. Satisfactory models

should also (i) be able to identify the economic forces behind movements in the yield curve,

(ii) take into account the way central banks implement their monetary policies, and (iii) have

a macroeconomic framework consistent with the stochastic discount factor implied by the model. In

this paper, we present a model that fulfills all of the above requirements and, in addition, integrates

learning dynamics within this macro-finance framework.

The model presented in this paper builds on recent developments (phases) in the affine term

structure literature. The first phase is characterized by the use of latent or unobservable factors,

as defined in Duffie and Kan (1996) and summarized in Dai and Singleton (2000).1 Although this

framework excludes arbitrage opportunities and is reasonably tractable, the factors derived from

such models do not have a direct economic meaning and are simply labeled according to their effect

on the yield curve (i.e. as a “level”, a “slope”, and a “curvature” factor).

The second phase involves the inclusion of macroeconomic variables as factors in the standard

affine term structure model. Ang and Piazzesi (2003) show that such inclusion improves the

forecasting performance of vector autoregression (VAR) models in which no-arbitrage restrictions

are imposed.2 Their model, nevertheless, still includes unobservable factors without an explicit

macroeconomic interpretation. Kozicki and Tinsley (2001, 2002) indicate the importance of long-

run inflation expectations in modeling the yield curve and connect the level factor in the affine term

structure models to these long-run inflation expectations. This interpretation of the level factor

is confirmed by Dewachter and Lyrio (2006), who estimate an affine term structure model based

only on factors with a well-specified macroeconomic interpretation.3 The mentioned papers do not

attempt, however, to propose a macroeconomic framework consistent with the pricing kernel implied

by their models.

The third and most recent phase in this line of research is marked by the use of structural

macro relations together with the standard affine term structure model. The structural macro

model replaces the unrestricted VAR set-up adopted in previous research4, and has commonly been

based on a New-Keynesian framework. Hördahl, Tristani and Vestin (2003) find that the forecasting

performance of such model is comparable to that of standard latent factor models. They are also

able to explain part of the empirical failure of the expectations hypothesis. A similar approach

is adopted by Rudebusch and Wu (2003). Bekaert, Cho and Moreno (2006) go one step further

and estimate a similar model based on deep parameters. They ensure that the pricing kernel they

formulate is consistent with their proposed macro model.

The success of the macro-finance models is remarkable given the well-documented dynamic

1Duffee (2002) and Duarte (2004) propose more flexible specifications for the market prices of risk.
2Other papers following this approach include Diebold, Rudebusch and Aruoba (2003).
3A related approach can be found in Berardi (2004).
4For instance, the models presented in Ang and Piazzesi (2003), Dewachter and Lyrio (2006) and

Dewachter, Lyrio and Maes (2006).
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inconsistencies between the long-run implications of the macroeconomic models and the term

structure of interest rates.5 In particular, standard macroeconomic models fail to generate sufficient

persistence to account for the time variation at the long end of the yield curve. The success

of macro-finance models in fitting jointly the term structure and the macroeconomic dynamics

in fact crucially hinges on the introduction of additional inert and independent factors with a

macroeconomic interpretation. For instance, Bekaert et al. (2005), Dewachter and Lyrio (2006) and

Hördahl et al. (2006), among others, introduce a time-varying (partly) exogenous implicit inflation

target of the central bank and show that it accounts for the time variation in long-maturity yields.

The main goal of this paper is to build and estimate macro-finance models that generate these

additional factors endogenously from a macroeconomic framework. To this end, we introduce

learning into the framework of standard macro-finance models.6 Extending macro-finance models

with learning dynamics seems a promising route to model jointly the macroeconomic and term

structure dynamics for two reasons. First, learning generates endogenously additional and

potentially persistent factors in the form of subjective expectations.7 Second, learning, especially

constant gain learning, introduces sufficient persistence in the perceived macroeconomic dynamics

to generate a level factor in the term structure of interest rates. Such a level factor is crucial to

account for the time variation in the long end of the yield curve.8

Our approach connects the macro-finance models of the term structure to the learning

literature.9 Links between learning and the term structure of interest rates are also actively analyzed

in the learning literature. For example, Cogley (2005) uses a time-varying Bayesian VAR to account

for the joint dynamics of macroeconomic variables and the term structure of interest rates. Kozicki

and Tinsley (2005) use a reduced form VAR in macroeconomic and term structure variables and

assume agents have imperfect information with respect to the inflation target. They find that

subjective long-run inflation expectations are crucial in fitting movements in long-maturity yields

and inflation expectations and report a substantial difference between the central bank’s inflation

target and the subjective expectations of the inflation target. Orphanides and Williams (2005a)

introduce long-run inflation expectations in the structural macroeconomic models by substituting

expectations by and calibrating the learning parameters on observed survey data.10 This paper

complements this recent and rapidly growing literature. First, we do not rely on reduced form

VAR dynamics. Instead, we use a standard New-Keynesian model to describe the macroeconomic

dimension and impose consistency of the pricing kernel for the term structure and the macroeconomic

5For instance, Gürkaynak, Sack and Swanson (2005) and Ellingesen and Söderstrom (2004) show that
standard macroeconomic models cannot account for the sensitivity of long-run forward rates to standard
macroeconomic shocks. Also, Kozicki and Tinsley (2001) note that long-run inflation expectations need to
evolve sluggishly over time relative to actual inflation rates to account for the variability at the long end of
the term structure.

6More specifically, we assume imperfect information with respect to the (long-run) values of the inflation
target and the output-neutral real interest rate.

7For instance, Milani (2005) finds that the persistence in the learning dynamics is sufficiently strong to
capture much of the inertia of the macroeconomic series.

8Orphanides and Williams (2005a, b) using a calibrated learning model show that learning affects the
long end of the term structure.

9As an alternative to macro-finance models including learning, some authors have augmented pure finance
models of the yield curve with survey data. Studies using this approach include Kim and Orphanides (2005)
and Chun (2005).
10Other papers using survey expectations as proxies for the theoretical expectations include Roberts

(1997) and Rudebusch (2002).
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dynamics. Second, following Sargent and Williams (2005), we generate the subjective expectations

based on a learning technology that is optimal given the structural equations and the priors of

the agents. Third, we estimate jointly the deep parameters of the structural equations and the

learning parameters. The term structure of interest rates and surveys of inflation expectations

are included as additional information variables in the measurement equation. We find that the

proposed model generates sufficiently volatile subjective long-run expectations of macroeconomic

variables to account for most of the time variation in long-maturity yields and surveys of inflation

expectations. This is achieved without reference to additional latent factors and hence offers an

alternative approach to the current macro-finance literature.

The remainder of the paper is divided in four sections. In Section 2, we present the

macroeconomic framework, which is based on a standard New-Keynesian macro model. We

introduce imperfect information with respect to the long-run targets, the respective priors, and

derive the optimal learning rule. The perceived and actual laws of motion are derived together with

the conditions for stability of the macroeconomic dynamics. The perceived law of motion forms

the basis to generate the implied term structures of interest rates and inflation expectations. The

yield curve model is generated by imposing the standard no-arbitrage conditions with respect to

the perceived law of motion. A model for inflation expectations is generated by working through

the implications of the perceived law of motion. It is shown that both the yield curve and the

inflation expectations can be modeled as affine functions of an extended state space. The estimation

methodology is presented in Section 3. Both the yield curve and surveys of inflation expectations

are used as additional information variables to identify subjective expectations. In Section 4, we

present the estimation results and compare the performance of the estimated models in fitting the

term structure of interest rates. We show that macro-finance models, built on structural equations

and learning explain a substantial part of the time variation of long-maturity yields and inflation

expectations. Subsequently, we apply the model to identify the historical record of the policy stance.

Finally, we conclude in Section 5 by summarizing the main findings of the paper.

2 Macroeconomic dynamics
We use the standard monetary three-equation New-Keynesian framework as presented in, for

instance, Hördahl et al. (2006), Bekaert et al. (2005) and Cho and Moreno (2006). These models

can be considered as minimal versions of a fully structural model (e.g. Christiano, Eichenbaum and

Evans 2005, Smets and Wouters 2003). We adopt this version of the model as it can be considered

the benchmark model in the literature linking macroeconomic dynamics and the term structure.

We follow the standard procedure employed in the learning literature and replace the rational

expectations operator by a subjective expectations operator. This subjective expectations operator

is denoted by EP and is explained in detail in Section 2.2. In the model presented below, subjective

expectations differ from rational expectations in that we assume that agents do not observe the

inflation target of the central bank nor the equilibrium output-neutral real interest rate. Finally, in

Section 2.3 we solve for the macroeconomic dynamics, i.e. the actual law of motion. The solution

is given in the form of a reduced VAR(I) model in an extended state space.
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2.1 Structural equations
The structural model used in this paper is a standard version of the New-Keynesian monetary

model often used in the literature linking term structure to macroeconomic dynamics (see, for

instance, Bekaert et al. 2005 and Hördahl et al. 2006). The model is a parsimonious three-

equation representation of the underlying macroeconomic structure, containing aggregate supply

and IS equations and a monetary policy rule identifying the riskless nominal interest rate. To

account for the persistence in inflation, the output gap and the policy rate, we add indexation,

habit formation and interest rate smoothing to the standard model.

The aggregate supply (AS) equation is motivated by the sticky-price models based on Calvo

(1983). In line with the standard Calvo price-setting theory, we assume a world where only a

fraction of the firms updates prices at any given date, while the non-optimizing firms are assumed

to use some rule of thumb (indexation scheme) in adjusting their prices (e.g. Galí and Gertler

1999). This setting leads to a positive relation between (transitory) inflation on the one hand and

real marginal costs on the other. Additional assumptions are made with respect to the marginal

costs and the indexation scheme of the non-optimizing agents. First, we assume that marginal costs

are proportional to the output gap and an additional cost-push shock, επ. Second, non-optimizing

firms are assumed to adjust prices according to an indexation scheme based on past inflation rates.

The degree of indexation is measured by the parameter δπ and the indexation scheme at time t is

given by π∗+ δπ(πt−1−π∗) with π∗the inflation target and πt−1 the previous period inflation rate.

Following these assumptions, the standard AS curve is given by:

πt = cπ + µπ,1Etπt+1 + µπ,2πt−1 + κπyt + σπεπ,t (1)

cπ = (1− δπ
(1+ψδπ)

− ψ
(1+ψδπ)

)π∗

µπ,1 =
ψ

(1+ψδπ)
, µπ,2 =

δπ
(1+ψδπ)

(2)

where ψ represents the discount factor, and κπ measures the sensitivity of inflation to the output

gap. Given the assumed proportionality of marginal costs and the output gap, κπ is a rescaled

parameter of the sensitivity of inflation to the real marginal cost. Endogenous inflation persistence,

µπ,2 > 0, arises as a consequence of the assumption that non-optimizing agents use past inflation in

their indexation scheme. Finally, we impose long-run neutrality of output with respect to inflation.

Given the set-up of the model, this amounts to setting the discount factor (ψ) to one. Long-run

neutrality is characterized by inflation parameters in the AS equation adding up to one, implying

that µπ,1 = (1− µπ,2).

The IS curve is recovered from the Euler equation on private consumption. Following the recent

strand of literature incorporating external habit formation in the utility function (e.g. Cho and

Moreno 2006), and imposing the standard market clearing condition, we obtain the following IS

equation:

yt = µyEtyt+1 + (1− µy)yt−1 + φ(it −Etπt+1 − r) + σyεy,t (3)

where the parameters µy and φ are functions of the utility parameters related to the agent’s level
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of risk aversion, σ, and (external) habit formation, h:11

µy =
σ

σ+h(σ−1) , φ = −
1

σ+h(σ−1) . (4)

Habit formation is introduced as a means to generate additional output gap persistence. Without

consumption smoothing, i.e. h = 0, the purely forward-looking IS curve is recovered. The demand

shock εy,t refers to (independent) shocks in preferences.12 Equation (3) clarifies the interpretation

of r as an output-neutral real interest rate. Other things equal, ex ante real interest rate levels

(it − Etπt+1) above r reduce output (and inflation), while for ex ante real interest rates below r

output (and inflation) increases. Although we could allow for time variation in this output-neutral

real interest rate, we restrain from doing so in order to avoid additional complexities in the estimation

arising from the fact that this variable is unobservable.

We close the model by specifying a monetary policy in terms of a Taylor rule. Following Clarida,

Galí and Gertler (1999), we use a policy rule accounting both for policy inertia and imperfect policy

control. Policy inertia is modeled through an interest rate smoothing term and imperfect policy

control is modeled by means of an idiosyncratic interest rate shock, εi,t. The monetary policy rate

equation used in this paper is given by:

it =
¡
1− γi−1

¢
iTt + γi−1it−1 + σiεi,t. (5)

We model the central bank’s targeted interest rate, iTt , by means of a Taylor rule in the output gap,

yt, and inflation gap, πt − π∗:

iTt = r +Etπt+1 + γπ(πt − π∗) + γyyt (6)

where π∗ denotes the inflation target of the central bank. This policy rule differs in its appearance

from the standard formulation of Taylor rules as we assign a weight of one to the expected inflation

term. By imposing this condition, we model explicitly the idea that the central bank is actually

targeting an ex ante real interest rate in function of the macroeconomic state, i.e. πt − π∗ and yt.

Modeling monetary policy in terms of an ex ante real interest rate has the advantage that the policy

rule is active (γπ > 0, γy > 0) and stabilizing (κπ > 0, φ < 0), independent of the expectations

formation process.

The model can be summarized in a standard matrix notation by defining the state space by a

vector of macroeconomic variables, Xt = [πt, yt, it]
0, and a vector of structural shocks, εt = [επ,t,

εy,t, εi,t]
0. Using a vector C and matrices A, B, D and S of appropriate dimensions, we write the

structural equations as:

AXt = C +BEtXt+1 +DXt−1 + Sεt. (7)

11We assume the following utility function:

U(Ct) = (1− σ)−1Gt

µ
Ct

Ht

¶1−σ
with Gt an independent stochastic preference factor and an external habit level, Ht, specified as Ht = Ch

t−1.
Note that in order to have a well-defined steady state, the habit persistence needs to be restricted, 0 ≤ h ≤ 1,
as explained in Fuhrer (2000).
12Note that only by linearly detrending output we obtain a one-to-one relation between the shock in the

IS equation and preference (demand) shocks. In general, the interpretation of εy as a demand shock is at
least partially flawed, given the fact that it might also contain shocks to permanent output.
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We assume that the rational expectations model generates a unique and determinate solution. This

solution is given in terms of a structural VAR, where Cre, Φre and Σre contain the structural

restrictions imposed in the rational expectations model:

Xt = Cre +ΦreXt−1 +Σ
reεt. (8)

Endpoints, ξt, refer to long-run expectations of observable macroeconomic variables, Xt (see, for

instance, Kozicki and Tinsley 2001):

ξt = lim
s→∞

EtXt+s. (9)

Within the context of the New-Keynesian framework, endpoints are deterministic and are identified

by solving the rational expectations model for the steady state. Under the restriction that in the

long-run no trade-off exists between the output gap and the monetary policy, i.e. µπ,1 = (1−µπ,2),

the steady state of the model is determined by the level of the inflation target, π∗, the steady state

of the output gap, y∗ (fixed to zero), and the output-neutral real interest rate level, r = r∗:

ξt = lim
s→∞

Et

⎡⎣ πt+s
yt+s
it+s

⎤⎦ = V

⎡⎣ π∗

y∗

r∗

⎤⎦ =
⎡⎣ 1 0 0
0 1 0
1 0 1

⎤⎦⎡⎣ π∗

y∗

r∗

⎤⎦ . (10)

The mapping V is determined within the rational expectations model. In a rational expectations

framework, the inflation target determines the long-run inflation expectations. The long-run

expectations for the output gap are fixed at y∗ = 0 and the long-run expectations concerning the

nominal interest rate are determined by the Fisher hypothesis, linking the endpoint of the interest

rate to the sum of the real interest rate and the inflation expectations. Finally, we can rewrite

the rational expectations solution in an extended state space, consisting both of the observable

macroeconomic variables Xt and their respective endpoints ξ, X̃t = [X
0
t, ξ

0] as:∙
Xt

ξ

¸
=

∙
Φre (I − Φre)
0 I

¸ ∙
Xt−1
ξ

¸
+

∙
Σre

0

¸
εt. (11)

2.2 Perceived law of motion
In this section, we introduce the perceived law of motion (PLM). We discuss the specific priors

of agents and the optimal learning rule implied by these priors. We assume that agents believe

a priori in structural changes in the economy. As in Sargent and Williams (2005), we derive an

optimal learning rule given such priors and the structural equations. Subsequently, we discuss the

implications of the perceived law of motion for the term structure of interest rates and the term

structure of inflation expectations.

2.2.1 Priors and learning. We deviate from the standard rational expectations framework by

introducing a set of priors describing agents’ subjective beliefs. Agents are assumed to believe

in stochastic endpoints, ξPt , for the macroeconomic variables. We differentiate between the

deterministic endpoints of the structural equations, ξ, and the perceived stochastic endpoints,

ξPt . The priors of the agents are modeled in terms of a vector error-correction model (VECM)

specification for the macroeconomic variables:

Xt = ξPt +Φ
P (Xt−1 − ξPt ) +Σ

P εt

ξPt = V P ζPt

ζPt = ζPt−1 +Σζvζ,t.

(12)
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The time variation in the stochastic endpoints ξPt is due to time variation in the underlying stochastic

trends in the economy, ζPt = [π∗Pt , y∗Pt , r∗Pt ], representing the vector containing the perceived

inflation target, π∗Pt , the perceived long-run output gap, y∗Pt (fixed to zero), and the perceived

long-run output-neutral real interest rate, r∗Pt . Agents thus believe in time variation in either the

inflation target or the output-neutral real interest rate and hence use a misspecified model. Imperfect

information and/or imperfect credibility of monetary policy (with respect to the implicit inflation

target) can be used to justify intuitively this modeling assumption. The priors on the standard

deviations of the shocks to the stochastic trends, representing a measure of the uncertainty of

agents, is given by Σζ :

Σζ =

⎡⎣ σζ,π 0 0
0 σζ,y 0
0 0 σζ,r

⎤⎦ . (13)

The matrix V P , describing the cointegration relations between the macroeconomic variables Xt and

the stochastic trends ζPt , maps the stochastic trends into stochastic endpoints, ξ
P
t = V P ζPt . We

assume that agents know the structure of the economy such that we identify V P by its rational

expectations equivalent, V P = V. Equation (12) can be used to show that the stochastic endpoints

also determine the long-run subjective expectations of the agents. Denoting the expectations

operator consistent with the agents’ priors by EP
t , it can be verified that

lim
s→∞

EP
t Xt+s = ξPt = V ζPt (14)

or equivalently

lim
s→∞

EP
t

⎡⎣ πt+s
yt+s
it+s

⎤⎦ = V

⎡⎣ π∗Pt
y∗Pt
r∗Pt

⎤⎦ =
⎡⎣ 1 0 0
0 1 0
1 0 1

⎤⎦⎡⎣ π∗Pt
y∗Pt
r∗Pt

⎤⎦ . (15)

The priors about the transitory dynamics, i.e. the dynamics relative to the stochastic endpoints,

are assumed to coincide with the ones implied by the rational expectations model. This implies

that the matrices ΦP and ΣP are identical to their rational expectations equivalents: ΦP = Φre

and ΣP = Σre. By equating the perceived transitory dynamics to those implied by the rational

expectations model, we obtain that the perceived law of motion differs from the rational expectations

solution only due to the introduction of stochastic endpoints.13 As a consequence, the rational

expectations solution is nested in the perceived law of motion. By imposing the rational expectations

prior, i.e. Σζ = 0, π∗Pt = π∗, y∗Pt = 0 and r∗Pt = r, the perceived law of motion coincides with the

rational expectations solution (eq. (8)).

The stochastic trends ζPt and the structural shocks εt are assumed to be unobservable. Agents,

therefore, face an inference problem for the stochastic endpoints ξPt , which is solved by means of

a mean squared error (MSE) optimal Kalman filter learning rule. Denoting the inferred values for

the stochastic endpoints by ξPt|t, the learning algorithm becomes:

ξPt|t = ξPt−1|t−1 +K(Xt −EP
t−1Xt) (16)

13Note that the analysis can be extended by allowing for differences between ΦP and Φre or between ΣP

and Σre. We refrain from this extension due to the unnecessary additional complexity in the learning rules.
Since the main goal of this paper is to explain time variation in long-run yields, allowing for stochastic
endpoints seems more appropriate.
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where K is obtained as the steady-state solution to the Kalman filtering equations:

Kt = Pt|t−1(I − ΦP )0F−1t

Ft = (I − ΦP )Pt|t−1(I − ΦP )0 +ΣPΣP 0

Pt+1|t = Pt|t−1 − Pt|t−1(I − ΦP )0F−1t (I − ΦP )Pt|t−1 +ΣζΣ0ζ .

(17)

The final PLM can be written in extended state space, with ηt = [ε
0
t, v

0
ζ,t]

0, as:

X̃t = Φ̃
P X̃t−1 + Σ̃

P ηt (18)

or equivalently:∙
Xt

ξPt

¸
=

∙
ΦP (I − ΦP )
0 I

¸ ∙
Xt−1
ξPt−1

¸
+

∙
ΣP (I − ΦP )V Σζ
0 VΣζ

¸ ∙
εt
vζ,t

¸
. (19)

Comparing the perceived law of motion, eq. (19), with the dynamics in extended state space of the

rational expectations solution, eq. (11), brings forward the differences and congruencies between

the two models. Assuming ΦP = Φre and ΣP = Σre, the main difference lies in the dynamics of

the endpoints. Under the perceived law of motion endpoints are stochastic while in the rational

expectations model they are deterministic.

2.2.2 The term structure of interest rates. Standard no-arbitrage conditions are used to
generate bond prices consistent with the perceived law of motion. Imposing no-arbitrage under

the PLM reflects the view that bond prices are set by the private sector and should, therefore, be

consistent with the perceived dynamics and information set of these agents. Within the context of

default-free, zero-coupon bonds, no-arbitrage implies a pricing equation of the form:

Pt(τ) = EP
t (Mt+1Pt+1(τ − 1)) (20)

where EP denotes the subjective expectations operator generated by the PLM (see eq. (19)), P (τ)

denotes the price of a default-free, zero-coupon bond with maturity τ , and Mt denotes the pricing

kernel consistent with the PLM. We follow Bekaert et al. (2005) in using the utility function

implied by the macroeconomic framework to identify the prices of risk. While this approach has

the advantage of guaranteeing consistency of the pricing kernel, it comes at the cost of loss of

flexibility in modeling the prices of risk.14 The (log) pricing kernel, consistent with the PLM is the

homoskedastic (log) pricing kernel:

mt+1 = −it −
1

2
σ2m − Ληt+1 (21)

where the prices of risk, Λ, are determined by the structural parameters

Λ = σeyΣ̃
P + eπΣ̃

P − σyey (22)

where ex denotes a vector selecting the elements of the x-equation, i.e. ey selects the row of Σ̃P

related to the y-equation. No-arbitrage restrictions imposed on conditional Gaussian and linear

14The standard approach in modeling the term strcture is to assume a generally affine term structure
representation. As shown by Duffee(2002) and Dai and Singleton (2000), general affine representations do
not restrict the prices of risk to be constant.
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state space dynamics generate exponentially affine bond pricing models (see, for instance, Ang and

Piazzesi 2003):

P (τ) = exp(a(τ) + b(τ)X̃t|t) (23)

where X̃t|t denotes the inferred state vector, obtained by replacing ξPt by its inferred value ξPt|t,

X̃t|t = [X
0
t, ξ

P 0
t|t]

0. The factor loadings a(τ) and b(τ) can be obtained by solving difference equations

representing the set of non-linear restrictions imposed by the no-arbitrage conditions:

a(τ) = −δ0 + a(τ − 1)− (b(τ − 1))Σ̃PΛ0 + 1
2
b(τ − 1)Σ̃P Σ̃P 0b(τ − 1)0 (24)

b(τ) = b(τ − 1)Φ̃P − δ01

with δ0 = 0, and δ1 implicitly defined by the identity it = δ01X̃t|t. The system has a particular

solution given the initial conditions a(0) = 0 and b(0) = 0.

Exponentially affine bond price models lead to affine yield curve models. Defining the yield of

a bond with maturity τ1 by y(τ1) = −ln(Pt(τ1))/τ1 and the vector of yields spanning the term
structure by Yt = [yt(τ1), ..., yt(τn)]0, the term structure can be written as an affine function of the

extended state space variables:

Yt = Ay +ByX̃t|t + vy,t (25)

where Ay and By denote matrices containing the maturity-specific factor loadings for the yield

curve (Ay = [−a(τ1)/τ1, ...,−a(τn)/τn]0 and By = [−b(τ1)0/τ1, ...,−b(τn)0/τn]0), and vy,t contains

maturity-specific measurement errors.

2.2.3 The term structure of inflation expectations. The representation of the term structure
of inflation expectations is obtained from the PLM by iterating the model forward. It is

straightforward to show that the linearity of the PLM generates an affine representation for the

term structure of inflation expectations in the extended state space, X̃t|t. The term structure of

average inflation expectations is described by

EP
t π̄(τ) =

1

τ

τ−1X
i=0

EP
t (πt+i) = eπ(as(τ) + bs(τ)X̃t|t) (26)

where EP
t π̄(τ) denotes the time t average inflation expectation over the horizon τ , eπ denotes a

vector selecting πt out of the vector X̃t|t, and ae(τ), be(τ), as(τ) and bs(τ) are maturity-dependent

functions generated by the system:

ae(τ) = 0, be(τ) = be(τ − 1)Φ̃P

as(τ) = 0, and bs(τ) =
1
τ

τ−1P
i=0

be(i)
(27)

solved under the initial conditions ae(0) = 0 and be(0) = I. Equation (26), applied over varying

horizons τ , forms the model-implied term structure of average inflation expectations. The term

structure of inflation expectations, unlike the term structure of interest rates, is not observable.

We use surveys of average inflation expectations for different maturities as a proxy for the term

structure of inflation expectations. We relate these surveys, s(τ), to the model-implied average

inflation expectations by allowing for idiosyncratic measurement errors, vs,t, in the survey responses:

st(τ) = eπas(τ) + eπbs(τ)X̃t|t + vs,t (28)
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where st(τ) denotes the time t survey response concerning the average inflation expectations

over the horizon τ . Finally, denoting the vector containing a set of surveys of inflation

expectations for different horizons by St = [st(τ1), ..., st(τm)]
0, and defining As = 0 and Bs =

[(eπbs(τ1))
0, ..., (eπbs(τm))

0]0, equation (28) can be restated as:

St = As +BsX̃t|t + vt. (29)

2.3 Actual law of motion
The actual law of motion (ALM), describing the observed dynamics of macroeconomic variables, is

obtained by substituting the subjective expectations (19) into the structural equations (7). Since

the subjective expectations are formed on the basis of the inferred stochastic endpoints, ξPt|t, and

on observable macroeconomic data, the relevant space of the ALM coincides with that of the PLM,

i.e. X̃t|t. Due to the simplicity of the learning algorithm, the ALM can be solved in closed form. In

Appendix A, we show that the ALM reduces to a standard VAR(I) in the extended state space:

X̃t|t = C̃A + Φ̃AX̃t−1|t−1 + Σ̃
Aεt (30)

with

C̃A =

∙
(A−B(ΦP +KΦ))

−1C
K(A−B(ΦP +KΦ))

−1C

¸

Φ̃A =

∙
ΦP (A−B(ΦP +KΦ))

−1B(I −KΦ)(I − ΦP )
0 I −K(I − (A−B(ΦP +KΦ))

−1B(I −KΦ))(I − ΦP )

¸

Σ̃A =

∙
(A−B(ΦP +KΦ))

−1S
K(A−B(ΦP +KΦ))

−1S

¸
(31)

and KΦ = (I − ΦP )K, A, B and S and ΦP determined by the parameters of the structural

equations, and K the constant gain matrix implied by the agents’ priors. The closed form solution

can be used to highlight some of the properties of the ALM. First, subjective beliefs about the

stochastic endpoints are only relevant for the actual macroeconomic dynamics to the extent that an

expectation channel exists, i.e. B 6= 0. If an expectations channel exists, the extension of the state
space becomes relevant and perceived stochastic trends affect macroeconomic outcomes. One aspect

in which macroeconomic dynamics may be affected concerns the modeling of persistence. Under

rational expectations, persistence is driven by inflation indexation, habit persistence, and interest

rate smoothing affecting the roots of the Φre = ΦP matrix. Learning introduces an additional source

of persistence in the form of the persistence in the subjective expectations, ξPt|t. Persistence in the

beliefs follows itself from the inertia in the learning rule, i.e. the updating procedure. Milani (2005)

shows in a different context that persistence due to learning is important and (partly) takes over

the role of inflation indexation and habit formation. In the empirical section we find similar results,

especially for inflation persistence and interest rate smoothing.

Second, the rational expectations model is nested within the learning framework. By imposing

the priors consistent with rational expectations, i.e. Σζ = 0 and ξ
P
t|t = V [π∗, 0, r]0, it can be verified

that the ALM simplifies (as K = 0) to the rational expectations reduced form, equation (8). Third,

the nonstationarity of the PLM does not necessarily carry over to the ALM. The eigenvalues of the

matrix Φ̃A depend both on the structural parameters contained in A, B, ΦP and on the learning

parameters K. Finally, if the ALM is stationary, the unconditional distribution of the extended
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state space vector X̃t|t is identified. Conditional on the maintained assumption of normality of the

structural shocks, εt, this distribution is given by:

X̃t|t ∼ N(EX̃t|t,ΩX̃) (32)

with:

EX̃t|t =

∙
(I − Φre)−1Cre

(I − Φre)−1Cre

¸
vec(ΩX) = (I − Φ̃A ⊗ Φ̃A)−1vec(Σ̃AΣ̃A

0
).

Equation (32) represents the unconditional distribution for the extended state under learning. This

distribution is characterized by two properties. First, as far as unconditional means are concerned,

the ALM and the rational expectations model are observationally equivalent. The unconditional

mean of the rational expectations model, i.e. (I − Φre)−1Cre, coincides with the unconditional

mean under the ALM for both the observable macroeconomic variables (inflation, output gap,

and policy rate) and the perceived long-run expectations of the agents. The rational expectations

model thus serves as a benchmark in mean for the model under learning. Second, in line with the

literature on constant gain learning (e.g. Evans and Honkapohja 2001), the unconditional variance

of the stochastic endpoints, ξPt|t, is in general positive, implying non-convergence of the stochastic

endpoints to the true values implied by the rational expectations equilibrium, [π∗, 0, r + π∗]0.

3 Estimation methodology
The actual law of motion for both macroeconomic variables and the inferred stochastic endpoints is

used to estimate both the structural and the learning parameters. In order to identify the subjective

beliefs, we use information variables directly related to the PLM, i.e. the term structure of interest

rates and inflation expectations. In Section 3.1, we discuss the details of the estimation procedure.

Subsequently, in Section 3.2, we explain the different versions of the model that are estimated.

3.1 Maximum likelihood estimation
The model is estimated by means of loglikelihood in the extended state space with the ALM

dynamics serving as the transition equation:

X̃t|t = C̃A + Φ̃AX̃t−1|t−1 + Σ̃
Aεt (33)

and a measurement equation, relating the extended state to observable economic variables. The

observable variables included in the measurement equation consist of macroeconomic variables, Xt

(inflation, output gap, and policy rate), a sample of yields spanning the term structure of interest

rates, Yt (1, 2, 3, 4, 5 and 10 year yields), and a sample of the term structure of inflation expectations,

proxied by survey data on inflation expectations, St (1 and 10 year average inflation expectations).15

15Survey expectations are increasingly used in the empirical literature. One of the earlier papers using
survey expectations is Roberts (1997), showing that models including survey expectations can account for
some of the (unexplained) inflation inertia. Orphanides and Williams (2005a) use survey expectations to
calibrate the learning parameter in their macro model.
Survey expectations are also starting to be used in the bond pricing literature. For instance, Kim and

Orphanides (2005) use survey expectations on short-term interest rate movements as an additional input
in a otherwise standard Vasicek model. Also, Chun (2005) uses several survey expectations as additional
inputs in a two-factor term structure model̇.
Finally, Bekaert et al. (2005) show the empirical relevance of surveys (on inflation) by showing that

surveys help to forecast inflation better than any rational expectations model.
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The observable variables are collected in the vector Zt = [X 0
t, Y

0
t , S

0
t]
0. Using the affine representation

of each of these variables in the extended state space, as discussed in Section 2.2, the measurement

equation becomes:

Zt = Am +BmX̃t|t + vz,t (34)

where vz,t denotes idiosyncratic measurement errors with variance-covariance matrix Ψ and Am and

Bm represent the derived affine representations of the respective subsets of observable variables Xt,

Yt and St (BX is defined as: Xt = BXX̃t|t, i.e. BX = [I3×3, 03×3], Ay, As, By and Bs are defined

in equations (25) and (29), respectively):

Am =

⎡⎣ 0
Ay

As

⎤⎦ , Bm =

⎡⎣ BX

By

Bs

⎤⎦ and Ψ =

⎡⎣ 0 0 0
0 Ψy 0
0 0 Ψs

⎤⎦ .
Prediction errors, Zt−EA

t−1Zt, and their corresponding loglikelihood value l(Zt−EA
t−1Zt; θ), where

EA
t−1 denotes the expectations operator based on the ALM, are functions of both the structural

macroeconomic shocks and the measurement errors:

Zt −EA
t−1Zt = Bm(X̃t|t −EA

t−1X̃t|t) + vz,t = Bm(Σ̃
Aεt) + vz,t

l(Zt −EA
t−1Zt; θ) = −12 |ΩZ |−

1
2(Zt −EA

t−1Zt)
0Ω−1Z (Zt −EA

t−1Zt)

ΩZ = BmΣ̃
AΣ̃A0B0

m +Ψ.

(35)

One contribution of this paper is that the deep parameters of the structural equations and

the parameters of the learning procedure are estimated jointly based on a wide variety of

information variables, i.e. macroeconomic variables, term structure variables, and surveys of

inflation expectations.16 The parameters to be estimated are collected in the parameter vector θ,

containing the deep parameters of the structural equations (δπ, κπ, σ, h, r, π∗, γπ, γy, γi−1, σπ, σy, σi),

the learning parameters (priors on the volatility of the stochastic trends σζπ, σζr, and initial values

ζ0|0), and the variances of the measurement errors (diag(Ψ)):

θ =
n
δπ, κπ, σ, h, r, π

∗, γπ, γy, γi−1, σπ, σy, σi, σζπ, σζr, ζ0|0, diag(Ψ)
o
. (36)

Not all deep parameters and learning parameters are estimated. We follow Hördahl et al. (2006) and

Bekaert et al. (2005) by fixing the discount factor to one, ψ = 1. Also, throughout the estimation

the prior on the uncertainty of the long-run value for the output gap is restricted to zero, σζ,y = 0.

This restriction guarantees that the long-run expected output gap is fixed to zero under the PLM.

Furthermore, we impose the theoretical constraints σζ,π, σζ,r ≥ 0 and 0 ≤ h ≤ 1. Finally, parameter
estimates are constrained to satisfy two conditions. First, parameter estimates must be consistent

with the existence of a unique rational expectations solution. Second, under learning, parameter

estimates should imply eigenvalues of Φ̃A strictly smaller than one in absolute value in order to

guarantee stability of the ALM. The model is estimated using a Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm.

16Other research estimating the learning parameters include Orphanides and Williams (2005a) and Milani
(2005). Orphanides and Williams (2005a) estimate the constant gain by minimizing the distance between
the model-implied inflation expectations and those reported in the survey of professional forecasters. Milani
(2005) estimates jointly, using Bayesian methods, the constant gain and the deep parameters of a structural
macroeconomic model. We complement their analyses by including more information in the measurement
equation, notably term structure of interest rates.
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3.2 Estimated versions of the model
We estimate a total of six models. Model versions differ depending on (i) the type of information

included in the measurement equation, and (ii) the assumptions made concerning the learning

procedure. Four versions are based on the baseline model presented in the previous section, and

two versions are extensions allowing for heterogeneity in the monetary policy.

Regarding the information included in the measurement equation, we distinguish between the

Macro and the general versions of the model. In the Macro version, we restrict the measurement

equation to incorporate only macroeconomic information, while in the general models we include all

available information. The Macro version of the model is motivated by the concern that including

term structure and survey information in the measurement equation may bias the estimates of

the deep and learning parameters in order to fit the term structure and the survey expectations.

To avoid such problem, a two-step procedure is employed. In the first step, the deep and learning

parameters are estimated while restricting the measurement equation to contain only macroeconomic

variables. In the second step, we fix the parameter estimates for the deep and learning parameters

obtained in the first step and optimize the likelihood, based on the full measurement equation, over

the remaining parameters, diag(Ψ). This procedure ensures that deep and learning parameters are

only based on the macroeconomic information included in the measurement equation, while the

remaining parameters adjust to optimize the fit of the term structure and survey expectation part

of the model. In the general version of the model, the estimation of all parameters is performed in

one step, on the basis of the most general measurement equation.

We estimate both rational expectations and learning versions of the model. The learning versions

of the model include four additional parameters, σζ,π, σζ,r and the starting values for the stochastic

trends, ζ0|0, describing the priors of the agents. The differentiation between rational expectations

and learning models identifies the contribution of learning to the overall fit of the respective series.

The four baseline models can be summarized as follows:

• Rational Expectations Macro: the rational expectations version is estimated using a two-step
approach ensuring that the deep parameters are based only on macroeconomic information.

• Rational Expectations I: the rational expectations version is estimated using a one-step
approach based on the general measurement equation.

• Learning Macro: the learning version is estimated using a two-step approach ensuring that
the deep parameters are based only on macroeconomic information.

• Learning I: the learning version is estimated using a one-step approach based on the general
measurement equation.

In addition to the four baseline models, we estimate two extensions to allow for heterogeneity

in the monetary policy rule and in the agents’ priors. The heterogeneity is modeled by means of

chairman-specific policy rules and priors.17 Specifically, the time-invariant policy rule parameters

17This procedure differs from other research that allows for time variation in the inflation target. For
instance, Dewachter and Lyrio (2006), Kozicki and Tinsley (2005), and Hördahl et al. (2005) allow for
variation in the inflation target of the central bank by modeling the inflation target as a inert autoregressive
process. This approach results in quite variable inflation target dynamics. In contrast, this paper allows
for discrete jumps in the inflation target at pre-specified dates. Beyond these dates, the inflation target is
constant.
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π∗, γπ, γy and γi−1 of the baseline models are replaced by chairman-specific parameters π∗j ,

γπ,j , γy,j and γi−1,j , where j denotes the presiding chairman.18 The heterogeneity in priors is

modeled analogously by replacing the learning parameters σζ,π and σζ,r by their chairman-specific

equivalents, σζ,π,j and σζ,r,j . We estimate both the rational expectations version of this model,

labeled Rational Expectations II and the learning version of the model, labeled Learning II. The

model versions Rational Expectations I and Learning I, implying time-invariant policy rules and

beliefs, are nested in the respective extensions and hence identify the contribution of allowing for

policy heterogeneity in the overall fit.19

4 Estimation results
4.1 Data
We estimate the proposed models using quarterly data for the USA. The data covers the period

from 1963:Q4 until 2003:Q4 (161 quarterly observations). The data set contains three series of

macroeconomic observations obtained from Datastream: the quarter—by-quarter inflation (based

on the Consumer Price Index - CPI, and collected from the Bureau of Labour Statistics), the

output gap (constructed as the log of GDP minus the log of the natural output level, based on

Congressional Budget Office data), and the Federal funds rate, representing the policy rate. Next

to the macroeconomic variables, the data set includes six yields, spanning the yield curve, with

maturities of 1, 2, 3, 4, 5 and 10 years. The data for yields up to five years are from the CRSP

database.20 The ten-year yields were obtained from the Federal Reserve. Finally, we also use

survey data on short- and long-run inflation expectations. More specifically, we include the one-

and ten-year average inflation forecast, as reported by the Federal Reserve Bank of Philadelphia in

the Survey of Professional Forecasters.

Table 1 presents some descriptive statistics on the data set described above. These statistics

point to the usual observations: the average term structure is upward sloping; the volatility of yields

is decreasing with the maturity; normality is rejected for all series (based on JB statistics); and all

variables display significant inertia, with a first order autocorrelation coefficient typically higher

than 0.90. Inflation displays a somewhat lower inertia, i.e. an autocorrelation coefficient of 0.76.

Insert Table 1 and Figure 1

Table 1 also presents the correlation structure of the data. Three data features can be

highlighted. First, the yields are extremely correlated across the maturity spectrum. This points

to the well-known fact that a limited number of factors account for the comovement of the yields.

Second, there is a strong correlation between the term structure and the macroeconomic variables,

18The chairmen included in the analysis are Martin (1951-1970), Burns (1970-1978), Miller(1978-1979),
Volcker (1979-1987) and Greenspan (1987-2006). One exception is made to this rule. We divide the Volcker
period in two sub-periods in order to account for the well-documented change in monetary policy that took
place during this term, i.e. the change from monetary targeting to a more convential monetary policy. The
first Volcker period ends in 1982Q3.
19For an analysis of regime changes on monetary policy, see Schorfheide (2005) or Sims and Zha (2004).

Schorfheide finds evidence in favor of regime switches in monetary policy, while the evidence is less
pronounced in Sims and Zha (2004). Both papers make use of Markov switching techniques identifying
the regime breaks endogeneously. We, in contrast, fix the dates of the breaks to the moments of a change
in the Fed chairman.
20We thank Geert Bekaert, Seonghoon Cho and Antonio Moreno for sharing the data set.
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with significant positive correlations between inflation and the term structure and significant

negative correlations between the term structure and the output gap. These correlation patterns

are an indication of common factors driving macroeconomic and yield curve dynamics. Finally,

we observe a substantial and positive correlation between the surveys of inflation expectations and

both the macroeconomic variables (especially inflation and the Federal funds rate) and the yield

curve. Again, this suggests that the factors affecting the yield curve and macroeconomic variables

also drive movements in the surveys of inflation expectations.

4.2 Parameter estimates
Tables 2 and 3 report the estimation results for the rational expectations versions of the model.

Our estimates for the Rational Expectations Macro model (Table 2) are broadly in line with the

literature. We observe a mild domination of the forward looking terms for both the AS and IS

curves (µπ,1 = 0.524 and µy = 0.509, respectively). The deviation from the purely forward-looking

model (µπ,1 = 1 and µy = 1) is explained by the relatively high values for the inflation indexation

parameter, δπ, and the habit persistence, h, estimated at 0.91 and 1, respectively. Both estimates

for the inflation sensitivity to the output gap, κπ, and the sensitivity of the output gap with respect

to the real interest rate, φ, are quite small, 0.00055 and −0.019, respectively. These values are much
smaller than the ones typically used in calibration-based studies. However, they are commonly

found in empirical studies using GMM or FIML methods. Our estimates imply an active monetary

policy rule. The ex ante real interest rate reacts positively to both the inflation and the output

gap, γπ = 0.674 and γy = 0.569. Significant smoothing is also observed in the policy rule. As often

found in the literature, some of the estimated parameters are not statistically significant. Similar

results have been reported by, for instance, Cho and Moreno (2006).

Including the yield curve and the inflation survey data in the measurement equation tends

to affect the parameters significantly. First, the estimated persistence decreases, as shown by the

decrease in the indexation parameter δπ, which takes a value of 0.67 in the Rational Expectations

II model, and by the decrease in the habit persistence, h, both for the Rational Expectations I and

II models to respectively 0.738 and 0.721. As a result of the drop in the indexation and/or the habit

persistence, the forward-looking components (µπ,1 and µy) in the AS and IS equation increase. The

estimates of monetary policy rule indicate for all versions of the model that (i) monetary policy is

relatively inert, and (ii) the Taylor principle is satisfied since the ex ante real interest rate tends

to increase with both the inflation gap and the output gap. The estimated inflation and output

gap responses do vary across the alternative versions. Based on the results in Table 3, we find, as

Clarida et al. (2000), a strong increase in the responsiveness to the inflation gap during the Volcker

and Greenspan periods.

Insert Tables 2 and 3

Tables 4 and 5 report the estimation results for the versions where learning is introduced. The

central parameters in the analysis, distinguishing learning models from rational expectations models,

are the standard deviations of the perceived stochastic trends ζPt , σζ,π and σζ,r.
21 Our estimates for

these parameters are statistically significant, indicating a rejection of rational expectations models.

This finding holds irrespective of the version of the learning model and indicates the importance

21Note that the parameter σζ,y was fixed to zero to be consistent with the assumption of long-run neutrality
of money, see Section 2.
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of the learning specification in modeling the joint dynamics of the macroeconomic variables, the

yield curve and the survey expectations. Also, the estimated standard deviations, σζπ and σζr,

are quite large and substantial variation in the estimates is observed across versions. The time

series of subjective expectations, i.e. the stochastic trends ξPt|t implied by learning specification, are

discussed below. The introduction of learning dynamics affects significantly the estimates of the deep

parameters relative to those obtained for the rational expectations models. First, learning lowers

significantly the degree of persistence derived from both the inflation indexation, δπ, and the interest

rate smoothing, γi−1. Across learning models, we find that the forward-looking component in the AS

equation (µπ,1) increases substantially and significantly relative to the rational expectations versions

of the model. This increase is explained by the decrease in the inflation indexation parameter.22

The interest rate smoothing parameter drops significantly to values on average around 0.7 in the

learning cases, which are more in line with Rudebusch (2002). A second effect of learning is that the

inflation sensitivity to the output gap increases (for the Learning I and II models). We estimate κπ
levels of 0.05 and 0.012 in the Learning I and II models. Finally, note that one problematic feature

of the estimation in the learning models is the identification of the inflation targets and the real

interest rate r. Although these parameters are identified in the ALM, the standard errors of these

parameters are very large, pointing to a high degree of uncertainty with respect to these parameters.

This drop in significance can be attributed to the fact that the stochastic endpoints take over the

role of these parameters in the expectation formation process.

Insert Tables 4 and 5

The size and significance of the standard deviations of the stochastic trends, σζ,π and σζ,r,

establish the importance of the learning dynamics in the models. Figures 2 to 4 present the time

series for inflation, the real interest rate and the policy rate, together with their endpoints, according

to either the rational expectations or the learning version of the model. Endpoints, representing long-

run (subjective) expectations, are deterministic in the rational expectations model and stochastic in

the learning versions of the model. Each figure also differentiates between Macro and full versions of

the model. Figure 2 illustrates the effects of introducing learning on long-run inflation expectations.

Without learning, long-run inflation expectations are anchored by the inflation target of the central

bank. These inflation targets were estimated in the range of 3 to 4 percent per year. Allowing for

chairman-specific policy rules in the rational expectations models results in significant differences

of the inflation targets across chairmen, as depicted in the Rational Expectations II model. The

estimates of the inflation targets show a gradual increase over the seventies until the ending of the

Volcker experiment. Subsequently, according to the estimates, inflation targets gradually fell over

time (around 5.2% in the second Volcker period and around 3.2% during the Greenspan terms).

Especially, the gradual decline in inflation targets seems unrealistic given the strong deflationary

policy conducted by Volcker.23

Insert Figures 2, 3, and 4

22The decrease in the inflation indexation as a consequence of the introduction of learning is also found
in other studies. For instance, Milani (2005), introducing constant gain learning in a New-Keynesian
macroeconomic model, finds an even stronger effect, with the inflation indexation parameter close to zero
after the introduction of learning.
23One explanation for the observed time series of inflation targets is that inflation targets adapt so as to

fit the surveys of inflation expectations. Since under rational expectations long-run expectations coincide
with the inflation targets, inflation targets need to track the survey of inflation expectations. Some evidence
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The right-hand side panels of Figure 2 depict inflation together with the subjective long-run

inflation expectations under learning. In contrast to the rational expectation versions, inflation

targets and subjective long-run inflation expectations are no longer identical. Sizable and inert

deviations of the subjective expectations from the inflation target are observed. This difference

between inflation targets and long-run inflation expectations is observed irrespective of the specific

modeling assumptions with respect to monetary policy (comparing Learning I and Learning II)

and irrespective of the amount of information included in the measurement equation (comparing

Learning Macro and Learning I and II). Moreover, the observed stochastic endpoints are remarkably

similar across model specifications. Finally, note that the estimated chairman-specific inflation

targets are more in line with the historical record of US monetary policy (although, as mentioned

above, the inflation targets are very imprecisely estimated). Estimates of time-varying inflation

targets, in line with our results, can be found in Kozicki and Tinsley (2005) and Milani (2005).

Figure 3 depicts the real interest rate and the long-run expectations under rational expectations

and learning. The estimates in the rational expectations models for the long-run real interest rate

coincide with the estimated real interest rate (between 2.5% and 3%). In the learning specifications,

we find again that subjective long-run expectations for the real interest rate deviate from its rational

expectations value. However, unlike inflation expectations, the real rate expectations are closer

to the values implied by the rational expectations models. Again, we observe strong similarities

in the time series irrespective of the details of the specific learning models. Finally, Figure 4,

using the Fisher parity in the long-run, adds inflation and real interest rate expectations to obtain

long-run expectations for the short-run policy interest rate. Under learning, we observe again

the sizable differences between implied rational expectations endpoints and the subjective long-

run expectations. Given the differences in the variability of respectively inflation and real interest

rate expectations under learning, expectations for the nominal rate are dominated by inflation

expectations.

4.3 Comparing learning and rational expectations models
4.3.1 BIC and likelihood decomposition. We use two measures to compare the six models.
An overall evaluation of the model fit across versions is based on the Schwarz Bayesian Information

Criterion (BIC) criterion. The BIC criterion, though not a formal statistical test, is used to take

into account the fact that (i) we use different procedures to estimate some of the versions (i.e.

Macro and general versions) and (ii) that, although the rational expectations and learning models

are nested, standard likelihood ratio tests are not appropriate since the parameter restrictions of the

rational expectations models are on the boundary of the admissible parameter space, i.e. σζπ = 0

and σζπ = 0.

A second informal measure used to compare the alternative versions of the model is based on a

decomposition of the likelihood. The overall likelihood is decomposed according to the contributions

of the macroeconomic shocks and the respective measurement errors in the term structure and survey

of inflation expectations and can be used to analyze the fit of the alternative models across each of

in favor of this interpretation can be found in Table 6. Comparing the macro part of the likelihood, one
observes a drop from the Rational Expectations I to the Rational Expectations II model, indicating that
allowing for chairman-specific inflation targets worsened the macroeconomic fit. This drop in likelihood is
more than compensated by the increase in likelihood in the term structure of interest rates and the survey
parts of the likelihood.
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these dimensions. The decomposition of the loglikelihood is given by:

l(Zt−EA
t−1Zt; θ) = l1(Xt−EA

t−1Xt; θ)+l2(Yt−EA
t−1Yt; θ,Xt−EA

t−1Xt)+l3(St−EA
t−1St; θ,Xt−EA

t−1Xt)

(37)

l1 ∝ −12
¯̄̄
BXΣ̃

AΣ̃A0B0
X

¯̄̄
− 1

2(Xt −EA
t−1Xt)

0(BXΣ̃
AΣ̃A0B0

X)
−1(Xt −EA

t−1Xt)

l2 ∝ −12 |Ψy|−
1
2 (Yt −Ay +ByX̃t|t)

0(Ψy)
−1(Yt −Ay +ByX̃t|t)

l3 ∝ −12 |Ψs|−
1
2(St −As +BsX̃t|t)

0(Ψs)
−1(St −As +BsX̃t|t)

where we interpret the components l1, l2 and l3 as the likelihood of the macroeconomic prediction

errors, and of the measurement errors in the term structure and survey of inflation expectations,

respectively.

The results for the BIC and the likelihood decomposition are presented in Table 6. From this

table, we conclude that learning is important in the overall fit of the model. According to the

BIC, learning models in general outperform their rational expectations counterparts. This finding is

independent of the information included in the measurement equation. Moreover, learning does not

only improve on the specific rational expectations counterpart, but leads to an overall improvement,

irrespective of the specific model specification. For instance, even though the parameterization of

the Learning I model is tighter, it still outperforms the Rational Expectations II model, i.e. a

rational expectations model including chairman-specific policy rules. The overall improvement of

learning over rational expectations models cannot be entirely attributed to a better fit in the survey

and the yield curve dimensions. Excluding both types of series from the measurement equation

does not overturn the finding of the better performance of the learning models. In particular,

comparing the two models estimated on measurement equations only incorporating macroeconomic

information (Rational Expectations Macro and Learning Macro), one observes an improvement in

the fit (according to the BIC). Finally, selecting on the BIC, the preferred model is the Learning

II model, incorporating both learning dynamics and heterogeneity in monetary policy rules and

priors. 24 The likelihood decomposition shows the contribution of the macroeconomic, yield curve,

and inflation expectations parts in the total average likelihood. The higher likelihood of learning

models is found in each of the respective parts. Introducing learning thus increases the likelihood in

all dimensions. A trade-off exists between on the one hand the macroeconomic part and the yield

curve and inflation expectations on the other with respect to the type of information included in

the measurement equation. Including term structure and survey expectations in the measurement

equation slightly biases the model towards fitting yield curve and survey data at the expense of the

macroeconomic part. From the macroeconomic perspective, the best model is the Learning Macro

version (12.08 as average loglikelihood). This model does not only improve on the likelihood of the

macroeconomic part relative to its rational expectations counterpart, but also outperforms all other

24The findings of the BIC are confirmed by likelihood ratio tests comparing the learning models to proxies
for the rational expectations versions. More in particular, we reestimated the learning models, fixing the
learning parameters to small but positive numbers, σζ,π = σζ,r = 0.0001, and ζ0|0 = [π

∗, 0, r]. Likelihood
ratio (LR) tests performed using the latter models as the null hypothesis reject the proxy models at 1%
significance levels.
Also, note that the Rational Expectations I and II and Learning I and II are nested. Likelihood ratio tests

indicate that both the Learning I and Rational Expectations I models are rejected against the alternatives,
Rational Expectations II and Learning II, with test statistics 747, p-value 0.000, and 692, p-value 0.000,
respectively.
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models in terms of likelihood of the macroeconomic dynamics.25

Insert Table 6

4.3.2 Prediction errors. Table 7 presents summary statistics for the prediction errors of all
variables. That includes the R2, the mean, the standard deviation, and the autocorrelation of

the prediction errors for the alternative model specifications. These are used to evaluate the

overall performance of each model and to compare the relative performance among models. In

terms of the overall evaluation of the models, we do find evidence of model misspecification. This

misspecification manifests itself in the significant entries for the mean and the autocorrelation

coefficients of the prediction errors. Therefore, none of the models is accepted as a completely

satisfactory representation of the joint dynamics of the macroeconomic, yield curve and survey

expectations variables. We find significant but in most cases small means for the forecast errors

in many of the series and models. Also, depending on the model and the specific series, some

autocorrelation remains in the prediction errors.26

In terms of relative performance, there is a clear distinction between the learning and the

rational expectations models. Introducing learning typically leads to (i) an increase in the in-

sample predictive power for both the term structure of interest rates and the survey expectations,

and (ii) a decrease in the inertia in the prediction errors. Comparing counterparts, e.g. the Rational

Expectations I with the Learning I, we observe an outperformance of the learning model relative

to its rational expectations counterpart. The explained variation of the 10-year maturity yields

increases from 50% in the Rational Expectations I model to 88% in the Learning I model. Also,

autocorrelation coefficients and the standard deviation of prediction errors decrease substantially.

Finally, the contribution of allowing both for chairman-specific policies and learning is considerable

when comparing the summary statistics. Comparing the Rational Expectations II model with the

Learning II, it can be observed that both models perform equally in the macroeconomic dimension.

The Learning II model, however, performs better in the yield curve and survey expectations by

decreasing the standard deviation of the prediction errors by more than 20%.

Insert Table 7

4.4 Learning dynamics, inflation expectations and bond markets
Do macroeconomic models including learning fit the term structure of interest rates and inflation

expectations? To answer this question we analyze the fitting errors of the respective models. Table

8 presents summary statistics for the fit of the yield curve and the survey expectations. Figures 5

to 8 present the fitted values for the term structure of interest rates and the surveys of inflation

25One could argue that survey expectations constitute a part of the macroeconomic dimension. Summing
columns I and III leads to the following contributions of the (extended) macroeconomic fit: 17.68, 17.30,
17.78, 18.15, 18.31, 18.77 for the Rational Expectations Macro, I, and II, and Learning Macro, I and II
models, respectively. In this interpretation, the Learing II model to outperform all other variants of the
model.
26The rejection of the overall model is common in the macro-finance literature. For instance, Bekaert et al.

(2005) estimating a set of models, including micro-founded models, find significant remaining autocorrelation
in the prediction errors. Also, in standard estimation of New-Keynesian models, various authors report
remaining autocorrelation in the prediction errors, e.g. Cho and Moreno (2006). Finally, also in the pure
finance literature it has been shown to be extremely difficult to observe affine term structure representation
that are not rejected by the data.
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expectations. Figure 5 shows the fitted values for the one-year yield while Figure 6 depicts the

fitted values for the ten-year yields. We focus on the Learning II model. This model explains about

95% of the variation of the yield curve and more than 85% of the variation in the long-run inflation

expectations. Furthermore, the mean prediction errors for the yield curve are low, ranging from 6 to

20 basis points, which is in the order of magnitude of studies using latent factor models (e.g. de Jong

2000). The fit of the Learning II model for the one-year and the ten-year yields are depicted in the

lower-right panels of Figures 5 and 6, respectively. The fits of the survey expectations are presented

in Figures 7 and 8. We conclude that in general terms, the Learning II model fits relatively well.

The success in fitting the yield curve and the survey expectations is due to both the inclusion

of learning dynamics and heterogeneity in the monetary policy rule and priors. To identify the

contribution of learning, we compare the fit of the Rational Expectations II and Learning II models.

We observe an increase in fit due to learning of in between 4% (one-year yield) and 14% (ten-year

yield). Furthermore, the remaining autocorrelation in the fitting errors is brought down significantly.

Comparing the fits of the models, Figures 5 and 6 for the yield curve and Figures 7 and 8 for the

survey expectations, clearly shows the difference between the rational expectations and learning

model. This difference is especially pronounced for the ten-year yield and the ten-year average

inflation expectation. The effect of allowing for heterogeneity in monetary policy rules and priors

can be identified by comparing the models Learning I and II. Heterogeneity in monetary policy rules

and priors increases the explained variation by about 2 to 4 percent and decreases significantly the

remaining autocorrelation in the fitting errors. Overall, we conclude that the inclusion of learning

has a significant impact on the performance of macroeconomic models in fitting the yield curve

and the surveys of inflation expectations. Note however, that none of the learning models is fully

satisfactory given the remaining autocorrelation in the fitting errors.

Insert Table 8 and Figures 5, 6, 7 and 8

Why do learning models outperform their rational expectations counterparts? To answer this

question, we analyze in detail the affine term structure representations of rational expectations

and learning models. More specifically, we look at the affine representations for the term structure

of interest rates and inflation expectations in a transformed state space, decomposing the observed

macroeconomic variables in perceived permanent and temporary components. This decomposition

is achieved by the rotation matrix T :

T =

∙
I3 −I3
0 I3

¸
(38)

which generates the targeted decomposition:

X̃T
t|t =

"
Xt − ξPt|t

ξPt|t

#
= T

∙
Xt

ξPt|t

¸
. (39)

Affine representation of the term structure of interest rates and inflation expectations can be restated

in this state space:

Yt = Ay +ByX̃t|t + vy,t = Ay +ByT
−1TX̃t|t + vy,t = Ay +BT

y X̃
T
t|t + vy,t (40)

and

St = As +BsX̃t|t + vs,t = As +BsT
−1TX̃t|t + vs,t = As +BT

s X̃
T
t|t + vs,t. (41)
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Insert Figures 9 and 10

Figures 9 and 10 show this transformed yield curve and inflation expectations loadings both for

the respective rational expectations and learning models.27 The bond market loadings in Figure 9

are typically classified according to their impact on the term structure. Based on this figure, we

identify one slope factor driving the yield spread, represented by the perceived transitory interest

rate component, and two curvature factors, i.e. the perceived output gap and the perceived inflation

gap. The curvature factors affect primarily the intermediate maturity yields. We also obtain a level

factor. The level factor is driven only by changes in the perceived stochastic endpoints and, more

specifically, the stochastic endpoint for the policy rate. The important feature of the level factor is

that it exerts its influence equally over the entire yield curve.

Figure 10 depicts the loadings for the term structure of inflation expectations. Analogously

to the yield curve loadings, we find a slope factor for inflation expectations in terms of inflation

deviations from the perceived target and a level factor driven by the stochastic endpoint for

inflation. This structure in factor loadings is recovered independently of the model specifications.

While both rational expectations and learning models share a level factor in the transformed state

space, the implications of this factor differ across models. The level factors are driven by the

endpoints of the policy rate and inflation, ξPi,t and ξPπ,t, respectively. Rational expectations models

imply deterministic endpoints fixed at the levels implied by the rational expectations model, i.e.

ξi,t = r + π∗ and ξπ,t = π∗.28 Therefore, the level factor is constant and hence cannot explain

time variation in the long-maturity yields or inflation expectations. Learning models differ from

the rational expectations models since they generate endogenously stochastic endpoints for the

policy rate and inflation. These stochastic endpoints are sufficiently volatile to account for the time

variation in the long-end of the yield curve and the inflation expectations.

4.5 Monetary policy regimes
Finally, as an application of the model, we estimate the historical record of the monetary policy

stance as implied by the Learning II model. From the IS equation, the policy stance of the

central bank can be measured by comparing the ex ante real interest rate, it − EP
t πt+1, with

the equilibrium real rate r. According to the policy stance measure, tough (loose) monetary policy

stance is characterized by an ex ante real interest rate above (below) the neutral rate r. Figure

11 sets out the policy stance against both the inflation gap, πt − π∗, and the output gap y. We

also show the estimated targets for each of the chairmen to identify the different periods. The

chairmen included in the analysis are Martin (1951-1970), Burns (1970-1978), Miller(1978-1979),

27Note that in the Rational Expectations II and Learning II models, yield curve and inflation expectations
loadings also depend on the policy rule parameters. Given that we identify six policy regimes, we have six
sets of loadings. For reasons of brevity, we only present the loadings implied by the Greenspan policy rules.
28Note that to the extent that one allows for time-varying inflation targets within the rational expectations

framework, one can generate exogenously volatility in the endpoints. This is the approach followed in the
standard macro-finance literature. The Rational Expectations II panels in Figures 2 and 4 are examples of
this approach. The main advantage of learning is that there is no need to refer to exogenous shocks (i.e.
in the inflation target) to account for the time variation in the long-end of the yield curve. The stochastic
endpoints are generated endogenously in the model.
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Volcker (1979-1987) and Greenspan (1987-2006).

Insert Figure 11

Figure 11 depicts the estimates of the policy stances based on the subjective expectations implied

by the Learning II model. First, the Martin term, at least since the beginning of the sample in 1963,

is characterized by a relatively neutral monetary policy stance. The estimates of the policy stance

variable are close to zero. The second regime, i.e. the Burns term, is characterized by a much more

active policy responding quite fast to changes in the output and inflation gap. Monetary policy

responded strongly to both recessions which resulted in a loose monetary policy stance over most of

the period. The policy stance variable captures the Volcker disinflation policy in the early eighties.

The positive correlation with the inflation gap clearly demonstrates the fact that policy was aimed at

fighting inflation despite the deep recession following the increase in nominal and real interest rates.

Finally, and maybe surprisingly, our estimates indicate some variation in the policy stance during

the Greenspan term. Early in the term and with the inflation gap positive, we find a positive value

for the policy stance, indicating a tight monetary policy. Further in the term, we find that the policy

stance is more correlated with the output gap than with the inflation gap. Especially the downturn

(in terms of the negative output gap) in the early nineties gave rise to a switch in policy. Following

the downturn of the economy after 2001, our estimates of the policy stance decrease considerably.

5 Conclusions
In this paper we built and estimated a macroeconomic model including learning. Learning was

introduced in the model by assuming that agents do not believe in constant equilibrium real rates

nor in time-invariant inflation targets. Given these priors, the optimal learning rule was derived in

terms of a Kalman gain updating rule. We estimated the model including, next to the standard

macroeconomic variables, yields and surveys of inflation expectations in the measurement equation.

The structural parameters and learning parameters were estimated jointly. The findings of the

paper can be summarized as follows. First, according to several measures, including learning

improves the fit of the model, independent of the type of information included in the measurement

equation. Although learning models improve on the rational expectations models, they are not

fully satisfactory. Autocorrelation in the errors was found to be significant. Finally, we found that

introducing learning in a standard New-Keynesian model generated sufficiently volatile stochastic

endpoints to fit the variation in the long-maturity yields and the surveys of long-run inflation

expectations. Our learning model, therefore, complements the current macro-finance literature

linking macroeconomic and term structure dynamics.
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6 Appendix A: ALM dynamics

In this appendix, we derive a closed form solution for the actual law of motion (ALM). The derivation

of the actual law of motion follows the standard approach in the learning literature by substituting

subjective expectations, i.e. the PLM, into the structural equations. The structural equations are

described in equation (7), which is repeated here as:

AXt = C +BEtXt+1 +DXt−1 + Sεt (42)

while the PLM is described by means of a VECM in the inferred stochastic endpoints:

Xt = (I − ΦP )ξPt|t +ΦPXt−1 +Σ
P εt (43)

and a learning rule based on the Kalman filter updating rule:

ξPt|t = ξPt−1|t−1 +K(Xt −EP
t−1Xt). (44)

6.1 Deriving the Actual Law of Motion
A first step in obtaining the actual law of motion (ALM) consists of deriving the expectations implied

by the PLM, equations (43) and (44). Under the PLM, the one-step ahead prediction, EP
t Xt+1 is

given by:

EP
t Xt+1 = (I − ΦP )EP

t ξ
P
t+1|t+1 +Φ

PXt. (45)

Under the PLM dynamics, the stochastic endpoints ξPt|t are random walks, i.e. E
P
t−1(Xt−EP

t−1Xt) =

0, such that EP
t ξ

P
t+1|t+1 = ξPt|t. The one-step ahead expectations are given by

EP
t Xt+1 = (I − ΦP )ξPt|t +ΦPXt. (46)

Substituting the learning rule, eq. (44), for ξPt|t we obtain a description for the expectations as:

EP
t Xt+1 = (I − ΦP )(ξPt−1|t−1 +K(Xt −EP

t−1Xt)) +Φ
PXt (47)

or equivalently, by lagging equation (46) one period giving a closed form expression for EP
t−1Xt =

(I − ΦP )ξPt−1|t−1 +ΦPXt−1 :

EP
t Xt+1 = (I − ΦP )(ξPt−1|t−1 +K(Xt − (I − ΦP )ξPt−1|t−1 − ΦPXt−1)) +Φ

PXt. (48)

This expression can also be written as:

EP
t Xt+1 = (I − (I − ΦP )K)(I − ΦP )ξPt−1|t−1 + (ΦP + (I − ΦP )K)Xt − (I − ΦP )KΦPXt−1. (49)

By denoting the matrix (I − ΦP )K by KΦ we obtain the final expression for the one-step ahead

expectation as:

EP
t Xt+1 = (I −KΦ)(I − ΦP )ξPt−1|t−1 + (ΦP +KΦ)Xt −KΦΦ

PXt−1. (50)

The second step in deriving the ALM dynamics consists of inserting the subjective expectations,

eq. (50), into the structural equations, i.e. eq. (42):

AXt = C +B((I −KΦ)(I − ΦP )ξPt−1|t−1 + (ΦP +KΦ)Xt −KΦΦ
PXt−1) +DXt−1 + Sεt. (51)
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Solving for Xt we obtain:

Xt = (A−B(ΦP +KΦ))
−1C + (A−B(ΦP +KΦ))

−1B(I −KΦ)(I − ΦP )ξPt−1|t−1
(52)

(A−B(ΦP +KΦ))
−1(D −BKΦΦ

P )Xt−1 + (A−B(ΦP +KΦ))
−1Sεt.

Note that if the rational expectations solution is unique, and if ΦP = Φre, the expression

(A − B(ΦP + KΦ))
−1(D − BKΦΦ

P ) equals ΦP which allows us to rewrite the above dynamics

as:

Xt = (A−B(ΦP +KΦ))
−1C + (A−B(ΦP +KΦ))

−1B(I −KΦ)(I − ΦP )ξPt−1|t−1
(53)

ΦPXt−1 + (A−B(ΦP +KΦ))
−1Sεt.

Equation (53) describes the actual law of motion for the observable macroeconomic variables as a

function of the previous state, Xt−1, the inferred stochastic endpoints, ξ
P
t−1|t−1 and the structural

shocks, εt. This description is only a partial description of the ALM, since the dynamics of the

stochastic endpoints is not taken into account. In order to obtain a complete characterization of

the ALM, we add the learning rule, i.e. equation (44). The joint dynamics of the observable

macroeconomic variables, Xt, and the inferred stochastic endpoints, ξ
P
t|t is given by:∙

I 0
−K I

¸ ∙
Xt

ξPt|t

¸
=

∙
(A−B(ΦP +KΦ))

−1C
0

¸

+

∙
ΦP (A−B(ΦP +KΦ))

−1B(I −KΦ)(I − ΦP )
−KΦP (I −K(I − ΦP ))

¸ ∙
Xt−1

ξPt−1|t−1

¸
(54)

+

∙
(A−B(ΦP +KΦ))

−1S
0

¸
εt

where the dynamics for ξPt|t are given by equation (44). Finally, pre-multiplying by∙
I 0
−K I

¸−1
=

∙
I 0
K I

¸
(55)

yields a complete description of the ALM:∙
Xt

ξPt|t

¸
=

∙
(A−B(ΦP +KΦ))

−1C
K(A−B(ΦP +KΦ))

−1C

¸

+

∙
ΦP (A−B(ΦP +KΦ))

−1B(I −KΦ)(I − ΦP )
0 I −K(I − (A−B(ΦP +KΦ))

−1B(I −KΦ))(I − ΦP )

¸ ∙
Xt−1

ξPt−1|t−1
(̧56)

+

∙
(A−B(ΦP +KΦ))

−1S
K(A−B(ΦP +KΦ))

−1S

¸
εt.

This ALM is represented in extended state space, X̃t|t = [X
0
t, ξ

P 0
t|t]

0 by

X̃t|t = C̃A + Φ̃AX̃t−1|t−1 + Σ̃
Aεt (57)
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with

C̃A =

∙
(A−B(ΦP +KΦ))

−1C
K(A−B(ΦP +KΦ))

−1C

¸

Φ̃A =

∙
ΦP (A−B(ΦP +KΦ))

−1B(I −KΦ)(I − ΦP )
0 I −K(I − (A−B(ΦP +KΦ))

−1B(I −KΦ))(I − ΦP )

¸

Σ̃A =

∙
(A−B(ΦP +KΦ))

−1S
K(A−B(ΦP +KΦ))

−1S

¸
.

(58)

6.2 Properties of the Actual Law of Motion
Based on the final representation of the ALM as stated in equation (57), some properties of the

ALM can be described in more detail. A first property is that the unconditional mean of the

ALM coincides with the unconditional mean of the rational expectations model. Denoting the

expectations operators under rational expectations and under the ALM by respectively Ere and

EA, the equivalence between unconditional expectations can be formalized as:

EAXt = EreXt = (I − Φre)−1Cre

EAξPt|t = EreXt = (I − Φre)−1Cre.
(59)

We show this property by showing that Xt = (I−Φre)−1Cre = ξt|t is a steady state under the ALM.

In the derivation we make extensive use of the properties of the rational expectations solution. More

specifically, the unconditional mean for Xt based on the rational expectations model is given by:

Ere(Xt) = (I − Φre)−1Cre (60)

where the values for Φre and Cre satisfy the rational expectations conditions:

Cre = (A−BΦre)−1C + (A−BΦre)−1BCre

Φre = (A−BΦre)−1D
Σre = (A−BΦre)−1S.

(61)

We now show that the unconditional mean of Xt under the ALM, denoted by EA
t Xt coincides with

the unconditional mean of the rational expectations model:

EA
t Xt = EreXt = (I − Φre)−1Cre. (62)

In order to show this equivalence, we show that the point Xt = (I − Φre)−1Cre and ξt|t =

(I − Φre)−1Cre are a steady state for the ALM. Substituting this particular point in the ALM,

we obtain that this point is a steady state if it solves:

(I − Φre)−1Cre = (A−B(ΦP +KΦ))
−1C +ΦP (I − Φre)−1Cre +

(A−B(ΦP +KΦ))
−1B(I −KΦ)(I − ΦP )(I − Φre)−1Cre.

Noting that Φre = ΦP we can rewrite the equation by subtracting from both sides ΦP (I−Φre)−1Cre,

resulting in the equality:

(I−ΦP )(I−Φre)−1Cre = (A−B(ΦP+KΦ))−1C+(A−B(ΦP+KΦ))−1B(I−KΦ)(I−ΦP )(I−Φre)−1Cre.
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Pre-multiplying by (A−B(ΦP +KΦ))
−1,

(A−B(ΦP +KΦ))C
re = C +B(I −KΦ)C

re.

Finally, this condition holds whenever a rational expectations equilibrium exists, i.e. adding

BKΦC
re to both sides, the above condition reduces to the rational expectations condition for Cre

(A−BΦP )Cre = C +BCre.

The above derivation thus implies that if a rational expectations equilibrium exists, then the

unconditional expectations of the rational expectations equilibrium coincides with the steady state

of the ALM. If we assume, moreover, that all of the eigenvalues of Φ̃A are strictly smaller than 1

in absolute value, the steady state of the ALM is attracting and defines the unconditional mean

of the observable variables Xt. The second equality, i.e. EAξPt|t = (I − Φre)−1Cre can be shown

analogously.

A second property is the unconditional normality of the extended state vector X̃t|t under the

ALM. Assuming a standard normal distribution for the structural shocks, εt, it is well known that

the linearity of the state space dynamics and the assumed stability of the ALM (all eigenvalues of

Φ̃A are assumed to be strictly smaller than 1) implies that the unconditional distribution for X̃t|t

is:

X̃t|t ∼ N(EAX̃t|t,ΩX̃)

with:
EAX̃t|t = ι2×1 ⊗ (I − Φre)−1Cre

vec(ΩX̃) = (I − Φ̃A ⊗ Φ̃A)−1vec(Σ̃AΣ̃A0).
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7 Appendix B: The level factor in the affine term structure representa-
tion under the PLM

As claimed in Section 4.4, the presence of a set of stochastic endpoints under the PLM generates

a level factor in the factor loadings. In order to show the appearance of a level factor in the

term structure representation, we use a rotation on the state space vector X̃t|t decomposing the

state vector into (perceived) temporary and permanent components. The rotation, generating the

permanent-transitory decomposition, is given by T :

X̃T
t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

πt − ξPt|t,π
yt − ξPt|t,y
it − ξPt|t,i
ξPt|t,π
ξPt|t,y
ξPt|t,i

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= T

⎡⎢⎢⎢⎢⎢⎢⎣

πt
yt
it

ξPt|t,π
ξPt|t,y
ξPt|t,i

⎤⎥⎥⎥⎥⎥⎥⎦ with T =

∙
I3×3 −I3×3
0 I3×3

¸
.

Applying the rotation to the state space implies a rotation of the yield curve loadings from By to

BT
y where B

T
y = ByT

−1. The affine term structure representation is rotated into:

Yt = Ay +ByT
−1TX̃t|t = Ay +BT

y X̃
T
t|t

The matrix of factor loadings BT
y are generated by transforming the ODE of the original b(τ) =

[bX(τ), bξ(τ)] into the ODE generating bT (τ) = [bTX(τ), b
T
ξ (τ)] with bT (τ) = b(τ)T−1. Taking the

system of difference equations for b(τ) :

a(τ) = −δ0 + a(τ − 1)− (b(τ − 1))Σ̃PΛ0 + 1
2
b(τ − 1)Σ̃P Σ̃P 0b(τ − 1)0

b(τ) = b(τ − 1)Φ̃P − δ01

we obtain:

bT (τ) = [bTX(τ), b
T
ξ (τ)] = [bX(τ), bξ(τ)]T

−1 = [bX(τ − 1), bξ(τ − 1)]T−1T Φ̃PT−1 − δ01T
−1.

Finally, from the PLM, equation (19), Φ̃P is identified as

Φ̃P =

∙
ΦP (I − ΦP )
0 I3×3

¸
(63)

such that:

T Φ̃PT−1 =

∙
I3×3 −I3×3
0 I3×3

¸ ∙
ΦP (I − ΦP )
0 I3×3

¸ ∙
I3×3 I3×3
0 I3×3

¸
=

∙
ΦP 0
0 I3×3

¸
and

δ01T
−1 = [0, 0, 1, 0, 0, 0]

∙
I3×3 I3×3
0 I3×3

¸
= [0, 0, 1, 0, 0, 1]

the ODE for bT (τ) = [bTX(τ), b
T
ξ (τ)] can be decoupled into:

bTX(τ) = bTX(τ − 1)ΦP − [0, 0, 1]

bTξ (τ) = bTξ (τ − 1)I3×3 − [0, 0, 1].
.

Note that the latter function bTξ (τ), given the initial condition bTξ (τ) = 0, has as solution

bTξ (τ) = −[0, 0, τ ] such that the loading for the permanent components, ξ
P
t|t, i.e. B

T
y = −bTξ (τ)/τ =

[0, 0, 1] for all maturities. The fact that the factor loadings are identical across maturities identifies

the level factor.
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Table 1

Summary of data statistics (USA, 1963:Q4-2003:Q4, 161 observations)

π y i ȳ1y ȳ2y ȳ3y ȳ4y ȳ5y ȳ10y S1y S10y
Mean (%) 4.49∗∗ -1.11∗∗ 6.63∗∗ 6.52∗∗ 6.73∗∗ 6.90∗∗ 7.03∗∗ 7.11∗∗ 7.42∗∗ 4.18∗∗ 4.01∗∗

Stdev (%) 2.83∗∗ 2.59∗∗ 3.28∗∗ 2.73∗∗ 2.67∗∗ 2.58∗∗ 2.53∗∗ 2.48∗∗ 2.47∗∗ 1.98∗∗ 1.49∗∗

Auto 0.76∗∗ 0.95∗∗ 0.91∗∗ 0.93∗∗ 0.94∗∗ 0.95∗∗ 0.95∗∗ 0.96∗∗ 0.96∗∗ 0.98∗∗ 0.96∗∗

Skew 1.49∗∗ -0.47∗∗ 1.21∗∗ 0.78∗∗ 0.81∗∗ 0.85∗∗ 0.90∗∗ 0.88∗∗ 0.99∗∗ 0.83∗∗ 1.14∗∗

Kurt 5.51∗∗ 3.51∗∗ 5.20∗∗ 4.06∗∗ 3.96∗∗ 3.92∗∗ 3.95∗∗ 3.67∗∗ 3.66∗∗ 2.79∗∗ 3.72∗∗

JB 101.85 7.61 71.59 23.84 23.88 24.84 27.92 23.63 29.07 15.88 23.02
(0.00) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Correlation matrix
π 1.00
y -0.25∗∗ 1.00
i 0.72∗∗ -0.25∗∗ 1.00
ȳ1y 0.67∗∗ -0.31∗∗ 0.95∗∗ 1.00
ȳ2y 0.65∗∗ -0.39∗∗ 0.93∗∗ 0.99∗∗ 1.00
ȳ3y 0.62∗∗ -0.44∗∗ 0.90∗∗ 0.98∗∗ 0.99∗∗ 1.00
ȳ4y 0.61∗∗ -0.48∗∗ 0.89∗∗ 0.96∗∗ 0.99∗∗ 0.99∗∗ 1.00
ȳ5y 0.59∗∗ -0.51∗∗ 0.87∗∗ 0.95∗∗ 0.98∗∗ 0.99∗∗ 0.99∗∗ 1.00
ȳ10y 0.59 -0.57 0.84 0.92

∗∗
0.96∗∗ 0.98∗∗ 0.99∗∗ 0.99∗∗ 1.00

S1y 0.83∗∗ -0.46∗∗ 0.77∗∗ 0.77
∗∗

0.76∗∗ 0.74∗∗ 0.75∗∗ 0.73∗∗ 0.73∗∗ 1.00
S10y 0.80∗∗ -0.63∗∗ 0.86∗∗ 0.86∗∗ 0.87∗∗ 0.870∗∗ 0.88∗∗ 0.88∗∗ 0.90∗∗ 0.98∗∗ 1.00

The sample period is 1963:Q4 to 2003:Q4 (161 quarterly observations). Inflation (π) is expressed in annual
terms and is constructed by taking the quarterly percentage change in the consumer price index (CPI), that
is πt = 4 ln(CPIt/CPIt−1). The series for the CPI index is obtained from the Bureau of Labor Statistics.
The output gap (y) series is constructed from data provided by the Congressional Budget Office (CBO). The
bond yield data are based on data from Piazzesi. This data set concerns month-end yields on zero-coupon U.S.
Treasury bonds with maturities of 1, 2, 3, 4, 5 and 10 years, expressed in annual terms. The Fed rate is used as
the short-term interest rate (i), or the policy rate. Mean denotes the sample arithmetic average in percentage
p.a., Stdev standard deviation, Auto the first order quarterly autocorrelation, Skew and Kurt stand for skewness
and kurtosis, respectively. JB stands for the Jarque-Bera normality test statistic with the significance level at
which the null of normality may be rejected underneath it. ∗∗ indicates significance at the 5% confidence level.
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Table 2

Parameter estimates - Rational Expectations Macro and Rational Expectations I

πt = µπ,1Etπt+1 + (1− µπ,1)πt−1 + κπyt + σπεπ,t

yt = µyEtyt+1 + (1− µy)yt−1 + φ(it −Etπt+1 − r) + σyεy,t

it =
¡
1− γi−1

¢ £
r +Eπt+1 + γπ(πt − π∗) + γyyt

¤
+ γi−1it−1 + σiεi,t

Rat. Exp. Macro Rat. Exp. I
π-eq. µπ,1 0.524∗∗ (0.019) 0.527∗∗ (0.007)

κπ(×102) 0.055 (0.278) 0.582∗∗ (0.236)

y-eq. µy 0.509∗∗ (0.013) 0.580∗∗ (0.018)
φ -0.019∗ (0.011) -0.012∗∗ (0.005)

i-eq. γi−1 0.862∗∗ (0.036) 0.934∗∗ (0.004)
γπ 0.674∗ (0.356) 0.100 (0.165)
γy 0.569 (0.504) 0.010 (0.172)
r 0.025∗∗ (0.010) 0.028∗∗ (0.002)
π∗ 0.032∗∗ (0.011) 0.044∗∗ (0.002)

Stdev σπ 0.0063∗∗ (0.0004) 0.0069∗∗ (0.0004)
σy 0.0043∗∗ (0.0003) 0.0070∗∗ (0.0009)
σi 0.0133∗∗ (0.0004) 0.0134∗∗ (0.0005 )

Struct δπ 0.908∗∗ (0.069) 0.895∗∗ (0.025)
h 1.000 – 0.738∗∗ (0.055)

σ(×10−2) 0.274 (0.170) 0.496∗∗ (0.201)

Stdev denotes the standard deviation. Struct denotes structural parameters. Maximum
likelihood estimates with standard errors between brackets. A ∗∗ denotes significantly
different from zero at the 5% significance level, ∗ denotes significance at the 10% level.
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Table 3

Parameter estimates - Rational Expectations II

πt = µπ,1Etπt+1 + (1− µπ,1)πt−1 + κπyt + σπεπ,t

yt = µy,1Etyt+1 + (1− µy)yt−1 + φ(it −Etπt+1 − r) + σyεy,t

it =
¡
1− γi−1

¢ £
r +Eπt+1 + γπ(πt − π∗) + γyyt

¤
+ γi−1it−1 + σiεi,t

Rational Expectations II
π-eq. µπ,1 0.598∗∗ (0.010)

κπ(×102) 0.627∗∗ (0.256)

y-eq. µy,1 0.589∗∗ (0.018)
φ -0.020∗∗ (0.008)
r 0.029∗∗ (0.002)

Martins Burns Miller
i-eq. γi−1 0.863∗∗ (0.033) 0.612∗∗ (0.032) 0.782∗∗ (0.515)

γπ 0.745 (0.537) 0.244∗∗ (0.109) 0.374 (1.605)
γy 0.397 (0.425) 0.735∗∗ (0.181) 1.131 (2.044)
π∗ 0.018∗∗ (0.003) 0.038∗∗ (0.002) 0.055∗∗ (0.012)

Volcker (a) Volcker (b) Greenspan
i-eq. γi−1 0.840∗∗ (0.009) 0.959∗∗ (0.022) 0.951∗∗ (0.011)

γπ 0.541∗∗ (0.212) 2.301 (2.091) 1.676∗∗ (0.847)
γy 0.531∗∗ (0.222) -1.189∗∗ (0.505) 1.674∗∗ (0.717)
π∗ 0.082∗∗ (0.002) 0.052∗∗ (0.001) 0.032∗∗ (0.001)

Stdev σπ 0.0071∗∗ (0.0004)
σy 0.0069∗∗ (0.0008)
σi 0.0194∗∗ (0.0017)

Struct δπ 0.673∗∗ (0.029)
h 0.721∗∗ (0.052)

σ(×10−2) 0.294∗∗ (0.115)

Stdev denotes the standard deviation. Struct denotes structural parameters. Maximum
likelihood estimates with standard errors between brackets. A ∗∗ denotes significantly
different from zero at the 5% significance level, ∗ denotes significance at the 10% level.
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Table 4

Parameter estimates- Learning Macro and Learning I

πt = µπ,1Etπt+1 + (1− µπ,1)πt−1 + κπyt + σπεπ,t

yt = µyEtyt+1 + (1− µy)yt−1 + φ(it −Etπt+1 − r) + σyεy,t

it =
¡
1− γi−1

¢ £
r +Eπt+1 + γπ(πt − π∗) + γyyt

¤
+ γi−1it−1 + σiεi,t

Learning Macro Learning I
π-eq. µπ,1 0.672∗∗ (0.056) 0.759∗∗ (0.023)

κπ(×102) 0.431 (0.504) 4.912 (3.184)

y-eq. µy,1 0.504∗∗ (0.028) 0.541∗∗ (0.007)
φ -0.008 (0.023) -0.038∗∗ (0.016)

i-eq. γi−1 0.833∗∗ (0.039) 0.671∗∗ (0.009)
γπ 0.401 (0.300) 0.149 (0.097)
γy 0.504 (0.416) 0.363∗∗ (0.046)
r 0.028 (0.265) 0.030 (0.053)
π∗ 0.031 (0.669) 0.036 (0.360)

Stdev σπ 0.0062∗∗ (0.0005 ) 0.0087∗∗ (0.0006)
σy 0.0043∗∗ (0.0003 ) 0.0050∗∗ (0.0003)
σi 0.0132∗∗ (0.0004 ) 0.0126∗∗ (0.0004)

Struct δπ 0.489∗∗ (0.123) 0.318∗∗ (0.039)
h 1.000 – 0.913∗∗ (0.036)

σ(×10−2) 0.618 (1.778) 0.142∗∗ (0.058)

Learning σζ,π 0.044∗∗ (0.013) 0.015∗∗ (0.001)
σζ,y 0.000 – 0.000 –
σζ,r 0.043 (0.141) 0.023∗∗ (0.001)

Initial points ξ0,π 0.018 (0.022) 0.012∗∗ (0.005)
ξ0,y 0.000 – 0.000 –
ξ0,i 0.014 (0.022) 0.042∗∗ (0.004)

Stdev denotes the standard deviation. Struct denotes structural parameters. Maximum
likelihood estimates with standard errors between brackets. A ∗∗ denotes significantly
different from zero at the 5% significance level, ∗ denotes significance at the 10% level.
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Table 5

Parameter estimates - Learning II

πt = µπ,1Etπt+1 + (1− µπ,1)πt−1 + κπyt + σπεπ,t

yt = µyEtyt+1 + (1− µy)yt−1 + φ(it −Etπt+1 − r) + σyεy,t

it =
¡
1− γi−1

¢ £
r +Eπt+1 + γπ(πt − π∗) + γyyt

¤
+ γi−1it−1 + σiεi,t

Learning II
π-eq. µπ,1 0.728∗∗ (0.027)

κπ(×102) 1.182∗∗ (0.323)

y-eq. µy,1 0.528∗∗ (0.008)
φ -0.022∗∗ (0.008)
r 0.026 (0.100)

Martins Burns Miller
i-eq. γi−1 0.804∗∗ (0.046 ) 0.268∗∗ (0.047 ) 0.637∗∗ (0.388)

γπ 0.406 (1.150) 0.161 (0.111) 0.244 (1.014)
γy 0.012 (0.293) 0.513∗∗ (0.060) 0.310 (0.315)
π∗ 0.028 (0.265) 0.087 (0.621) 0.053 (0.478)

Learning σζ,π 0.018∗∗ (0.003) 0.014∗∗ (0.002) 0.019∗∗ (0.006)
σζ,y 0.000 – 0.000 – 0.000. –
σζ,r 0.007 (0.008) 0.016∗∗ (0.002) 0.019 (0.040)

Volcker (a) Volcker (b) Greenspan
i-eq. γi−1 0.185∗∗ (0.049) 0.795∗∗ (0.022) 0.850∗∗ (0.018)

γπ 0.564∗∗ (0.095) 0.353 (0.290) 0.405 (0.630)
γy 0.109 (0.079) 0.369∗∗ (0.122) 0.224 (0.210)
π∗ 0.003 (0.177) 0.010 (0.285) 0.025 (0.266)

Learning σζ,π 0.004 (0.004) 0.018∗∗ (0.002) 0.008∗∗ (0.002)
σζ,y 0.000 – 0.000 – 0.000 –
σζ,r 0.031∗∗ (0.002) 0.049∗∗ (0.003) 0.016∗∗ (0.002)

Stdev σπ 0.0088∗∗ (0.0006)
σy 0.0048∗∗ (0.0004)
σi 0.0105∗∗ (0.0006)

Struct δπ 0.374∗∗ (0.051)
h 0.935∗∗ (0.035)

σ(×10−2) 0.235∗∗ (0.079)

Initial points ξ0,π 0.009 (0.008)
ξ0,y 0.000 –
ξ0,i 0.033∗∗ (0.004)

Stdev denotes the standard deviation. Struct denotes structural parameters. Maximum
likelihood estimates with standard errors between brackets. A ∗∗ denotes significantly
different from zero at the 5% significance level, ∗ denotes significance at the 10% level.
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Table 6

Likelihood decomposition

Components
Macroeconomy Yield curve Inf. Exp. Total BIC

Rat. Exp. Macro 12.07 20.98 5.61 38.66 -76.95
Rat. Exp. I 11.75 23.23 5.55 40.53 -80.67
Rat. Exp. II 11.57 25.07 6.21 42.85 -84.31

Learning Macro 12.08 22.08 6.07 40.23 -79.72
Learning I 11.81 26.05 6.50 44.36 -88.22
Learning II 12.03 27.74 6.74 46.51 -91.76
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Table 7

Summary statistics of forecast errors of macroeconomic variables, yield curve, and survey

of inflation expectations

Panel A: Rational Expectations Macro
π y i y1y y3y y5y y10y S1y S10y

R2 0.77 0.91 0.83 0.71 0.49 0.35 0.21 0.75 0.36
Mean (%) 0.07 -0.04 0.05 0.02 0.66∗∗ 1.08∗∗ 1.64∗∗ 0.31∗∗ 0.51∗∗

Stdev (%) 1.20 0.78 1.36 1.48 1.83 2.00 2.19 0.92 1.02
Auto -0.25∗∗ 0.21∗∗ -0.10 0.38∗∗ 0.75∗∗ 0.86∗∗ 0.93∗∗ 0.58∗∗ 0.97∗∗

Panel B: Rational Expectations I
π y i y1y y3y y5y y10y S1y S10y

R2 0.76 0.87 0.82 0.76 0.74 0.68 0.50 0.65 -0.08
Mean (%) -0.04 -0.35∗∗ -0.03 -0.25∗∗ -0.08 0.00 0.14 0.03 -0.10
Stdev (%) 1.21 0.94 1.38 1.34 1.32 1.41 1.74 1.08 1.22
Auto -0.20∗∗ 0.53∗∗ -0.12 0.19∗∗ 0.51∗∗ 0.72∗∗ 0.89∗∗ 0.74∗∗ 0.98∗∗

Panel C: Rational Expectations II
π y i y1y y3y y5y y10y S1y S10y

R2 0.74 0.84 0.83 0.82 0.84 0.83 0.79 0.75 0.72
Mean (%) 0.05 -0.36∗∗ -0.03 -0.25∗∗ -0.03 0.07 0.25 0.01 -0.08
Stdev (%) 1.27 1.04 1.34 1.16 1.03 1.03 1.12 0.91 0.62
Auto 0.09 0.63∗∗ -0.12 0.10 0.40∗∗ 0.59∗∗ 0.75∗∗ 0.80∗∗ 0.79∗∗

Panel D: Learning Macro
π y i y1y y3y y5y y10y S1y S10y

R2 0.79 0.90 0.83 0.77 0.75 0.74 0.79 0.83 0.66
Mean (%) 0.00 -0.07 -0.01 -0.03 0.63∗∗ 1.20∗∗ 2.83∗∗ -0.02 0.29∗∗

Stdev (%) 1.15 0.82 1.34 1.30 1.30 1.26 1.14 0.74 0.72
Auto -0.08 0.26∗∗ -0.10 0.22∗∗ 0.48∗∗ 0.57∗∗ 0.58∗∗ 0.72∗∗ 0.88∗∗

Panel E: Learning I
π y i y1y y3y y5y y10y S1y S10y

R2 0.70 0.89 0.83 0.84 0.86 0.88 0.88 0.88 0.66
Mean (%) 0.02 -0.22∗∗ -0.03 -0.24∗∗ -0.02 0.14∗∗ 0.52∗∗ -0.11∗∗ 0.10
Stdev (%) 1.36 0.88 1.34 1.09 0.96 0.87 0.84 0.64 0.68
Auto 0.42∗∗ 0.43∗∗ 0.07 0.24∗∗ 0.46∗∗ 0.52∗∗ 0.59∗∗ 0.85∗∗ 0.97∗∗

Panel F: Learning II
π y i y1y y3y y5y y10y S1y S10y

R2 0.72 0.89 0.87 0.88 0.90 0.91 0.92 0.90 0.81
Mean (%) 0.03 -0.19 0.04 -0.18∗∗ -0.14∗∗ -0.09 0.19∗∗ -0.09 0.04
Stdev (%) 1.32 0.84 1.18 0.96 0.82 0.75 0.70 0.59 0.51
Auto 0.36∗∗ 0.34∗∗ 0.11 0.21∗∗ 0.32∗∗ 0.38∗∗ 0.41∗∗ 0.83∗∗ 0.94∗∗

Mean denotes the sample average in percentage per year, Stdev the standard deviation
in percentage per year, and Auto the first order quarterly autocorrelation. A ** denotes
significantly different from zero at the 5% significance level.
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Table 8

Summary statistics of fitting errors of yield curve and survey of inflation expectations

Panel A: Rational Expectations Macro
y1y y3y y5y y10y S1y S10y

R2 0.84 0.54 0.38 0.23 0.70 0.38
Mean (%) -0.04 0.61∗∗ 1.04∗∗ 1.62∗∗ 0.26∗∗ 0.52∗∗

Stdev (%) 1.10 1.75 1.96 2.16 1.00 1.01
Auto 0.64∗∗ 0.85∗∗ 0.91∗∗ 0.95∗∗ 0.57∗∗ 0.97∗∗

Panel B: Rational Expectations I
y1y y3y y5y y10y S1y S10y

R2 0.87 0.78 0.70 0.52 0.65 -0.05
Mean (%) -0.22 -0.05 0.02 0.16 0.06 -0.08
Stdev (%) 0.97 1.22 1.37 1.70 1.07 1.20
Auto 0.51∗∗ 0.72∗∗ 0.82∗∗ 0.94∗∗ 0.66∗∗ 0.97∗∗

Panel C: Rational Expectations II
y1y y3y y5y y10y S1y S10y

R2 0.91 0.88 0.85 0.81 0.82 0.73
Mean (%) -0.23∗∗ 0.01 0.11 0.27∗∗ 0.02 -0.08
Stdev (%) 0.83 0.90 0.95 1.07 0.78 0.61
Auto 0.43∗∗ 0.62∗∗ 0.72∗∗ 0.82∗∗ 0.75∗∗ 0.82∗∗

Panel D: Learning Macro
y1y y3y y5y y10y S1y S10y

R2 0.88 0.78 0.75 0.80 0.81 0.71
Mean (%) -0.02 0.66∗∗ 1.22∗∗ 2.85∗∗ 0.01 0.33∗∗

Stdev (%) 0.96 1.21 1.24 1.12 0.80 0.69
Auto 0.53∗∗ 0.70∗∗ 0.74∗∗ 0.79∗∗ 0.70∗∗ 0.85∗∗

Panel E: Learning I
y1y y3y y5y y10y S1y S10y

R2 0.93 0.91 0.91 0.91 0.91 0.71
Mean (%) -0.20∗∗ 0.02 0.17∗∗ 0.53∗∗ -0.07 0.14∗∗

Stdev (%) 0.73 0.78 0.74 0.74 0.54 0.64
Auto 0.39∗∗ 0.56∗∗ 0.60∗∗ 0.71∗∗ 0.77∗∗ 0.96∗∗

Panel F: Learning II
y1y y3y y5y y10y S1y S10y

R2 0.95 0.95 0.95 0.95 0.92 0.85
Mean (%) -0.16∗∗ -0.10∗∗ -0.06 0.20∗∗ -0.05 0.09
Stdev (%) 0.59 0.59 0.57 0.55 0.51 0.46
Auto 0.23∗∗ 0.33∗∗ 0.39∗∗ 0.52∗∗ 0.71∗∗ 0.92∗∗

Mean denotes the sample average in percentage per year, Stdev the standard deviation
in percentage per year, and Auto the first order quarterly autocorrelation. A ** denotes
significantly different from zero at the 5% significance level.



Figure 1: Data, USA, 1963:Q4-2003:Q4 (161 observations).
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Figure 2: Inflation.
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Figure 3: Real interest rate.
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Figure 4: Policy interest rate.
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Figure 5: Term structure fit across models, one-year yield.
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Figure 6: Term structure fit across models, ten-year yield.
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Figure 7: Fit of survey of one-year average inflation expectations across models.
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Figure 8: Fit of survey of ten-year average inflation expectations across models.
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Figure 9: Loading - Term structure of interest rates across models.
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Figure 10: Loading - Inflation expectation across models.
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Figure 11: Learning II model - Policy stance against inflation gap and output
gap.
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