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Abstract 

The placement of new PhDs in industry provides one mechanism for transmitting 

tacit knowledge from universities to industry.  This paper analyzes data concerning the 

placements of new PhDs who had definite plans to go to work in industry for the period 

1997-2002.  Data come from the Survey of Earned Doctorates overseen by the National 

Science Foundation.   

We find knowledge sources to be heavily concentrated in certain regions and 

states.  Moreover, the geographic distribution of knowledge sources, as measured by 

where PhDs going to work in industry are trained, is different than other measures of 

knowledge sources would suggest, such as university R&D-expenditure data.  A major 

headline is the strong role played by Midwestern universities, which educate over 26% of 

all PhDs going to industry.   

We find that only 37% of PhDs trained in S&E stay in their state of training.  Stay 

patterns are particularly low among certain Midwestern states, many of whose students 

leave the state for employment on the Coasts.  One can make the case that as the 

traditional industrial base of the United States shifts, a highly trained workforce will only 

be maintained if the Federal government increasingly steps in to provide financial support 

for graduate education, since state legislatures are unlikely to continue to fund these 

migration flows.    

Firms most likely to hire new PhDs are found in computer and electrical products, 

followed by firms working in publishing and professional, scientific and technical 

services. The hiring data highlights the role that PhDs play in local economic 

development.  Almost one out of five new PhDs going to work for industry heads to San 

Jose; 58% go to work in one of twenty cities.  The placement data also suggest that small 

firms play a larger role in innovation than R&D expenditure data would suggest.   
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 “The best way to send information is to wrap it up in a person”1 

        J. Robert Oppenheimer 

Section I.  Introduction 

The mechanism by which knowledge flows from universities to firms is varied, 

involving formal means, such as publications, as well as less formal mechanisms, such as 

discussions between faculty and industrial scientists at professional meetings.  Face-to- 

face transmission is most appropriate when tacit knowledge is involved, since, by 

definition, tacit knowledge cannot be codified.  The placement of new PhDs in industry 

provides one mechanism for transmitting tacit knowledge.  Much of a graduate student’s 

training is of a tacit nature, acquired while working in her mentor’s lab.  These 

techniques, wrapped up in new PhDs, can be transmitted to industrial R&D labs when the 

PhD takes a position there upon graduating.2 

Despite the role that PhD placements can play in the transmission of knowledge, 

we know very little about these knowledge flows.  For example, we know little about the 

providence of new PhDs going to industry:  What universities do they come from? Where 

do they go? Do they stay in the area where they were trained?  By way of contrast, we 

know considerably more about the transmission of codified knowledge, due in large part 

to the citation trail left by both patents and articles which allow one to make inferences 

concerning patterns of transmission.   

                                                 
1 J. Robert Oppenheimer, as quoted in Anon., "The eternal apprentice," Time magazine, vol. 52 (8 
November 1948):  70-81, on p. 81.  
 
2 Dasgupta and David (1994, p. 511) state that the “export of scientists and engineers from the academy to 
industrial research is potentially the most important and salutary among the mechanisms available for 
effecting knowledge transfers.” 
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The reason for this knowledge gap relates to the availability of data.  Firm hires of 

new PhDs are not part of the public record.  Nor, and more to the point, do the data 

collected by the National Science Foundation on new PhDs at the time of graduation 

capture the industrial destinations of new PhDs.  The data has been collected but not 

coded.  For the past four years, we have been coding this data, which, beginning in 1997, 

became available in verbatim records.  We now have six years of data, ending with PhDs 

granted in 2002.  The data are far from perfect, having several “holes.”  But they give a 

picture, partial as it may be, about which heretofore little has been known.  They show a 

remarkable fluidity of knowledge flows; they also show that knowledge centers, as 

defined in terms of PhD production, exist in parts of the country that are no longer known 

for their industrial strength and that new PhDs working in industry are heavily clustered 

in certain cities. 

Here we summarize findings from the six years of data that have just become 

available.  In addition, we explore insights that human resource data can bring to the 

study of innovation, following up on a presentation that Stephan (2002) made at the 

National Research Council where she argued that human resource data could provide a 

lens for tracking innovation.   

The plan of this paper is as follows:  In Section II we describe the data.  In 

Section III we explore issues related to geography. Where do the new PhDs come from? 

Where do they go? What do the patterns say in terms of the role of proximity in the 

transmission of knowledge spillovers?  Section IV examines insights gained by using 

human resource data to illuminate patterns of innovation. We examine, for example, the 

industrial mix of hires, how hiring patterns changed between the two periods, and the 
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diversity of fields hired within a given industry.  Data issues are discussed in Section V.  

Conclusions are drawn in Section VI.  

 

Section II.  The Data 

Since 1958 new PhDs at or near the time of graduation have been asked to 

complete the Survey of Earned Doctorates (SED), which is overseen by the National 

Science Foundation, Science Resources Statistics (SRS). The response rate has 

historically been quite high and is currently around 92%.  Respondents are asked a 

number of questions concerning their training and field of work as well as plans 

subsequent to graduation.3 Of particular interest for this study is the question that asks the 

recipient to “name the organization and geographic location where you will work or 

study.”  Although this question has been asked for many years, for those going to 

industry the names of firms, as well as the location of employment, have not been coded 

by NSF and have only been available in verbatim form since 1997.4  As part of a larger 

project, we have coded the verbatim records by firm name and location for the six-year 

period 1997-2002.  We have also coded whether the hiring firm is a top-200 R&D firm or 

a subsidiary of a top-200 R&D firm.5  The data were coded for two different periods 

reflecting when the data became available.  Period One covers 1997-1999 and Period 

Two covers 2000-2002.  The number of new PhDs with definite plans to work in industry 

is remarkably similar between the two periods:  10,932 for period one and 10,833 for 

                                                 
3 The most recent questionnaire is available at http://www.norc.uchicago.edu/issues/SED_Quex_05-06.pdf. 
 
4 By way of contrast, for those going to academe, the institution of higher education has been coded for 
many years. 
5 The top-200 firm list was updated between Period One and Period Two. 
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period two.  This represents 14.6% of degrees in S&E in period one and 15.2% in period 

two. 

These numbers undercount placements of newly minted PhDs going to work in 

industry because a number of PhDs who take a job in industry do not have definite plans 

at the time they fill out the questionnaire.  During Period One, 17,382 indicated that they 

planned to work in industry; thus the 10,932 with definite plans represents approximately 

63% of those with plans to work in industry; during period two, 17,054 indicated that 

they planned to work in industry; thus the 10,833 represents a comparable 63%.6 

The data on definite plans also undercounts placements of recent PhDs who work 

in industry but initially take a postdoctoral position upon graduating.  This is particularly 

the case in the life sciences, where the percent of new PhDs taking a postdoctoral training 

position upon graduation exceeds 50%; yet approximately one-in-three of these postdocs 

eventually ends up working in industry.7   

Some indication of the undercount is given by comparing the percentage of PhDs 

who reported working in industry four years after completing their PhD to the percentage 

with definite plans to work in industry at the time they received their PhD.  Such a 

comparison shows that, although there is variation by field, about three times as many 

doctorates end up working in industry as do those who specify a firm at the time of 

                                                 
6 This undercounting does not affect our conclusion unless at the time of the survey those with definite 
plans differ significantly from those without definite plans. 
7 The estimate for the percent of postdocs in biology who eventually take a position in industry comes from 
the 1995 Survey of Earned Doctorates, which contained retrospective questions concerning postdoctoral 
experience. 
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graduation.8  Despite these limitations, much can be learned from analyzing the SED firm 

placement data.   

Table 1 presents a summary of the data, showing (a) the number and percentage 

of all new PhDs in a field who had definite plans to work at a firm and (b) the number 

and percentage who identified a top-200 R&D firm or its subsidiary. Given that the 

underlying strength of the economy, especially in the high tech area, varied during the 

six-year period, the data are presented separately for the two periods.   The slightly lower 

number of PhDs produced during Period Two compared to Period One in science and 

engineering undoubtedly reflects in part the strong market for non-PhD employment in 

science and engineering during the 1990s, especially in engineering, math and computer 

science.   Only in the field of biology and medicine did the number of degree recipients 

increase, and then only marginally. 

We see from Table 1 that the industrial placement rate of new PhDs is highest 

among engineers followed by computer scientists and chemists.  This reflects underlying 

patterns among seasoned PhDs, where over 50% of both engineers and chemists work in 

industry.  The field with the lowest percentage going to industry directly out of graduate 

school is biology.  This is not surprising, given the extraordinarily high prevalence of 

academic postdoctoral positions in the life sciences and the relatively small percentage of 

seasoned biologists, compared to seasoned PhDs in other fields, working in industry.9 

                                                 
8 The comparison made was between the percentage of 1995 PhDs who reported working in industry in 
1999 (using the Survey of Earned Doctorates) and the percentage of Period One PhD placements in 
industry. 
9 In 1999 approximately 25% of all PhDs in the life sciences were working in industry compared to slightly 
over 50% in chemistry and in engineering, 30% in math and computer science, and 35% in physics and 
astronomy (Stephan et al, 2004). 
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Approximately 38% of the newly hired PhDs go to work at a top-200 R&D firm 

(or subsidiary) but there is considerable variation across fields.  Relative to the 

underlying benchmark, engineers, chemists and computer scientists are most likely to 

work at large research-intensive firms.  Biologists, those with degrees in agriculture, and 

psychologists and economists are least likely to work for large firms.  The biology figure 

of 24% for the six years undoubtedly reflects the employment opportunities available in 

small start-up firms in biotechnology, many of which have a direct relationship with the 

campus where the individual trained.   

Period Two comprises those who entered the labor market after the dot.com bust 

and during a period of recession.  This depressed environment is no doubt responsible for 

the lower number of firm placements of new PhDs in engineering, computer science, and 

math.  In two fields, however, the actual number placed (as well as the placement rate) 

rose considerably:  In biology the number increased from 609 to 843 and in chemistry the 

number rose from 1216 to 1310.  The underlying increase in biology (where the number 

of PhDs produced during the two periods remained almost constant) meant that the 

placement rate increased from 3.8% to 5.2%.  While this is still a miniscule rate, it 

undoubtedly reflects the growing realization among doctoral students in the life sciences 

that industry, especially pharmaceuticals, represents a relatively favorable employment 

environment and reflects also the expansion of pharmaceutical firms during this period.10  

The underlying decline in PhD production in chemistry, coupled with an increase in the 

number of industrial placements, meant that the placement rate in chemistry increased 

substantially, going from 18.7% to 22.2%.    

                                                 
10 The amount pharmaceutical industries spent on R&D grew considerably during the period 1999 to 2001.  
For example, Johnson & Johnson’s R&D increased by 38.1%, Merck’s by 18.8%, Lilly’s by 25.3%, and 
Pharmacia’s by 70.2% (National Science Board, 2004, p. 4-22. 
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The rate of those taking jobs at top-200 R&D firms is approximately the same in 

the two periods.  But there are some noticeable differences, especially in the small fields 

of agriculture and astronomy.  We also see that the number and percent of computer 

scientists going to work at large R&D firms decreased, undoubtedly a reflection of 

market conditions in the field after the dot.com bust.   

 
Section III.  Knowledge Sources and the Question of Proximity 

 
Knowledge sources, by region of country where trained, are presented in Table 

2.11  Many of the PhDs going to work in firms are educated in geographic centers 

associated with innovation.  For example, one in four is educated in New England and the 

Middle Atlantic states; about one in six is educated in the Pacific states.  But the headline 

here is the extraordinarily strong role Midwest institutions (East North Central and West 

North Central) play, educating 26.5% of those going to industry.  

Public knowledge sources are often measured in terms of university R&D 

expenditure data.  Column 3 of Table 2 shows the distribution of these expenditures by 

region.  A comparison of column 3 with column 2 indicates that public knowledge 

sources as measured by human resource flows to industry are concentrated in somewhat 

different geographic regions from those that university R&D expenditure data would 

suggest, and the differences are statistically significant.  For example, the South Atlantic 

region produces about 15% of those going to industry but accounts for 19% of university 

R&D expenditures; the East North Central produces 19.6% of new PhDs going to 

industry but accounts for only 14.4% of university R&D.  We conclude that the spatial 

distribution of knowledge sources embodied in newly minted talent is somewhat different 

                                                 
11 Regions are defined in the Appendix. 
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from the distribution of knowledge sources stemming from university research, as 

measured by university R&D expenditure data.  Part of this difference may be an artifact 

of our inability to count new PhDs who go to industry after taking a postdoctoral 

position, but this is unlikely to account for the striking differences in the mid-west.   

The top-20 universities training PhDs hired by firms are given in Table 3.   We 

see that the knowledge sources are quite concentrated; the top 20 educate 40% of those 

going to industry; the top ten educate 25%.  Again we see the important role that the 

Midwest plays.  Seven of the top twenty institutions are in the Midwest; five of the top- 

ten institutions are in the Midwest. The dominant role played by California is also 

evident.  Four of the top-20 universities are in California. 

Considerable research has focused on the role that geographic proximity plays in 

transmitting knowledge.  Early work by Jaffe (1989), for example, used university 

research and development expenditures as a proxy for the availability of local knowledge 

spillovers as did work by Audretsch and Feldman (1996a, 1996b).  More recent work by 

Feldman and Audretsch (19999), Anselin, Varga and Acs (1997, 2000) and Black (2001) 

has followed suit, shifting the analysis from the state to the CMSA.  In each study a 

significant relationship is found between the dependent variable, which is a measure of 

innovation, and the proxy measure for local knowledge. 

These and countless other studies go a long way toward establishing that 

geographic proximity promotes the transmission of knowledge.  They do not, however, 

address the extent to which knowledge spillovers are local.  One of the few papers to 

examine this question was written by Audretsch and Stephan (1996) and examines 

academic scientists affiliated with biotech companies.  Because the authors knew the 
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location of both the scientist and the firm, they were able to establish the geographic 

origins of spillovers embodied in this knowledge-transfer process.  Their research shows 

that although proximity matters in establishing formal ties between university-based 

scientists and companies, its influence is not overwhelming.  Approximately 70% of the 

links between biotech companies and university-based scientists in their study were non- 

local.   

Knowledge sources and knowledge destinations, as proxied by PhD flows, are 

given in Table 4 by region.  The table can be used to examine the question of the degree 

to which spillovers, as proxied by the employment location of newly trained PhDs, are 

local.  Entries that lie on the diagonal represent “local” links, showing those who take 

employment within their region of training.  Here we find that 48% of the entries lie on 

the diagonal.  There is considerable variation by region, however.  The Pacific Region 

retains slightly over 70%; and the Mid-Atlantic is second, retaining 51%; New England is 

a close third with a 46% retention rate.  By way of contrast, the East South Central region 

retains only 32%.  The East North Central—with its heavy production of new PhDs-- 

retains 38%; and its sister region, the West North Central, retains 34%. 

Appendix A.1 drills down to the state level, showing training, employment, and 

retention patterns (where confidentially permits) by state.  Compared to the mean state 

retention rate of 37.1%, the Midwest states are low:  Iowa retains 13.6% of those it trains; 

Indiana retains only 11.8% of the 771 PhDs it trains that go to work in industry and 

Wisconsin retains only 17.7% of the 492 it trains.  By way of contrast, the retention rate 

is extremely high in California, with almost seven out of ten PhDs staying to take a job in 

California.   
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Overall, the state stay rates are low compared to those for bachelor and master 

degree recipients in science and engineering.  Among those taking jobs in industry, for 

example, the stay rate is 64.4% in science and 62.3% in engineering.12 The PhD state stay 

rate is also low compared to recent law school graduates for whom 57% with known 

employment status remain in the state of training (National Association for Law 

Placement, 1998).     

New PhDs who leave their state of training tend to go a reasonable distance.  This 

is clearly seen from Table 4, which shows migration flows between regions.  As noted 

above, the Pacific region attracts a considerable number of new PhDs from the mid-west 

and mid-and-south-Atlantic states.  In earlier work, and for the period 1997-1999, we 

found that, among those who left their PMSA of training, the average distance between 

location of training and location of employment was 835 miles. 

Elsewhere (Sumell et al 2006) we have examined factors affecting the propensity 

for PhDs hired by industry during Period One to leave the state of training and transfer 

their knowledge to another state.  We find that mobility relates to field and quality of the 

PhD program.  For example, compared to the benchmark of biology, individuals trained 

in agriculture, engineering, chemistry, computer science and earth science are more likely 

to leave their state of training.  Among those trained in engineering, biology, chemistry, 

math and medicine, those trained in top programs are more likely to leave.  We also find 

that those who were supported on a fellowship or a dissertation grant are more likely to 

                                                 
12Interstate Migration Patterns of Recent Recipients of Bachelor’s and Master’s Degrees in Science and 
Engineering. http://www.nsf.gov/statistics/nsf05318/sect3.htm 
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leave their state of training.13 Those who worked part-time during their last year in 

graduate school or are returning to a previous employer are also more likely to stay.  

Those on temporary visas are more likely to leave their state of training, as are Asians, 

regardless of visa status, and underrepresented minorities in science and engineering.  On 

the other hand, individuals who went to both college and high school in their PhD state of 

training are considerably (17%) more likely to remain in state than those who did not 

receive both degrees from the same state.14 

Our finding that only 37.1% stay in the state of training raises the question of 

whether the role of proximity to the university is overemphasized in the transmission of 

public knowledge from universities to industry.  The top source of public knowledge, 

according to the Carnegie Mellon survey of firms (Cohen, Nelson, Wash 2002), is 

publications and reports.  Neither requires proximity to the scientist/engineer.  The 

second source, informal information exchange, public meetings, or conferences and 

consulting, is facilitated by proximity but proximity is not essential. The next tier 

includes recently-hired graduate students.  Our research clearly shows that in this respect 

proximity does not play a major role.15   

                                                 
13 Top fields are based on the 1993 National Research Council (NRC) rankings for all fields except 
medicine and agriculture.  The rankings for the majority of fields are based on the “scholarly quality” 
scores in the NRC rankings for each relevant program at the institution.  For field definitions that were 
broader than the program definitions in the NRC rankings (such as biology), we calculated the means for 
each rated program applicable to our broader field for each institution.  For the fields of medicine and 
agriculture, we used the 1998 NSF CASPAR data to rank institutions, due to the absence of data for these 
fields in the NRC rankings.  Institutions in these fields were ranked by total federal R&D expenditures at 
each institution.  In the case of biology and medicine, which have a very large number of PhD programs, 75 
institutions were included among the top programs.  For smaller fields, such as astronomy, the top category 
includes the top 25 programs.  In most other fields, the top category includes the top 50 programs. 
14 The logit analysis also includes controls measuring the innovative character of the state, such as patent 
counts, academic R&D expenditures, industrial R&D expenditure, and a measure of job opportunities for 
PhDs in the state.  In addition, we control for per capita income, population, and the educational level of the 
state. 
15 This discussion also raises the question of the degree to which spillovers from public institutions result 
from nonappropriability.  We have argued that tacit knowledge comprises an important component of the 
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The finding that nearly two out of three PhDs who go to work in industry leave 

their state of training and that more than one out of two leave their region of training 

highlights the degree to which the market for PhDs working in industry is national.  It 

also underscores the degree to which the quality and scale of doctoral S&E training 

programs requires, at least in part, a tolerance on the part of Midwestern states of the fact 

that a good portion of their most prized “talent” emigrate to the Coasts.  Many of these 

doctoral programs were initially developed and designed to meet state needs.  As the 

labor market expands, and as the traditional industrial base of the United States shifts, 

one can make the case that a highly trained S&E workforce will only be maintained if the 

Federal government increasingly steps in to provide financial support for graduate 

education, since state legislatures are unlikely to continue to fund these migration flows 

over the long run.16  

Section IV.  Using Human Resource Data to Illuminate Patterns of Innovation 

Firms hire new PhDs not only for the new knowledge that they possess but also 

for their ability more generally to contribute to the innovative activities of the firm.  

Tracking the placement of PhDs can also inform our understanding of patterns of 

innovation.  This can be useful given that changes are occurring in patterns of innovation 

which traditional measures, such as patent counts and research and development 

expenditure data, are increasingly unable to illuminate. To quote Mowery (1999, p. 46), 

                                                                                                                                                 
knowledge that new PhDs transmit to firms.  Yet tacit knowledge, as Zucker, Darby and Brewer (1998) 
point out, facilitates excludability.  Thus knowledge transmission, to paraphrase the aforementioned 
authors, can result from the maximizing behavior of scientists who have the ability to appropriate the 
returns to their knowledge rather than from nonappropriability. 
16 This is not to say that the Federal government does not already provide considerable support for the 
training of PhD students.  But much of this, with the exception of training grants from NIH, comes 
indirectly through the support for research assistantships on faculty member’s grants.   
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“Without substantial change in the content and coverage of data collection, our portrait of 

innovative activity in the U.S. economy is likely to become less and less accurate.”   

 Here we explore how data concerning the placement of new PhDs with firms can 

illuminate our understanding of patterns of innovation.  Of particular interest is how such 

data inform our understanding of the location of innovation, the source of innovative 

inputs, and the degree to which human resource data relate to other measures of 

innovation.  Before doing so, we place the discussion in context by summarizing major 

changes occurring in patterns of innovation. 

Changing Patterns of Innovation.  Four trends characterize the change that has 

occurred in patterns of innovation in recent years:  (1) the increased reliance on external 

R&D, such as that performed by universities, consortia and government laboratories 

(Mowery, 1999, p. 44): (2) increased collaboration in the development of new products 

and processes with domestic and foreign competitors and customers (Mowery, 1999, p. 

44); (3) a decentralization of in-house R&D activities (Merrill and Cooper, 1999); and (4) 

the movement of innovative activities to functions in the firm typically not thought of as 

being drivers of innovation.  The latter is fueled in part by the development of 

technologies that impact the operation and marketing of the firm’s production.  Although 

all four changes contribute to the growing inadequacy of traditional measures to describe 

innovative activity, it is the latter two that we explore here because they can best be 

illuminated by examining HR data.  

 Increasingly firms have chosen to locate research activities at the plant level, 

instead of at a central R&D lab.  This decentralization creates fuzziness in the current 

R&D data since the location of where the actual innovation is developed corresponds less 
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and less to corporate headquarters, yet the data are collected at the corporate level.  

Knowing the location of PhDs working in industry can help solve the “location” problem 

since the placement data reflects actual location, not the location of the company’s 

headquarters. 

 Another organizational change with regard to patterns of innovation is the 

movement of innovative activities to functions within the firm not typically regarded as 

drivers of innovation.  One example is the assignment of scientific personnel to evaluate 

and seek R&D opportunities through mergers and acquisitions.  Another is the 

involvement of technically teamed personnel in marketing and distribution.  The 

important innovations that firms make in these areas are generally missed in standard 

measures of R&D.  Measuring flows of new PhDs to industry regardless of their 

organizational assignment provides the opportunity of learning something about these 

sources of innovation that are not typically counted in R&D expenditure data. 

  Location.  Table 5 shows the regional distribution of new PhDs going to work in 

industry.  The region where the largest number of new PhDs plan to work is the Pacific  

(25.9% ).  The strong presence of IT firms in the Pacific region, as well as the heavy 

proportion of engineers in the database, contribute no doubt to this finding. The Mid-

Atlantic region is the second largest employer of new PhDs.  The East North Central is a 

distant third. Column 3 gives the distribution of industrial R&D expenditures by region.   

A comparison of the spatial distribution of new hires with the spatial distribution of R&D 

industrial expenditures is consistent with the argument above, showing that the 

distributions are spatially different.  For example, we see that expenditure data 

undercounts innovative activity in the South Atlantic and the West South Central, and 
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overcounts innovative activity in the Pacific region and the East North Central.  While 

some of these differences are undoubtedly due to our inability to fully measure PhD 

flows to industry, the differences are suggestive that R&D expenditure data alone fail to 

capture regional differences. 

 The work location of new PhDs going to industry can also inform our 

understanding of the location of innovative activity at the city level—something that is 

not possible to obtain from industrial R&D expenditure data.  Table 6 shows the top-20 

PMSA destinations of new PhDs hired by firms.  The data are striking on several counts.  

First, almost 60 percent of the placements went to one of the top 20 PMSAs.  Second, 

there is substantial disparity in counts between the top-ranked PMSA and all others, with 

San Jose employing almost twice as many scientists and engineers as Boston, the second 

most popular destination.  Third, and related, California has a high prevalence in the 

counts.  Five of the top 20 destinations are in California.  Combined, these five PMSAs 

capture approximately 25% of those going to a top 20 PMSA and slightly more than 16% 

of those going to any MSA.   

 The employment data are less geographically concentrated than other measures of 

innovation.    For example, while 35% of utility patents are issued in five cities (New 

York, San Francisco, Los Angeles, Chicago and Boston), only 30% of industrial hires are 

employed in the top five cities.17   SBIR Phase II awards are even more heavily 

concentrated than the patent data, with approximately one in two being awarded to firms 

located in San Francisco, Boston, Los Angeles, the District of Columbia and New York.   

                                                 
17 Note that here we include Oakland and San Francisco with San Jose since the patent count data are for 
MSAs and not PMSAs.  Distributions are taken from Black (2001).  
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 Relationship between R&D Expenditures and Hiring Patterns. Another way to 

examine how the hiring data informs our understanding of innovation is to compare 

rankings between R&D expenditure data and rankings using the hiring data.  Such a 

comparison shows that innovation is less concentrated than the R&D data would suggest.  

For example, while the top 20 R&D firms (National Science Board 2004) account for 

36.2% of industrial R&D in the United States, the top 20 hiring firms account for only 

22.4% of all industrial hires of new PhDs.18  Moreover, although overlap between the top 

20 R&D firms and the top 20 hiring firms exists, there are considerable differences.  Only 

ten of the top 20 R&D firms appear on the top 20 hiring list.  Clearly the PhD-hiring 

variable is related to the R&D expenditure variable but also captures a somewhat 

different dimension of innovation.   

 PhD placements are given in Table 7 for the top 32 hiring firms, grouped by 

NAIC classification.19  In accordance with SRS guidelines, all cells contain three or more 

firms with no firm hiring 50 percent or more of the new PhDs.  Together, these 32 firms 

hire approximately one-fourth of all new PhDs going to industry during the period 

studied.   

 Firms making the largest number of hires among the 32 were located in computer 

and electrical products, followed by firms working in publishing and professional, 

scientific and technical services.   Five firms in pharmaceuticals and medicine are among 

the top 32, employing 746 new PhDs.  This is particularly notable given the under-

                                                 
18 We measure the top 20 using R&D expenditure data for 1999, 2000 and 2001 (National Science Board, 
2004, Table 4.4). 
19 We choose the number 32 in order to maximize our ability to display the data and comply with SRS’s 
policy concerning display of data.  Each cell on Table 7 contains three or more firms and no firm in any 
cell hires 50% or more of the new PhDs.  Analysis is restricted to individuals going to work in the United 
States.   
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representation of new PhDs in biology in the data and the fact that firms in 

pharmaceuticals hire many freshly trained PhDs after they complete their postdoctoral 

training--not directly out of graduate school.  

 The top 32 firms recruited approximately the same number of new PhDs in Period 

One (2858) and Period Two (2873).  However, there were large differences across NAIC 

classifications, reflecting changes in the underlying economy.  Growth was greatest in 

chemicals and pharmaceuticals (37.5%).  This mirrors our earlier finding that hiring 

increased among biologists and chemists between the two periods.  Employment of new 

PhDs fell 42% between the two periods in aerospace products and parts.  Employment 

remained relatively constant among the other NAIC groupings.  

The SED data also provides insight into the mix of expertise that firms hire.  

Pharmaceuticals provide an illustrative case.  During the six-year period, top-200 R&D 

pharmaceutical companies hired 1047 new PhDs.  The dominant field of training was 

chemistry (402), but 100 or more were hired from four other fields:  193 from biology; 

147 from engineering, 140 from medicine and 132 from math.  The hires in math 

undoubtedly reflect the importance of modeling in drug discovery.  

Foreign.  Approximately 5% (1096) of the new PhDs with definite plans to go to 

industry indicate that they are taking a position with a firm located outside the United 

States.  The number (and percent) going abroad is slightly lower in Period Two than in 

Period One.  The most common foreign destination is Korea, where 22.5% of those with 

plans to work in industry abroad indicate that they will go; the next most likely 

destination is Germany (8.8%), followed by Japan at 8.5%.  Canada attracts about 6% 

and Taiwan close to 5%.  In light of recent discussions concerning increased innovative 
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activity in developing Asian countries, it is interesting to note that approximately 6% are 

headed to the countries of China (1.8%), India (2.1%) or Thailand (2.0%).  

Section V.  Data Issues 

As noted earlier, the data used for this paper undercount new PhDs going to work 

for industry in two respects.  First, they undercount in the sense that not all PhDs have 

definite work plans at the time they graduate.  Second, they undercount in the sense that 

in certain fields, especially the life sciences, it is common practice for individuals to first 

take a position as a post doc before eventually taking a job in industry. While we can 

learn something about both groups by examining patterns in the Survey of Doctorate 

Recipients (SDR), this is far from a perfect substitute, since the SDR only samples about 

8% of PhDs for follow-up study.  We would learn far more if resources were available 

for follow-up with those who do not have definite plans.  We could also learn 

considerably more if a survey were done of postdocs, especially postdocs at the time they 

leave the postdoctoral position.  Science Resources Statistics at NSF is currently in the 

process of reviewing and studying the possibility of fielding a postdoc survey.  SRS’s 

goal is to provide an integrated approach to surveying postdocs in order to fill in current 

gaps.   

 SRS has made some changes in data collection and its policy towards data use 

which have the potential to increase our knowledge about industrial placements and, by 

inference, the innovation process in the United States.  First, SRS is in the process of 

adding a “salary offer” question to the SED for those with definite plans.20  When 

                                                 
20 SRS plans a limited field test of possible salary-offer-question wording and formats for the July 2006-
June 2007 SED.  The test will ask some respondents to identify their salary offer in ranges and others to 
provide a specific salary figure.  Using the results of that test, SRS plans to add a “salary offer” question to 
the SED for the academic year beginning July 2007 through June 2008.   
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implemented, it will be the first time that information has been collected at the national 

level on starting salaries for PhDs in science and engineering.  Second, SRS has 

established guidelines for how SRS data can be matched to other data, such as patent 

databases or publication counts.21
�The ability to link the PhD records with, for example, 

patent counts will provide another window for examining patterns of innovation.  Third, 

SRS is exploring the possibility of coding information concerning the industrial 

placements of respondents to the SDR.   

Section VI.  Conclusion  

 Here we have examined hiring patterns of recently trained PhDs in science and 

engineering who have definite plans to work in industry after graduation.  The period of 

analysis is 1997-2002.  Data are taken from the Survey of Earned Doctorates, a census of 

recent PhDs which has a response rate of approximately 92%.  While respondents have 

long been asked to identify the name and location of where they will work, prior to 1997 

the data was not coded for those with plans to go to industry and since 1997 it has only 

been collected in verbatim form.  We have now coded the verbatim records by firm name 

and location for the six-year period 1997-2002 and identified placements made at top-200 

R&D firms.   During the period analyzed, almost 22,000 new PhDs indicated that they 

had definite plans to work for a firm after graduation and identified the firm and the 

location of the firm.  This represents approximately 15% of all newly minted PhDs 

during this time period and approximately 23% of all PhDs who had definite plans at the 

time of graduation.    

                                                 
21 The policy is described  at the following web site: 
http://www.nsf.gov/statistics/database.cfm 
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 Data on firm placements provide insights that other data do not provide.  One 

such insight relates to where these newly minted and hired PhDs trained.  This is of 

interest since newly trained PhDs provide one means by which knowledge, especially 

tacit knowledge, is transferred from the public sector to the private sector.  We find these 

knowledge sources to be heavily concentrated in certain regions and states.  Moreover, 

the geographic distribution of knowledge sources, as measured by where PhDs going to 

work in industry trained, is different than other measures of knowledge sources would 

suggest, such as university R&D-expenditure data.  We conclude that the spatial 

distribution of knowledge sources embodied in newly minted talent is different from the 

distribution of knowledge sources stemming from university research, as measured by 

university R&D expenditures.   

A major headline here is the strong role played by Midwestern universities, which 

educate over 26% of all PhDs going to industry.  Indeed, seven of the top twenty 

institutions educating PhDs to work in industry are located in the Midwest.  We also find 

that PhDS working in industry are not particularly likely to remain in the state where they 

received their PhD training.  Compared to master-degree recipients going to work in 

industry, PhDs are almost 45% less likely to remain in the state of training. To wit, the 

state stay rate for PhDs working in industry is 37%; that for masters is 65%.  The finding 

suggests that it is important to rethink the role that proximity to the university plays in the 

transmission of knowledge. 

Stay patterns are particularly low among certain Midwestern states and 

universities located in these states.  Some of these states have seen a considerable decline 

in their industrial prowess in recent years.   As Nathan Rosenberg has pointed out, it is 
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not accidental that athletes at Purdue University bear the nickname of “boilermakers,” 

reflecting Purdue’s early commitment to engineering education supporting industry in the 

state of Indiana.  While the name persists, Purdue’s PhDs now overwhelmingly leave the 

state to take employment elsewhere—many as far away as the west coast.  One can make 

the case that as the traditional industrial base of the United States shifts, a highly trained 

S&E workforce will only be maintained if the Federal government increasingly steps in 

to provide financial support for graduate education, since state legislatures are unlikely to 

continue to fund these migration flows over the long run.  It is risky as a nation to 

continue to rely on the “kindness” of Midwestern states to educate the high-quality S&E 

workforce that heads out-of-state upon graduation.     

 Hiring data also inform our understanding of patterns of innovation.  This is 

particularly useful given that R&D data are often collected at the corporate level and thus 

do not reflect the decentralization that is occurring in research and development, as 

companies move away from large central labs.  Hiring patterns also provide information 

on scientists and engineers working in industry, regardless of their organizational 

assignment.  This provides the opportunity for learning something about resources 

employed in innovative activity that are not typically counted in R&D expenditure data.   

Firms most likely to hire new PhDs are found in computer and electrical products, 

followed by firms working in publishing and professional, scientific and technical 

services.  Five firms in pharmaceuticals and medicine are among the top hiring firms.  

Apropos to the above argument, while we find some overlap between top hiring firms 

and top R&D firms, there are also considerable differences.  Only ten of the top 20 R&D 
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firms appear on the top-20 hiring list.  Clearly the PhD hiring variable is related to R&D 

expenditures but also captures a somewhat different dimension of innovation. 

New PhDs working for industry are most likely to head to San Jose. Indeed, 

almost one out of five new PhDs going to work for industry heads to San Jose.  It is no 

wonder that the San Jose newspaper has a fulltime science reporter!  Other top- 

destination cities include Boston, New York, Washington, D.C., Portland-Seattle, and 

Chicago.  While industrial employment of newly trained scientists and engineers is 

heavily concentrated in a handful of cities, it is not nearly as concentrated as are counts of 

patents or SBIR Phase II awards. 

The location data highlights the role that PhDs play in local economic 

development, not only through their contribution to innovation, but also through the 

economic impact that their relatively high wages exert on the local economy.  Sumell 

(2005), for example, estimates that a newly trained PhD in computer science working in 

industry earns $86,700 a year; a newly trained PhD in electrical engineering earns 

$78,500.  More than 300 new PhDs a year go to work in industry in San Jose alone.  

Many of these are electrical engineers and computer scientists.  Hired to work on 

products that will have a global market, they spend much of their income locally.  

Through the multiplier effect, their spending contributes to regional economic growth.   

 Finally, our data suggest that small firms play a larger role in innovation than 

R&D data would suggest.  For example, while the top 200 R&D firms expend more than 

70% of all R&D in the U.S., they hire only 39% of all new PhDs.  The difference reflects 

in part the degree to which small firms are “knowledge-intensive” and the degree to 

which R&D statistics are dominated by development costs associated with large firms, as 
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opposed to research costs.  It is difficult to know the extent to which this small-firm 

effect reflects Federal policies such as the SBIR program that are aimed specifically at 

small innovative firms.  But the knowledge that small firms contribute substantially to 

innovation22 and are hiring newly-minted PhDs suggests that the Federal government 

might consider further leveraging the benefits coming from small knowledge-intensive 

firms by investing additional resources in programs aimed at small innovative firms.  

Such a policy not only has the potential of contributing to innovation and subsequent 

economic growth.  It could also augment the number of research positions available for 

scientists and engineers and send a positive signal to those contemplating careers in 

science and engineering.   

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
22 See, for example, the work of Acs and Audretsch (1990) which discusses the increased importance small 
firms play in generating innovation, especially in certain industries. 
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Table 1 
                                  Firm Placements of New Science and Engineering PhDs:  1997-2002 

 
 Period One Period Two 
Field of 
PhD  

Percent 
PhDs 
awarded 
who 
identified 
a firm 

Number 
PhDs 
awarded 
who 
identifie
d a firm 

Percent 
Going to 
a top 
200 
R&D 
Firm 

Number 
Going to 
a top 
200 
R&D 
firm 

Percent 
PhDs 
awarded 
who 
identified 
a firm 

Number 
awarded 
who 
identified 
a firm 

Percent 
Going to 
a Top 
200 
R&D 
firm  

Number 
Going to a top 
200 R&D 
Firm 

All science and 
engineering 

14.5 10,932 37.8 4134 15.2 10,83 3 40.0 4333 

All engineering 30.7 5,364 44.7 2400 31.9 5,089 47.8 2435 
Agriculture 9.0 308 14.9 46 8.2 256 31.2 80 
Astronomy 7.8 44 36.4 16 6.8 35 48.6 17 
Biology 3.8 609 23.2 141 5.2 843 24.6 207 
Chemistry 18.7 1216 45.0 547 22.2 1310 45.0 589 
Computer 
science 

28.4 762 50.3 383 27.9 697 45.3 316 

Earth science 12.3 252 29.7 100 13.1 192 31.2 60 
Math 12.5 477 32.3 154 12.3 417 35.5 148 
Medicine 5.0 435 20.0 87 5.4 486 26.1 127 
Other 
(Economics 
and 
psychology) 
 

8.3 811 10.7 87 9.0 1037 8.8 91 

Physics 16.1 654 33.2 217 18.1 638 41.2 263 
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Table 2 
Region of Training 1997-2002 of Those Working in the U.S. 

 
Region Trained Percent Trained University R&D (percent)* 
New England 8.3 8.2 
Mid Atlantic 16.9 14.7 
East North Central 19.7 14.4 
West North Central 6.9 6.7 
South Atlantic 15.4 19.0 
East South Central 2.6 4.4 
West South Central 8.2 9.3 
Mountain 5.0 6.3 
Pacific 16.9 17.0 
*Expenditure data are for 1997-1999 and come from National Science Board (2002) 
 
 

Table 3 
Top-20 Producing Universities of PhDs Headed to Industry* 

1997-2000 
 

University Number 
Trained 

Stanford 732 
Illinois—Urbana/Champaign 670 
California, Berkeley 579 
Texas, Austin 576 
Purdue, main campus 528 
MIT 527 
Minnesota, Twin Cities 521 
Michigan, Ann Arbor 489 
Georgia Institute of Technology 451 
Wisconsin, Madison 430 
Pennsylvania State 388 
North Carolina State 381 
UCLA 365 
Cornell 335 
Ohio State, main campus 302 
Northwestern 299 
Carnegie Mellon 288 
Texas A&M 278 
Maryland, College Park 277 
Southern California 264 
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 Table 4 
Regional Flows of New PhDs Going to Industry:  1997-2002* 

(Represents percent staying in region of training) 
Region of 
Employment/Region 
of Training 

New  
England 

Mid 
Atlantic 

East 
North 
Centra
l 

West 
North 
Central 

South 
Atlantic 

East 
South 
Central 

West 
South  
Central 

Mountain Pacific Total  
Employ
ed 

New England 842 
(45.8) 

306 228 61 215 34 60 49 127 1922 

Mid Atlantic 341 1871 
(51.1) 

602 182 467 42 142 87 315 4049 

East North Central 66 213 1622 
(38.2) 

191 257 76 88 55 103 2671 

West North Central 31 57 168 504 
(33.8) 

65 23 37 23 41 949 

South Atlantic 111 277 268 101 1402 
(42.3) 

69 101 53 110 2492 

East South Central s 19 36 16 49 180 
(31.7) 

27 9 s 345 

West South Central 59 135 232 99 208 47 939 
(52.1) 

88 103 1910 

Mountain 26 63 110 41 84 18 53 457 
(42.1) 

62 914 

Pacific 229 538 781 220 429 53 247 212 2610 
(71.5) 

5319 

Out of U.S. 132 181 201 75 141 26 108 52 180 1096 
Total Trained 1837** 3660 4248 1490 3317 568 1802 1085 3651** 21667 

s=suppressed.  Not reported if counts are 6 or less or a specific firm contributes 50% or more to a cell. 
*Counts exclude those trained in Puerto Rico or going to Puerto Rico as well as those with an unknown employment location (total of 
72 cases). **Counts do not include suppressed numbers.
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Table 5 
Region of Employment 1997-2002 

 
Region Employed Percent Employed Industrial  R&D (percent)* 
New England 9.3 9.5 
Mid Atlantic 19.7 18.0 
East North Central 13.0 17.2 
West North Central 4.6 4.1 
South Atlantic 12.1 9.5 
East South Central 1.8 1.8 
West South Central 9.3 5.8 
Mountain 4.4 6.0 
Pacific 25.9 28.1 
*Expenditure data are for 1997-1999 and come from National Science Board (2002) 
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Table 6* 
Top 20 Metropolitan Statistical Area Locations of Industrial Hires: 1997-2002 

 
PMSA Number Percent 
San Jose 1878 9.1 
Boston 1015 4.9 
New York 937 4.5 
Washington DC MD VA 758 3.7 
Portland-Seattle 694 3.4 
Chicago 669 3.2 
Los Angeles-Long Beach 622 3.0 
Houston 586 2.8 
Newark 547 2.6 
San Francisco 534 2.6 
Dallas 505 2.4 
Minneapolis 439 2.1 
Detroit 429 2.1 
Oakland, CA 424 2.1 
Philadelphia PA-NJ 377 1.8 
San Diego 345 1.7 
Austin 341 1.7 
Raleigh-Durham 320 1.5 
Atlanta 309 1.5 
Middlesex-Somerset-
Hunterdo 

299 1.4 

Total Top 20 12028 58.2 
Other PMSAs  7272 35.2 
U.S. NON PMSA 1360 6.7 
Total in U.S.  20660 1.00 
* Each cell represents hiring by three or more firms and no firm in any cell hires 50% or 
more of the new PhDs reported in that cell. 
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Table 7 
Top 32 Firms Hiring New PhDs by NAIC Classification:  1997-2002* 

 
NAIC Classification Industry Number 
3254 Pharmaceuticals 746 
325 Chemical other than 

pharmaceuticals 
418 

331, 333 Primary metal; machinery 304 
334 Computer and electrical 

products 
1541 

3364 Aerospace Products and 
parts 

316 

336 Transportation other than 
aerospace 

349 

511, 541 Publishing industries and 
Professional, Scientific and 

Technical Services, 

1244 

32,513, 99 Other manufacturing; 
Broadcasting and 

telecommunications; 
conglomerate  

813 

Total  5731 
 
*Each cell reports data on three or more firms and no firm in any cell hires 50% or more 
of the new PhDs reported in that cell. 
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Appendix  

Inter-State and Inter-Regional Migration Patterns of New Industrial PhDs   
1997-2002 

State/Region 

Number of 
New PhDs 
Trained In 

State/Region 

Number of 
New PhDs 
Working In 

State/Region 

Number of 
New PhDs 
Produced 

that Stay In 
State/Region 

Percent of 
New PhDs 
Produced 

that Stay In 
State/Region 

New England 1846 1922 842 45.7 
Connecticut 268 429 79 29.5 
Maine 18 19 s s 
Massachusetts 1358 1283 550 40.5 
New Hampshire 61 79 17 27.9 
Rhode Island 121 46 16 13.2 
Vermont 20 66 8 40.0 
      
Mid Atlantic 3668 4050 1871 50.9 
New Jersey 618 1455 299 48.4 
New York 1735 1730 635 36.6 
Pennsylvania 1315 865 327 24.9 
      
East North Central 4270 2672 1622 38.0 
Illinois 1306 881 367 28.1 
Indiana 711 311 84 11.8 
Michigan 871 696 316 35.6 
Ohio 890 558 268 25.4 
Wisconsin 492 226 87 17.7 
      
West North Central 1497 953 504 33.7 
Iowa 317 90 43 13.6 
Kansas 202 94 50 24.8 
Minnesota 552 484 190 34.4 
Missouri 304 218 85 28.0 
Nebraska 70 43 20 28.6 
North Dakota 37 9 s s 
South Dakota 15 11 s s 
      
South Atlantic 3328 2492 1402 42.1 
Delaware 131 147 s s 
Florida 506 301 156 30.8 
Georgia 618 348 185 29.9 
Maryland 486 437 128 26.3 
North Carolina 701 433 211 30.1 
South Carolina1 170 122 36 21.2 
Virginia 529 464 153 28.9 
West Virginia 48 56 8 16.7 
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Washington D.C. 139 184 20 14.4 
      
East South Central 570 345 180 31.7 
Alabama 194 102 48 24.7 
Kentucky 91 58 13 14.3 
Mississippi 90 24 12 13.3 
Tennessee 195 161 72 36.9 
      
West South Central 1806 1910 939 49.2 
Arkansas 41 27 12 29.3 
Louisiana 172 135 40 23.3 
Oklahoma 161 79 39 24.2 
Texas 1432 1669 738 51.5 
      
Mountain 1081* 914 457 42.3 
Arizona 373 339 146 39.1 
Colorado 375 313 153 40.1 
Idaho 25 50 7 28.0 
Montana 26 12 s s 
New Mexico 79 80 26 32.9 
Utah 185 91 60 32.4 
Nevada s 22 s s 
Wyoming 25 7 s S 
      
Pacific 3657* 5319 2610 71.4 
Alaska s 9 s s 
California 3176 4465 2200 69.3 
Oregon 154 s s s 
Washington 304 353 107 35.2 
Hawaii 23 s s s 
     
Puerto Rico 28 30 21 75.0 

 
*Does not include suppressed counts. 
s=suppressed.  At the request of Science Resources Statistics, National Science foundation, counts not 
reported if 6 or less or if a specific firm contributes half or more of the count in a cell.  
Note that counts differ from those of Table 4 which excludes those trained or going to Puerto Rico as well 
as those with an unknown location. 
 
 
 
 
 
 
 
 


