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reservation wage. In group-duration analysis for biotechnology, stars
move to firms faster as their quality, human focus, and outside coau-
thorships increase; local firms and productivity of local stars in firms
increase; and top local universities decrease. Stars move to firms full
or part time similarly, but significance drops for rarer full-time moves.

Technology transfer is the movement of ideas in people.
(Donald Kennedy, Stanford University, March 18,
1994)

I. Introduction

In breakthrough discoveries where scientific productivity becomes rel-
evant to commercialization, the labor of the most productive scientists is
the main resource around which firms are built or transformed. We can
think of the top scientists as the “seeds” around which crystals form. The
scientist is the key resource, but he or she must attract other resources
to augment his or her own research productivity. Further, when that
research is highly commercializable, stars similarly augment the produc-
tivity of a firm when they move their labor from universities and research
institutes to firms. But how do these top academic scientists become
involved in commercializing their discoveries?

We model labor mobility as a function of the scientist’s quality (as
measured by scientific citations) and his or her reservation wage. Labor
mobility generally is based on visible or easily obtainable signals of un-
derlying labor quality, such as education (Spence 1973, 1974). Labor mo-
bility of top scientists is no different, but the signals typically contain
more differentiated information concerning current levels of output and
more evaluative information on the quality of that output. Returns to
detailed monitoring of the quantity and quality of scientists’ performance
are sufficiently high to employers to offset the costs involved.

In order to gain access to the knowledge of discovering scientists, firms
in related areas of technology employ them. In biotechnology, the dis-
covering scientists were initially employed by universities and research
institutes; we are concerned with explaining the mobility processes in-
volved in moving at least part of their labor effort to specific firms. Some
of these firms are incumbent firms which adopt the new technology (see
Zucker and Darby 1996a, 1997), but many of the firms are newly created
around these “star” scientists, who often become residual owners as well
as employees (Zucker, Darby, and Brewer 1998).

We investigate two somewhat different sources of labor mobility: the
“classic” labor mobility of changing employer from a university or research
institute to a firm (“affiliated scientists”) and the empirically more common
labor mobility we observe when academic or research institute scientists
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collaborate on joint research projects or patenting with a firm (“linked
scientists”). Both kinds of mobility generally involve working at the bench-
science level with firm scientists. Some of the linked bioscientists retain
their full university positions, but others have opted for adjunct or other
titles that involve less active day-to-day participation while still retaining
their academic positions and identifying their affiliation as the university
on their publications.

Our analysis is organized as follows. In Section II, we discuss the issues
that need to be taken into account to be able to understand labor mobility
as a technology transfer process in biotechnology. In Section III, we develop
a theoretical model to explain the decision process of a star scientist when
moving to a firm, and in Section IV we detail the econometric techniques
used to estimate our model. The main results are then explained in Section
V. Finally, in Section VI, we conclude by discussing our identification of
an important neglected set of processes that allow retention of at least part
of the value of knowledge by a discoverer and explaining how this knowl-
edge is transferred through labor mobility to the firms.

II. Labor Mobility as Technology Transfer

Labor mobility of discovering scientists becomes important in tech-
nology transfer when a new discovery has both high commercial value
and a combination of scarcity and tacitness that defines natural exclud-
ability, the degree to which there is a barrier to the flow of the valuable
knowledge from the discoverers to other scientists. Those with the most
information about breakthrough discoveries are the scientists actually
making them, so there is initial scarcity. To the extent that the knowledge
is both scarce and tacit, it constitutes intellectual human capital retained
by the discovering scientists; therefore, these scientists become the main
resource around which firms are built or transformed (Zucker, Darby,
and Armstrong 1998; Zucker, Darby, and Brewer 1998). “Star” scientists
are, therefore, important in the process of technology transfer because of
the value of their knowledge to the success of firms.1

1 In related research, we have found that the one variable that has a significantly
positive effect on all measures of firm success is the count of “linked” articles
authored by stars with firm employees. These linked stars are most often local
academic scientists-entrepreneurs who possess a significant equity or founding in-
terest in the firm. The number of such articles serves as an indicator of the depth
of the star’s involvement with the firm’s research effort. Just two such linked articles
results in about one more product in development, about one more product on the
market, and about 345 more person employment growth from 1989 to 1994. For
five such articles, the impact was 4.7 more products in development, 3.5 more
products on the market, and about 860 more employees (Zucker and Darby 1996b;
Zucker, Darby, and Armstrong 1998). These results generalize. In Japan, articles
written with biotech stars have been shown to determine which firms are most



632 Zucker et al.

A. Barriers to Information Flow: Stars’ Knowledge Advantage

Scarcity of the new knowledge is reflected in classic diffusion, beginning
with just a handful of discoverers and growing at a pace that reflects both
the value of the knowledge, where high-value discoveries will diffuse more
widely and rapidly than those with low value, and its tacitness. When the
value is high, as in biotechnology, other scientists are motivated to learn
the new knowledge; however, when tacitness is high, these other scientists
are limited in their ability to learn it, depending on the relative scarcity
of those who already know it, since scientists desiring to enter the new
area of research may need to have hands-on experience at the bench before
they are able to do so.2

Coauthoring, which implies bench-level collaboration, provides our
measure of tacitness: the degree of tacitness is high when most new authors
in an area of research are publishing with at least one old author, defined
as one who has previously published in the same field, and low if most
new entrants to the field can do the research either by himself or herself
or with all new authors.3 For biotechnology, the field is well defined by
inclusion in GenBank, which is a worldwide directory of all articles re-
porting newly discovered genetic sequences.

Figure 1 illustrates the initial scarcity of the new knowledge and the
overall drop in scarcity as new scientists increasingly publish in GenBank,
enlarging the pool over time of scientists who continue to publish on
genetic sequence research. As is also shown in figure 1, our tacitness
measure declines more slowly than scarcity. In fact, new scientists continue
to enter throughout the 1969–92 period predominantly by publishing with
old, experienced scientists who have previously published in GenBank
and thus demonstrably know the relevant techniques, with this mode
accounting for 81% of entry from 1969 through 1992.4 Excluding sole-

successful (Zucker and Darby 2001). In the United States, Torero (1998) finds star
scientists’ involvement explains semiconductor firms’ success.

2 Exceptions typically include the handful of scientists working in the same very
narrow specialized area as the discovering scientists. At the extreme, when initial
scarcity and tacitness are very high, transmission of the new knowledge will be only
to the graduate students and postdocs working in the same lab as the discovering
scientists.

3 Comparing different scientific breakthroughs to determine the initial starting
size of the discoverers, the degree to which learning by doing is involved (coau-
thoring with “old” scientists as the predominant mode of entry), and the relative
rates of “diffusion” is an important next step. For example, a much less tacit process
appears to operate in the case of high-temperature superconductors, where the
know-how was widespread prior to the breakthrough experiment that demonstrated
that ceramics incorporating rare earths can work as superconductors at economically
interesting temperatures.

4 Reports of publications for 1993 were incomplete in February 1994, so that year
has been excluded from the figure and these calculations. In the incomplete reports
for 1993, entry with old authors amounted to 83% of total entry.
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authored articles, which may be dissertations for new authors and review
articles by established authors, new authors write exclusively with other
new authors 36% less frequently than old authors write exclusively with
other old authors.5 The overall significance of these differences was con-
firmed in a loglinear analysis 2 2(x p 1,265.45; G p 1,202.83; p ! .0001)
for both values.

B. Transmission of Information: Stars’ Velocity of Movement
to Firms

Is there an explanation of how quickly a star scientist will move? We
define velocity of movement as the inverse of the expected number of years
that a star scientist will take to move to a firm. We see three possible
interpretations of the velocity of movement of scientists to firms in bio-
technology. The first explanation is based on existence of a market imper-
fection, such as a monopoly or cartel. For example, existing pharmaceutical
firms might collude to block the new technology as threatening their mar-
ket-sharing arrangements. In this case, the velocity of movement depends
on how long it takes the market to break the cartel. The second explanation
is a pure diffusion of information problem in which what is critical is how
long it takes for the companies to get pure information about the quality
and capacity of the respective scientists (see Conlin 1999). Therefore, the
fact that the firms have to make a decision under uncertainty is central.

Finally, the third explanation is a pure diffusion of knowledge problem
in which what is critical is how long it takes for the scientist to realize
the commercial value of their discoveries. In this case, the importance of
the scientist’s work (measured through citations), the type of research
they do (human related or not), as well as their relationship with other
scientists with commercial experience, is crucial.

In all of these instances, analyzing the velocity of movement is inter-
esting. In the first explanation, we can find how quickly the market im-
perfection is solved. In the second explanation, velocity will depend on
how long it takes to get pure information and the extent to which the
companies are risk adverse. Finally, in the third explanation, we can find
out how fast the scientists realize the value of their research, depending
on characteristics of their research, their research ties, and their personal
risk aversion (determining how quickly they will be willing to move out
from the academic environment).

Specifically, for the purposes of this article and given the nature of the

5 Sole-authored articles account for only 6.5% of the authorships of new authors
and 7.8% of the authorships of old authors over this period. It is interesting that
new sole authors became more frequent later in the period as the value of the tacit
knowledge declined as it became more widespread (see also Zucker, Darby, Brewer,
and Peng 1996).
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sector with which we are working, the second and third alternatives are
the most empirically relevant. Further, the measures used for productivity
are generally considered good indicators of the quality of the scientists;
moreover, companies actually use publications and citations as measures of
a scientist’s quality (this has been confirmed by speaking with top R&D
executives at a number of major biotechnology companies). Therefore, at
least in science-driven industries such as biotechnology, firms have a way
to measure (or at least an excellent indicator of) the quality of the scientists
and can thus make offers to the best of the star scientists, directly influencing
the speed at which these scientists move. Of course, there are other variables
that are important in the model, such as development of human-related
sequences and the network size of the scientists (which increases the prob-
ability that an individual scientist’s work will be recognized).

Now, as mentioned previously, there are three possible alternative
movements of stars to firms: (a) a scientist completely moves to an existing
firm (affiliated), (b) a scientist partially moves to an existing firm (local
linked or external link), and (c) a scientist builds a new firm working
there full time (affiliated) or part time (linked). In the first two cases, the
firms will be the ones making the offers according to the quality of the
scientist. However, if the firms are not able to understand the quality of
the scientist’s work, the scientist could realize the commercial value of
his invention and, therefore, initiate a startup.6 On the other hand, the
time to move will be affected, but to a smaller degree, by a partial ad-
justment process until the market clarifies the price, though given the
scarcity and tacitness of this new technology, the latter will not be the
main variable behind the analysis. In the next section, we develop a model
of this mobility process and then use it to motivate estimation of mobility
in the following sections.

III. The Model

We want to explain the probability per unit of time that a scientist will
become involved in commercial applications of biotechnology full or part
time with either a local or external firm.7 For the star scientists we are
considering, it is possible for both potential employers and econometri-
cians to readily measure a vector Q of indicators of expected value of

6 Because the biotechnology revolution involved much different scientific skills
than those used at the then-incumbent pharmaceutical firms, the importance of the
breakthrough was not initially recognized by the bulk of the incumbent firms
(Zucker and Darby 1997). However, successful adoption of biotechnology was
ultimately essential to their survival (Darby and Zucker 1999).

7 This is equivalent to the velocity of movement defined above.
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marginal product.8 Elements of this vector would include whether the
scientist is employed by a top-quality university, is tenured there, the
quantity and quality of articles published previously (quality is observed
directly by the firm but proxied for us by the number of citations per
article), and whether the scientist’s work has concentrated on human
genetic sequences (see the list of variables in table 1; details are provided
in app. A). Increases in each of those variables would increase the expected
value of a star scientist to any given firm:

Pr (w ! z; Q) p G(z; Q), G (z; Q) ! 0, (1)0 Q

where is the vector consisting of partial derivatives for the con-G (z; Q)Q

tinuous variables and partial differences for the categorical variables (i.e.,
top-quality university, tenured). Hence, the probability of receiving an
offer from some firm that exceeds any given value generally increases with
the characteristics in 9Q.

Four distinct types of potential alternate (or joint) employers typically
employ star bioscientists moving from a university (in whole or part):
local firms, external (out of local region) firms, local universities, and
external universities. Movement to another university or firm or even
part-time collaboration (linkage) to a firm, as indicated by articles or
patents, generally involves a major time investment for the scientist and
occurs infrequently; so, for practical purposes, we can assume that only
one such move is possible in any given period. We model the scientist as
acquiring a new employer if an offer exceeding the type-specific (see
below) reservation value is made by any of each of the four types of
employers, and we distinguish between full- and part-time work with
firms.

Ideally, the reservation wage for leaving the current employer would be

8 In analyzing job mobility between employers, Topel (1986) and Topel and Ward
(1992) assume that wage offers from potential employers are generated by a known
offer distribution that reflects the variation in expected values of marginal product
across employers. The location of this distribution should vary across individuals
according to their characteristics that indicate differences in productivity to potential
employers. Topel and Ward (1992) abstract from individual differences and assume
that the location of the external wage offer distribution depends on an individual’s
cumulative labor market experience To-X : Pr (w ! z; X) p G(z; X),GX(z; X) ! 0.0

pel and Ward note that experience increases wage offers if the last inequality in the
previous equation is strict, but observed wages will increase with experience due
to search even if expected productivity is independent of experience
[GX(z; X) p 0].

9 In principle, the labor market experience X, mentioned by Topel and Ward,
might be an element of Q, but we see below that X is generally insignificant as a
predictor of mobility, with the sole exception of the first year the scientist publishes
in GenBank, an experience variable that is both highly specific and very relevant
to the firm (in analyses not reported here, the other experience variables remain
nonsignificant even when the “first year” variable is removed from the equation).



Table 1
Descriptive Statistics

Variables Mean SD Minimum Maximum

Individual characteristics:
Gender of star scientist (M p 1, F p 0) .96 .20 0 1
Age of star scientist 54.22 10.79 38 91
Age squared 3,055.61 1,245.95 1,444 8,281
Marital dummy (M p 1, 0 otherwise) .77 .42 0 1
First year star publishes in GenBank 1980.51 4.94 1967 1989
Number of children 1.69 1.21 0 7

Quality characteristics of star:
Total number of prior articles in

GenBank 9.35 10.22 1 55
Total citations to prior articles in

GenBank 126.38 185.31 0 953
Nobel Prize dummy (yes p 1, no p 0) .04 .19 0 1
Tenure dummy (yes p 1, no p 0) .88 .33 0 1

Characteristics of university or research
institute:

University top quality dummy (yes p
1, no p 0) .49 .50 0

1

University average reputation 3.92 .67 1.7 4.93
MIT or Harvard University dummy

(yes p 1, no p 0) .15 .35 0 1
Stanford or University of

California, San Francisco, dummy
(yes p 1) .12 .32 0 1

National Cancer Institute dummy (yes p
1, no p 0) .05 .22 0 1

Index of wages .86 .18 .42 1.71
Indicator of commercial potential:

Number of human genetic sequences (hu-
man p sequence type 1 or type 4) 1.54 5.30 0 49

Regional variables:
New biotech enterprises in region (count) 26.62 23.51 0 82
Top-quality universities in region (count) 1.44 1.18 0 3
Proportionate change in annual citation

rate of other stars in same region while
tied to firm .19 .62 �1 2.22

Proportionate change in annual citation
rate of stars in different regions while
tied to firm .15 .55 �.73 3.33

Indicators of size of social networks:
Proportion coauthors from different

institutions .31 .22 0 1
Number of times star changes university

or research institute 2.35 1.28 1 7
Dependent variable:

Star scientist movement to firm (1 p
star is first affiliated or linked, 0period

otherwise) .39 .49 0 1
N p 248
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an increasing function of the wage earned there, but we do not have data
on individual wages, and a wage index for the scientist’s university proved
inadequate empirically (this is discussed at table 4 below). So we assume
that current wages are also a function of Q but that egalitarian pressures
within the university as well as the potentially greater returns to commercial
applications of the star’s intellectual human capital imply that higher values
of any of the elements of Q shift the location of the G function by more
than the reservation value R. Thus, the probability of an acceptable offer
from any of the six types of potential employment (indexed by i) increases
in Q also:

Pr (w ! R; Q, i) p G(R; Q, i), G (z; Q, i) ! 0, (2)0 Q

where i p 1 for full-time local firm job, 2 for full-time external firm job,
3 for part-time local firm link, 4 for part-time external firm link, 5 for other
local university job, and 6 for external university job.

This assumption is more obvious for movements to firms (i p
than for universities ( ), but academics frequently1, 2, 3, or 4) i p 5 or 6

note that much greater weight is placed on externally visible research
productivity in external hiring than in promoting from within. In any
case, our principal concern in this article is explaining embodied tech-
nology transfer from universities to firms, so movements to other uni-
versities enter only as potential temporary interference with that process.

Specifically, and to model the velocity at which a scientist will become
involved in commercial applications of biotechnology full or part time
with either a local or external firm (probability per unit of time), the
overall hazard function, as in Kalbfleisch and Prentice (1980, p. 167), can
be written as the sum of the firm-type-specific hazard functions:

4

l(t; Q, H) p l (t; Q , H ), (3)� i t�1 t�1
ip1

where Q, as before, is our vector of externally observed measures of
intellectual human capital and H represents other factors affecting the
hazard rate. Both Q and H are observed in the previous period to eliminate
potential endogeneity problems. The additive form of the hazard function
implies that we can group relevant subsets for empirical purposes such
as full-time versus part-time or local versus external employers.

Since equation (2) describes the conditions under which a single trial
will result in an offer greater than the reservation value for that type of
firm, prominent candidates for variables that might belong in H are those
that increase the rate at which individual employer-scientist matches are
considered per unit of time. We, again, refer to table 1. Other things equal,
we expect that the lower cost of moving residence and family (and those
of research lab teams)—or the cost of travel for part-time work—gives a
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lower reservation value and, hence, higher probability per trial for local
employers. However, the number of local trials is limited by the extent
of the market; we therefore include the lagged number of new biotech-
nology enterprises in the same region as the scientist’s university and
expect that variable to increase the probability of initiating (local) com-
mercial ties. Similarly, a higher number of top-quality universities in the
same region should reduce the probability of initiating commercial ties
by increasing the probability of interfering interuniversity movements.10

External employers are numerous relative to the feasible number of trials
for a scientist over any short number of years, but, to the extent that the
scientist has a higher fraction of his or her coauthors at organizations
elsewhere, we anticipate that the frequency with which alternative em-
ployment opportunities can be explored is increased per unit time. This
variable appears in the variable list in table 1 under size of social networks.
Changing employers among universities or research institutions may play
a similar role in increasing the probability of receiving information about
alternative employment opportunities.

One major factor that may reduce the reservation wage for firm em-
ployers is favorable working conditions in the form of increased scientific
productivity. Star scientists saw their productivity maintained or increased
in quantity of publications when they became employed by or collabo-
rated with firms and dramatically increased in quality in terms of citations
per article while thus tied to firms, especially for affiliated stars.11 We
assume that this symbiotic effect on personal productivity and, hence,
scientific prestige and expected future earnings was not expected by sci-
entists until it was observed; so we include in H two measures of observed
increase in productivity by other star scientists who have previously
moved to firms: (a) the proportionate change in the annual citation rate
for other local stars during years through the prior period comparing
citations to their articles written during to articles written prior to ties to
a firm and (b) the proportionate change in the annual citation rate for
tied stars in other regions during years through the prior period comparing
citations to their articles written during to articles written prior to ties to

10 While star scientists occasionally accept an extraordinary offer from universities
below top-quality rating, we believe a count of top-quality universities is an adequate
measure of the local university market.

11 In addition, local linked star scientists generally have significantly greater impact
on the firm’s success than do scientists from other areas (Zucker, Darby, and Arms-
trong 1998). Thus, local firms should have a higher expected offer for part-time
linkage than external firms, reinforcing the higher probability that an offer of linkage
by a local firm will exceed the reservation value.
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a firm.12 We expect that a star scientist will be more aware of the scientific
payoff experienced by stars in his or her own region than elsewhere in
the country, but that is an empirical question. Again, these variables are
listed in table 1 under regional variables. Region is defined in this article
by the functional economic areas in U.S. Department of Commerce, Ec-
onomics, and Statistics Administration, Bureau of Economic Analysis
(1992).

It should be noted that the star scientists frequently play a key role in
the founding of the firms with which they become affiliated or linked
(Zucker, Darby, and Armstrong 1998; Zucker, Darby, and Brewer 1998).
That is, what appears to be employment may in fact be entrepreneurship.
We expect that characteristics that predict a high marginal product to
potential employers will also be attractive to potential investors, so the
analysis is not greatly affected by whether the scientist is searching for
an employer or venture capital. Indeed, prospectuses for initial public
offerings of new biotechnology firms frequently list precisely the sorts
of qualifications in Q for key associated scientists. Since there is a sig-
nificantly positive agglomeration effect, as reported by Zucker, Darby,
and Brewer (1994), a star should find it easier to start a new firm where
there are more firms already, so the sign of total new biotechnology
enterprises in the region should also be positive here.

We use group duration analysis to test the hypothesis that our measures
Q, of scientific quality, and H, of factors affecting trial frequency, res-
ervation values, and interfering university offers, have the predicted effects
on the velocity and probability that a star will become employed by or
collaborate with a firm and that these effects will dominate traditional
measures such as experience. The duration process captures the timing
and motivational aspects of the move decision. Finally, we use the mul-
tinomial choice model to analyze the type of move made, comparing
linked versus affiliated. Before turning to the estimation, in the next sec-
tion we first introduce the variables not yet discussed and then provide
a brief explication of the methodology. Details of the econometric mod-
eling may be found in appendix B.

IV. Econometric Methods

We estimate the model using group-duration techniques described in
this section. Basically, the time that a scientist works in academe without
firm involvement is described as a sequence of discrete periods. Each
scientist is observed for each of these discrete periods until he or she

12 The scientists are assumed to directly observe the quality and quantity change
in the articles published by those stars at the time of publication, with citations the
econometrician’s retrospective proxy for the observed scientific productivity
increase.
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moves to a firm. The estimation basically computes a conditional logit
for each period conditional upon not having moved previously.

The expected amount of time the scientist stays in universities without
moving to a firm differs because each scientist has an individual time-
varying vector Q of indicators of expected value of marginal product
(whether employed by a top-quality university, tenured there, the quality
and quantity of articles published previously, and the number of human
genetic sequences discovered) and faces different local economic areas that
alter each scientist’s probability of receiving an offer from a firm greater
than his or her reservation wage (number of new firms, number of top
quality universities). All of these sources of differences are represented
by a regressor vector x for each scientist.

Most individual variables are defined in the period prior to each ob-
servation, including the total number of articles and citations to these
articles, the number of human sequences, the percentage of collaborators
from outside his or her organization, and proportionate change in annual
citation rate for other stars in the same or other region while (up through
the prior period) affiliated or linked to a firm.13 The number of local
biotechnology firms and variables that describe the university or research
institute (top-quality university, current wage index, location in specific
key university clusters, Stanford/University of California, San Francisco,
or MIT/Harvard, and location at the National Cancer Institute) are up-
dated each time the scientist changes university or institute without mov-
ing to a firm.

We elect to use the grouped data version of the proportional hazard
model to develop computationally feasible estimators of the relative risk
function and the corresponding survivor function in the presence of many
tied failure times. Specifically, we apply the technique of group-duration
analysis developed and used by Prentice and Gloeckler (1978) and Ryu
(1994), given that our observations of moves are based on articles pub-
lished by year and so time is measured (grouped) at intervals, available
discretely at the level of the year. These models have the advantage of
being derived from discrete time and therefore more directly conform to
the discrete nature of the data. The spell T, number of years, is the dif-
ference in years between either the date each star scientist entered a uni-
versity (as recorded in one of the biographical directories—see app. A
and the reference list for examples) or the first date of publishing in
GenBank, and the first article in GenBank that shows him or her affiliated
or linked to a firm through coauthorship. See appendix B for a derivation
of the group duration procedure that we use in our main analyses.

13 Citations are all past and future citations to past articles as the econometrician’s
proxy for article quality, which is assumed to be directly observable by scientists
and firms.
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As described in appendix B, group-duration information can be sum-
marized as a sequence of binary outcomes (exit or survive in each suc-
cessive period), allowing us to apply a logistic function that is inherently
easier to compute, selecting from ordered probit and ordered logit models,
as suggested by Han and Hausman (1990). In some exploratory research
(Han and Hausman 1990), the estimates of the ordered logit and ordered
probit models are very similar except in the extreme left tail. Given these
small differences, we selected the ordered-logit model because of the sim-
plicity of its calculation.

Finally, we selected multinomial logit to explore the determinants of
selecting different relationships to a firm. Each star scientist is assumed
to have preferences defined over a set of alternatives: untied, affiliated
with a firm, or linked to a firm. Since this technique is more commonly
used, we do not go into further detail on it.

V. Empirical Results for the Group Duration Model

The results reported in tables 2 and 3 are generally supportive of the
suppositions contained in our mobility model. Table 2 reports the standard
coefficient estimates, and table 3 reports the corresponding partial deriv-
atives of probabilities with respect to the vector of characteristics (marginal
effects).14 Standard individual characteristic variables generally fail to reach
significance, though they are generally in the expected direction. The one
exception is the first year that the star publishes in GenBank, which is
experience of a very special sort; the negative sign indicates that the later
the year of entry, the less probable that the star becomes affiliated with
or linked to a firm.

Of the quality variables, only the number of citations enters signifi-
cantly. The larger the number of citations, the more likely the star will
be to move out of the university.15 Even more, using the marginal effects,
it can be shown that an increase in 10 citations will result in an increase
in 1% of the probability of moving to a firm. The insignificant coefficient
on the quantity of articles suggests that firms do not distinguish between
a scientist with a few highly cited articles and another with many lesser
cited articles as long as total citations are the same. (In an analysis not

14 As is well known, in the logit model, the coefficients do not indicate the increase
in the probability of the event occurring, given a one-unit increase in the corre-
sponding independent variable; rather, they reflect the effect of a unit change in an
independent variable on the log of the odds ratio. The marginal effectsln (P /(1 � P ),i i

are computed at the means of the explanatory variables. In the case of dummy
variables, the marginal effect is computed as the difference in the probability function
when it is evaluated at the values 1 and 0.

15 We also use citations for 1982 in computing experienced change in citations
during firm ties, but we exclude these from the main analysis because of the small
number of articles and stars with significant 1982 citations.



Table 2
Duration Model of Mobility to Firms of Star Scientists in the United States:
Coefficient Estimates

Variables Model A Model B Model C Model D

Constant 110.123 96.232 216.738** 139.960*
(57.840) (78.432) (87.552) (74.366)

Gender of star scientist .220 .425
.728) (.857)

Marital dummy �.068 .479
(.432) (.515)

Age .157 .042
.125) (.151)

Age squared �.001 �.000
(.001) (.001)

Number of children .068 .017
(.147) (.166)

First year star publishes in GenBank �.058* �.050 �.109** �.072
(.029) (.039) (.044) (.038)

Nobel Prize dummy .662 .624
(.877) (.922)

Tenure dummy �.639 �.453
(.506) (.472)

Total citations to prior articles in
GenBank .005*** .004*** .004***

(.001) (.001) (.001)
Total number of prior articles in

GenBank �.017 �.023 �.005
(.020) (.022) (.020)

University top quality dummy .463 .712 .387
(.522) (.534) (.472)

University average reputation �.415
(.311)

Stanford or University of California, San
Francisco, dummy .428

(.726)
MIT or Harvard University dummy .912

(.694)
National Cancer Institute dummy .934

(.738)
Number of human genetic sequences .095* .090** .087*

(.040) (.040) (.039)
New biotech enterprises in region .021* .025** .023**

(.010) (.010) (.009)
Top-quality universities in region �.921** �.677** �.689**

(.327) (.247) (.242)
Proportion coauthors from different

institutions 1.657* 1.511*
(.708) (.697)

Number of times star changes university
or research institution �.262

(.158)
Proportionate change in annual citation

rate of other stars in same region while
tied to firm .735** .776** .732**

(.277) (.272) (.266)
Proportionate change in annual citation

rate of stars in different regions while
tied to firm �.239 �.171 �.044

(.313) (.312) (.292)
Log likelihood �160.676 �133.270 �131.190 �134.190
Restricted log likelihood �165.523 �165.523 �165.523 �165.523
Wald test 9.09 43.32*** 46.28*** 42.58***

Note.—Standard errors are in parentheses.
* p ! .05.
** p ! .01.
*** p ! .001.



Table 3
Duration Model of Mobility to Firms of Star Scientists in the United States:
Marginal Effects

Variables Model A Model B Model C Model D

Constant 26.013 22.464 50.426** 32.724*
(13.660) (18.279) (20.226) (17.285)

Gender of star scientist .052 .099
(.172) (.200)

Marital dummy �.016 .112
(.102) (.120)

Age .037 .010
(.029) (.035)

Age squared �.000 �.000
(.000) (.000)

Number of children .016 .004
(.035) (.039)

First year star publishes in GenBank �.014* �.012 �.025** �.017
(.007) (.009) (.010) (.009)

Nobel Prize dummy .155 .145
(.205) (.215)

Tenure dummy �.149 �.105
(.118) (.110)

Total citations to prior articles in
GenBank .001*** .001*** .001***

(.000) (.000) (.000)
Total number of prior articles in

GenBank �.004 �.005 �.001
(.005) (.005) (.005)

University top quality dummy .108 .166 .090
(.121) (.124) (.110)

University average reputation �.097
(.072)

Stanford or University of California,
San Francisco dummy .100

(.169)
MIT or Harvard University dummy .213

(.161)
National Cancer Institute dummy .218

(.172)
Number of human genetic sequences .022* .021** .020*

(.009) (.009) (.009)
New biotech enterprises in region .005* .006** .005**

(.002) (.002) (.002)
Top-quality universities in region �.215** �.158** �.161**

(.075) (.057) (.056)
Proportion coauthors from different

institutions .385* .353*
(.163) (.162)

Number of times star changes univer-
sity or research institute �.061

(.037)
Proportionate change in annual citation

rate of other stars in same region
while tied to firm .172** .180** .171**

(.064) (.063) (.062)
Proportionate change in annual citation

rate of stars in different regions while
tied to firm �.056 �.040 �.010

(.073) (.072) (.068)

Note.—Standard errors are in parentheses.
* p ! .05.
** p ! .01.
*** p ! .001.
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reported here, we find that the number of articles enters significantly to
increase the probability of moving to a firm if number of citations is
removed from the equation, but the overall fit declines.) Receipt of tenure
or the Nobel Prize appears to raise the reservation wage as much as the
offer distribution with no net effect on mobility.

Our indicator that the scientist’s work has more immediate commercial
potential, the number of human genetic sequences discovered, enters sig-
nificantly robustly across the different specifications, increasing the
“death” rate or rate of labor mobility from the university or research
institute to the firm. Discovering one additional genetic sequence will
increase by 2% the probability of a star scientist’s moving to a firm. In
contrast, none of the characteristics of the university or research institute
currently employing the star are ever significant (the index of wages is
considered below).

The count of new biotechnology enterprises and top-quality univer-
sities in the region are both significant, but, as expected, they have opposite
effects on the probability of moving to a firm: as the number of firms
grows larger, so does the probability of a star scientist becoming tied to
a firm; as the number of top quality universities grows larger, the prob-
ability of a star becoming tied to a firm declines. Examining table 3, we
see that a unit increase in the number of top-quality universities has a
bigger interfering effect than a unit increase in the number of firms has
an attracting effect. However, there are many more firms than top-quality
universities, so that the firm effect is dominant even where top-quality
universities are present. Figure 2 shows the total number of stars, the
numbers of stars that move at least some of their labor effort to a firm,
and the number of firms (rescaled by dividing by 4) in each of the top-
20 biotechnology regions (those with four or more stars or 10 or more
firms). These 20 regions account for 88%, 85%, and 78%, respectively,
of these totals for all 183 U.S. regions.

Econometrically, this relationship could be argued to be because of
possible endogeneity of the scientists’ original location, that is, scientists
who anticipate moving look for those characteristics such as many new
biotechnology firms in the region rather than regional characteristics in-
creasing the probability of moving. Although this could be a possibility,
the fact that we are analyzing the industry at its beginning and that we
are looking to the behavior of the initial stock of scientists who develop
the major innovations in biotechnology and even gave birth to some of
the new biotechnology enterprises (both founding new entrants and
bringing new technology to incumbent firms) reduces the likelihood of
significant reverse causality. Moreover, when we follow the mobility of
scientists moving between universities to see if they move to universities
in regions where there are more biotechnology firms, the result is the
opposite: only 21.8% of scientists moving to another university move to



Fig. 2.—Mobility from academe to commerce of U.S. biotechnology star scientists by region as of 1990
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a region where there were more biotech firms, while 67.2% move to a
university in a region where there were a smaller number of biotech firms
relative to the Bureau of Economic Analysis (BEA) region from which
they came.16

The proportion of a star’s coauthors who are from different institutions
increases the probability of moving to a firm, as we would expect based
on increasing information about potential opportunities. Another sort of
information, that about the quality of the experience other stars have had
working with firms, entered significantly: the larger the proportionate
increase in the annual citation rate for local stars who became involved
with firms, as computed in the prior to each observation, the more likely
is a star to become involved. However, the citation experience of stars
outside the region has no significant effect.

Overall, tables 2 and 3 provide strong support for our conjectures.
While many of the variables are not significant, key variables measuring
quality and commercial potential of the intellectual human capital sig-
nificantly increase the probability of moving to a firm, as do various
measures of increasing information about opportunities (social network)
and about scientific productivity gains to working with firms.

We now consider briefly the issue of wages earned in the university,
under the hypothesis that higher university wages would increase the
reservation wage and, hence, the time it takes scientists to move to a firm.
Unfortunately, we were not able to obtain the actual salary paid to each
star scientist while in the university, so we constructed a proxy index of
wages by dividing the specific wage in the university or institute em-
ploying the star scientists over the average of the wages for all the uni-
versities and institutes in the relevant year. This wage index generally
entered with the right sign, but it never entered significantly at the .05
level. Table 4 presents these results.

Table 5 reports the estimation of a multinomial logit model that ex-
amines the choice of staying untied to a firm or becoming affiliated with
or linked to a firm. When we analyze only the coefficients (the first two
columns) relative to being untied, the parameter estimates indicate that
very similar processes are involved in the decision to become wholly or
partially involved with a firm, although fewer of the coefficients are sig-
nificant for affiliated stars, apparently because of the relatively fewer ob-
servations for affiliated stars. For affiliated stars, the quality of the star
scientist is the most important variable affecting the probability of a move
to a firm, though the number of articles is negative, indicating a premium
for earning total citations in fewer more highly cited articles. New biotech
enterprises is significant in the expected direction, as is the first year that

16 The remaining 10.9% are regions with the same number of new biotechnology
enterprises.
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Table 4
Duration Model of Mobility to Firms of Star Scientists in the United States Including Index of Wages at Current University
or Research Institute

Variables

Coefficients (Standard Errors) Marginal Effects (Standard Errors)

Model A Model B Model C Model A Model B Model C

Constant .627 200.219* 121.559 .149 46.483* 28.351
(.664) (88.244) (74.554) (.158) (20.357) (17.301)

Index of wages at university or research institute �1.266 �1.848 �1.685 �.300 �.429 �.393
(.763) (1.055) (1.029) (.180) (.244) (.239)

First year star publishes in GenBank �.100* �.062 �.023* �.014
(.044) (.038) (.010) (.009)

Nobel Prize dummy .682 .158
(.956) (.222)

Tenure dummy �.330 �.077
(.477) (.111)

Total citations to prior articles in GenBank .005*** .004*** .001*** .001***
(.001) (.001) (.000) (.000)

Total number of prior articles in GenBank �.020 .000 �.005 .000
(.023) (.020) (.005) (.005)

University top quality dummy .653 .305 .152 .171
(.545) (.485) (.126) (.123)

University average reputation �.480 �.111
(.318) (.074)

Number of human genetic sequences .089* .085* .021* .020*
(.039) (.038) (.009) (.009)
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New biotech enterprises in region .020 .018 .005 .004
(.010) (.010) (.002) (.002)

Top-quality universities in region �.499 �.540* �.116 �.126*
(.269) (.261) (.062) (.061)

Proportion coauthors from different institutions 1.734* 1.568* .402* .366*
(.716) (.701) (.165) (.163)

Number of times star changes university or research
institute �.275 �.064

(.159) (.037)
Proportionate change in annual citation rate of other

stars in same region while tied to firm .846** .797** .196** .186**
(.276) (.271) (.064) (.063)

Proportionate change in annual citation rate of stars
in different regions while tied to firm �.205 �.067 �.048 �.016

(.314) (.293) (.073) (.068)
Log likelihood -164.088 �129.592 �133.040 N.A. N.A. N.A.
Restricted log likelihood �165.523 �165.523 �165.523 N.A. N.A. N.A.
Wald test 2.760 46.600*** 42.820*** N.A. N.A. N.A.

Note.—N.A. p not available.
* p ! .05.
** p ! .01.
*** p ! .001.



Table 5
Multinomial Logit Model of Choice of Becoming Affiliated with or Linked to a Firm

Variables

Coefficients
(Standard Errors)

Marginal Effects
(Standard Errors)

Affiliated Linked Untied Affiliated Linked

Constant 518.518*** 219.449** �32.583* 11.580 21.003
(159.865) (90.533) (15.129) (6.094) (16.390)

First year star publishes in GenBank �.264*** �.112** .017** �.006 �.011
(.081) (.046) (.008) (.003) (.008)

Total citations to prior articles in GenBank .022*** .020*** �.003*** .000 .003***
(.005) (.005) (.000) (.000) (.000)

Total number of prior articles in GenBank �.102* �.011 .002 �.003 .001
(.053) (.028) (.004) (.002) (.004)

University top quality dummy 1.080 .992 �.140 .009 .131
(1.102) (.546) (.083) (.035) (.089)

Number of human genetic sequences .165 .330*** �.045** �.004 .049**
(.284) (.101) (.017) (.009) (.018)

New biotech enterprises in region .046* .021* �.003 .001 .002
(.022) (.011) (.002) (.001) (.002)

Top-quality universities in region �.748 �.664* .094* �.007 �.087
(.537) (.277) (.046) (.017) (.049)

Proportion coauthors from different
institutions 1.146 1.863* �.257* �.013 .271

(1.819) (.776) (.131) (.060) (.141)
Proportionate change in annual citation rate

of other stars in same region while tied
to firm .919 .228 �.036 .025 .011

(.598) (.311) (.045) (.020) (.050)
Proportionate change in annual citation rate

of stars in different regions while tied to
firm �1.093 �.187 .032 �.032 .000

(1.142) (.331) (.048) (.037) (.057)
Log likelihood �136.523
Restricted log likelihood �216.000

* p ! .05.
** p ! .01.
*** p ! .001.
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the star publishes in GenBank. Linked stars show a very similar pattern
of significant variables to the overall results reported in table 4 and dis-
cussed above, except that the proportionate change in citation rate for
tied local stars loses its significance.

The last three columns of table 5 report the corresponding marginal
effects of each of the choices (untied, affiliated, or linked). These numbers
tell us the effect of each variable on each choice relative to all the other
choices and not to just being untied. These results suggest that there is
an ordering of labor arrangements for these top scientists: those with the
fewest citations, the least work on human sequences, the fewest coauthors
at other institutions, and the least experience are most likely to be exclu-
sively in academe. Their opposites—the elite of this elite group—can
simultaneously work in the university and a firm. Full-time work in firms
seems to have an intermediate position—attractive to stars who are good
enough to be attractive to firms but not quite good enough to write their
own ticket.

VI. Summary and Implications

We have shown across a series of analyses that star scientists move more
quickly from academe to commercial involvement if they have higher-
quality intellectual human capital (here measured in terms of number of
citations to genetic-sequence discovery articles) and if that capital is more
relevant to firms commercializing biotechnology (i.e., amplified by dis-
covery of human genetic sequences). We have also demonstrated strong
effects of the opportunities available in the star’s own region: stars have
a higher probability of moving to a firm when there are more biotech
enterprises in their region and a lower probability of moving to a firm
when there are more top-quality universities in their region, a competing
influence. The size of the stars’ networks outside of the university also
increased the likelihood of their leaving the university after a shorter
duration. Stars also seem to be paying attention to changes in the pro-
ductivity of other stars in their region who have previously moved to
firms; when these other stars’ annual citation rates increase, the probability
of moving to a firm after a shorter duration increases. Our relatively weak
measure of wages did not have a significant impact, but it is not clear
whether measurement was the problem or the astronomically higher
wages (especially if full or partial ownership of the firm is included) on
the other side of the equation. The multinomial logit results for the choice
of becoming affiliated or linked to a firm show a generally similar pattern
of results as the pooled analyses, with linked scientists close to matching
them but with the smaller number of affiliated stars having fewer signif-
icant explanatory variables.

Overall, the empirical analysis provided strong support for the model
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we developed. We hypothesized that the very valuable intellectual human
capital would serve as the basis for mobility, not the much less precise
measures of experience and firm-specific experience that are typically used
in these models. When it is worth investing in costly information, both the
individuals and the organizations involved will invest in collecting and using
it (Zucker and Darby 1996a). The value of the information is a key deter-
minant. We examine value in two principal ways. In this article, we op-
erationalize an important new measure of the degree of tacit knowledge,
resting on a coauthorship measure we developed to examine labor mobility
of star scientists to firms: even as scarcity of the knowledge may be declining,
tacitness may not be—or at least not as fast.17 Throughout the period in
which we are examining star scientist mobility, most new authors entered
GenBank by publishing with at least one old author (81% of the entry
from 1969 through 1992). While there are competing explanations for this
finding, none are as parsimonious as the high and only gradually declining
tacitness of the knowledge, which provides natural excludability or a natural
barrier to the entry of new scientists and, hence, returns to those who hold
the tacit knowledge.

We also measure value in a series of related papers on the effects of stars
on the success of new biotechnology enterprises, and we find that university
star scientists who actually work with firm scientists have a strong positive
effect on products in development, products on the market, and employ-
ment growth. Due to both of these sources of value, the labor of star
scientists in the United States has strongly moved to firms and has done
so in very concentrated, localized areas, as illustrated in figure 2.

We conclude with the observation that scientists and the universities,
research institutes, and high technology firms that they work in are re-
currently faced with knowledge discontinuities that require some kind of
technology transfer mechanism. There are thus incentives for them to
construct structures—or to be “born” with structures—that lower the

17 We build here on a novel empirical measure we developed in earlier research:
“copublishing,” that is, examining all scientists who publish together to measure
who the stars are working with at the bench-science level and which organizations
are involved in the collaboration (by obtaining the organizational affiliation of all
scientists). We have previously used our measure to examine reciprocal productivity
effects of star scientists working with scientists in firms (see our discussion of these
results in Sec. III), effects of organizational boundaries as information envelopes
slowing diffusion of scientific knowledge, and size and geography of scientific net-
works used by firms (Zucker, Brewer, Oliver, and Liebeskind 1993; Zucker, Darby,
and Armstrong 1994, 1998; Liebeskind, Oliver, Zucker, and Brewer 1996; Zucker
and Darby 1996a, 1996b; Zucker et al. 1996). The validity of our copublishing
indicator for the existence of contractual or ownership relationships with firms has
been confirmed through extensive interviews conducted with university scientists
and administrators, and with firm scientists, CEOs, and corporate board members
(for U.S. examples, see Zucker et al. [1993]; Zucker and Darby [1997] ).
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costs of new knowledge acquisition: both affiliation and link to firms fit
well within the structure of a “normal” academic career. For scientists,
moving part of their labor effort outside the university is common and
is concentrated in the high quality end of the faculty distribution, certainly
not “marginal.”18 Many universities do not place any restrictions on a
professor’s outside employment, while universities with rules typically
allow 40% (e.g., 1 week day plus 1 weekend day) of faculty time to be
spent on outside consulting. One study of academics found that
20%–25% of faculty income was earned outside the university (Stigler
1950, pp. 42, 60). High technology firms routinely employ the very top
scientists across a wide variety of positions, from heads of scientific teams
to members of scientific advisory boards, some full time and some tra-
ditionally part time. Even in countries with substantial barriers to col-
laboration across university boundaries, firms and entrepreneurial aca-
demic scientists find “work-arounds,” such as bringing firm scientists into
the university labs along with a “stipend” from the firm to cover labo-
ratory materials, as is routine in the national universities in Japan (Darby
and Zucker 1999).

We have uncovered an important and neglected set of processes that
allow retention of knowledge by its discoverer and incorporation of that
knowledge—at least for some period of time—into the intellectual human
capital of the discoverer. When this knowledge is valuable, there will be
high demand for those who have it, and structures that allow technology
transfer between the discoverers and those who wish to use it in science
or commerce will develop, even around significant institutional barriers.
We have examined the employment relation of star scientists through
affiliation and linkage to firms as one structural mechanism that facilitates
technology transfer from universities and research institutes to firms.

18 Most research on part-time work or multiple jobs focuses on low-skill, low-
wage employment and “moonlighting.” The common, and perhaps even typical,
pattern of top academic scientists routinely and recurrently moving a significant
part of their labor outside the university to another organization, sometimes created
by them, has received much less empirical attention. Labor effort can be quite mobile.
Part time does not necessarily mean marginal, either in terms of the amount of
effort or in terms of the effects of that effort on productivity, here of both the firm
and the scientist. Part-time “consulting” or control of an outside business often
involves substantial labor effort; at least in our research on biotechnology, we find
strong positive effects of that effort on productivity of both the firm and the scientist
(Zucker and Darby 1996b). Possible benefits to the university include paying lower
wages than would otherwise be necessary, receiving acclaim for the net productivity
of the scientist (including the—sometimes higher—productivity achieved through
outside employment), and increased visibility of the university in nonacademic
arenas (e.g., increasing fund raising success among entrepreneurs).
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Appendix A

Data Appendix
A. Star Scientists Database

Given the fundamental role of recombinant DNA (genetic engineering)
in modern biotechnology, a very important measure of research success
in the basic science is the discovery of nucleotide sequences that determine
the characteristics of proteins and other molecules. In the earlier stages
of the project, GenBank was used to identify all articles reporting genetic
sequence discoveries up to 1990 (see Zucker, Darby, and Brewer 1994).
Worldwide, 327 leading researchers (the “stars”) were identified on the
basis, up to 1990, of the number of genetic sequence discoveries and
articles reporting them for which they were an author. These 327 stars
were listed as authors on 4,061 distinct articles in major journals. These
articles were hand collected and used to identify and locate institutional
affiliations at the time of publication for each of our stars and their coau-
thors who were either other stars or “collaborators” (6,082 scientists
worldwide). This hand coding was necessary because available machine-
readable databases give only the location of the first (or corresponding)
author who, given the authorship conventions of the field, is rarely a star
scientist.

B. Identifying Employment Relationships with Firms:
Dependent Variable

In this article, stars may be affiliated, that is, working for firms (mea-
sured as listing the firm as affiliation on the article or genetic sequence
patent), or stars may be linked, that is, working with firms while main-
taining their primary affiliation with a university or research institute
(measured as coauthoring with firm scientists while simultaneously listing
the university or research institute as their primary affiliation or assigning
a patent on issuance to a firm rather than to their university or research
institute). While affiliated stars by definition work in the same region as
the firm, linked scientists may coauthor either with firms in their region
(local link) or with firms outside their region (external link, or link to
different region). We define region here as one of 183 functional economic
areas in the U.S. as defined by the Bureau of Economic Analysis (U.S.
Department of Commerce 1992). When a star scientist becomes for the
first time affiliated or linked, we will call him a mover from a university
or research institute to a firm.

C. Other Databases Used
Individual Characteristics of the Stars

Using the names of the 327 stars, detailed bibliographic information
was collected from five major sources: American Men and Women of
Science (1971–94); Biotechnology Research Directory 4000 Faculty Profiles
(North Carolina Biotechnology Center 1991); Who’s Who of Nobel Prize
Winners, 1901–90 (1991); National Academy of Sciences, Organization
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and Members 1993 (1993); and the 1990 Directory of the American As-
sociation for the Advancement of Science (1990). We also filled in some
missing data for particular stars from Who’s Who of British Scientists,
1980/81 (1980), Who’s Who in Science in Europe (1991), and Who’s Who
in Biotechnology (1986). Finally, annual salary data were collected for
associate and full professors from most U.S. research universities from
the American Association of University Professors Bulletin (1979–93) and
Academe (1979–93), and for the handful of institute affiliations from tel-
ephone interviews with the respective institutes.

Quality Characteristics of the Stars
To measure the quality of the star scientists we use four measures. The

first one, number of prior articles in the GenBank, was obtained by count-
ing how many articles the star scientists have in the GenBank prior to
each discrete-period observation (GenBank 1990, 1994). Second, we have
collected data for 1982, 1987, and 1992, on the total number of citations
to each of our 4,061 published articles listed in the Institute for Scientific
Information’s Science Citation Index (1982, 1987, 1992). These citation
counts are linked to the article and authorship data set by the article ID
number, and therefore we were able to get a count of citations of all
articles written prior to each observation. Third, we use the Who’s Who
of Nobel Prize Winners (1991) to identify which of our star scientists had
received a Nobel Prize. Finally, from university directories and from bib-
liographic directories, we identified if the scientists were tenured or not
in their respective institutions.

Indicator of Commercial Potential
The GenBank, in addition to the article information, also classifies into

13 different types each of the genetic sequences discoveries reported in
each article. This article uses the total number of human-related genetic
sequences (sequence types 1 and 4) as a proxy measure of commercial
potential of the discoveries of the star scientist.

Characteristics of Universities and Research Institutes
Our university data set consists of all U.S. institutions listed as granting

the Ph.D. degree in any field in the Higher Education General Information
Survey (HEGIS), Institutional Characteristics, 1983–84 (U.S. Department
of Education, National Center for Education Statistics, 1985). Each uni-
versity is assigned an institutional ID number and a university flag and
is located by zip code based on the HEGIS address file.

Additional information was collected for those universities granting the
Ph.D. degree in biochemistry, cellular/molecular biology, or microbiology,
which we define as “biotech-relevant” fields. All of the following addi-
tional variables are based on data in the National Academy of Sciences
study by Jones, Lindzey, and Coggeshall (1982).

We define university quality level based on the scholarly quality rating
in the reputational survey in Jones et al. (1982). Reputational ratings were
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based on responses from approximately 15% of the faculty in the fields
studied. Since we were interested in identifying the very best programs, we
considered only the highest rated of the biochemistry, cellular/molecular
biology, or microbiology programs offered by a particular university. The
number of universities in a region with one or more most highly rated
programs (rated above 4) is our variable top-quality university.

In addition, for those U.S. research institutions and hospitals listed as
affiliations in the article data set, we assigned an institutional ID number
and an institute/hospital flag, and we obtained an address, including a zip
code, as required for geocoding. We collected, by phone survey, salary
indices for those research institutions and hospitals.

Biotechnology Firm Data Set
The starting point for our firm data set covered the industry as of April

1990 and was purchased from the North Carolina Biotechnology Center
(NCBC; 1992), a private firm that tracks the industry. This data set iden-
tified 1,075 firms, some of which were duplicates or foreign and others
of which had died or merged. Further, there were a significant number
of missing firms that had died earlier. For these reasons, an intensive effort
was made to supplement the NCBC data with information from Bioscan
(1989–93) and an industry data set provided by a firm in the industry,
which was also the ancestor of the Bioscan data set (Cetus Corporation
1988). Each of the firms was assigned an institutional ID number and an
enterprise flag.

We combined these three sources to identify 751 distinct U.S. firms for
which we could determine a zip code and a date of founding (or entry
into biotechnology for subunits of preexisting firms). Based on these data,
we have developed a continuous series on the number of active new
biotech enterprises by year and region.

Indicators of Size of Social Networks
Since our sample is selected based on star scientists and sequence-re-

porting articles and since collaborators appear in our sample only if one
of our star scientists is an author, we are able to define the collaboration
as all possible pairs of coauthors that include at least one star. This measure
allowed us to identify the proportion of coauthors a star has from different
institutions. Since we have the institutional affiliation for each author in
each of his or her genetic-sequence-discovery articles, we can identify
when a star moves from one university or research institute to another
prior to their movement to a firm.

Appendix B

Econometric Modeling
We use the grouped data version of the proportional hazard model in

an attempt to develop computationally feasible estimators of the relative
risk function and the corresponding survivor function in the presence of
many tied failure times (Prentice and Gloeckler 1978; Ryu 1994).
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First, divide the interval between the beginning of the measurement
period, to the time of the measurement, into j exhaustiveT p 0, T p t ,i
nonoverlapping intervals, The covariates will bea ! a ! … ! a ! a .0 1 j�1 j

assumed to stay constant within each of the j intervals and may change
from one interval to the next. Given that the observations are the articles
published by year and so T is available discretely and only up to years,
the best technique to consider is group duration.

The main idea is that there is an observation scheme grouped into
intervals (years in our case)

A p [a , a ),j p 1, … , ra p 0, a p �, (B1)j j�1 j 0 r

and the failure times in are recoded asA t .j i

Now for each interval we observe where refers to the char-(X , T ), Xi i i

acteristics of the individuals and refers to the duration. Let equalT ai j

the probability of surviving the jth interval given that an individual has
survived up to the th interval (conditional probability).( j � 1)

Therefore,

Pr (T 1 a ) S(a )j J
a p Pr (T 1 a \ T 1 a ) p p . (B2)j j j�1 Pr (T 1 a ) S(a )j�1 j�1

However,
aj

∫ h(u)du.( )S a p e (B3)0j

Therefore,
aj

∫ h(u)du.
aa p e (B4)j�1j

Then the probability of observing a failure at time on an individualti

with regression vector isx
j�1

exp (x, b) exp (x, b)[1 � a ]�a , (B5)j j
jp1

where the probability of surviving to the beginning of isAj

j�1

exp (x, b)P(t , x) p �a . (B6)i j
jp1

Given that the group duration information is a sequence of binary ob-
servations, we can apply a logistic function for computational simplicity;
therefore, we will have

�exp(xb�gj)a p e where g p h (t)dt, (B7)j j � o

Aj

and is the baseline hazard at period t.h (t)o

This model is easy to estimate using either an ordered-probit or or-
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dered-logit approach. In some exploratory research of Han and Hausman
(1990), the estimates of the ordered-logit and ordered-probit models were
very similar except in the extreme left tail. Accordingly, we select the
ordered-logit model because of the simplicity of its calculation.
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