
Cover Sheet

Session Title: The Roots of Innovation

Paper Title: The Dynamics of Open Source Contributors

Josh Lerner (corresponding author)
Rock Center
Harvard Business School
Boston, MA 02163 USA
Email: josh@hbs.edu
Phone: (617) 495-6065
Fax: (617) 495-3817

Parag A. Pathak
Baker Library 420E
Harvard Business School
Boston, MA 02163 USA
Email: ppathak@fas.harvard.edu
Phone: (617) 864 6211

Jean Tirole
Universite des Sciences Sociales
Manufacture des Tabacs
Aile Jean-Jacques Laffont
Accueil MF 404
F-31000 Toulouse FRANCE
Email: tirole@cict.fr
Phone: 33(0) 5.61.12.85.89
Fax: 33(0) 5.61.12.86.37

 2

The Dynamics of Open Source Contributors

Josh Lerner, Parag A. Pathak, and Jean Tirole*

There are substantial differences between open source projects and traditional

innovative efforts in private firms. Private firms usually pay their workers, direct and

manage their efforts, and control the output and intellectual property created. In an open-

source project, however, a body of original material is made publicly available for others

to use, under certain conditions. Contributions to open source projects are made by a

diverse array of individual contributors and for-profit corporations, who in many cases

must agree to make all enhancements to the original material widely available for

nominal cost.

This paper empirically examines the dynamics of contributions to open source

software projects. We show that the share of corporate contributions in a sample of

approximately 100 open source projects tracked between 2001 and 2004 is greater in

larger and growing projects.

I. Background1

The decision to contribute without pay to freely available software may seem

mysterious to economists. However, the unpaid programmer working on an open source

software development project faces a variety of benefits and costs. The programmer

incurs an opportunity cost of time, which can manifest itself in different ways. For

example, a programmer who works as an independent on open source projects forgoes

 2

the monetary compensation that could otherwise be earned by working for a commercial

firm or a university. For a programmer with a commercial company, university or

research lab affiliation, the opportunity cost of working on open source software comes

from not focusing on other tasks. For example, the academic's research output may sag

and the student's progress towards a degree may slow down.

Several short-or long-run benefits may counter these costs (see Josh Lerner and

Jean Tirole, 2002, for a fuller discussion). First, open source programmers may improve

rather than reduce their performance in paid work. This outcome is particularly relevant

for system administrators looking for specific solutions for their company. Second, the

programmer may find intrinsic pleasure if choosing a “cool” open source is more fun than

a routine task set by an employer. Third, in the long run, open source contributions may

lead to future job offers, shares in commercial open source-based companies, or future

access to the venture capital market, and last (but not least) ego gratification from peer

recognition. Of course, different programmers may put different values on monetary or

personal payoffs, and on short-term or long-term payoffs.

Economic theory suggests that long-term incentives are stronger under three

conditions: 1) the more visible the performance to the relevant audience (peers, labor

market, and venture capital community); 2) the higher the impact of effort on

performance; 3) the more informative the performance about talent (for example, Bengt

Holmström, 1999). The first condition gives rise to what economists call “strategic

complementarities.” To have an “audience,” programmers will want to work on software

projects that will attract a large number of other programmers. This argument suggests

the possibility of multiple equilibria. The same project may attract few programmers

 3

because programmers expect that other programmers will not be interested; or it may

flourish as programmers (rationally) have faith in the project.

When we consider the delayed rewards of working on an open source project, the

ability to signal a high level of competence may be stronger in the open source mode for

three reasons. First, in an open source project, outsiders can see the contribution of each

individual, whether that component “worked,” whether the task was hard, if the problem

was addressed in a clever way, whether the code can be useful for other programming

tasks in the future, and so forth. Second, the open source programmer takes full

responsibility for the success of a subproject, with little interference from a superior,

which generates information about ability to follow through with a task. Finally, since

many elements of the source code are shared across open source projects, more of the

knowledge they have accumulated can be transferred to new environments, which makes

programmers more valuable to future employers. To compare programmers' incentives in

the open source and proprietary settings, we need to examine how the features of the two

environments shape incentives. From the standpoint of the individual, commercial

projects typically offer better current compensation than open source projects, because

employers are willing to offer salaries to software programmers in the expectation that

they will capture a return from a proprietary project.

Commercial companies may interact with an open source project in a number of

ways. While improvements in the open source software are not appropriable, commercial

companies can benefit if they also offer expertise in some proprietary segment of the

market which is complementary to the open source program. Firms may temporarily

encourage their programmers to participate in open source projects to learn about the

 4

strengths and weaknesses of this development approach. For-profit firms may compete

directly with open source providers in the same market. Firms may also be able to learn

about potential employees when their staff interacts with open source programmers.

Finally, commercial companies may interface with the open source world because it

generates good public relations with programmers and customers.

A for-profit firm that seeks to provide services and products which are

complementary to the open source product, but are not supplied efficiently by the open

source community, can be referred to as “living symbiotically.” IBM, which has made

open source software into a major focus for its consulting business, exemplifies this

approach. A commercial company in this situation will want to have extensive

knowledge about the open source movement, and may even want to encourage and

subsidize open source contributions, both of which may cause it to allocate some

programmers to the open source project. Because firms do not capture all the benefits of

the investments in the open source project, however, the free-rider problem often

discussed in the economics of innovation should apply here as well. Subsidies by

commercial companies for open source projects should remain somewhat limited.

 The code release strategy arises when companies release some existing

proprietary code and then create a governance structure for the resulting open source

development process. This strategy is to giving away the razor (the released code) to sell

more razor blades (for instance, the related consulting services that IBM and HP hope to

provide). In general, it will make sense for a commercial company to release proprietary

code under an open source license if the increase in profit in the proprietary

complementary segment offsets any profit that would have been made in the primary

 5

segment, had it not been converted to open source. Thus, the temptation to go open

source is particularly strong when the product is lagging behind the leader and making

few profits, but the firm sees a possibility that if the released code becomes the center of

an open source project and is utilized more widely, the profitability of the complementary

segment will increase.

II. The Sample

We built a panel data set of the contributors to approximately 100 open source

projects (for full details on the dataset, see Josh Lerner, Parag A. Pathak and Jean Tirole

(2006)). These projects are stratified to over-represent the largest open source projects.

We extract the contributors to the project in each new official version of the program has

been released, using a variety of text editing tools.

Table 1 summarizes the projects, and highlights that they differ considerably in

their size and other characteristics. Open source projects periodically introduce new

versions. The number of versions introduced between the beginning of data collection

and July 2004 varies between one and twenty.2 For each project we obtained information

on the projects from SourceForge, press searches, and project websites. Key information

includes the type of license of the project, whether venture capitalists had funded the

company, and whether a corporate released some of its code as an open source project.

For each project, we opened the Tape Archive (known as “tarball”) to count the

number of distinct references to each individual. The archive preserves information such

as user and group permissions, dates, and directory structures. Open source projects are

scrupulous about keeping track of contributors, which reflects the fact that giving credit

 6

to authors is essential in the open source movement. This principle is included as part of

the nine key requirements in the “Open Source Definition.”3 This point is also

emphasized by Eric Raymond (1999), who points out “surreptitiously filing someone’s

name off of a project is, in cultural context, one of the ultimate crimes.” This point was

also emphasized in our conversations with open source project managers and

SourceForge officials. Each project release was then associated with a set of e-mails

that appeared in the archive.4

We aimed to distinguish individuals who were contributing code on their own

behalf from those doing so as part of their employment. Our approach divided the

contributors into five classes based on their e-mail addresses. These are corporate

employees, individual hobbyists, and three classes of otherwise other contributors:

unidentified international contributors, and those from organizations with top-level

domains (TLDs) denoted “.org” and “.net,” which frequently denote non-profit and

technical web sites. We included as corporate contributors all those with a “.com”

address, excluding those sites used primarily as e-mail mailboxes, Internet Service

Providers, or portals (e.g., “hotmail.com”). We also included overseas addresses that are

associated with corporations (for instance, “co.uk” and “caldera.de”). We included as

hobbyists contributions by individuals affiliated with universities and governments

(again, employing both addresses with TLDs such as “.edu” and overseas domains like

“umontreal.ca”), as well as those who made contributions from addresses associated with

portals, ISPs, and mailboxes.5 The remaining categories—those from TLDs “.org” and

“.net,” as well as the remaining international domains—were not classified in either

 7

category, but rather treated separately, because we were not able to readily assign them

(see Table 2).

III. Analysis of Project Contributions

Our initial analysis seeks to understand the distribution of contributions to open

source project by class of contributor, focusing on contributions by corporations and

“hobbyists.” Table 3 presents some breakdowns, using the most direct measure: the

number of contributions by each class of contributor for various classes of projects. This

table presents the proportion of all contributions that are corporate.6 The table also

presents the result of F- and t-tests of the significance of the reported differences.

The table shows that corporate contributions are more frequent for larger projects.

The share of corporate contributions is twice as larger in the largest quartile of projects

than in the bottom. The pattern is similar, though somewhat less dramatic, when we

compare the versions divided into quartiles based on their growth rates, defined here as

the difference between the number of lines of code in the current and previous version.

Both differences are highly statistically significant.

Patterns regarding license type and venture capital backing are less sharp. The

share of corporate contributions is lowest among those projects with the most restrictive

licenses (see Lerner and Tirole (2005b) for a discussion of our typology of license types),

but there is no consistent relationship between license strength and corporate

contributions. Corporate contributions are more common when venture capitalists have

funded a company that is focusing on the open source project, but this difference is not

 8

statistically significant. Finally, consistent with the results regarding project size above,

corporate contributions are more common in later versions of projects.

IV. Conclusions

This paper presents only the beginnings of understanding of cross-sectional and

time-series patterns of contributions to open source projects. In the approximately 100

software projects we track from 2001-2004, we have shown that the share of corporate

contributions is much larger in large and growing projects. In the companion paper to this

one, we develop a theoretical rational for these patterns and explore them in more depth.

 9

References

Holmström, Bengt, 1999, “Managerial Incentive Problems: A Dynamic Perspective,”

Review of Economic Studies, 66, 169-182.

Lerner, Josh, and Jean Tirole, 2002, “Some Simple Economics of Open Source,” Journal

of Industrial Economics, 52, 197-234.

Lerner, Josh, and Jean Tirole, 2005a, “The Economics of Technology Sharing: Open

Source and Beyond,” Journal of Economic Perspectives, 19, 99-120.

Lerner, Josh, and Jean Tirole, 2005b, “The Scope of Open Source Licensing,” Journal of

Law, Economics, and Organization, 21, 20-56.

Lerner, Josh, Parag A. Pathak, and Jean Tirole, 2006, “Open Source Contributors,”

Mimeo, Harvard Business School.

Raymond, Eric, 1999, The Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary, Cambridge, O’Reilly.

 10

Table 1: Project Characteristics

Sample:

 20 large projects Started tracking: 05-2001

 78 randomly selected projects Ended tracking: 07-2004

 98 total projects

 min median max

Lines of Source Code1 1,253 81,671 4,032,921

 Wings 3D jEdit Linux

Absolute Change in Source Code1 -145,395 18,951 1,628,979

 AOLServer Licq Linux

Number of New Versions 1 8 20

 Dev-C++ Koffice Wine

 Imprints BZFlag

 Kxicq glibc

 KDE

 Restrictive Highly Restrictive

License Type2 74% 51%

Notes:

1. Measured at the end of the sample

2. BSD is an unrestrictive license, LGPL is restrictive, and GPL is highly restrictive. Three projects changed their license

 11

during our sample period: Sendmail, PureFTPd, Wine. We take the license post-change.

 12

Table 2: Characteristics of Contributions

 min median max

Number of Contributors1 1 67 3,521

 CsvJdbc Miranda ICQ client Linux

 EverQuest Gstreamer

 JFS

Absolute Growth in

Contributors -343 16 1,174

 JFS Common C++ Libraries Linux

 Gsteamer

 Jext

% Growth in Contributors -100% 36% 4200%

 JFS Gabber PPTP Client

Number of Contributions1 2 374 52,607

 JFS Cluster Infrastructure GCC

Absolute Growth in

Contributions -1,208 80 24,611

 XFree86 ROX Desktop GCC

% Growth in

Contributions -100% 50% 5800%

 13

 JFS Licq AWStats

Notes:

1. Measured at the end of the sample

 14

Table 3: Distribution of Corporate Contributors As a Share of All Contributors

Size of Code Base Growth of Code Base License Type

Smallest size quartile 21.4% Smallest growth quartile 29.9% Unrestrictive licenses 32.0%

Mid-small size quartile 22.2% Mid-small growth quartile 26.3% Restrictive licenses 37.1%

Mid-large size quartile 33.1% Mid-large growth quartile 26.6% Highly restrictive licenses 29.0%

Largest size quartile 44.2% Largest growth quartile 43.3%

p-Value, F- (or t-)test 0.000 0.000 0.093

Venture Backing Version

Venture-backed

projects 35.0% Less than version 4 5.5%

Non-venture backed 31.6% Version 4 to 6 24.8%

 Version 7 to 11 38.4%

 More than version 12 43.9%

p-Value, F- (or t-)test 0.398 0.000

 15

*Harvard University and NBER; Harvard University; and University of Toulouse and

Massachusetts Institute of Technology. We thank for research assistance Vakha

Elmurzev, Lee Gao, James Hunter, Payal Loungani, Susanna Kim, Qicheng Ma, and John

Sheridan. Helpful comments were received from Tim Bresnahan, participants in the 2006

American Economics Association meetings and the Toulouse Network on Information

Technology’s Fall 2005 meeting, and a number of practitioners. Jeff Bates was extremely

helpful in regard to SourceForge access. We thank Harvard Business School, the National

Science Foundation, and the Toulouse Network on Information Technology for financial

support.

1This section is based on Josh Lerner and Jean Tirole (2005a).

2We did an initial analysis using 20 SourceForge projects beginning in May 2001. In

January 2002, we expanded the data collection to include the entire sample, which was

tracked until July 2004.

3http://www.opensource.org/docs/definition_plain.php (accessed December 4, 2005).

4The database went through an extensive cleaning process to remove invalid email

addresses and to deal with situations where there were two email addresses from the same

individual. Examples of the decisions made are in Lerner, Pathak, and Tirole (2006).

5One complication was posed by sites such as “aol.com,” which are used by both

corporate employees and as an e-mail service. We treat these cases as corporate

contributors. We have experimented with further portioning the corporate contributors

into subcategories, where cases like “aol.com” will be considered to be separate. With

this further breakout of the corporate sample, the qualitative results are similar.

 16

6Results looking at the ratio of contributions by corporate contributors and hobbyists

generate similar results.

