
The Use of Predictive Regressions at Alternative
Horizons in Finance and Economics

Nelson C. Mark
Department of Economics and Econometrics
University of Notre Dame and NBER

Donggyu Sul
Department of Economics
University of Auckland

May 12, 2005

Abstract

In a long-horizon regression, a k�period future return is regressed on a cur-
rent variable such as the log dividend yield. The p-value of the t-test that the
return is unpredictable typically increases over some range of return horizons, k.
Local asymptotic analysis shows that the power of the long-horizon regression test
dominates that of the short-horizon test over a nontrivial region of the admissible
parameter space. In small samples, OLS bias distorts the size of asymptotic tests
at long-horizons. We address small-sample bias with a recursive moving-block
jackknife estimator and correct for test size distortion with a recursive moving-
block Bartlett correction. Application of these methods to historical equity returns
yield evidence that the log dividend yield predicts returns at the 13 year horizon.
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1 Introduction

Let rt � I(0) be the return on an asset or a portfolio of assets from time t�1 to t and xt
be a persistent but I(0) hypothesized predictor of the asset�s future returns. In �nance
rt might be the return on equity and xt the log dividend yield whereas in international
economics rt might be the return on the log exchange rate and xt the deviation of
the exchange rate from its fundamental value.1 A test of return predictability can be
conducted by regressing rt+1 on xt and performing a t-test on the slope coe¢ cient.
Empirical research in �nance and economics frequently goes beyond this by regressing
the asset�s multi-period future return yt;k =

Pk
j=1 rt+j on xt,

yt;k = �k + �kxt + �t;k; (1)

and conducting a t-test of the null hypothesis H0 : �k = 0, where the t-statistic is
constructed with a heteroskedastic and autocorrelation consistent (HAC) standard error.
It is typically found that OLS slope estimates, asymptotic t-ratios, and R2s increase over
a range of horizons k > 1: Because the asymptotic p-values of the test of no predictability
decline over this range of k; the analyst may conclude that the long-horizon test rejects
the null hypothesis when the short-horizon test does not. Considering that the long-
horizon regression is built by aggregation of intervening short-horizon regressions, the
underlying basis for these results are not fully understood. As stated by Campbell et.
al. (1997), �An important unresolved question is whether there are circumstances under
which long-horizon regressions have greater power to detect deviations from the null
hypothesis than do short-horizon regressions.�
In this paper, we address the power question posed by Campbell et. al. We show that

long-horizon regression tests can have asymptotic power advantages over short-horizon
tests when the regressor is endogenous and when the nature of the endogeneity occurs in
an empirically relevant and nontrivial region of the parameter space. The endogeneity
that we address does not arise in the sense of misspeci�cation of a structural model
because the predictive regressions we study are employed as projections of the future
return on xt to estimate functions of the underlying moments of the distribution between
frtg and fxtg: The asymptotic power analysis is conducted under the assumption that
the regressor has a local-to-unity dominant autoregressive root which is motivated by the
high persistence of the predictive variables often used in empirical work. We approach
testing with the sup�t2 test, which is a variant of the sup-bound test discussed by
Cavanaugh et. al. (1995) that is asymptotically valid and free from nuisance parameter
dependencies.

1This line of research includes Fama and French (1988a) and Campbell and Shiller (1988) who
regressed long-horizon equity returns on the log dividend yield. See also Mishkin (1992), who ran
regressions of long-horizon in�ation on long-term bond yields, Coe and Nason (2004) who regress
long-horizon GDP growth on long-horizon money growth, Mark (1995), Mark and Choi (1997), Chinn
and Meese (1995) and Rapach and Wohar (2002) who regressed long-horizon exchange rate returns
on the deviation of the exchange rate from its fundamental value. Alexius (2001) and Chinn and
Merideth (2002) regress long-horizon exchange rate returns on long-term bond yield di¤erentials.
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While these results provide asymptotic theoretical justi�cation for using long-horizon
regressions, the sup-t2 test su¤ers from moderate small-sample size distortion that is
induced by small sample OLS bias. Implementing a bias adjustment at long horizons
may be problematic when the underlying DGP is unknown. To obtain a test that is
better sized and which retains the power advantages for long-horizon tests, we propose
that a recursive moving-block Bartlett correction be applied to the test statistics. To
address small-sample OLS bias, we propose a related recursive moving-block jackknife
estimator.
Previous research on the econometrics of predictive regressions include Campbell (2001)

who assumes an AR(1) regressor fxtg and a serially uncorrelated short-horizon regres-
sion error. Using the concept of approximate slope to measure its asymptotic power,
he found that long-horizon regressions had approximate slope advantages over short-
horizon regressions but his Monte Carlo experiments did not reveal systematic power
advantages for long-horizon regressions in �nite samples. Berben (2000) reported asymp-
totic power advantages for long-horizon regression when the exogenous predictor and
the short-horizon regression error follow AR(1) processes. Berben and Van Dijk (1998)
conclude that long-horizon tests do not have asymptotic power advantages when the re-
gressor is unit-root nonstationary and is weakly exogenous� properties that Berkowitz
and Giorgianni (2001) also �nd in Monte Carlo analysis. Mankiw and Shapiro (1986),
Hodrick (1992), Kim and Nelson (1993), Goetzmann and Jorion (1993), Mark (1995),
and Kilian (1999) study small-sample inference issues. Stambaugh (1999) proposes a
Bayesian analysis to deal with small-sample OLS bias and Campbell and Yogo (2002)
study point optimal tests in the short-horizon predictive regression. Kilian and Tay-
lor (2003) examine small-sample properties under nonlinearity of the data generation
process (DGP) and Clark and McCracken (2001) study the predictive power of long-
horizon out-of-sample forecasts.
The long-horizon regressions that we study regress returns at alternative horizons on

the same explanatory variable. The regressions admit variations in k but the horizon is
implicitly constrained to be small relative to the sample size in the sense that k=T ! 0 as
T !1. An alternative long-horizon regression employed in the literature regresses the
future k-period return (from t to t+k) on the past k-period return (from t�k to t) [Fama
and French (1988b)]. In this alternative long-horizon regression, the return horizon k
can be large relative to the size of the sample T . Richardson and Stock (1989) develop
an alternative asymptotic theory where k ! 1 and T ! 1 but k=T ! � 2 (0; 1) and
show that the test statistics converge to functions of Brownian motions, Daniel (2001)
studies optimal tests of this kind, and Kim et. al. (1991) study the OLS sampling
distribution with the bootstrap and randomization techniques. Valkanov (2003) employs
the Richardson and Stock asymptotic distribution theory to the long-horizon regressions
of the type that we study when the regressor xt � I(1).
The remainder of the paper is as follows. The next section presents the local asymp-

totic power analysis and the small sample properties of the predictive regression tests.
Section 3 presents the recursive moving-block jackknife estimator for attenuating the
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OLS bias and discusses the Bartlett correction for the test statistics. Section 4 applies
our methods to re-examine the dividend yield as a predictor of long-horizon returns
on the Standard and Poors index. Employing annual time series that begin in 1871,
recursive estimation from 1990 to 2002 gives stable Bartlett-corrected sup-t2 tests that
consistently reject the hypothesis of no predictability at horizons of 13 years or more.
Proofs of propositions are contained in the appendix.

2 Power advantages of long-horizon regression tests

For notational convenience, we write the short-horizon predictive regression as

�yt+1 = �1xt + et+1: (2)

We suppress the regression constant in (2) since its has no e¤ect on the asymptotic
properties of the tests.2 However, the constant does have consequences for small-sample
properties of the tests and we will include it in our analysis of those issues below. As
in Campbell and Yogo (2002) and Valkanov (2003), we assume that the regressor has a
local-to-unity autoregressive root to account for a highly persistent regressor.

2.1 Local-to-unity asymptotic power

The observations are generated by

Assumption 1 For sample size T; the observations have the representation

�yt+1 = �1(T )xt + et+1; (3)

xt+1 = �(T )xt + ut+1; (4)

where fet+1g and fut+1g are zero-mean covariance stationary sequences. �(T ) = 1+c=T
and �1(T ) = b1=T give the sequence of local alternatives where c � 0 and b1 � 0 are
constants. For the long-horizon regression, the sequence of local alternatives at horizon
k is �k(T ) = (kb1)=T:

Let �t = (�x0t; e
0
t)
0 and its long-run covariance matrix be 
 = � + � + �0 =

lim
T�!1

1
T

PT
t=1

P1
l=�1E(�t�

0
t�l) =

�

xx 
xe

ex 
ee

�
; where � = lim

T�!1

PT
t=1E(�t�

0
t)

=

�
�xx �xe
�ex �ee

�
; and � = lim

T�!1
1
T

PT
t=1

Pt�1
l=1 E(�t�l�

0
t) =

�
�xx �xe
�ex �ee

�
: Endogeneity

2This reformulation of the dependent variable maps exactly into the returns formulation for exchange
rates and is an approximate representation of stock returns. The approximation follows from Campbell
et. al. (1997), by letting yt be the log stock price, xt the log dividend yield. Then rt+1 ' ��yt+1 +
(1� �)xt where � is the implied discount factor when the discount rate is the average dividend yield.
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of the regressor may arise because the covariance between fet+1g and fut+1g has not
been restricted. Any resulting endogeneity, however, will be local-to-zero in the sense
that the dependence between the regressor and the regression error vanishes as T !1.
Let B1 be a scalar Brownian motion with long run variance 
xx; J�c be the di¤usion

process de�ned by dJ�c (r) = cJ
�
c (r) + dB1(r); with initial condition

J�c (0) = 0; and Jc = J
�
c (r)�

R 1
0
J�c (r)dr: The slope coe¢ cient from the k�horizon regres-

sion is �̂k = (
P

t xt (yt+k � yt)) (
P

t x
2
t )
�1 with asymptotic t-ratio t�(k) = �̂k=

q
V (�̂k);

where V (�̂k) = b
ee (Pt x
2
t )
�1. Following Phillips (1988) and Cavanagh et. al. (1995),

we have

Proposition 1 Under Assumption 1, the OLS estimator of the kth horizon regression
slope coe¢ cient is asymptotically distributed as,

T
�
�̂k � �k

�
=) kR

(
�

�Z
J2c

��1 Z
JcdB1 +

�
1� �2

�1=2�Z
J2c

��1 Z
JcdB

�
2

)

+
�xe � �xe;k�1


xx

�Z
J2c

��1
+ kb1: (5)

Its corresponding t�statistic has asymptotic distribution,

t�(k) =) �� 1c +
�
1� �2

�1=2
N(0; 1) +

�
�xe � �xe;k�1 + b1p


xx
ee

�
�c (6)

where �xe;k�1 = limT!1
1
T

PT
t=k+1

Pk�1
l=1 E(�xt�let); � 1c =

�R
J2c
��1=2 R

JcdB1,
B2 = �B1 + (1� �2)1=2B�2 ; B�2 is a standard Brownian motion distributed independently
of B1; R = 


�1=2
xx 


1=2
ee ; � = 
xe (
xx
ee)

�1=2 and �c =
�R
J2c
��1=2

> 0:

When the regressor is exogenous, �xe = �xe;k�1 = 0: It follows that t�(k)) �� 1c +�
1� �2

�1=2
N(0; 1) +

�
b1=
p

xx
ee

�
�c which does not depend on k. This gives,

Corollary 1 (Exogeneity) Under Assumption 1, if the regressor is econometrically ex-
ogenous, then the long-horizon regression test has no asymptotic power advantage over
the short-horizon regression test.

In empirical work, however, the regressor is unlikely to be econometrically exogenous.
The return on equity rt = ln(Pt + Dt�1) � lnPt�1 and the log dividend yield xt =
lnDt�1 � lnPt both depend on Pt in a way to suggest that the regression error and the
innovation to xt will be negatively correlated, E(ut+1et+1) < 0.3

3The predicted negative innovation correlation is in fact present in annual stock-return data. Fitting
a �rst-order vector autoregression to (et; vt)0, we obtain an innovation correlation of -0.948..
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Endogeneity can also be seen to arise if the bivariate sequence f(yt; zt)0g can be
represented as a �rst-order vector-error correction model (VECM) with cointegration
vector (�1; 1);

�Yt = hxt�1 + A�Yt�1 + �t;

where Y 0t = (yt; zt) ; h
0 = (h1; h2) ; A = [aij] is a 2� 2 matrix of coe¢ cients, � 0t = (�t; ut) ;

and xt = zt � yt is the equilibrium error.4 The VECM has an equivalent restricted
second-order vector autoregressive (VAR) representation for Xt = (�yt; xt), where Xt =
BXt�1 + CXt�2 + Vt; B11 = (a11 + a12); B12 = (h1 + a12); B21 = (a22 � a12 + a21 �
a11); B22 = (1 + h2 � h1 + a22 � a12); C11 = C21 = 0; C12 = �a12; C22 = (a12 � a22);
and V 0t = (�t; ut � �t) : From the VAR, it can be seen that fxtg and f�ytg are correlated
both contemporaneously and dynamically (at leads and lags). The �rst equation from
the VAR representation is the short-horizon regression

�yt+1 = (h1 + a12)xt + [(a11 + a12)�yt � a12xt�1 + �t+1] ; (7)

with slope coe¢ cient h1 + a12 and regression error (a11 + a12)�yt � a12xt�1 + �t+1; that
is both serially correlated and correlated with xt. The objective of the short-horizon
regression is not to estimate h1+ a12 per se, but to estimate the projection coe¢ cient of
�yt+1 on xt which includes the correlation between the regressor xt and (�yt; xt�1) in
the error term.
With a local-to-unity regressor, eq.(2) resembles an unbalanced regression since�yt+1

is nearly white noise and xt is nearly integrated. Under the alternative b1 > 0; there must
be negative endogeneity because negative correlation between xt and et+1 is required for
the linear combination b1xt+et+1 to be nearly white noise (analogously, if b1 < 0; positive
endogeneity must be present). If the regressor is endogenous, it follows from eq.(6) that
the limiting behavior of the di¤erence between the t�statistics at horizons k and 1 is
ta�(k)� ta�(1) =) �

�
�xe;k�1=

p

xx
ee

�
�c; which is increasing in k: This gives,

Corollary 2 (Endogeneity) Under Assumption 1, asymptotic power advantages accrue
to long-horizon regression tests if �xe;k�1 < 0 for k > 1:

2.2 Small-sample properties

All of the simulation work includes a constant in estimation. The �rst set of results that
we discuss are simulations to con�rm that the asymptotic predictions of long-horizon
power advantages are present in small samples under regressor endogeneity. The DGP
is as in Assumption 1 with et = a11et�1 + a12ut�1 + mt; ut = nt; where (mt; nt)

0 iid�
[0; �] ; �mm = �nn = 1;�1 < �mn < 0: A property of this DGP is that the dependence
between the regressor and regression error is local-to-zero in which the endogeneity factor

4In exchange rate analysis, �yt+1 is the exchange rate return and zt is the log fundamentals. Equity
returns and dividend yields do not have an exact VECM representation.

6



in the short-horizon regression is d1 (T ) = E (
P
xtet+1) (

P
x2t )

�1
= O(T�1) and for the

long-horizon regression is dk(T ) = O(T�1).5

Figure 1. Horizons that maximize relative size-adjusted power.

From 5000 replications with T = 100; Figure 1 shows the horizon k� that maximizes
the relative size-adjusted power of the regression tests obtained by searching over k 2
[1; 20]; �mn 2 [�0:9; 0] ; a12 2 [�0:9; 0] with a11 = 0:1; b1 = 10; c = �5: In cases where
the long-horizon regression test has no local power advantages, the result is k� = 1.
As can be seen from the �gure, the size-adjusted power of long-horizon regression tests
consistently dominate those of short-horizon tests in this region of the parameter space.6

Table 1, displays the 5% size-adjusted power of the tests for alternative values of �mn at
selected horizons.

Table 1: 5% size-adjusted power at selected horizons,
T = 100; a11 = 0:1; a12 = �0:9; b1 = 10; c = �5
�mnnk 1 5 10 15 20
-0.9 0.000 0.203 0.223 0.226 0.217
-0.7 0.001 0.210 0.221 0.245 0.252
-0.5 0.007 0.229 0.282 0.277 0.271
-0.3 0.021 0.251 0.324 0.307 0.269
-0.1 0.041 0.294 0.385 0.317 0.281

5For this DGP, the endogeneity factor is d1 (T ) = (a12 + a11�mn)
�
1� (� (T ))2

�
(1� a11� (T ))�1 =

(a12 + a11�mn)
c2�2Tc

T 2a11�T 2�Tca11 : Under the null hypothesis (b1 = d1 = 0); we set a12 = a11 = 0 but
allow variations in �mn:

6Asymptotic standard errors computed by Andrews�s (1991) method.
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While size-adjusted power advantages are seen to accrue to long-horizon regressions,
the conventional t-test cannot be used in practice. This is because the conventional
t-statistic depends on the regressor�s local-to-unity parameter c; which cannot be consis-
tently estimated from the time-series. For practical considerations, we approach testing
using a variant of the sup-bound test discussed by Cavanaugh et. al. (1995), which is an
asymptotically valid test of predictability that does not depend on the nuisance parame-
ter c: A convenient variant that admits a Bartlett correction and allows two-sided tests is
to use the squared t-ratio. We refer to this as the sup�t2 test. To construct the test for
given �; let qt� ;c;� be the 100� percentile of the distribution of �

2� 21c +
�
1� �2

�
N(0; 1)2:

Since under the null, t2�(k)
L! �2� 21c +

�
1� �2

�
N(0; 1)2; it follows that the most conser-

vative sup�t2 test with at most asymptotic level � is performed by rejecting the null
if t2�(k) > qt� ;0;�: On the other hand, if c =c� 0; then t2�(k)

L! N(0; 1)2 and it follows
that the most liberal test rejects if t2�(k) > qt� ;c;� which is equivalent to the conventional
asymptotic chi-square test under stationarity of the regressor.
We show below that in small samples, the asymptotic sup�t2 test becomes somewhat

oversized at long horizons on account small-sample bias in the OLS slope estimator.7

Because direct bias and size adjustment at long horizons may not be straightforward
when the DGP is unknown, we discuss a strategy to achieve small-sample adjustments
that is based on resampling the data and which does not require knowledge of the DGP.

3 Small-sample OLS bias and test-statistic adjust-
ments

Bias adjustment. Our small-sample adjustment for OLS bias draws on the jackknife
method originally proposed by Quenouille (1956). Suppressing the notational depen-
dence on the horizon k and letting the true slope value be �0; the small-sample OLS
bias is

E(b� � �o) = �

T
+O

�
T�2

�
; (8)

where the constant � depends on parameters of the asymptotic distribution. Eq.(8)
motivates the following procedure to estimate the �rst-order bias term �. Let �s =
(yt�1+s+k � yt�1+s; xt�1+s); s = 1; :::; T1; T1 = T � k + 1 be the 2-dimensional vector
comprised of the dependent and independent variables of the long-horizon regression.
Construct a moving-block sample with block size B from the original set of observations,
f�1; � � � ; �Bg ;

�
�2; � � � ; �B+1

	
; � � � ;

�
�T1�B+1; � � � ; �T1

	
: Using the data from each block,

estimate the k�horizon slope coe¢ cient �0: Call these estimates �Bj,where j = 1; :::; T1�
7The bias is well-known. See Stambaugh (1999) for the short-horizon OLS bias formula, Mark and

Sul (2004) for long-horizon OLS bias formulae, and Kim and Nelson (1993) who estimate the bias for
stock returns using randomization methods .
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B + 1 indexes the block of B observations. For each j; the analog to (8) is

�Bj = �0 +
�

B
+Op

�
B�2

�
: (9)

Multiplying both sides of (9) by B and taking the sample average gives

BE�B (�) = �+B�0 +O
�
B�1

�
; (10)

where E�B (�) =
1

T�B+1
PT�B+1

j=1 �Bj. Repeat with block size B + 1; then block size
B + 2; and so on through block size B + (T1 � B) = T1 to obtain the sequence�
BE�B (�) = �+B�0; (B + 1)E

�
B+1 (�) = �+ (B + 1) �0; :::; T1E

�
T1
(�) = �+ T1�0

	
. Let

t = B;B + 1; :::; T1; de�ne zt = tE�t (�) ; and write zt as a regression on a constant and
trend, zt = �+ �0t: Call the estimated coe¢ cient on the trend �RJK : It is the recursive
moving-block jackknife estimate of �0 which is accurate in the following sense.

Proposition 2 (Recursive moving-block jackknife)

E(�RJK � �o) = O(T�2):

The true value of � under the null is di¤erent than it is under the alternative. But
since the recursive moving-block jackknife is a method to estimate �; it provides a bias
adjustment under the null as well as under the alternative. For the choice of B we draw
on Hall, Horowitz and Jing (1995) who provide blocking rules on the bootstrap with
dependent data. For bias estimation, the suggested optimal block size is T 1=3 while for
one or two sided distribution functions, the suggested size is T 1=4 and T 1=5; respectively.

Table 2: OLS and Moving-Block Recursive Jackknife Bias under the Null.
c = �5; T = 100; a11 = a12 = 0:
OLS Jackknife

�mn n k 1 5 10 15 20 1 5 10 15 20
-0.9 0.038 0.169 0.308 0.420 0.521 0.001 0.068 0.172 0.265 0.357
-0.7 0.029 0.131 0.238 0.327 0.404 0.001 0.052 0.132 0.204 0.274
-0.5 0.021 0.094 0.170 0.233 0.287 0.000 0.037 0.093 0.144 0.191
-0.3 0.012 0.056 0.101 0.140 0.171 0.000 0.021 0.054 0.084 0.110
-0.1 0.004 0.019 0.032 0.046 0.055 0.000 0.006 0.016 0.024 0.029

The Monte Carlo work reported in Table 2 shows that the recursive moving-block
jackknife estimator eliminates nearly all of the bias in the short-horizon regression. For
�mn = �0:3; it reduces the bias by 100% (k = 1); 68% (k = 5); 50% (k = 10); 48%
(k = 15); and 47% (k = 20): The relative reduction of bias is fairly stable for alternative
values of �mn:
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Recursive moving-block Bartlett correction. We show below that the sup�t2 test is some-
what oversized in small samples. To obtain tests with better size, we apply a Bartlett
correction.8 We begin with the asymptotic expansion of the squared t-ratio,

W = WT �
�1
T
WT �

�2
T
W 2
T ; (11)

where WT is the squared t-statistic computed from a sample of size T; W is its �true�
value, and �1 and �2 are �Bartlett coe¢ cients�which are derived from the asymptotic
expansion of the statistic.9 While �1 and �2 depend on parameters of the asymptotic
DGP, our method does not require those formulae as it is designed to estimate the
Bartlett coe¢ cients. Moreover, because we are estimating the Bartlett coe¢ cients whose
true values are di¤erent under the null and the alternative, the recursive moving-block
Bartlett correction should produce a test with correct size and preserve long-horizon
power advantages.

Table 3: E¤ective size of asymptotic and moving-block recursive Bartlett Corrected
sup�t2 test. a11 = a12 = 0; c = 5; T = 100
Asymptotic Bartlett corrected

�mn n k 1 5 10 15 20 1 5 10 15 20
A. Nominal 5 % test

-0.9 0.034 0.056 0.112 0.171 0.218 0.022 0.027 0.058 0.084 0.102
-0.7 0.035 0.049 0.114 0.158 0.207 0.026 0.023 0.064 0.085 0.104
-0.5 0.042 0.048 0.120 0.165 0.215 0.032 0.027 0.063 0.085 0.099
-0.3 0.054 0.062 0.128 0.180 0.217 0.035 0.029 0.072 0.090 0.105
-0.1 0.067 0.072 0.147 0.194 0.230 0.041 0.036 0.072 0.088 0.112

B. Nominal 10 % test
-0.9 0.065 0.086 0.171 0.232 0.279 0.047 0.046 0.083 0.124 0.149
-0.7 0.061 0.076 0.155 0.199 0.251 0.041 0.041 0.083 0.118 0.129
-0.5 0.064 0.068 0.148 0.199 0.249 0.047 0.037 0.077 0.104 0.122
-0.3 0.067 0.068 0.140 0.192 0.239 0.042 0.035 0.078 0.102 0.114
-0.1 0.067 0.073 0.148 0.195 0.230 0.041 0.037 0.072 0.088 0.113

To apply the Bartlett correction, proceed as follows. Construct a moving-block
sample of size B from the original set of observations, f�1; � � � ; �Bg ;

�
�2; � � � ; �B+1

	
;

� � � ;
�
�T1�B+1; � � � ; �T1

	
: Using the data from each block, construct the sup-t2 statistic,

WB;j = t
2
�; j = 1; :::; T1 �B + 1: From each block, form the analog to (11)

BW = ��1WB;j � �2W 2
B;j +BWB;j:

8Bartlett (1937) originally proposed this adjustment strategy to the log-likelihood ratio statistic to
achieve a test with better size.

9Rothenberg (1984), Phillips and Park (1988) and Cribari-Neto and Ferrari (1995) provide Edgeworth
expansions of the Wald, likelihood ratio and Lagrange multiplier tests under general conditions.
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Taking the average over j gives BW = ��1E�B (W ) � �2E�B (W 2) + BE�B (W ) where
E�B (W ) =

1
T1�B+1

PT1�k+1
j=1 WB;j and E�B (W

2) = 1
T1�B+1

PT1�k+1
j=1 W 2

B;j: Repeat using
block size B+1; then block size B+2; and so on through block size B+(T1�B) = T1. For
t = B;B+1; :::; T1 we have tW = ��1E�t (W )��2E�t (W 2)+tE�t (W ) : Let zt = tE

�
t (W )

and rewrite as the regression zt = �1E�t (W )+�2E
�
t (W

2)+Wt: The estimated coe¢ cient
on the trend is the recursive moving-block Bartlett-corrected test statistic.
Simulation results displayed in Table 3 show that the asymptotic sup�t2 test is over-

sized at k = 10; 15; 20 whereas the Bartlett-corrected test is reasonably sized at those
horizons and is somewhat undersized for k = 1; 5: For T = 100; the Bartlett correction
is seen to give tests that are better sized than the asymptotic test.

Table 4: Local-to-Unity E¤ective Size and Power of asymptotic and Bartlett corrected
sup�t2 test. a11 = a12 = 0; c = �5; �mn = �0:90 under the null

a11 = 0:1; a12 = �0:3; � = 1� 5=T; b1 = 20=T; �mn = �0:9 under the alternative
Asymptotic Bartlett corrected

T n k 1 5 10 15 20 1 5 10 15 20
A. Size of nominal 5% test Size of nominal 5% test
100 0.034 0.056 0.112 0.171 0.218 0.022 0.027 0.058 0.084 0.102
200 0.022 0.018 0.047 0.081 0.113 0.019 0.008 0.019 0.037 0.053
300 0.021 0.009 0.030 0.052 0.066 0.018 0.004 0.012 0.016 0.027
B. Size of nominal 10% test Size of nominal 10% test
100 0.065 0.086 0.171 0.232 0.279 0.047 0.046 0.083 0.124 0.149
200 0.063 0.042 0.080 0.125 0.161 0.047 0.018 0.031 0.058 0.078
300 0.061 0.030 0.059 0.085 0.099 0.050 0.012 0.022 0.034 0.045
C. Power of 5% size-adjusted test Power of nominal 5% test
100 0.880 0.883 0.930 0.843 0.649 0.636 0.581 0.896 0.844 0.675
200 0.827 0.808 0.881 0.900 0.928 0.546 0.246 0.576 0.857 0.924
300 0.794 0.804 0.803 0.883 0.937 0.412 0.131 0.330 0.670 0.886
D. Power of 10% size-adjusted test Power of nominal 10% test
100 0.963 0.965 0.978 0.933 0.785 0.819 0.722 0.940 0.896 0.751
200 0.946 0.929 0.956 0.977 0.977 0.772 0.405 0.744 0.929 0.962
300 0.926 0.938 0.934 0.971 0.986 0.772 0.296 0.500 0.831 0.950

Table 4 reports size and power performance for various values of T: For longer hori-
zons, say k = 20, a time-series length of T = 300 is required for the asymptotic sup�t2

test to be correctly sized. The Bartlett-corrected sup-t2 test is for the most part under-
sized when T = 200 and T = 300: Local-to-unity power of the Bartlett-corrected tests
are seen to rival those of the size-adjusted asymptotic sup�t2 tests. While the coarse
grid of horizons that are reported do not, in many cases, pick o¤ the horizon that gives
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the test its maximal power, results for the horizons that we do report show that long-
horizon power advantages hold up. These results indicate that the Bartlett correction
to the asymptotic sup�t2 test should work well in practice.10

4 Predictability of long-horizon equity returns

We apply the Bartlett correction to long-horizon tests of whether the log dividend yield
predicts future stock returns. The predictive regression can be motivated as in Campbell
et. al. (1997) who show how the log dividend yield is the expected present value of
future returns net of future dividend growth. If forecasts of future dividend growth are
relatively smooth, the present-value relation suggests that the log dividend yield should
contain useful information for predicting future returns.
Regressing future returns at various horizons on the log dividend yield using annual

observations from 1871 to 2002 produces the following customary results.11

Table 5: Short and long-horizon equity return regressions
k = 1 k = 5 k = 10 k = 15b�k 0.072 0.250 0.716 1.206

t� (k) 1.330 1.194 2.499 4.965
R2 0.02 0.05 0.15 0.29

These simple point estimates suggest that evidence for return predictability strength-
ens as the return horizon is lengthened. The OLS point estimates of the slope, conven-
tional asymptotic t-ratios, and regression R2s increase with return horizon. The con-
ventional t-test cannot reject the null of no predictability at k = 5 but does reject at
k = 10: This pattern exhibited between the point estimates and horizon is familiar in
the literature and is viewed as a stylized fact in �nance. Campbell and Cochrane (1999)
propose an asset pricing model to explain these features of the data where the represen-
tative agent�s preferences display habit persistence and Cecchetti et. al. (2000) present
a model to explain these features through distorted beliefs of the representative agent.
The log dividend-yield (the regressor) is a persistent series. Its �rst-ordered auto-

correlation is 0.843. We obtain augmented Dickey�Fuller (ADF) test statistic values of
-0.189 (with constant) and -1.106 (constant and trend). The Phillips�Perron (PP) test

10Our results are in line with recent work by Nielsen (1997) and Johansen (2004) who show that the
Bartlett correction for unit-root tests work well in practice.
11These data were used in Robert J. Shiller (2000) and were obtained from his web site. Annual

observations were constructed from these monthly data. Returns are rt+1 = ln ((Pt+1 +Dt)=Pt) where
Pt is the beginning of year price of the S&P index and Dt is the annual �ow of dividends in year t.
Asymptotic t-ratios constructed using Newey-West (1994) automatic lag-length HAC standard errors.
Because the dependent variable changes with k, the R2s are not directly comparable across horizons.
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statistics are �0.850 (constant) and �2.01 (constant and trend).12 The apparent nonsta-
tionarity of the dividend yield is driven in large part by the bull market of the late 1990s.
When we end the sample in 1997, however, the ADF statistics become -2.965 (constant)
and -3.758 (constant and trend). Corresponding PP-statistics are -2.640 (constant) and
-3.656 (constant and trend).
Since potential power advantages of long-horizon regressions hinge on the endogeneity

of the regressor, we run a Hausman test to investigate whether this is the case. Lagged
values of the dividend yield are evidently weak instruments since using three lags as
instruments yields a �21 statistic value of 2.31 (p-value=0.128). Employing the real
interest rate as an instrument yields a test statistic of 109.2 which rejects exogeneity of
the dividend yield at any reasonable level. Employing the real interest rate and three
lags of the dividend yield as instruments gives a test statistic of 9.69 (p-value=0.002).
The weight of the evidence rejects the exogeneity of the dividend yield.
Because of the unusual behavior of stock prices associated with the bull market of the

90s and the subsequent decline in 2001-2002, the estimates are sensitive to the sample
period. In recognition of this sensitivity, we run the regressions for horizons 1 through
20 initially using 1990 as the end of the sample and then recursively updating the sample
through 2002. Since the true value of the local-to-unity parameter c < 0 is unknown,
the exact critical values for the test are bounded by critical values for the conventional
�2 test and the sup�t2 test.13 To compare the inferences that one would draw from the
most liberal and the most conservative tests, for each sample we conduct four tests of
predictability: the asymptotic sup�t2 test, the Bartlett-corrected version of this test, the
standard asymptotic chi-square test for stationary regressor and the Bartlett-corrected
version of this test.14

k; shown in Table 6 is the shortest horizon for which the null is rejected at the 5-
percent nominal level. The Bartlett-corrected sup�t2 test is consistently able to reject
the null at k = 13 and for samples ending in 1997 and 1998 it rejects the null at k = 11:
The maximal Bartlett-corrected test statistics are obtained at horizon k� = 19 for every
sample. The Bartlett-corrected asymptotic �2 test rejects the null at k = 10 in every
sample.
The stability of the horizon for which the Bartlett-corrected tests reject the null

contrasts sharply with the asymptotic test results. As observations from the 1990s are
added to the sample, successively longer horizons are required to reject the null as the

12Approximate critical values for the test (with constant) are -2.86, -2.86, and -2.89, respectively at
the 5% level and -2.57, -2.57, and -2.58, respectively at the 10% level. Approximate critical values for
the test (constant and trend) are -3.41, -3.43, and -3.45 respectively at the 5% level and -3.12, -3.13,
and -3.15 respectively at the 10% level.
13The critical values for the sup�t2 test depend on the estimated value of �: For the 1992 sample,

the 5% critical value is 6.677. For all other samples, it is 7.1822.
14Although it is well-known that the asymptotic �2 test su¤ers from substantial size distortion, the

Bartlett-corrected version of the test is only modestly oversized. The small-sample performance of these
tests are reported in the working paper version [Mark and Sul (2004)] where it is shown that the main
results in this paper hold when the regressor is covariance stationary.

13



k associated with the asymptotic sup�t2 test and the conventional �2 test is increasing
as the sample is lengthened. When the sample ends in 1991, the asymptotic sup�t2 test
rejects the null with k = 9; but when the sample ends in 2002, the shortest horizon for
which the test rejects is k = 16:
The conventional t-statistic appears to exhibit sensitivity to the size and the direction

of the bias. The bias of the short-horizon regression, which we estimate by the di¤erence
between OLS and the recursive moving-block jackknife estimate, is shown in the last
column of Table 6. The estimated bias is positive through 1997 then turns negative.
The negative bias evidently alters the size of the asymptotic tests whereas the Bartlett
correction evidently does a reasonably good job of correcting size distortion.

Table 6: Stock Return Predictability
k k k k� k k�

T asy. �2 BC �2 asy. sup�t2 conventional BC sup�t2 Bartlett bias
1991 5 10 9 20 13 19 0.072
1992 5 10 9 20 13 19 0.077
1993 7 10 9 13 13 19 0.072
1994 8 10 9 14 13 19 0.063
1995 8 10 10 13 13 19 0.058
1996 8 10 10 14 13 19 0.043
1997 9 10 11 14 11 19 0.011
1998 9 10 12 14 11 19 -0.006
1999 10 10 13 14 13 19 -0.023
2000 12 10 14 19 13 19 -0.062
2001 12 10 15 19 13 19 -0.077
2002 13 10 16 19 13 19 -0.059
Notes: k is the shortest horizon for which the test rejects the null hypothesis. k� is the
horizon that gives the maximal test statistic value. BC denotes Bartlett correction.

Bias is calculated at horizon k for BC sub�t2.

5 Conclusion

Long-horizon regression tests have local asymptotic power advantages over short-horizon
tests when the regresssor is persistent (local-to-unity) and endogenous. While asymp-
totic theoretical justi�cation is available for using long horizons, small-sample bias of
OLS causes size distortion in the asymptotic tests. Because conventional bias adjust-
ment may not be easily handled at long horizons when the DGP is unknown, we suggest
resampling strategies to achieve bias reduction and to correct for test size distortion.
Estimation bias is addressed by the recursive moving-block jackknife estimator, which

successfully provides bias correction in the short-horizon predictive regression and con-
trols for about half of the bias at long horizons. Small-sample size distortion of asymp-
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totic tests are addressed by a recursive moving-block Bartlett correction. The Bartlett
corrected sup�t2 statistic is reasonably sized at short and long horizons and e¤ectively
maintains small-sample power advantages of long-horizon tests.
Application of the small-sample adjustments to U.S. stock market data �nds that

the hypothesis that the dividend yield does not predict returns is rejected with 13-year
return horizons using the most conservative Bartlett-corrected sup-t2 test.
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Appendix

Proof of Proposition 1

Proof. The OLS estimator of the slope coe¢ cient for the kth horizon regression,

�̂k � �k =
PT�k

t=1 xt�t+k;kPT�k
t=1 x

2
t

:

By Assumption 1, we have

T
�
�̂k � �k

�
= kb1 +

T�1
PT�k

t=1 xt�t+k;k

T�2
PT�k

t=1 x
2
t

:

By Lemmas 3.1 and Theorem 4.1 of Phillips (1988) and Cavanagh, Elliot and Stock
(1995), it follows that

T
�
�̂k � �k

�
=) kR

(
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�Z
J2c

��1 Z
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J2c
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)

+
�xe � �xe;k�1


xx

�Z
J2c

��1
+ kb1:

De�ne t�(k) = �̂k=

q
V (�̂k); and V (�̂k) = 
̂��(k) [

P
x2t ]

�1
: Since 
��(1) = 
ee; t� (k)

can be rewritten as

t�(k) =
�̂k

k

qb
ee
 
T�kX
t=1

x2t

!1=2
:

From Phillips (1987) and Cavanagh, Elliot and Stock (1995), it is straightforward to
show that

t�(k) =) �� 1c +
�
1� �2

�1=2
N(0; 1) +

�
�xe � �xe;k�1 + b1p


xx
ee

�
�c;

where �xe;k�1 = limT!1
1
T

PT
t=k+1

Pk�1
l=1 E(�xt�lut); � 1c =

�R
J2c
��1=2 R

JcdB1; and �c =�R
J2c
��1=2

:

Proof. (of Proposition 2) The regression is set up as tE�t (�) = �+ �t+ vt. Let a �e�
denote the deviation from the sample mean and note that 1

T

P
t
etevt = Op(1): Then
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