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Abstract
We develop a new consistent and simple to compute estimator of the

number of factors in the large dimensional approximate factor models.
The main advantage of our estimator relative to the previously proposed
ones is that it works well in realistically small samples when the amount
of cross-sectional and time-series correlation in the idiosyncratic terms is
relatively large. It also improves upon the existing methods when the
portion of the observed variance attributed to the factors is small relative
to the variance due to the idiosyncratic term. These advantages arise be-
cause the estimator is based on a Law-of-Large-Numbers type regularity
for the idiosyncratic components of the data, as opposed to the estimators
based on the assumption that a significant portion of the variance is ex-
plained by the systematic part. We apply the new estimation procedure
to determine the number of pervasive factors driving returns of stocks
traded on NYSE, AMEX, and NASDAQ and the number of pervasive
factors influencing dynamics of a large set of macroeconomic variables.

1 Introduction
Factor models with large cross-section and time-series dimensions have recently
attracted an increasing amount of attention from researchers in finance and
macroeconomics. Approximate factor models, where the idiosyncratic compo-
nents may be weakly correlated and the common factors non-trivially affect a
large number of the cross-sectional units are particularly useful in applications.
In finance, such models are at the heart of Chamberlain and Rothchild’s (1983)
and Ingersol’s (1984) extension of the arbitrage pricing theory. In macroeco-
nomics, the models are used to identify economy-wide and global shocks, to
construct coincident indexes, to forecast individual macroeconomic time series,
to study relationship between microeconomic and aggregated macroeconomic
dynamics, and to augment information in the VAR models used for monetary
policy analysis (see, for example, Forni and Reichlin (1998), Forni, Hallin, Lippi,
and Reichlin (2000), Stock and Watson (1999), Forni and Lippi (1999), and
Bernanke, Boivin, and Eliasz (2004)).
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An important question to be addressed by researchers using the approximate
factor models is how many factors are there. This question is directly related to
the behavior of the eigenvalues of the data’s covariance matrix as the number of
the cross-sectional units tends to infinity. By definition of the approximate factor
models, the eigenvalues of the covariance matrix of the systematic components
of the data must increase without bound. At the same time, the eigenvalues of
the covariance matrix of the idiosyncratic components must stay bounded. For
the data’s covariance matrix this translates into the first r eigenvalues, where r is
the number of factors, increasing without bound and the rest of the eigenvalues
staying bounded. Unfortunately, as has been noted by Trzcinka (1986) and
Luedecke (1984) among many others, testing whether some eigenvalues increase
unboundedly whereas the other remain bounded is not a well-posed problem
with a finite number of data points. Forni et al (2000 p.547) describe the problem
particularly clearly: “there is no way a slowly diverging sequence (divergence
under the model can be arbitrarily slow) can be told from an eventually bounded
sequence (for which the bound can be arbitrarily large)”.
To distinguish the diverging sequence from the bounded sequence, this pa-

per restricts the approximate factor models by imposing some structure on the
idiosyncratic components of the data. Precisely, we assume that the vector of
the idiosyncratic terms is a linear transformation of a vector with i.i.d. compo-
nents. The linear transformation is left relatively unconstrained so that a wide
range of heteroskedasticity and cross-sectional serial correlation patterns for the
idiosyncratic terms is allowed. Using this assumption and recent results from
the large dimensional random matrix literature (see Z. Bai (1999) for a review),
the paper shows how to estimate an upper bound on the eigenvalues of the “id-
iosyncratic part” of the sample covariance matrix. Counting the eigenvalues of
the sample covariance matrix that are above the bound gives our estimator of
the number of the factors.
In more detail, the central fact underlying our estimator is that the empirical

distribution of eigenvalues of the sample covariance matrix converges to a non-
random distribution when both the time series and cross-sectional dimensions
of the data grow. The limiting distribution has bounded support and known
functional form in the vicinity of the upper boundary u of the support. We show
that, asymptotically, the first r eigenvalues of the sample covariance matrix are
almost surely larger than u, where r is the true number of factors. However, the
r + 1-th eigenvalue almost surely converges to u. To estimate u, we choose the
parameters of the known functional form of the limiting distribution so that it
fits a small rightmost portion of the empirical distribution of eigenvalues of the
sample covariance matrix well. Finally, we count the number of eigenvalues of
the sample covariance matrix that lie above our estimate of u.
We show that this estimator is consistent and use numerical simulations

to demonstrate that it has good finite sample properties in many empirically-
relevant situations. In particular, although the estimator is developed under
an assumption that the idiosyncratic terms are cross-sectionally correlated but
independent across time, our Monte Carlo results suggest that it works well for
relatively large amount of cross-sectional and time-series dependence simultane-
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ously present in the idiosyncratic terms. We informally discuss some theoretical
reasons to expect such a good performance in the conclusion section.
The constraint that we impose on the approximate factor models concep-

tually differs from the restriction considered by many previous studies, includ-
ing Connor and Korajczyk (1993), Stock and Watson (1999), and Bai and Ng
(2002). These studies require that the eigenvalues of the covariance matrix of
the systematic part of the data increase fast, i.e. proportionately to the number
of the cross-sectional units. The fast growth assumption guarantees that the
average variability explained by the factors stays away from zero even when the
dimensionality of data increases to infinity. At the same time, as the eigenvalues
of the idiosyncratic covariance matrix remain bounded, the average variability
explained by any function of the idiosyncratic terms tends to zero as the data
size grows. This creates a possibility for using model selection criteria for the
number of factors determination.
Obviously, the fast growth restriction rules out situations when some of the

factors are weak in the sense that although the cumulative effect of these fac-
tors grows without limit as the data size increases, the average effect vanishes.
From a theoretical point of view, “weak” factors may be important for the ap-
proximate asset pricing formula of Chamberlain and Rothschild (1983). Indeed,
the formula includes betas corresponding to factors with the cumulative effect,
measured by the sum of the squared factors loadings, increasing to infinity not
necessarily as fast as the number of the stocks in the data set.
More importantly, there exist several empirically relevant finite sample situ-

ations poorly approximated by asymptotics implied by the fast growth restric-
tion. On one hand, the amount of the serial correlation in the idiosyncratic
terms may be relatively large and the data size relatively small so that certain
linear combinations of the idiosyncratic terms will have sizable effect on a non-
trivial portion of observations. This will create a problem for model selection
criteria because the explanatory power of some idiosyncratic shocks may be too
large to distinguish them from the factors. On the other hand, it may be the
case that the variability of the idiosyncratic components is large relative to the
variability of the factors. Then, the portion of the variability explained by fac-
tors may be too close to zero for information criteria to distinguish them from
the idiosyncratic components.
Our Monte Carlo simulations show that the above situations, corresponding

to reasonable data sizes and reasonable amount of dependence in the idiosyn-
cratic terms, indeed result in poor performance of Bai and Ng (2002) information
criteria estimators. In contrast, our estimator does a good job for a wide range of
cross-sectional and time-series correlation patterns and “signal-to-noise” ratios.
Since our approach is explicitly based on the investigation of behavior of the

eigenvalues of the data’s covariance matrix, it is related to the earlier literature
exploiting the information contained in the eigenvalues. Trzcinka (1986) inves-
tigates the question of the number of factors in Chamberlain and Rothchild’s
(1983) extension of the arbitrage pricing theory by inspecting growth patterns
of the eigenvalues of the sample covariance matrix as the number of assets in the
data set increases. According to the theory, the eigenvalues of the covariance
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matrix that correspond to the systematic component of the data should grow
without limit whereas the rest of the eigenvalues should be bounded. Trzcinka’s
informal analysis has been criticized from several perspectives. Brown (1989)
points out that in an economy with r equally important factors the largest
eigenvalue of the covariance matrix will grow much faster than the other r − 1
eigenvalues creating a “single factor illusion”. Connor and Korajczyk (1993)
explain that although the eigenvalues corresponding to the idiosyncratic com-
ponent of the population covariance matrix should be bounded, all eigenvalues
of the sample covariance matrix will grow without limit as the number of cross-
sectional units grow faster than the number of observations across time.
Since our estimate of the number of factors does not rely on a visual in-

spection of any graphs, Brown’s criticism does not apply. As to Connor and
Korajczyk’s argument, we assume in the paper that the ratio of the time series
dimension to the cross-sectional dimension tends to a non-zero number. There-
fore, the sample eigenvalues corresponding to the idiosyncratic part of the data
remain bounded. It is still true that the bounds on the population and sample
eigenvalues will be different, but it is the bound on the sample eigenvalues that
we estimate in this paper. Hence, our number of factors determination proce-
dure uses the correct bound. As Monte Carlo simulations show, our estimate
of the number of factors remains good even for small ratio of the time series to
cross-sectional dimensions, a situation particularly relevant for applications.
There has been at least one recent study of the number of factors deter-

mination exploiting ideas from the large dimensional random matrix theory.
Kapetanios (2004) proposes a consistent criterion based on the explicit cal-
culation of the bound for the eigenvalues corresponding to the idiosyncratic
component of the data. Kapetanios’ bound depends only on the ratio of the
time series to cross-sectional dimension of the data. Unfortunately, the bound’s
validity requires relatively restrictive assumption on the cross-sectional serial
correlation of the idiosyncratic terms, which significantly narrows the range of
applications of the method. In contrast, we estimate our bound from the data.
The bound can vary from application to application and allows for relatively
unrestricted form of the heteroskedasticity and cross-sectional correlation of the
idiosyncratic terms.
We apply the newly developed estimation procedure to estimate the number

of factors in the arbitrage pricing theory and the number of factors driving a
large set of the US macroeconomic time series. For the arbitrage pricing theory,
we find evidence that there exist eight pervasive factors. Bai and Ng’s (2002)
estimators suggest the existence of 3 to 6 pervasive factors for our data set.
One possible explanation of the difference is that some important factors do not
have sufficiently widespread influence on the returns or have widespread but
weak influence, which makes the Bai-Ng method relegate them to the idiosyn-
cratic component. For the large set of the US macroeconomic time series, we
find 6 pervasive factors. In contrast, the Bai-Ng estimators suggest that there
are 12 pervasive factors. It is possible that the amount of dependence in the id-
iosyncratic terms in our data set is too large for the Bai-Ng information criteria
to distinguish some idiosyncratic shocks from factors.
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The rest of the paper is organized as follows. In section 2 we describe the
approximate factor model. Section 3 develops the new method of the number of
factors determination. In section 4 we do Monte Carlo simulations to compare
the performance of our method with that of Bai and Ng (2002). Section 5
uses the new method to estimate the number of factors in the arbitrage pricing
theory and in a large macroeconomic panel. Section 6 concludes.

2 Approximate factor model
In this paper, we study approximate, in the sense of Chamberlain and Rothschild
(1983), factor models of the form

Xt = ΛFt + et, (1)

where Xt is an n × 1 vector of the cross-sectional observations at time period
t and ΛFt and et are unobserved systematic and idiosyncratic components of
this vector respectively. The systematic part is a product of an n× r matrix of
factor loadings Λ and an r × 1 vector of factors Ft, which are common for all
cross-sectional units but may change over time. We are interested in estimating
the unknown number of factors r in (1).
Our baseline case is when the unknown number of factors is fixed, that is it

does not change with the dimensionality of the data. In macroeconomic applica-
tions, the pervasive factors, arguably, should correspond to some economy-wide
structural shocks. It is tempting to think that such structural shocks can be
traced down to a few important sources of fluctuations. From this perspective,
the requirement that the number of factors is fixed does not seems too restrictive.
Recall that in the approximate factor models, the idiosyncratic components of
the data can be correlated. If one is willing to model the idiosyncratic compo-
nents using a traditional factor model, the number of factors in such a model is
free to rise with the dimensionality of data. It is only the number of the perva-
sive factors, dim(Ft), that we want to bound. Anyway, after getting the results
for the baseline case, we extend our analysis to the case of the slowly growing
number of pervasive factors. For both cases, we assume that the true number of
factors is capped by rmax, the smallest integer larger than min (nα, Tα) , where
0 < α < 1.
We assume that both cross-sectional (n) and time-series (T ) dimension of

the data available for the estimation is large. Precisely, we make the following

Assumption 1. n and T tend to infinity so that n
T → c, where c ∈ (0,∞).

The assumption differs from those made in the previous literature. Connor
and Korajczyk (1993) develop their number of factors estimation method using
sequential limit asymptotics when first n tends to infinity and then T tends to
infinity. Stock and Watson (1999) assume that

√
n/T goes to infinity and Bai

and Ng (2002) allow n and T to go to infinity simultaneously and without any
restrictions on the relative growth rates. Assumption 1 is however standard in
the statistical literature on large dimensional random matrices and we adopt it
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here. Note that the limit c may be any positive number, so the asymptotics is
consistent with a variety of empirically relevant finite sample situations.
In contrast to the exact factor models (see Anderson 1984), the covariance

matrix of the idiosyncratic vector et does not need to be diagonal. The iden-
tification of the systematic part of the data is based on the assumption that
the largest eigenvalue of the covariance matrix for the idiosyncratic vector is
bounded, whereas all eigenvalues of the covariance matrix of the systematic
part ΛFt tend to infinity. For the systematic part of the data, we assume

Assumption 2. min eval (Λ0Λ) → ∞, B1 < eval

µ
1
T

XT

t=1
FtF

0
t

¶
< B2

almost surely for some fixed 0 < B1 ≤ B2 <∞
Here min eval(M) denotes the smallest eigenvalue of matrix M. Intuitively, as-
sumption 2 implies that factors Ft non-trivially affect an increasing number of
cross-sectional units. We therefore will call the factors pervasive. Note that we
do not require stationarity of Ft and do not impose any convergence restrictions

so that 1nΛ
0Λ and 1

T

XT

t=1
FtF

0
t do not need to converge to any limits. Moreover,

we do not require factors be independent from the idiosyncratic terms. Connor
and Korajczyk (1993), Stock and Watson (1999), and Bai and Ng (2002) make
stronger assumptions on the factors and factor loadings. In particular, their
assumptions imply that min eval (Λ0Λ) > an, for some a > 0 and large enough
n. Loosely speaking, we allow for weaker pervasive factors than Connor and
Korajczyk, Stock and Watson, and Bai and Ng do.
Relaxing the Stock-Watson and Bai-Ng assumptions on factor loadings has a

practical value. As discussed in the introduction, the “weaker” pervasive factors
can be a good approximation to the finite sample situations when the amount
of dependence in the idiosyncratic terms is relatively large and/or the portion of
the variation in the data explained by the factors is low relative to the variation
due to the idiosyncratic term.
The flip side of our flexibility in definition of the systematic part of the data

is more stringent restrictions on the idiosyncratic part. In this paper we assume
that the idiosyncratic vector et is a linear transformation of an n× 1 vector εt
with i.i.d. components. Precisely, our next assumption is:

Assumption 3. There exists an n× n random matrix Sn, such that

et = Snεt, (2)

where εt = (ε1t, ..., εnt)
0, Eεit = 0, Eε2it = 1, Eε4it < ∞, εit are i.i.d. for

1 ≤ i ≤ n, 1 ≤ t ≤ T and Sn and εt are independent .

The assumption implies that the covariance matrix of et is equal to SnS0n, which
does not need to be diagonal. Therefore, we allow for cross-sectional serial cor-
relation and heteroskedasticity in the idiosyncratic terms. However, we require
et to have no serial correlation over the time dimension. This requirement is
technical and is likely not necessary for the consistency of the estimator pro-
posed below. In the conclusion section, when describing our plans for future
work, we outline a possible way to relax the requirement.
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Without any restrictions on Sn, the covariance matrix of et may have un-
bounded eigenvalues and thus disagree with the definition of the idiosyncratic
component. We, therefore, will assume that the eigenvalues of SnS0n are bounded.
Moreover, we will require the distribution of the eigenvalues to converge in the
following sense. Let λ1 ≥ ... ≥ λn be the eigenvalues of a generic n× n positive
semi-definite matrix A. We define the eigenvalue distribution function for A, or
as we will call it the empirical spectral distribution of A, as

FA(x) = 1− 1
n
# {i ≤ n : λi > x} , (3)

where # {·} denotes the number of elements in the set indicated. Note that
FA(x) is a valid cumulative probability distribution function (cdf). Further, for
a generic probability distribution having a bounded support and cdf G(x), let
u(G) be the upper bound of the support, that is

u(G) = min {x : G(x) = 1} .

We will make the following

Assumption 4. i) FS0nSn → H almost surely, where H is a fixed cumula-
tive distribution function with bounded support and the convergence is the weak
convergence of distributions;
ii) u(FS0nSn)→ u(H) almost surely;

iii) c
Z

t2dH(t)

(u(H)− t)
2 > 1 if the integral exists

Part i) of the assumption is needed to insure convergence of the spectral dis-

tribution of the sample covariance matrix of the idiosyncratic term 1
T

XT

t=1
ete

0
t

to a distribution with a bounded support. The idea is to estimate the upper
bound of this support and use it as a threshold above which the eigenvalues of

the data’s sample covariance matrix 1
T

XT

t=1
XtX

0
t correspond to the system-

atic part of the data. Of course, the weak convergence of a distribution to a
distribution with bounded support does not imply the supports converge. For
example, N(0, 1/n) converges to a mass at zero, but has an unbounded support.
That is why we need part ii) of the assumption. It guarantees that for large

n the largest eigenvalue of 1
T

XT

t=1
ete

0
t will converge to the upper bound of

the limiting spectral distribution. Finally, assumption iii) does not like limiting
spectral distributions with thin tail.1 Indeed, for inequality in iii) to be violated
the limiting spectral distribution must have density and the first derivative of
this density vanishing at u(H). Intuitively, this can be the case when a hand-
ful of linear combinations of εt explain a disproportionately large part of the
variation in the idiosyncratic term, which makes these combinations look very
much like common factors for the components of Xt. Our estimation method
will break down in this case.

1Assumption 4 iii) is used in the proof of lemma 2 below.
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In our opinion, assumption 4 is not very restrictive. For example, a com-
mon way to model a vector of serially correlated observations et is to assume
that et = Snεt, where Sn is a symmetric matrix constant along the diagonals
(a Hermitian Toeplitz matrix). It can be shown (see, for example, Bottcher
and Silbermann, 1998, pp.138-143) that the spectral distribution of Hermitian
Toeplitz matrices converges to a distribution with bounded support as the size
of the matrix increases. Moreover, the density of the limiting distribution will
actually explode near the boundary of the support. For purely heteroskedastic
series, parts i) and ii) of our assumption will be guaranteed if the variances of
the observations are drawn from the limiting spectral distribution, which does
not seem counterintuitive. As to part iii), it should be viewed as a basic identifi-
cation assumption. Without this part, we are back to the problem of not being
able to separate slowly increasing sequences from eventually bounded sequences
with an arbitrary large bound.

3 New Estimator
Now, we are ready to describe our estimator of the number of factors. Let X,
F, and e be the n×T, r×T and n×T matrices with t-th columns equal to Xt,
Ft and et respectively. Then (1) can be rewritten as

X = ΛF + e. (4)

Let λi be the i-th largest eigenvalue of the data’s sample covariance matrix
1
TXX 0. We define a family of estimators:

r̂δ = # {i ≤ n : λi > (1 + δ)û} , (5)

indexed by a positive number δ, where û = wλrmax+1 + (1− w)λ2rmax+1 and
w = 22/3/

¡
22/3 − 1¢. Below, we will prove strong consistency of the estimator

for the case when δ is fixed, and will conjecture consistency of the estimator
when δ slowly decreases to 0 as n→∞.
The estimator is based on two facts. First, as n becomes large, exactly r

eigenvalues of the data’s sample covariance matrix 1
TXX 0 will be above the

largest eigenvalue of the sample covariance matrix 1
T ee

0 of the idiosyncratic
terms. This fact follows from our assumption 2 and the singular value analog
of Weyl’s eigenvalue inequalities (see formula (6) below). Second, as shown by
Bai and Silverstein (1998), the largest eigenvalue of 1

T ee
0 will be almost surely

below any number larger than u as n→∞, where u is the upper boundary of
the limiting spectral distribution of 1

T ee
0.

The term û in the estimator is a strongly consistent estimator of u. Parameter
δ plays a role of the markup over the û, which is needed because the largest
eigenvalue of 1T ee

0 is only guaranteed to be below any number larger than u. If
δ is fixed, the strong consistency of û will imply the strong consistency of r̂δ. If
δ is decreasing with n, the consistency of r̂δ will depend on whether the rate of
convergence of û is fast enough so that (1 + δ)û almost surely becomes larger
than u as n→∞.
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Our estimator of u exploits the fact, established by Silverstein and Choi
(1995), that the limiting spectral distribution of 1

T ee
0 has density f(x) of the

form a
√
u− x (1 + o(1)) , where a is some positive constant. Had we observed

e, we would have been able to estimate u from the relatively large eigenvalues
of 1

T ee
0. Although the spectral distribution of 1

T ee
0 is unobservable, it is well

approximated (see proposition 1 below) by the spectral distribution of 1
TXX 0.

Therefore, our estimator û corresponds to a particular way to fit the density
f(x) to the range of the empirical spectral distribution of 1

TXX 0 contained
in between λ2rmax+1 and λrmax+1. Such a choice of the range insures that the
eigenvalues are in the neighborhood of u, where f(x) is well approximated by
a
√
u− x.
Let us denote the j-th largest eigenvalue of 1T ee

0 as µj . Proposition 1 below
formally establishes conditions that our estimator builds upon.

Proposition 1. Under assumptions 1-4, we have:
i) The spectral distribution of 1

T ee
0 weakly converges to a distribution G with

bounded support almost surely.
ii) For any i such that i

n → 0 as n → ∞, the i-th eigenvalue of 1
T ee

0, µi,
converges almost surely to the upper boundary u of the support of G.
iii) The spectral distribution of 1

TXX 0 weakly converges to G almost surely.
iv) For any i > r and such that i

n → 0 as n → ∞, the i-th eigenvalue of
1
TXX 0, λi, converges almost surely to u.

Proof: The proof of the proposition is in the Appendix.
The fact that û converges to u almost surely immediately follows from state-

ment iv) of the proposition. Indeed, since by assumption rmax ∼ min(nα, Tα)
caps r and α < 1 so that rmax

n → 0, λrmax+1 and λ2rmax+1 are both converging
to u almost surely as n → ∞. But û is a fixed-weight linear combination of
λrmax+1 and λ2rmax+1. Hence, û→ u almost surely as n→∞. We use this fact
to prove consistency of r̂δ for fixed δ > 0.

Proposition 2. Under assumptions 1-4, for any fixed δ > 0, r̂δ → r almost
surely as n→∞.

Proof: Since û→ u almost surely as n→∞, by statement iv) of proposition
1, we have λi < (1 + δ) û almost surely for large enough n and i > r. Therefore,
r̂δ = # {i ≤ n : λi > (1 + δ)û} ≤ r almost surely for large enough n. Below we
will prove that λr > (1 + δ)û almost surely for large n and, hence, that r̂δ → r.
According to singular value analog of Weyl’s eigenvalue inequalities ( see

theorem 3.3.16 of Horn and Johnson (1991)), for any n× T matrices A and B,
we have:

σi+j−1(A+B) ≤ σi(A) + σj(B), (6)

where 1 ≤ i, j ≤ min (n, T ) and σi(A) denotes the i-th largest singular value of
matrix A, which is another name for the square root of the i-th largest eigenvalue
of matrix AA0. Substituting A = 1√

T
X and B = −1√

T
e into the inequality and

denoting the j-th largest eigenvalue of 1T ΛFF
0Λ0 as νj , we get:

λ
1
2
r ≥ ν

1
2
r − µ

1
2
1 .
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Statement ii) of proposition 1 implies that µ
1
2
1 → u

1
2 almost surely. Hence,

we only need to show that ν
1
2
r → ∞ almost surely. According to the product

inequality for singular values (see Theorem 3.3.16 of Horn and Johnson, 1991),
for any n× r and r × r matrices A and B

σi(AB) ≤ σi(A)σ1(B).

for i ≤ min (n, r) (that is for i ≤ r for large enough n). Let A = Λ
¡
1
T FF

0¢ 12 and
B =

¡
1
T FF

0¢− 1
2 , where 1

T FF
0 is invertible by assumption 2. Then, the above

inequality implies:

νr ≥ min eval (ΛΛ0)

max eval
³¡

1
T FF

0¢−1´ = min eval (ΛΛ0)min eval
µµ

1

T
FF 0

¶¶
→∞

almost surely as n→∞ by assumption 2.¤
Note that the above proof of the strong consistency of our estimator does

not rely on the relatively sophisticated form of û. For example, if we substitute
û by λrmax+1 in (5), we would get a simpler estimator

r̃δ = # {i ≤ n : λi > (1 + δ)λrmax+1} ,

which converges to r almost surely by virtue of proposition 1 and the proof of
proposition 2. We use the more sophisticated estimator as a mean to improve the
finite sample properties of r̃δ. In finite samples, performance of both r̃δ and r̂δ
will critically depend on the choice of δ. To reduce the underestimation risk, we
would like to have δ small. How small δ can be? Clearly, to avoid overestimation
risk, δ should be large enough to cover up the gap between λrmax+1 and µ1 in
the case of r̃δ, and the gap between û and µ1 in the case of r̂δ. As we conjecture
below, the latter gap will be decreasing with n much faster than the former.
Therefore, δ can be chosen much smaller for r̂δ than for r̃δ, making the finite
sample properties of r̂δ better.
As will be seen shortly, the magnitude of the above mentioned gaps depends

on how fast F
1
T ee

0
converges to G and how fast the largest eigenvalue of 1

T ee
0,

µ1, converges to u. At the moment, we will not take stand on these rates of
convergence, and will simply assume that

Assumption 5:
°°°F 1

T ee
0 −G

°°° p∼ n−β1 , and |µ1 − u| p∼ n−β2 , where 0 <

β1, β2 ≤ 1
Later, we will conjecture that β1 = 1 and β2 =

2
3 and will provide arguments

in favor of this conjecture.
Let us define

g(α, β) =


4
3(1− α) if 53(1− α) < β ≤ 1
β − 1

3(1− α) if 1− α < β ≤ 5
3(1− α)

2
3β if 0 < β ≤ 1− α


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and
h(α, β) =

2

3
min {β, 1− α}

We have the following

Proposition 3: Let assumptions 1-5 hold, then
i) û− µ1 = Op(n

−min{g(α,β1),β2}),
ii) λrmax+1 − µ1 = Op(n

−min{h(α,β1),β2})

Proof: The proof of the proposition is in the Appendix.
Figure 1 shows the rates of convergence of û−µ1 and λrmax+1−µ1 as functions

of α for fixed β1, β2. For illustration purposes, we chose β1 =
11
12 and β2 =

2
3

because this combination corresponds to a rich pattern of dependence of the
rates of convergence on α. As α increases from 0, both rates stay at 2

3β1 until
1 − α becomes equal to β1. After that, the convergence rate of λrmax+1 − µ1
starts to drop as 23 (1− α) (dashed line). On the contrary, the convergence rate
of û− µ1 start to increase as β1 − 1

3 (1− α) until β1 − 1
3 (1− α) = β2, then it

stays the same until 1 − α is equal to 3
4β2, and only after that, decreases to 0

as 43 (1− α) (solid line). In general, û−µ1 converges to zero no slower, and, for
many combinations of α, β1, and β2, much faster than λrmax+1 − µ1..
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Figure1: The negative of the exponential in the rate of convergence of û− µ1
(solid line) and λrmax+1 − µ1 (dashed line) as functions of α. β1 is fixed at

11/12, β2 is fixed at 2/3.

The non-monotonic dependence of the convergence rate of û−µ1 on α can be
understood as follows. First, note that û−µ1 = (û− u)+(u− µ1) . The second
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term converges to zero as n−β2 by assumption 5, hence β2 is the upper limit on
the rate of convergence of û−µ1. Consider now the first term, û−u. Intuitively,
our trying to fit the functional form 1 − a (u− x)

3
2 to the empirical spectral

distribution of 1
TXX 0 to get a better estimate of u than simply λrmax+1 is not

productive as long as the variation of F
1
T XX0

in the range x ∈ [λ2rmax+1, λrmax+1]
(which is decreasing as rmax

n , that is with rate 1−α) is small relative to the error
of approximation of G by F

1
T XX0

(decreasing with the rate β1). Therefore, as
β1 < 1−α, the rate of convergence of û to u is equal to the rate of convergence
of the “primitive” estimator λrmax+1.When α becomes such that β1 > 1−α, the
variation in F

1
T XX0

becomes large enough to exploit the functional form fitting
idea and the convergence rate improves. As α becomes too large, the discrepancy
between G and 1 − a (u− x)

3
2 (which is small only in the neighborhood of u)

starts to be large and fitting the functional form does not produce good results
any more.
Proposition 3 suggests that the optimal choice of α in rmax ∼ min (nα, Tα)

in the sense of optimizing the rate of convergence of û− µ1 to zero depends on
both β1 and β2. Precisely, when

4
5β1 ≤ β2, the optimal α is equal to 1 − 3

5β1;
when 2

3β1 ≤ β2 < 4
5β1, any α from the segment [1 − 3(β1 − β2), 1 − 3

4β2] is
optimal; finally, when β2 <

2
3β1, any α from the segment [0, 1− 3

4β2] is optimal.
Unfortunately, the true values of β1 and β2 are not known. When εt in

(2) is a vector of i.i.d. normal variables and Sn is the identity matrix, it is
known (Johnstone (2000)) that β2 =

2
3 . For β1, in case when Sn is the identity

matrix, the standard conjecture (see Bai 1999, p.658-659) is that it is equal to
1. As Silverstein (1999) points out, this conjecture is substantiated by extensive
simulations and some theoretical results. If Sn is not identity, but converges to
the limiting distribution H very fast, and if the limiting distribution does not
have any peculiarities, such as those eliminated by our assumption 4 iii), one
may expect that the rates of convergence should be the same as with Sn equal
to the identity matrix. In what follows, we therefore conjecture that β2 =

2
3 and

β1 = 1. If the conjecture is correct, then any α from the range [0, 12 ] is optimal.
Given proposition 3, it is easy to prove consistency of r̂δ for decreasing δ.
Proposition 4: Let assumptions 1-5 hold, then r̂δ is consistent for r when

δ ∼ n−γ , for any γ such that 0 ≤ γ < min {g(α, β1), β2} .
Proof: Recall that for a fixed δ, as was shown in the proof of proposition 2,

λr > (1+δ)û almost surely for large enough n. For δ local to zero, the inequality
holds “even stronger”. Therefore, to prove the consistency of r̂δ, we only need
to show that the probability that λr+1 < (1 + δ) û goes to 1 for large enough n.
By (10), it is enough to prove that the probability that µ1 < (1 + δ) û goes to 1
for large enough n. We have:

(1 + δ) û− µ1 = δû+ (û− µ1) (7)

The second term in the above sum is Op

£
n−min{g(α,β1),β2}

¤
by proposition 3,

the first term decays as fast as δ. Therefore, with probability going to 1, the
first term will dominate the second one as n → ∞ if δ ∼ n−γ , for any γ, such
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that 0 ≤ γ < min {g(α, β1), β2} . Hence Pr (µ1 < (1 + δ) û) → 1 as n → ∞,
which completes the proof.¤
If, as the standard conjecture is, β1 = 1, β2 =

2
3 and, as was suggested above,

α = 2
5 , proposition 4 says that δ can be chosen to decrease only marginally slower

than n−
2
3 without hurting consistency of r̂δ. The Monte Carlo analysis below

shows that the choice δ = max
³
n−

2
5 , T−

2
5

´
corresponds to very good finite

sample performance of our estimator. Such a rate of decay is sufficiently slower
than n−

2
3 for δû to strongly dominate û − µ1 in (7). Hence, overestimation of

the true number of factors is not likely. At the same time, the rate is fast enough
for (1 + δ) û not to significantly overshoot u and, therefore, the underestimation
is unlikely too. Hence,
As was mentioned above, we can relax the assumption of fixed number of

factors. In fact, the proof of strong consistency of r̂δ when δ is fixed only
requires r ≤ rmax. Hence, for fixed δ, r̂δ remains consistent even if the true
number of factors is increasing as nα when n→∞. It can be shown2 that if, as
the standard conjecture is, β1 = 1, β2 =

2
3 , and r = O(nθ) for some θ ≤ α, then

r̂δ remains consistent as long as δ ∼ n−γ for any γ < min
©
q(α, θ), 23

ª
, where

q(α, θ) =

½
4
3(1− α) if 0 ≤ θ < 5

3α− 2
3

1− θ − 1
3(1− α) if 53α− 2

3 ≤ θ ≤ α

¾
.

For example, for our preferred choice of α = 2
5 and δ = max

¡
n−2/5, T−2/5

¢
,

r̂δ will consistently estimate the number of factors rising only marginally slower
than n2/5.
In conclusion of this section, let us note that to develop our estimator we

used regularity of the limiting spectral distribution local to the upper bound-
ary of its support. The local nature of the regularity we exploit is the price
we pay for allowing rather rich pattern of the cross-sectional serial correlation
and heteroskedasticity in the idiosyncratic term.3 Had we assumed that the
idiosyncratic terms are cross-sectionally i.i.d., the limiting spectral distribution
would have been of the so called Marčenko-Pastur form (see Bai, 1999) and we
would have been able to use the information from all the eigenvalues to estimate
u. Kapetanios (2004) explains how the i.i.d. assumption can be somewhat re-
laxed so that the limiting distribution is still of the Marčenko-Pastur form and
proposes a consistent method of the number of factors estimation based on the
implied eigenvalue threshold. However, restrictions that Kapetanios makes on
the serial correlation pattern and heteroskedasticity of the idiosyncratic com-
ponents remain very stringent. The main methodological contribution of this
paper relative to Kapetanios (2004) is that we essentially lift those restrictions.

2The proof of this fact is available from me upon request.
3The information about this serial correlation and heteroskedasticity can be backed out

from the observed empirical distribution of the eigenvalues.
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4 Monte Carlo Analysis
In this section we use Monte Carlo simulation experiments to study empirical
performance of our estimator and compare it to the performance of Bai and Ng
(2002) estimator. The setting of the experiments is as in Bai and Ng (2002):

Xit =
rX

k=1

ΛikFkt +
√
θeit,

where the factor matrix F and the factor loadings matrix Λ are r×T and n× r
matrices of independent N(0, 1) variables respectively and

eit = ρei,t−1 + vit +
JX

j=−J
βvi−j,t, J = min

½
N

20
, 10

¾
, vij ∼ IIDN(0, 1). (8)

For their experiments, Bai and Ng choose the true number of factors r equal
1,3, or 5 and consider parameters ρ, β, and θ from the sets {0, 0.5} , {0, 0.2} ,
and {1, 2} respectively. We will consider the same choice of factors, but a wider
range of parameters ρ, β, and θ. Being more flexible with respect to the choice
of ρ and β allows us to study the effect of changing the degree of dependence in
the idiosyncratic terms on the performance of different estimators. Considering
a wider range for θ helps us to analyze the quality of estimators when the
“signal-to-noise" ratio varies substantially.
We chose to study several combinations of n and T. The combinations

n = 200, T = 60 and n = 1000, T = 60 are meant to represent five years of
monthly financial data on 200 and 1000 stock returns. We also consider a com-
bination n = 1000, T = 250 because in the stock returns application below we
have 21 years of monthly data on 1148 stocks traded on NYSE, AMEX, and
NASDAQ. The rest of the combinations that we consider correspond to plausible
macroeconomic data sizes. Combinations n = 150, T = 500; n = 150, T = 150;
n = 100, T = 100; and n = 40, T = 100 roughly correspond to the sizes of
monthly Stock and Watson (1999) data, quarterly Stock and Watson (1999)
data, and hypothetical data extracted from Summers and Heston (1991) tables.
We start from the case when the idiosyncratic terms are i.i.d N(0, 1) vari-

ables. Table 1 reports the averages of the Bai-Ng estimators and three ver-
sions of our estimator r̂δ, corresponding to δ = 0, δ = max

³
n−

1
2 , T−

1
2

´
, and

δ = max
³
n−

2
5 , T−

2
5

´
, over 1000 replications of the data generating process.

The standard errors in the majority of the experiments are low and we do not
report them. There are, however, few cases when standard errors are larger
than 1 but smaller than 2, and even a handful of cases when standard erros
are larger than 2 but smaller than 3. We indicate such situations by marking
the corresponding average estimates by one and two asterisks respectively. The
true number of factors in the experiments is assumed to be r = 1, 3, and 5.
We set rmax equal to the smallest integer larger than 1.55min

¡
T 2/5, n2/5

¢
so

that in realistic small samples, when T is equal to 60, the maximum number of
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factors is 8, a standard choice in the literature.4 In all the experiments, prior
to computation of the eigenvectors, each series is demeaned and standardized
to have unit variance.

Table 1: DGP: Xit =
Xr

k=1
ΛikFkt +

√
θeit, θ = r, ρ = β = 0

n T r rmax PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 r̂0 r̂
n
−1
2

r̂
n
−2
5

200 60 1 8 1.00 1.00 1.00 1.00 1.00 1.00 1.39 1.01 1.00
1000 60 1 8 1.00 1.00 1.00 1.00 1.00 1.00 1.18 1.00 1.00
1000 250 1 15 1.00 1.00 1.00 1.00 1.00 1.00 1.40 1.00 1.00
150 500 1 12 1.00 1.00 1.00 1.00 1.00 1.00 1.32 1.00 1.00
150 150 1 12 1.00 1.00 7.99 1.00 1.00 1.12 1.69 1.06 1.00
100 100 1 10 1.02 1.00 9.18 1.00 1.00 3.44∗∗ 1.72 1.09 1.02
40 100 1 7 2.57 1.74 5.57 1.00 1.00 1.23 1.42 1.03 1.00
200 60 3 8 3.00 3.00 3.00 3.00 3.00 3.00 3.03 3.00 3.00
1000 60 3 8 3.00 3.00 3.00 3.00 3.00 3.00 3.01 3.00 3.00
1000 250 3 15 3.00 3.00 3.00 3.00 3.00 3.00 3.09 3.00 3.00
150 500 3 12 3.00 3.00 3.00 3.00 3.00 3.00 3.30 3.01 3.00
150 150 3 12 3.00 3.00 7.34 3.00 3.00 3.06 3.24 3.02 3.00
100 100 3 10 3.00 3.00 8.63 3.00 3.00 4.32∗ 3.22 3.01 3.00
40 100 3 7 3.30 3.05 5.25 3.00 3.00 3.17 3.13 3.01 3.00
200 60 5 8 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
1000 60 5 8 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
1000 250 5 15 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
150 500 5 12 5.00 5.00 5.00 5.00 5.00 5.00 5.10 5.00 5.00
150 150 5 12 5.00 5.00 7.16 5.00 5.00 5.01 5.00 5.00 5.00
100 100 5 10 5.00 5.00 8.49 5.00 5.00 5.79 5.02 5.00 5.00
40 100 5 7 5.00 4.98 5.65 4.87 4.70 5.11 4.98 4.86 4.78

As can be seen from table 1, when θ = r, all estimators, except PCp3, which
substantially overestimates the true number of factors when n = T = 150,
n = T = 100 and n = 40, T = 100, work very well and their performance is
comparable. These results confirm findings reported in tables 1-3 of Bai and Ng
(2002). We see that choosing δ equal to zero have a potential to overestimate
the true number of factors, which is consistent with the theory. Choosing δ

decreasing asmax
³
n−

1
2 , T−

1
2

´
ormax

³
n−

2
5 , T−

2
5

´
corrects the overestimation.

Table 2 increases the variance of the idiosyncratic term relative to the vari-
ance of the systematic component. We perform the same simulation experiment
as above, except now θ = 9r, that is the standard deviation of the idiosyncratic
component is 3 times the standard deviation of the systematic component. Al-
though there is no much change relative to table 1 for r = 1, the change is
very substantial when the true number of factors equals to 3 or 5. The Bai-Ng

4For the data sizes used in the Monte Carlo experiments, such a choice of rmax would
produce almost the same bound on the number of factors as rmax equal to the integer closest
to min

¡
T 1/2, n1/2

¢
would do.
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estimators start to significantly underestimate the number of factors. The un-
derestimation is more pronounced for IC estimators than for PC estimators,
especially for relatively small sample sizes. In contrast, our estimator still works
very well for T > 40, except for the case r = 5 for small sample sizes.
The deterioration in performance of the Bai-Ng estimators in this situation

is what we would expect, because the factors now explain much smaller portion
of the variance in the data. Estimators based on the model selection princi-
ples will therefore have hard time distinguishing the factors from idiosyncratic
components. Since our method of estimation relies more on the structural prop-
erties of the idiosyncratic process, which do not change when θ is increased, its
performance is less sensitive to the increase in the idiosyncratic variance.
From table 2 we also see that the deterioration of performance of the Bai-Ng

estimators is larger the larger the true number of factors is. This is an artifact of
our Monte Carlo setting which makes the variance of the systematic component
equal to the true number of factors. Since the variance of the idiosyncratic terms
is assumed to be proportional to the variance of the systematic component, the
larger the true number of factors, the larger the idiosyncratic variance is.

Table 2: θ = 9r, ρ = β = 0

n T r rmax PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 r̂0 r̂
n
−1
2

r̂
n
−2
5

200 60 1 8 1.00 1.00 1.00 1.00 1.00 1.00 1.30 1.00 1.00
1000 60 1 8 1.00 1.00 1.00 1.00 1.00 1.00 1.17 1.00 1.00
1000 250 1 15 1.00 1.00 1.00 1.00 1.00 1.00 1.28 1.00 1.00
150 500 1 12 1.00 1.00 1.00 1.00 1.00 1.00 1.32 1.00 1.00
150 150 1 12 1.00 1.00 2.49 1.00 1.00 1.00 1.53 1.01 1.00
100 100 1 10 1.00 1.00 5.22 1.00 1.00 1.00 1.47 1.03 1.00
40 100 1 7 1.00 1.00 1.96 1.00 0.99 1.00 1.36 1.01 1.00
200 60 3 8 1.45 1.23 2.32 1.00 1.00 1.16 2.98 2.75 2.54
1000 60 3 8 1.36 1.30 1.53 1.00 1.00 1.01 3.02 3.00 3.00
1000 250 3 15 3.00 3.00 3.00 3.00 3.00 3.00 3.04 3.00 3.00
150 500 3 12 2.90 2.77 3.00 2.17 1.80 2.98 3.04 3.00 3.00
150 150 3 12 2.41 1.72 3.55 1.12 1.01 2.99 3.07 3.00 3.00
100 100 3 10 1.94 1.28 5.68 1.01 1.00 2.87 3.04 2.85 2.71
40 100 3 7 1.54 1.21 2.81 0.95 0.85 1.11 2.28 1.58 1.36
200 60 5 8 1.02 1.00 1.67 1.00 0.99 1.00 3.28 2.24 1.81
1000 60 5 8 1.00 1.00 1.01 1.00 1.00 1.00 4.97 4.56 4.15
1000 250 5 15 4.04 3.62 4.97 2.51 1.96 4.65 5.00 5.00 5.00
150 500 5 12 1.67 1.30 3.41 1.01 1.00 1.70 5.00 5.00 5.00
150 150 5 12 1.31 1.01 5.08 1.00 1.00 3.77 4.78 4.32 3.94
100 100 5 10 1.20 1.00 6.21 1.00 0.99 2.73 3.39 2.57 2.17
40 100 5 7 1.15 1.03 2.78 0.92 0.74 1.01 1.99 1.23 1.08

To explore in more detail the differences in workings of the Bai-Ng estima-
tors and our estimators when the “signal to noise” ratio varies, we perform the
following experiment. We set the true number of factors at 3 and vary θ

r on
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a grid 0.5:0.5:25. Figure 2 reports the average (across 1000 Monte Carlo repli-
cations) estimates of the number of factors produced by PCp1, ICp1 and r̂

n−
2
5

for θ
r ∈ [0.5, 25] and n = 150, T = 100. We see that our estimator is relatively

insensitive to the increase in the size of noise relative to the size of the system-
atic component. The average estimate of the number of factors remains above
2.5 (and thus closer to the true number of factors than to any other integer)
until the variance of noise becomes 13 times larger than the the variance of the
systematic component. In contrast, the average estimate produced by ICp1 goes
below 2.5 as soon as the noise-signal variance ratio is 5. PCp1 works somewhat
better. The average estimate drops below 2.5 when the noise-signal ratio is 7.5.
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Figure 2: Average estimated number of factors according to PCp1, ICp1, and
r̂n−2/5 . Horizontal axis: θ/r.

Interestingly, we see that ICp1 estimator temporarily stabilizes at the esti-
mate of 1 factor, when θ/r grow. This is related to the “single factor illusion”
phenomenon described by Brown (1989), who points out that in an economy
with r equally important factors the largest eigenvalue of the covariance matrix
will grow much faster than the other r − 1 eigenvalues.
Our next step is to introduce cross-sectional and time-series serial correla-

tion to the idiosyncratic terms. We first consider the case of the time-series
dependence only: ρ = 0.5 and β = 0 (table 3). Then, we add the cross-section
dimension of the dependence: ρ = 0.5 and β = 0.2 (table 4). In the time-series-
dependence-only case, we see that all PC estimators start to overestimate the
true number of factors. When the cross-sectional dimension of the dependence
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is added, the amount of the overestimation dramatically increases. Now, all the
Bai-Ng estimators work very poorly. In contrast, our estimators still work well
except when the true number of factors is equal to 1. Even for the case r = 1,
the deterioration in performance of our estimators relative to that of the Bai-Ng
estimators is minor.

Table 3: θ = r, ρ = 0.5, β = 0

n T r rmax PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 r̂0 r̂
n
−1
2

r̂
n
−2
5

200 60 1 8 4.79 3.91 7.45 1.01 1.00 3.78∗∗ 1.69 1.10 1.02
1000 60 1 8 4.36 4.07 5.16 1.00 1.00 1.00 1.02 1.00 1.00
1000 250 1 15 1.00 1.00 1.00 1.00 1.00 1.00 1.24 1.00 1.00
150 500 1 12 1.00 1.00 1.03 1.00 1.00 1.00 1.68 1.04 1.00
150 150 1 12 3.02 1.24 12.00 1.00 1.00 12.00 2.40 1.52 1.20
100 100 1 10 4.66 2.59 10.00 1.00 1.00 10.00 2.46 1.58 1.28
40 100 1 7 4.32 3.38 6.77 1.02 1.00 4.20∗∗ 1.87 1.17 1.07
200 60 3 8 5.25 4.50 7.69 3.01 3.00 5.90∗ 3.07 3.01 3.00
1000 60 3 8 4.66 4.40 5.44 3.00 3.00 3.00 3.00 3.00 3.00
1000 250 3 15 3.00 3.00 3.00 3.00 3.00 3.00 3.03 3.00 3.00
150 500 3 12 3.00 3.00 3.00 3.00 3.00 3.00 3.21 3.01 3.00
150 150 3 12 3.68 3.01 12.00 3.00 3.00 12.00 3.41 3.06 3.01
100 100 3 10 5.04 3.43 10.00 3.00 3.00 10.00 3.42 3.09 3.03
40 100 3 7 4.53 3.80 6.65 3.01 2.99 5.19∗ 3.16 3.01 3.00
200 60 5 8 5.90 5.37 7.86 5.02 4.98 7.31 4.98 4.86 4.75
1000 60 5 8 5.26 5.16 5.80 5.00 5.00 5.00 5.00 4.97 4.94
1000 250 5 15 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
150 500 5 12 5.00 5.00 5.00 5.00 5.00 5.00 5.01 5.00 5.00
150 150 5 12 5.08 5.00 12.00 5.00 5.00 12.00 5.04 5.00 5.00
100 100 5 10 5.81 5.03 10.00 4.99 4.96 10.00 5.01 5.00 5.00
40 100 5 7 5.26 4.98 6.82 4.64 4.13 6.35 4.53 4.07 3.83
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Table 4: θ = r, ρ = 0.5, β = 0.2

n T r rmax PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 r̂0 r̂
n
−1
2

r̂
n
−2
5

200 60 1 8 8.00 8.00 8.00 8.00 8.00 8.00 3.53 2.81 2.49
1000 60 1 8 6.92 6.81 7.51 2.90∗ 2.48∗ 4.98∗∗ 1.96 1.26 1.10
1000 250 1 15 9.89 8.54 15.00 1.41 1.06 14.98 1.92 1.21 1.04
150 500 1 12 12.00 12.00 12.00 12.00 12.00 12.00 4.88∗ 3.89∗ 3.28∗

150 150 1 12 11.99 11.47 12.00 11.98 10.78∗ 12.00 5.88∗ 5.11∗ 4.61∗

100 100 1 10 9.96 9.10 10.00 9.84 6.60∗ 10.00 4.64 3.91 3.50
40 100 1 7 6.98 6.24 7.00 5.34∗ 2.34∗ 7.00 2.53 1.71 1.46
200 60 3 8 8.00 8.00 8.00 8.00 8.00 8.00 3.73 3.14 2.89
1000 60 3 8 7.35 7.26 7.82 5.29∗ 4.83∗ 6.91∗ 3.13 3.00 2.99
1000 250 3 15 10.37 9.08 15.00 3.44 3.07 15.00 3.25 3.02 3.00
150 500 3 12 12.00 12.00 12.00 12.00 12.00 12.00 4.07 3.39 3.18
150 150 3 12 12.00 11.86 12.00 12.00 11.61 12.00 5.47 4.77 4.35
100 100 3 10 10.00 9.46 10.00 9.96 8.06∗ 10.00 4.87 4.27 3.96
40 100 3 7 6.99 6.34 7.00 6.04∗ 4.18∗ 7.00 3.27 2.96 2.88
200 60 5 8 8.00 8.00 8.00 8.00 8.00 8.00 2.77 2.02 1.73
1000 60 5 8 7.62 7.63 7.96 6.90∗ 6.53∗ 7.69 3.83 3.09 2.74
1000 250 5 15 10.90 9.66 15.00 5.44 5.07 15.00 5.03 5.00 5.00
150 500 5 12 12.00 12.00 12.00 12.00 12.00 12.00 4.96 4.82 4.65
150 150 5 12 12.00 12.00 12.00 12.00 11.97 12.00 5.29 4.98 4.84
100 100 5 10 10.00 9.76 10.00 10.00 8.92∗ 10.00 4.75 4.16 3.83
40 100 5 7 7.00 6.49 7.00 6.43 4.99∗ 7.00 3.52 2.84 2.61

The observed overestimation happens because when idiosyncratic terms be-
come dependent, some linear combinations of the idiosyncratic terms start hav-
ing a non-trivial effect on a sizable portion of the data. Hence, the explanatory
power of such linear combination rises and the model selection based estimators
have difficulty distinguishing these combinations from the factors.
We explore the relationship between the quality of the estimators and the

amount of the dependence in the idiosyncratic terms in more detail by perform-
ing the following experiment. We set the true number of factors at 3 and vary
ρ on a grid 0:0.1:0.9 and β on a grid 0:0.05:0.3. Figure 3 reports the average
(across 1000 Monte Carlo replications) estimates of the number of factors pro-
duced by PCp1, ICp1 and r̂

n−
2
5
for ρ and β on the grid. The corresponding

combination5 of n and T is n = 150, T = 150.

5We also considered combinations n = 200, T = 60 and n = 40, T = 100. The results for
these combinations were similar to those reported.
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Figure 3: Estimates of the number of factors produced by PCp1, ICp1, and
r̂n−2/5 . Left-hand axis: β. Right hand axis: ρ.

We see that our estimator dramatically outperforms both PCp1 and ICp1

when the amount of dependence in the idiosyncratic terms increases. As ρ and
β rise, PCp1 and ICp1 quickly start to overestimate the true number of factors.
Deterioration of the performance of these estimators is particularly striking in
β direction. PCp1 starts to report twice the true number of factors as soon as
β becomes equal to 0.1. ICp1 overestimates the true number of factors by 100%
when β becomes equal to 0.125. In contrast, the maximum average estimate
r̂n=2/5 on the whole range of β that we explore is only 45% larger than the
true number of factors. Moreover, the deterioration reaches 100% only when, in
addition to the cross-sectional dependence, a very strong time-series dependence
(ρ = 0.9) is introduced.
The observation that the performance of the Bai-Ng estimators deteriorates

in β direction faster than in ρ direction is easy to understand from the theoretical
point of view. Note that the Bai-Ng information criteria would have difficulty
in distinguishing idiosyncratic components from factors when the eigenvalues of
the covariance matrix of the idiosyncratic terms are relatively large. It can be
shown that the largest eigenvalue of the covariance matrix of the idiosyncratic
terms with cross-sectional correlation only (of the form considered in our Monte
Carlo experiments) rises as 1+2Jβ. On the other hand, the largest eigenvalue of
the covariance matrix of the idiosyncratic terms having time series correlation
only rises as 1

1−ρ . For the data size that we consider in the experiment, J = 7.
Therefore, the largest eigenvalue in the case of the cross-sectional dependence
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is equal to the largest eigenvalue corresponding to the time-series dependence
when β = ρ

14(1−ρ) . Hence, we may expect that the performance deterioration of
the information criteria will be about the same for the cases ρ = 0.8, β = 0 and
ρ = 0, β = 2

7 . Such a situation is close to what we observe in the experiment.
Note that the performance of our estimator is not monotonically related to

the amount of dependence in the idiosyncratic terms. It is because the size
of the largest eigenvalue of the covariance matrix of the idiosyncratic terms
is not directly related to the quality of our estimator. Its quality depends
mostly on how well the density of the limiting spectral empirical distribution
of the “idiosyncratic” covariance matrix is approximated by the square root
functional form for a given sample size. Intuitively, this will depend on the
entire shape of the limiting spectral distribution of the idiosyncratic covariance
matrix (distribution H in the terminology of section 2).
Interestingly, and importantly, even though the consistency of our estimator

was conjectured only for the case of the idiosyncratic terms independent across
time (or, because of the symmetry of the problem, dependent across time but
independent cross-sectionally), the Monte Carlo experiments show that the es-
timator works relatively well in cases when both cross-sectional and time-series
dependence are present. We comment on this observation in the conclusion
section below.

5 Applications
We apply the new estimation procedure to determine the number of pervasive
factors driving stock returns and the number of pervasive factors influencing dy-
namics of a large set of macroeconomic variables. First, we estimate the number
of factors in the approximate factor model of the stock returns. Chamberlain
and Rothchild (1983) show that if the data can be described by such a model,
the mean returns on different stocks are approximately linear functions of the
factor loadings. The factors in the approximate factor model are defined to
have pervasive effect, which means that the sum of squared loadings for a given
factor, the sum being taken over all stocks in the sample, increases without
bound when the size of the sample rises. However, the rate of this increase
can be slow. In particular, it is possible that the average variance of the data
explained by the factors is small. In such a circumstance, as was shown above,
our estimator works better than Bai and Ng’s (2002) estimators. We, therefore,
hope to improve upon the estimate r = 2, reported in their paper.
Our data consists of monthly returns on 1148 stocks traded on the NYSE,

AMEX, and NASDAQ during the period from January 1983 to December 2003.
Hence, the time dimension of our data is T=252 and rmax = 15. We obtained
the data from CRSP data base. Our criterion for inclusion of a stock in the
data set was that the stock was traded during the whole sample period.
Our estimators corresponding to the three different choices of δ investigated

in the previous section, all estimate the number of pervasive factors to be 8. The
PCp1, PCp2, ICp1, ICp2 estimators that Bai and Ng (2002) describe as their
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preferred ones, estimate the number to be 6, 5, 4, and 3 respectively. These
differ from the estimate r = 2, obtained by Bai and Ng (2002) for their data set.
Perhaps, the difference is due to our including much more time periods (252 vs.
60) in our sample.
Connor and Korajcyk (1993) find evidence for between one and six pervasive

factors in the stock returns. Trzcinka (1986) finds some support to the existence
of 5 pervasive factors. Five seems also to be a preferred number for Roll and Ross
(1980) and Reinganum (1981). A study by Brown and Weinstein (1983) also
suggested that the number of factors is unlikely to be greater than 5.6 Huang
and Jo (1995) identify only 2 common factors. The common feature of all
these studies, is that they try to find the number of common components that
significantly help explaining variation in the data. Therefore, the estimation
procedures that these studies use may work poorly in the situations when the
factors’ explanatory power is relatively weak. On the contrary, our estimation
procedure exploits Law-of-Large-Numbers type regularity for the idiosyncratic
terms to determine the upper limit on variation that can be attributed to the
idiosyncratic terms. Components that explain just a little more variation are
classified as the pervasive factors. Hence, we can expect our approach reveal
“less pervasive” or “weaker” factors that can be difficult to detect using the
other approaches.
Our second application of the newly developed estimation method concerns

determining the number of pervasive factors influencing dynamics of a large
set of macroeconomic variables. The pervasive factors can be viewed as corre-
sponding to the basic macroeconomic shocks driving the economy. Existence of
such shocks is in the spirit of modern dynamic stochastic general equilibrium
macroeconomic models.
The dataset we use is the same as in Watson (2003). It includes 215 monthly

time series for the United States from 1959:1 to 1998:12. The series represent
14 main categories of macroeconomic time series: real output and income; em-
ployment and hours; real retail, manufacturing, and trade sales; real inventories
and inventory-sales ratios; orders and unfilled orders; stock prices; exchange
rates; interest rates; money and credit quantity aggregates; price indexes; aver-
age hourly earnings; and miscellaneous. The data were downloaded from Mark
Watson’s web site. The variables in the dataset were transformed, standard-
ized and screened for outliers as described in Stock and Watson (2002). The
determination of the number of factors was based on the data subset of the
transformed and screened 148 variables available for the full sample period.
We set the upper bound on the true number of factors, rmax, at 12. Our

estimators corresponding to the non-zero choices of δ investigated in the pre-
vious section, estimate the number of pervasive factors to be 6. The estimator
corresponding to δ = 0 finds 7 pervasive factors. According to the Monte Carlo
analysis, the latter estimator tends to overestimate the true number of factors,
so we settle at 6 pervasive factors driving the macroeconomic variables in the

6Dhrymes, Friend, and Gultekin (1984) find that the estimated number of factors grows
with the sample size. However, their setting was the classical factor model as opposed to the
approximate factor model.

22



data set. All estimators proposed by Bai and Ng (2002) estimate the number
of factors to be 12, the maximally possible number of factors. Interestingly,
Stock and Watson (1999) find that the first six factors account for 39% of the
variance in the full data set, and the first 12 factors together account for 53%
of the variance. This suggests that the idiosyncratic noise component is very
volatile for the macroeconomic time series considered, which may negatively af-
fect performance of the Bai-Ng estimators. Perhaps more importantly, we can
expect a relatively strong dependence among the idiosyncratic components of
the macroeconomic panel. As our Monte Carlo analysis shows, this is a situa-
tion when the Bai-Ng estimators are likely to overestimate the true number of
factors.

6 Conclusion
In this paper we develop a new consistent estimator for the number of factors
in the approximate factor models. The main advantage of our estimator rela-
tive to the previously proposed ones is that it works well in realistically small
samples when the amount of cross-sectional and time-series correlation in the
idiosyncratic terms is relatively large. It also improves upon the existing meth-
ods when the portion of the observed variance attributed to the factors is small
relative to the variance due to the idiosyncratic term. These advantages arise
because the estimator is based on a Law-of-Large-Numbers type regularity for
the idiosyncratic components of the data, as opposed to the estimators based
on the assumption that a significant portion of the variance is explained by the
systematic part. In contrast to the majority of the previous studies, we do not
require the eigenvalues of the covariance matrix of the systematic part of the
data to rise proportionately to the sample size, and hence do not rely on the
factors explaining substantial portion of variation in the data.
Monte Carlo simulations show that our estimator indeed works better than

the information criteria estimators proposed by Bai and Ng (2002) when the
variance of the idiosyncratic component of the data is large relative to the vari-
ance of the systematic component and/or when the amount of dependence in
the idiosyncratic terms is relatively large. This finding is robust across several
empirically relevant sample size situations and different patterns of serial corre-
lation in the idiosyncratic term. The better workings of our estimator does not
come at the expense of the more complicated structure. The proposed estimator
is a simple function of the eigenvalues of the sample covariance matrix and it is
very easy to compute.
Our appeal to the Law-of-Large-Numbers type regularity for the idiosyn-

cratic terms is based on a restrictive assumption about these terms. Precisely,
we assume that the vector of the idiosyncratic components at a particular point
in time is a relatively general linear transformation of an i.i.d. vector of the
same size. The idiosyncratic components are assumed to be independent across
time. Our Monte Carlo analysis suggests, however, that the latter assumption
is not essential for the good performance of the estimator.
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In the future work, we plan to relax the assumption of the independence
across time. One way to do this is to represent the matrix of idiosyncratic
components e as a sum of two matrices:

e = Z + ε,

where matrix ε would consist of the cross-sectionally and time-series indepen-
dent terms, possibly representing measurement errors, and Z would be a matrix
of the cross-sectionally and time-series dependent components. Silverstein and
Dozier (2004) showed that, as long as the spectral distribution of 1

T ZZ
0 con-

verges to a probability distribution with bounded support, the limiting spectral
distribution of 1

T ee
0 will have bounded support and will have the square-root

type density near the upper boundary of the support, which is the key condition
for the applicability of our estimator. As shown by Hachem et al. (2005), if Z
is a stationary Gaussian random field, so that

Zij =
X
k,s

h(i− k, j − s)ξ(k, s),

where ξ(k, s) are i.i.d. normal random variables and
X

i,j
|h(i, j)| < ∞, the

spectral distribution of 1T ZZ
0 will converge. Whether the idiosyncratic compo-

nents arising in macroeconomic or financial applications can be usefully modeled
by a stationary Gaussian random field is an open question.
The Large Dimensional Random Matrix theory is a terrain relatively un-

known by econometricians. It is likely that many existing findings in this area
can be put to an immediate use by the profession. Recently, some second order
results were obtained for the largest eigenvalues of large random matrices (see
Johnstone, 2000). We conjecture that the results may be relevant for designing
statistical tests for the number of factors in the approximate factor models.

7 Appendix
Proof of Proposition 1: Theorem 1.1 of Silverstein (1995) implies7 that the
spectral distribution of 1

T ee
0 weakly converges to a distribution G as n → ∞.

That G must have bounded support can be established using Horn’s inequality
relating singular values of two matrices with singular values of their product
(see theorem 3.3.4 of Horn and Johnson, 1991). The inequality implies that the
largest eigenvalue of 1T ee

0 is smaller or equal to the product of the largest eigen-

values of SnS0n and
1
T

XT

t=1
εtε

0
t. By assumption 4 ii), the largest eigenvalue of

SnS
0
n is bounded almost surely. As to the largest eigenvalue of

1
T

XT

t=1
εtε

0
t,

Bai, Silverstein and Yin (1988) showed that, under assumption 3, it converges

7Condition a) of that theorem is implied by our assumption 3, condition b) is our assump-
tion 1, condition c) is implied by our assumption 4 i), and condition d) is guaranteed by our
assumption 3.
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to (1 +
√
c)
2 almost surely. Hence, the largest eigenvalue of 1

T ee
0 is bounded

almost surely and therefore, G should not have positive mass above the bound.
Turning to the proof of ii), let j be such that j

n → 0 as n → ∞. We will
show that for any δ > 0, u− δ < µj < u+ δ almost surely as n becomes large.
The rightmost inequality is an immediate consequence of theorem 1.1 of Bai and
Silverstein (1998).8 As to the other inequality, suppose it does not hold. Then
with positive probability, for any N there exists n > N such that µj ≤ u−δ. Let
x0 ∈ (u− δ, u) be a point of continuity of G. By definition of u, we must have
G(x0) < 1. Now, choose N so large that for any n > N, F

1
T ee

0
(µj) ≡ 1 − j−1

n

is larger than 1+G(x0)
2 . Since, by statement i) of the proposition, F

1
T ee

0 → G
almost surely, we must have:¯̄̄

F
1
T ee

0
(x0)−G(x0)

¯̄̄
→ 0 (9)

as n→∞ almost surely. However, by our assumption, with positive probability,
there exist however large n, such that

F
1
T ee

0
(x0) ≥ F

1
T ee

0
(u− δ) ≥ F

1
T ee

0
(µj) >

1 +G(x0)

2

which contradicts (9).
To prove iii) we will use the rank inequality (see Bai 1999, Lemma 2.6) saying

that for any two n× T matrices A and B,°°°FAA0 − FBB0
°°° ≤ 1

n
rank (A−B) ,

where k·k denotes a standard supremum distance between two functions. Taking
A = 1√

T
X, B = 1√

T
e and using the rank inequality we have:°°°F 1
T XX0 − F

1
T ee

0°°° ≤ 1

n
rank (ΛF ) =

r

n
→ 0

and hence, F
1
T XX0

must converge to the same limit as F
1
T ee

0
.

Finally, let us now denote the j-th largest eigenvalue of 1
T ΛFF

0Λ0 as νj .
Inequality (6) implies

λ
1/2
i ≤ µ

1/2
i−r + ν

1/2
r+1, i = r + 1, ..., n

λ
1/2
i ≥ µ

1/2
i+r − ν

1/2
r+1, i = 1, ..., n− r

where the first inequality follows by taking A = 1√
T
e and B = 1√

T
ΛF and the

second inequality follows by taking A = 1√
T
X and B = −1√

T
ΛF.

Since the rank of 1T ΛFF
0Λ0 is equal to r, ν1/2r+1 must be equal to zero so that

we have:
8Conditions a) and e) of their theorem are satisfied by our assumption 3, condition b) is

equivalent to assumption 1, conditions c) and d) follow from assumption 4 i), condition f)
follows from assumption 4 ii).
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λi ≤ µi−r, for i = r + 1, ..., n (10)

λi ≥ µi+r, for i = 1, ..., n− r (11)

Therefore, if i is such that i > r and i
n → 0, λi is sandwiched by two terms

each of which almost surely lies inside interval (u− δ, u+ δ) for large enough n.
Hence, λi → u almost surely, which completes the proof of the proposition.¤
To prove proposition 3, we will need the following lemma:

Lemma 1: Under assumptions 1,3 and 4, there exists a constant a > 0,
such that

G(x) = 1− a (u− x)
3
2 (1 +O(u− x))

as x ↑ u.
Proof: First, note that, since the spectra of 1

T ee
0 and 1

T e
0e differ only by

|n− T | zero eigenvalues, the distribution G is related to the limiting distribution
of F

1
T e

0e, which we denote as P, by equation

P = (1− c)I[0,∞) + cG.

In particular, P and G have the same upper boundaries of their supports, and
their densities (where they exist) are proportional. Therefore, it is enough to
establish lemma 2 for P. For G, it will follow from the above equality.
Silverstein (1995) established the fact that, under assumptions equivalent

to our assumption 1,3, and 4 i), F
1
T e

0e converges to a limiting distribution P ,
whose Stieltjes transform m, defined as

mP (z) ≡
Z

1

λ− z
dP (λ), z ∈ C+ ≡ {z ∈ C : Im z > 0} ,

is the unique solution in C+ to

m = −
µ
z − c

Z
τdH(τ)

1 + τm

¶−1
. (12)

Silverstein and Choi (1995) study properties of distributions with the Stielt-
jes transforms satisfying the above equation. They show that P has continuous
density p(x), which has form (see formula (5.3) of Silverstein and Choi (1995)):

p(x) = a (u− x)
1
2 (1 + o(1)) (13)

in the neighborhood of u, the upper boundary of P ’s support. We would like to
strengthen this formula by establishing that

p(x) = a (u− x)
1
2 (1 +O (u− x)) .

Silverstein and Choi prove (13) under the assumption that −m−1u , where
mu is defined as limz∈C+→umP (z), is strictly larger than the upper boundary
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of support of H (see the discussion at p.307 of their paper). They point out
that this assumption would not hold only if −m−1u is the upper boundary of H’s

support and, in addition, limm↓mu

Z
λ2dH(λ)

(1 + λm)2
exists, and 1

m2−c
Z

λ2dH(λ)

(1 + λm)2

is positive on (mu,mu + δ] for some δ > 0. It is straightforward to verify that
our assumption 4 iii) rules out such a possibility.
To prove (13), Silverstein and Choi, first, show (their theorem 1.1) that the

limit limz∈C+→xmP (z) ≡ m1(x) + im2(x) (here i denotes the imaginary unit)
exists, that p(x) = 1

πm2(x), and that m1(x) and m2(x) are analytic in the
neighborhood of any x such that m2(x) > 0. Moreover, for these x, m1(x) and
m2(x) constitute the unique solution (subject to the requirement m2(x) > 0) of
the system:

x = c

Z
λdH(λ)

(1 + λm1)2 + λ2m2
2

(14)

0 =
1

m2
1 +m2

2

− c

Z
λ2dH(λ)

(1 + λm1)2 + λ2m2
2

. (15)

Implicitly differentiating the above two equations with respect to x, Silverstein
and Choi find that

m2m
0
2 =

m1A2 + (m
2
1 −m2

2)A3
(A2 +A3m1)2 +A23m

2
2

for x ∈ (u− ε, u) for some ε > 0, where Aj = 2c
R λjdH(λ)

((1+λm1)
2+λ2m2

2)
2 . Using this

formula, they show that 2m2(x)m
0
2(x) tends to a finite negative number when

x ↑ u. Formula (13) then follows from a simple observation that 2m2(x)m
0
2(x) =

d
dxm

2
2(x) and the fact (following from the continuity of m2(x)) that m2(u) = 0.
We now show that not only 2m2(x)m

0
2(x) tends to a finite negative number

when x ↑ u, but also the derivative of this function is bounded on x ∈ (u−ε, u).
This is equivalent to saying that

¡
m2
2(x)

¢0
is well approximated by a linear

function with finite slope on x ∈ (u − ε, u), which in turn is equivalent to the
statement of our lemma.
Let us first show that m0

1(x), A
0
2(x) and A

0
3(x) are bounded on x ∈ (u−ε, u)

for some ε > 0. Indeed, differentiating (14) implicitly with respect to x and
rearranging, we get

m0
1 =
−1−A3m2m

0
2

A2 +A3m1
.

It is easy to see that the denominator A2 +A3m1 = 2c
R λ2(1+λm1)dH(λ)

((1+λm1)
2+λ2m2

2)
2 is a

continuous function of x. Moreover, since by assumption 4 iii) m1(u) = mu lies
outside the support of H, the denominator is not equal to zero for x = u. Let
us choose ε so small that it stays away from zero for x ∈ (u− ε, u). Then, since
as shown by Silverstein and Choi m2m

0
2 is bounded on x ∈ (u− ε, u), m0

1 must
be bounded on x ∈ (u− ε, u).

27



For A2 and A3 we have

A0j = −4c
Z

λj
¡
2λm0

1 + 2λ
2 (m1m

0
1 +m2m

0
2)
¢
dH(λ)³

(1 + λm1)
2
+ λ2m2

2

´3
which is bounded on x ∈ (u− ε, u) because m2m

0
2 and m0

1 are bounded.
Finally,

(m2m
0
2)
0
=

x

[(A2 +A3m1)2 +A23m
2
2]
2 ,

where

x =
£
A02m1 +A2m

0
1 + 2m1m

0
1A3 − 2m2m

0
2A3 +

¡
m2
1 −m2

2

¢
A03
¤ ·

· £(A2 +A3m1)
2 +A23m

2
2

¤− £A2m1 +
¡
m2
1 −m2

2

¢
A3
¤ ·

· £2 (A2 +A3m1) (A
0
2 +A03m1 +A3m

0
1) + 2A3A

0
3m

2
2 + 2A

2
3m2m

0
2

¤
.

The boundedness of m0
1, A

0
2, A

0
3, and m2m

0
2 on x ∈ (u−ε, u) implies the bound-

edness of x. As to the denominator
£
(A2 +A3m1)

2 +A23m
2
2

¤2
, it stays away

from zero since A2 +A3m1 stays away from zero for x ∈ (u− ε, u).¤
Proof of proposition 3: Note that

°°°F 1
T XX0 −G

°°° ≤ °°°F 1
T XX0 − F

1
T ee

0
°°°+°°°F 1

T ee
0 −G

°°° . From the proof of propostition 1, we know that °°°F 1
T XX0 − F

1
T ee

0
°°° ≤

r
n . By assumption 5,

°°°F 1
T ee

0 −G
°°° ∼ n−β1 . Therefore,°°°F 1

T XX0 −G
°°° = Op(n

−β1) +O(n−1) = Op(n
−β1), (16)

where the second equality follows from the assumption that β1 ≤ 1.
Further, according to lemma 2, a(u−x)

3
2 = (1−G(x)) (1+O(u− x)). This

implies that

a(u− x)
3
2 = (1−G(x))

³
1 +O

h
(1−G(x))

2
3

i´
. (17)

From (16), we have:

1−G(λrmax+1) = 1− F
1
T XX0

(λrmax+1) +Op(n
−β1) =

rmax
n

+Op(n
−β1).

Substituting this into (17) and rearranging, we obtain

a(u− λrmax+1)
3
2 =

rmax
n

+Op(n
−β1) +Op

³
n−

5(1−α)
3

´
, (18)

where the terms Op(n
−β1)Op

³¡
rmax
n

¢2/3´
and Op(n

−β1)Op

³
n−

2β1
3

´
are sub-

sumed by Op(n
−β1), and the term rmax

n Op

³
n−

2β1
3

´
is subsumed by Op(n

−β1)

if 1− α ≥ β1 and by Op

³
n−

5(1−α)
3

´
if 1− α < β1. Similarly, we have

a(u− λ2rmax+1)
3
2 = 2

rmax
n

+Op(n
−β1) +Op

³
n−

5(1−α)
3

´
(19)
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Dividing (19) by (18) and taking the both sides of the resulting equality into
power 23 , we get

u− λ2rmax+1
u− λrmax+1

=

2 rmaxn +Op(n
−β1) +Op

³
n−

5(1−α)
3

´
rmax
n +Op(n−β1) +Op

³
n−

5(1−α)
3

´


2
3

. (20)

Now, consider first the case β1 ≤ 1 − α. Then, the right hand side of (20)
can be represented in the form 2

2
3 (1 +Op(1)), and we have:

u = wλrmax+1 + (1− w)λ2rmax+1 + ζ, (21)

where w = 2
2
3 /
³
2
2
3 − 1

´
and ζ = (u− λrmax+1)Op(1). Note that, for β1 ≤ 1−α,

(18) implies that u− λrmax+1 = Op

³
n−

2β1
3

´
and therefore ζ = Op

³
n−

2β1
3

´
.

If 1 − α < β1 ≤ 5
3(1 − α), then the right hand side of (20) is 2

2
3 (1 +

Op(n
−β1+(1−α))). In addition, (18) implies that u− λrmax+1 = Op

³
n−

2(1−α)
3

´
.

Therefore, (21) holds with ζ = Op

³
n−β1+

1
3 (1−α)

´
.

Finally, if 53(1−α) < β1, then the right hand side of (20) is 2
2
3

³
1 +Op

³
n−

2(1−α)
3

´´
and u− λrmax+1 = Op

³
n−

2(1−α)
3

´
. Hence, (21) holds with ζ = Op

³
n−

4
3 (1−α)

´
.

Summarizing the three cases, we have:

û− u = Op

³
n−g(α,β1)

´
,

λrmax+1 − u = Op

³
n−h(α,β1)

´
.

Finally, note that û−µ1 = (û− u)+(u− µ1) and λrmax+1−µ1 = (λrmax+1 − u)+
(u− µ1) . The second term in these equalities decays as n−β2 by assumption 5.
And, therefore, the rate of convergence of û− µ1 is min {g(α, β1), β2} , and the
rate of convergence λrmax+1 − µ1 is min {h(α, β1), β2}.¤
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