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Abstract

In this paper we study asset pricing in the presence of technological growth. We present a

model, where new technologies arrive periodically, giving firms the opportunity to plant new

trees of a better vintage. The model gives rise to an endogenous technological cycle that may

have a duration longer than the business cycle. In its initial phase a substantial part of the stock

market valuation is driven by growth options. P/E ratios and expected returns are high, and

attain a maximum once firms start to invest in the new technologies. As the economy experiences

an investment driven boom, growth opportunities get exploited, leading to decreased P/E ratios

and lower future expected returns. We show that the recurrence of such cycles can account

jointly for a considerable number of well documented asset pricing phenomena in both the time

series and the cross section of expected returns. We also show how the model can provide a

micro-foundation for empirical evidence documenting that several asset pricing phenomena are

driven by “long-run” risks. In two concrete applications we show how the model can account for

the weakening of cross sectional predictability between 1986-2001 and the recently documented

sucess of the consumption CAPM over longer horizons.
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1 Introduction

How does aggregate technological growth affect asset pricing? This question seems to be of para-

mount importance in light of the events of the late nineties. It is commonly accepted that the

boom in the stock market during that period was related to rapid technological changes brought

about by the IT Revolution and the Internet in particular. Rapidly rising price to earnings ra-

tios were accompanied by strong and unusual returns, followed by a dramatic decline thereafter.

These patterns are recurrent in times of technological progress. For example,very similar patterns

were observed in the twenties, another period of rapid technological growth in distribution and

production (radio, automobiles, department stores)

The process of invention, development and diffusion of new technologies has been widely studied

in the economic literature. Hardly anyone would dispute that technological progress is the most

important factor in determining living standards over the long run. It appears equally plausible

that the anticipation of the benefits of technological advancement was a key determinant of asset

price movements during many periods of economic history. Yet, little work has addressed the

impact of technological growth on the pricing of risk.

The goal of this paper is two-fold.

The first goal is to build a theoretical model to study this interaction, assuming perfect ratio-

nality and capital markets. A key insight of the model is that the arrival of important technological

innovations will lead to long lasting cycles in output growth, consumption growth and investment.

Moreover, these long cycles will be shared by asset prices as well.

The second goal is to assess the empirical relevance of such long run variations, and their

potential to explain jointly a wide number of asset pricing facts documented in the literature.

The key idea behind our theoretical framework is that technological growth is “general purpose”

and permeates all industries simultaneously. The internet, for instance, fundamentally transformed

the distribution channel of most industries. Similarly, the arrival of electricity transformed man-

ufacturing and the automobile changed transportation in a number of sectors. Organizational,

managerial, or financial innovations can equally well present sources of general purpose growth.

For instance, the adoption of “just in time” principles in manufacturing, the widespread use of

total quality management in production, or the managerial buyouts of the eighties may not present
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purely technological innovations, but have nevertheless altered the production and distribution

process throughout the economy.

The proposed model captures this idea in a relatively simple way. We consider a standard Lucas

tree economy and assume a continuum of firms that can plant trees. Technological innovation arrives

at random times and presents all firms with (a firm specific) option to plant trees of a new “vintage”

at a time of their choosing. Firms need to hire workers to plant these trees by paying them a wage

that acts as a fixed cost. As a result, the arrival of a technological innovation generates growth

options, which are progressively exploited over the medium run. This process gets repeated each

time a new technological innovation arrives.

Almost all the results that are discussed in the paper revolve around one key intuition: Tech-

nological growth introduces a “life cycle” of growth options for all companies. On arrival of a new

major innovation, growth options emerge in the price of all companies driving valuation ratios (such

as the P/E ratio) up. Over time firms start to “exercise” their growth options and this leads to an

acceleration of growth, followed by a decline the P/E ratios.

There are several distinct implications of this basic mechanism:

First, technological innovation introduces a slowly moving (stochastic) cycle into the behavior

of both consumption growth and asset prices. We refer to such cycles as the “medium run” to

keep with terminology in Comin and Gertler [2003]. In the first part of the cycle, firms wait

and do not exercise their growth options. Since growth options are riskier than assets in place

in our model, this drives the expected return of these companies up. As growth options get

exercised however, the economy experiences strong growth, the P/E attains a maximum (and even

starts to decline) and expected returns (going forward) become particularly low. This reversal in

expected returns is particularly noticeable for the companies that can profit the most from the

newly invented technology (“high tech firms”). We calibrate the model and argue that this change

in the composition of value between growth options and assets in place over the technological cycle

can account for the empirical finding that the aggregate P/E ratio and investment plans can predict

(aggregate) excess returns - especially over longer horizons -.

Second, the model demonstrates how a substantial degree of covariation between financial mar-

kets and the real economy is attributable to these slowly moving, technological cycles. We use

econometric methods that are tailored to decompose the comovement between different time series
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into medium-long and short run cycles, and find evidence that a substantial part of the comovement

between the P/E ratio and economic growth is accounted for by lower frequencies (long-medium

run cycles) in the data, just as the model predicts.

Third, we demonstrate how the model can account for certain interesting phenomena in the

cross section of expected returns that have been established in the literature. In the model, firms

obtain different growth opportunities in different cycles and this leads to heterogeneity in the cross

section. Firms with numerous assets in place (compared to their growth options) will be less risky,

larger and will have a high ratio of market to book value for their assets, so the model can produce

both a size and value premium. A separate role for short run momentum and long run contrarian

profits is also compatible with our framework.

In addition to these mostly well documented asset pricing phenomena, we also focus on some

aspects of the cross section that we believe our model is particularly well suited to address.

First, we show how the model can account for the prolonged disappearance of the usual pre-

dictability relations between 1986-2001 (and their reappearance thereafter). This phenomenon is

puzzling, because neither behavioral nor rational explanations can account for all its pieces. Ex-

isting models that produce countercyclical size premia over the business cycle will typically not be

able to explain the prolonged duration of the phenomenon. At the same time, behavioral stories

that might view the value and the size premium as anomalies that eventually had to disappear

cannot account for their reappearance post 2001. Our model links the disappearance of cross sec-

tional predictability to the technology driven long cycle of the US economy between 1986-2001.

Specifically, we propose the following explanation: Sorting on size (or market to book) at the onset

and the initial phases of a technological cycle will make it impossible to know if a given firm belongs

to a given decile because it has very valuable assets in place or current growth options. Hence,

sorting on size will produce inconclusive results about the expected return of the average firm in

these deciles. When -however- most firms have used up their growth options and the technological

cycle has progressed, size will be uniquely attributable to valuable assets in place, restoring the

predictability relations. Calibrated versions of the model suggest that this process can easily last

more than 10 years.

Second, we show how the model can account for the interesting findings in Parker and Julliard

[2005] that the consumption CAPM seems to perform better at predicting cross sectional differences
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if one uses longer run consumption growth rates instead of short run consumption growth rates.

Even though the conditional consumption CAPM holds in our framework, the unconditional CAPM

does not. More importantly, a good fraction of the cross sectional differences will be driven by the

prospects of the firms over the medium run cycle. Taking longer run consumption growth rates

reveals more information about the true conditional beta of a portfolio, simply because over the

longer run there is more significant correlation between the predictable component in consumption

growth and cross sectional differences in expected returns.

In sum, the present paper presents an attempt to link many well documented asset pricing

phenomena to macroeconomic movements that might outreach the duration of a typical business

cycle. The model provides thus a micro-foundation for why medium-long cycles exist and why they

matter for asset pricing.

The literature closest to this paper is the production based asset pricing literature (Berk, Green,

and Naik [1999],Berk, Green, and Naik [2004], Kogan [2001], Kogan [2004], Gomes, Kogan, and

Zhang [2003], Carlson, Fisher, and Giammarino [2004b], Zhang [2005], Cooper [2004]). To the

best of our knowledge, the only other paper to address the cross section of expected returns in

general equilibrium is Gomes, Kogan, and Zhang [2003]. The most significant difference between

their model and ours is the presence of a true timing decision as to the exercise of the growth

options. Gomes, Kogan, and Zhang [2003] assume that options arrive at exogenous random times,

and the firms must decide “on the spot” if they want to proceed with the investment or not. If

not, they have to wait again for a random amount of time. By contrast in our model, all firms are

presented with a (firm specific) opportunity to plant a tree at the same time. However, they have

full discretion as to the timing. This is not a mere technicality. In our model there is going to be

some degree of simultaneity in the exercise of growth options and this will be the key mechanism

behind our medium run cycles1.

We also relate to the recent literature on long run risks (Bansal and Yaron [2004], Parker and

Julliard [2005], Hansen, Heaton, and Li [2005] among others). These papers are mostly econometric

1We also improve on Gomes, Kogan, and Zhang [2003] in some other dimensions. In our model consumption is a

random walk over the short run and presents some (but weak) predictability over longer horizons only. By contrast,

in Gomes, Kogan, and Zhang [2003] the consumption process has stronger serial correlation, which appears less well

supported by the data. Moreover, we are able to integrate habit formation in a tractable way into our model, which

allows us to obtain a more realistic equity premium with a reasonable degree of risk aversion.
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approaches to formalizing and measuring the notion of long run risk. Our purpose in this paper

is different. We are interested in determining why long run risks exist in the consumption process

and why they correlate with portfolios in the ways that can account for cross sectional asset pricing

phenomena.

There is a vast literature in macroeconomics and growth that analyzes innovation, dissemina-

tion of new technologies or the impact of the arrival of new capital vintages. A highly partial

listing would include Jovanovic and Rousseau [2004], Hobijn and Jovanovic [2001], Jovanovic and

MacDonald [1994], Jovanovic and Rousseau [2003], Cooley and Yorukoglu [2003], Yorukoglu [1998],

Benhabib and Rustichini [1991], Greenwood and Jovanovic [1999], Jovanovic and Stolyarov [2000],

Rustichini and Siconolfi [2004], Atkeson and Kehoe [1999], Atkeson and Kehoe [1993], Helpman

[1998]. Medium run cycles were originally introduced as a notion by Blanchard [1997] and more

recently by Comin and Gertler [2003]. Our paper has a fundamentally different scope than this

literature. In most of these models, uncertainty and the pricing of risk is not the focus of the

analysis. By contrast these papers analyze innovation decisions in much greater depth than what

we do. The trade-off is that they cannot allow for sufficiently rich uncertainty, and an endogenous

determination of the stochastic discount factor as is possible in the slightly simpler setup of our

paper. This is why most of this literature cannot be readily used for an in-depth asset pricing

analysis, which is necessarily linked with the pricing of risk.

An important technical contribution of our work is that it provides a tractable solution to a

general equilibrium model, where the micro-decsions are "lumpy" and exhibit optimal stopping

features. The micro decision of the firm has a similar structure to the recent sequence of papers

by Abel and Eberly [2003], Abel and Eberly [2002], Abel and Eberly [2004]. Just as firms in these

papers adapt to the technological frontier at an optimally chosen time, firms in our framework

decide on the optimal time to plant a new tree.

A somewhat related literature is concerned with the aggregation of S-s rules (Caballero and

Engel [1999], Caballero and Engel [1991]) and optimal entry decisions of firms. A partial listing

would include Dixit [1989], Dixit and Pindyck [1994], Dixit and Rob [1994], Leahy [1993], Caplin and

Leahy [1997], Caballero and Pindyck [1996], Baldursson and Karatzas [1997], Novy-Marx [2003].

These are typically not general equilibrium models however, which makes it impossible to derive

the stochastic discount factor and its correlation with asset prices endogenously.
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A recent literature in Macroeconomics (Thomas [2002], Khan and Thomas [2003]) considers S-s

rules in general equilibrium. This literature typically solves these models numerically and hence the

level of theoretical analysis that can be performed is limited. Moreover, there is no role for capital

vintages, medium run components or a discussion of asset pricing implications. By considering a

different specification for adjustment costs we arrive at simple closed form solutions for all prices

that can be analyzed quite closely. Additionally, we can address issues related to different capital

vintages and technological cycles.

The present paper shares with many papers in the literature assumptions on external habit

formation to produce large equity premia, while keeping the interest rate at relatively low levels

(Campbell and Cochrane [1999], Chan and Kogan [2002]). By contrast to these papers however, we

derive most of our results from endogenous investment decisions of firms - not habit formation and

time varying risk aversion. In particular, by assuming external habit formation that is multiplicative

in the utility function we effectively enforce constant relative risk aversion for the representative

agent. We do this in order to isolate the new channels that are present in our paper, compared to

previous literature.

Several recent papers have also attempted to address issues specific to the recent upswing in

asset prices (Pastor and Veronesi [2004], Jermann and Quadrini [2002]). Our purpose in this paper

is broader. We want to understand how technological growth interacts with asset prices, and how

it leads to long cycles at a more general level than the specifics of any particular historical episode.

The structure of the paper is as follows: Section 2 presents the model and Section 3 its solution.

Section 4 presents the qualitative implications of the model, while section 5 presents empirical

evidence and quantitative implications. Section 6 concludes. All proofs are given in the appendix

(not included in this version of the paper).
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2 The model

2.1 Trees, Firms and Technological Epochs

2.1.1 Trees, Earnings, Epochs and the Firm’s Optimization Problem

There exists a continuum of firms indexed by j ∈ [0, 1]. Each firm owns a collection of trees that

have been planted in different technological epochs2, and its total earnings is just the sum of the

earnings produced by the trees it owns. Each tree in turn produces earnings that are the product

of three components: a) a vintage specific component that is common across all trees of the same

technological epoch, b) a time invariant tree specific component and c) an aggregate productivity

shock. To introduce notation, let YN,i,t denote the earnings stream of tree i at time t, which was

planted in the technological epoch N ∈ (−∞..− 1, 0, 1, ..+∞). In particular, assume the following
functional form for YN,i,t:

YN,i,t =
¡
A
¢N

ζ(i)θt (1)¡
A
¢N
captures the vintage effect. A > 1 is a constant. ζ(·) is a positive strictly decreasing function

on [0, 1], so that ζ(i) captures a tree specific effect. θt is the common productivity shock and evolves

as a geometric Brownian Motion:
dθt
θt
= µdt+ σdBt (2)

where µ > 0, σ > 0 are constants, and Bt is a standard Brownian Motion.

Technological epochs arrive at the Poisson rate λ > 0. Once a new epoch arrives, the index N

becomes N + 1, and every firm gains the option to plant a single tree of the new vintage at a time

of its choosing. Since A > 1, and N grows to N +1, equation (1) reveals that trees of a later epoch

are on average "better" than previous trees.

Firm heterogeneity is introduced as follows: Once epoch N arrives, firm j draws a random

number ij,N from a uniform distribution on [0, 1]. This number informs the firm of the type of tree

that it can plant in the new epoch. In particular a firm that drew the number ij,N can plant a tree

with tree specific productivity ζ(ij,N). These numbers are drawn in an i.i.d fashion across epochs:

It is possible that firm j draws a low ij,N in epoch n, a high ij,N+1 in epoch N + 1 etc.

2We shall also use word “round” to refer to an epoch.
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To simplify the setup, we shall assume that once an epoch changes, the firm loses the option to

plant a tree that corresponds to any previous epoch. It can only plant a tree corresponding to the

technology of the current epoch.

Let:

Xj,t =
X

n=−∞..N

A
n
ζ(ij,n)1{χn,j=1} (3)

where N denotes the technological epoch at time t and eχn,j is an indicator function that is 1 if
firm j decided to plant a tree in technological epoch N and 0 otherwise. A firm’s total earnings

are then given by:

Yj,t = Xj,tθt

Any given firm determines the time at which it plants a tree in an optimal manner. Planting a

tree requires a fixed (labor) cost of wt. This cost is the same for all trees of a given epoch. However,

it may depend on the technological round and the entire path of θt and it is determined in general

equilibrium.

Assuming complete markets, the firm’s objective is to maximize its share price. Given that

options to plant a tree arrive in an i.i.d fashion across epochs, there is no linkage between the

decision to plant a tree in this epoch and any future epochs. Thus, the option to plant a tree

can be studied in isolation in each round. Hence, the optimization problem of firm j in epoch N

amounts to choosing the optimal stopping time τ :

P o
N,j,t ≡ sup

τ
E

∙
1{τ<τN+1}

µ
A
N
ζ(ij,N )

Z ∞

τ

Hs

Ht
θsds− Hτ

Ht
wτ

¶¸
(4)

where Hs is the (endogenously determined) stochastic discount factor, τN+1 is the random time

at which the next epoch arrives, while P o
N,j,t denotes the (real) option of planting a new tree in

epoch N.

2.1.2 Firm Prices

Given the setup, a firm’s price will consist of three components: a) the value of assets in place, b)

the value of the growth option in the current technological epoch and c) the value of the growth

options in all subsequent epochs. To see this, let:

PA
j,t ≡ Xj,t

µ
E

Z ∞

t

Hs

Ht
θsds

¶
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denote the value of assets in place (with Xj,t as defined in [3]). Then the price of firm j, assuming

it has not planted a tree (yet) in technological round N is

PN,j,t = PA
j,t + P o

N,j,t + P f
N,t (5)

where:

P f
N,t = E

Ã X
n=N+1..∞

Hτn

Ht
P o
n,j,τn

!
and τn denotes the time at which technological round n arrives. The first term on the right hand

side of (5) is the value of assets in place, while the second term is the value of the growth option in

the current epoch. The third term is the value of all future growth options. Naturally, for a firm

that has planted a tree in the current technological epoch there is no longer a “live” option and

hence its value is given by3:

PN,j,t = PA
j,t +E

Ã X
n=N+1...∞

Hτn

Ht
P o
n,j,τn

!

2.2 Aggregation

The total output in the economy at time t is given by

Yt =

Z 1

0
Yt(j)dj =

µZ 1

0
Xj,tdj

¶
θt (6)

with Xj,t defined in (3). It will be particularly useful to introduce one extra piece of notation.

Let KN,t ∈ [0, 1] denote the mass of firms that have updated their technology in technological
epoch N up to time t. We show formally later that KN,t will coincide with the index of the most

profitable tree that has not been planted yet (in the current epoch)4.

3Clearly, the PA
j,t in this formula will now reflect the fact that the assets of the company have been increased by

the addition of an extra tree.
4To see why, consider two firms j and j0. Assume that in the current epoch firm j has drawn a lower index ijN

than firm j0, so that ij,N < ij0,N . By assumption ζ(·) is a decreasing function and hence ζ(ij,N ) > ζ(ij0,N ). This

in turn implies that firm j has the ability to plant a better tree than firm j0. Since the costs of planting a tree in

the current epoch are the same for the two companies, company j will always choose to plant a tree no later than

company j0. Simply put, firms that can profit more from the new technology (since they have drawn a low iN ) have

a strictly higher opportunity cost of waiting.
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Since investment in new trees is irreversible, KN,t (when viewed as a function of time) will be

an increasing process. Given the definition of KN,t, the aggregate output is given as

Yt =

" X
n=−∞..N−1

A
(n−N)

µZ Kn,τn

0
ζ(i)di

¶
+

Z KN,t

0
ζ(i)di

#
A
N
θt

where τn = τn+1 denotes the time at which epoch n ended (and epoch n + 1 started). To

analyze this decomposition it will be easiest to define

F (x) =

Z x

0
ζ(i)di

It can easily be verified that, Fx ≥ 0 (since ζ(·) > 0) and Fxx < 0, (since ζ(·) is declining).
Hence F (x) has the two key properties of a production function. Using the definition of F (·), Yt
can be rewritten as

Yt =

" X
n=−∞..N−1

A
(n−N)

F (Kn,τn) + F (KN,t)

#
A
N
θt (7)

The aggregate output is thus the product of two components: A stationary component (inside the

square brackets) and a trending component
³
A
N
θt

´
which captures the joint effects of aggregate

technological progress and aggregate productivity growth. The term inside the square brackets

is a weighted average of the contributions of the different vintages of trees towards the aggregate

product. The weight on trees that were planted in previous epochs decays geometrically at the rate

A. In this sense, A is simultaneously the rate of technological progress (in terms of new trees) and

technological obsolescence (in terms of existing ones).

Equation (7) implies our model (at the aggregate) resembles a simplified vintage model. The

particular structure that we have introduced will allow us to both solve and characterize properties

of the model in closed form. Moreover, it will allow us to obtain the entire cross sectional distribution

of firm size, returns, book values and thus analyze both the macroeconomic and the asset pricing

implications of the model jointly.

2.3 Markets

As is typically assumed in “Lucas Tree” models, each firm is fully equity financed and the repre-

sentative agent holds all its shares. Moreover, claims to the output stream of these firms are the
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only assets in positive supply, and hence the total value of positive supply assets in the economy is:

PN,t =

Z 1

0
PN,j,tdj

Next to the stock market for shares of each company there exists a (zero net supply) bond

market, where agents can trade 0-coupon bonds of arbitrary maturity. We shall assume that

markets are complete5 Since markets are complete, the search for equilibrium prices can be reduced

to the search for a stochastic discount factor Ht, which will coincide with the marginal utility of

consumption for the representative agent. (See Karatzas and Shreve [1998], Chapter 4)

2.4 Consumers, Gardeners, and Preferences

To keep with Lucas’s analogy of “trees”, we shall assume that trees can only be planted by “gar-

deners”. The economy is populated by a continuum of identical consumers/gardeners that can be

aggregated into a single representative agent. The representative agent owns all the firms in the

economy, and is also the only provider of labor services. Purely for simplicity, we will assume that

labor is only used in order to plant the new trees and for no other purpose. If a company decides

to plant a new tree, it needs to hire the representative agent, who is simultaneously a “gardener”,

and needs to be compensated.

An increase in the stock of trees between times t1 and t2 of the magnitude ∆KN,t requires work

by the gardener in the amount of ∆lt. In simple terms, there is a one-to-one relation between labor

services provided and planting of trees. Providing these services will impose a direct disutility

to the gardener of
R t2
t1
e−ρ(t−t1)g(·)dlt. The function g(·) can be left unspecified for now. The

consumer/gardener receives a compensation of
R t2
t1

Hs
Ht1

wsdls (in net present value terms) in order

to provide the labor services needed. We shall refer to wt as adjustment or “gardening” costs.

The representative consumer’s preference over consumption streams is characterized by a utility

function of the form

U(Ct,M
C
t )

5 In particular there exist markets where agents can trade securities (in zero net supply) that promise to pay 1 unit

of the numeraire when technological round N arrives. These markets will be redundant in general equilibrium, since

agents will be able to create dynamic portfolios of stocks and bonds that produce the same payoff as these claims.

However, it will be easiest to assume their existence throughout to guarantee ex-ante that markets are complete.
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where:

MC
t = max

s≤t
{Cs} (8)

denotes the running maximum of consumption up to time t, and U
¡
Ct,M

C
t

¢
satisfies UC > 0,

UCC < 0, UMC < 0, UCMC > 0. The main motivation for our use of habit formation, is that it

will allow us to obtain reasonable levels of the risk premium. In the next section we elaborate

more closely on some of the technically attractive properties of using the running maximum of

consumption as the habit level.

The consumer maximizes expected discounted utility over consumption and labor supply plans

in a complete market:

max
Ct,dlt

E

∙Z ∞

t
e−ρ(s−t)

¡
U(Ct,M

C
t )ds− g(ωs)dls

¢¸
(9)

s.t.

E

µZ ∞

t

Hs

Ht
Csds

¶
≤

Z 1

0
PN,j,tdj +E

µZ ∞

t

Hs

Ht
wsdls

¶
(10)

Note that this is no different than a standard consumption-portfolio-leisure choice problem with

the sole exception that the disutility from labor is defined over the set of increasing processes.

2.5 Equilibrium

The equilibrium definition is standard. It requires that all markets clear and that all actions are

optimal.

Definition 1 A competitive equilibrium is a set of stochastic processes hCt, lt,Kn,t,Ht, wti s.t.
a) Ct, lt solve the optimization problem (9) subject to (10)

b) Firms solve the optimization problem (4) and Kn,t is defined as:

Kn,t =

Z 1

0
eχn,j,tdj (11)

where eχn,j,t is an indicator that takes the value 1 if firm j has updated its technology in epoch

n by time t and 0 otherwise.

c) wt is determined so that the "labor" market clears, i.e :

dlt = dKn,t
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d) The goods market clears:

Ct = Yt for all t ≥ 0 (12)

e) The markets for all assets clear

If one could determine the optimal processes Kn,t, then the optimal consumption process could

be readily determined by (12) and this would in turn imply that the equilibrium stochastic discount

factor is given by:

Ht = e−ρtUC (13)

This observation suggests that the most natural way to proceed in order to determine an

equilibrium is to make a conjecture about the stochastic discount factor Ht and wt, solve for

the optimal stopping times in equation (4), aggregate in order to obtain the processes Kn,t for

n = N, ...∞, and verify that the resulting consumption process satisfies (13), while a consumer
faced with the process of labor costs wt will find it optimal to provide labor services equal to the

increases in Kn,t. This is done in section 3.

2.6 Functional Forms and Discussion

Before proceeding with the solution of the model, we need to make certain assumptions on functional

forms. The assumptions that we make are intended either a) to allow for tractability or b) to ensure

that the solution of the model satisfies certain desirable properties.

The first assumption on functional form concerns the utility U
¡
Ct,M

C
t

¢
.We shall assume that

U
¡
Ct,M

C
t

¢
=
¡
MC

t

¢γ C1−γt

1− γ
=

³
Ct
MC
t

´−γ
Ct

1− γ
, γ > 1 (14)

It can be easily verified that UC > 0, UCC < 0, UCMC > 0, UMC < 0. This utility is a special

case of the utilities studied in Abel [1990] and exhibits both “envy” (UMC < 0) and catching up

with the Joneses (UCMC > 0) in the terminology of Dupor and Liu [2003]. The main difference is

that the habit index is in terms of the past consumption maximum, not some exponential average

of past consumption as in Campbell and Cochrane [1999] or Chan and Kogan [2002]. Using the

running maximum of consumptionMC
t as the habit index is particularly attractive for our purposes,

because of the analytic tractability that it will allow. As most habit level specifications already

proposed in the literature, it has the very attractive property that it is “cointegrated” with aggregate
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consumption in the sense that the difference between log(Ct) and log(MC
t ) will be stationary.

Moreover, the ratio between Ct and MC
t will be bounded between 0 and 1 (as is the surplus in

Campbell and Cochrane [1999] ).

For our purposes, this utility specification will serve three purposes: First, it will allow us to

match first and second moments of the equity premium and the short term interest rate. Second,

it will imply that the growth cycles that will arise in the model will leave interest rates unaffected.

To see this, note that

UC =

µ
Ct

MC
t

¶−γ
In equilibrium, it will turn out that

Ct

MC
t

=
θt

maxs<t θs
(15)

The right hand side of (15) is unaffected by the investment decisions of firms and this will in turn

be true for the mean of the stochastic discount factor and therefore the real interest rate. This is

a key advantage of this specification. Without habit formation most of the effects of technological

innovations will work through the real interest rate, something that appears to be at odds with the

experience of the nineties and the twenties, where most of the effects of technological growth were

concentrated in the stock market6. Third, these preferences will imply a constant risk aversion and

a constant Sharpe ratio. This feature will allow us to isolate the new effects introduced by our

6Keeping interest rates unaffected will overcome an additional severe problem of constant relative risk aversion

(CRRA) utilities: The arrival of a technological innovation will boost growth expectations. Therefore, agents with

CRRA utilities will try to smooth future consumption gains by dissaving. In general equilibrium, savings must remain

at 0, and so real interest rates will have to rise in order to induce savings.With a coefficient of relative risk aversion

above 1, the smoothing motive will be sufficiently strong as to push the interest rate so high, that the market price to

earnings ratio will decline. This appears to be at odds with the stock market boom that was observed in periods of

rapid technological innovation as the ninetiess and the twenties. If however, the representative agent has a utility that

exhibits habit formation, then consumers understand that increases in consumption will be associated with increases

in their habit level and this is enough to induce extra savings, so that the effect on interest rates will be moderate.

In particular, our specification will guarantee that increases in consumption growth are exactly counterbalanced by

increases in the habit level, so that interest rates are completely unaffected by the growth cycles that will arise

endogenously in the model.
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model, namely the effects associated with the time varying importance of growth options78.

Our next choice of functional form concerns the specification of the disutility of labor for planting

new trees. In the real world, developing and launching a new product requires the services of

technical, legal, marketing, management specialists among others. Most of the work that they put

into such development is irreversible. For instance, consider a corporation that hires a legal team

to investigate whether environmental laws permit the launch of a new business. The company will

have to pay their fees at the beginning of the project. If economic conditions make the project

unprofitable, then the company cannot take the study that these lawyers produced and sell it to a

secondary market: Hence these initial (labor) investment costs are irreversible. The same is true for

the labor costs of scientists who produce studies on whether a given product presents hazards to the

community, the marketing specialists who design the company’s marketing strategy, the technical

personnel who sets up the initial website of the company, and the architects and decorators who

will design the company’s buildings. All these labor costs are irreversible and thus are naturally

modeled by the increasing process specification adopted in section 2.4. In general , we think of

“gardening” services as compensation for the “know how” that is provided by experts who need to

invent, create and install the new capital stock9 10.

7 It turns out that our methods can be extended to the general functional form

U (Ct, Nt) = f
Ct

MC
t

Ct

Since 0 < Ct
MC
t
≤ 1, one can use similar methods to Campbell and Cochrane [1999] to produce time varying risk

aversion and changing Sharpe ratios. We choose to use a simple polynomial for f(), so as to examine how many

results we can obtain by the new channels introduced in this paper. However, we would like to point out that it is

straightforward to combine the present framework with a framework involving time varying risk aversion.
8A minor technical detail about (14) is that the instantaneous interest rate might not be defined (on the measure

0 set where Ct = MC
t ). In technical terms, the Ito representation of the stochastic discount factor will contain a

bounded variation component. (See Karatzas and Shreve [1998] for details). However, the price of any zero-coupon

bond with fixed maturity is well defined and thus throughout when we refer to the “real” interest rate we will

implicitly mean the yield on a one year zero-coupon bond.
9Even though we model this compensation as a fixed cost that is incurred at the start of a project, little would

change if the completion of a project also involved time to build. The important assumption is that these costs are

sunk and irreversible, so that companies are effectively presented with a timing decision that leads to the emergence

of real options in their value
10 Introducing fixed labor costs is common in many general equilibrium models. (See e.g. Khan and Thomas [2003],

Thomas [2002]). If one were to modify the model to allow for some time to build, then costs could be taken out of
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Our choice for the functional form of these costs is motivated by three main considerations:

First, we want the magnitude of this compensation to share the same trend as aggregate output.

Second, we want to keep the amount of labor provided stationary. Third, we want to keep the

compensation constant within each epoch, in order to keep the analysis simple, tractable, and

provide a link to the partial equilibrium literature on growth options.

To give a specification that satisfies all three objectives simultaneously, define

Mt = max
s≤t

θs (16)

and let

g = UCeA
N
MτN (17)

where UC denotes the marginal utility of consumption, e > 0 is a constant, A
N
is the vintage

specific productivity in the current epoch and MτN is the value of the historical maximum of θt at

the start of the technological epoch. Under this specification, the equilibrium cost to plant a tree

will be

wt = eA
N
MτN

Note that these costs will grow between epochs (since N will grow by 1, and MτN+1 will be higher

than MτN ), however they will stay constant within an epoch. Moreover, they will share the same

trend growth as consumption11.

A final assumption that is made purely for technical convenience is that

ζ(i) = ζ0(1− i)s (18)

where ζ0, s > 0 are constants.

3 Solution

3.1 Equilibrium Allocations

output directly as in Gomes, Kogan, and Zhang [2003].
11At a fundamental level, it appears sensible to make the disutility associated with adjustment grow with the rate of

technological advancement, since more complex units of the capital stock probably require more elaborate education

of the experts, who install these units. If education is painful, then the disutility of providing these services should

grow with the general level of advancement.
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We first start by making a guess about the stochastic discount factor and the adjustment costs in

general equilibrium. In particular we assume that the equilibrium stochastic discount factor is:

Ht = e−ρt
µ
θt
Mt

¶−γ
(19)

with Mt defined as in (16). Furthermore, assume that:

wt = eA
N
MτN (20)

Under these assumptions, we obtain the following result:

Proposition 1 Define the constants Z∗, γ1, γ∗1 and Ξ by

Z∗ =
1

ρ− µ(1− γ)− σ2

2 γ(γ − 1)

γ1 =

³
σ2

2 − µ
´
+

r³
σ2

2 − µ
´2
+ 2σ2(ρ+ λ)

σ2

γ∗1 =

³
σ2

2 − µ
´
+

r³
σ2

2 − µ
´2
+ 2σ2ρ

σ2

Ξ =
e

Z∗
γ1

γ1 − 1
γ∗1 − 1

γ∗1 + γ − 1
and assume that:

γ∗1 > 1

Ξ

ζ(0)
> 1

Assume moreover that Ht is given by (19), and wt is given by (20). Then, firm j faced with the

optimal stopping problem (4) will plant a tree the first time that θt crosses the threshold θ

θ =MτN

Ξ

ζ(iN,j)
(21)

Formally, the optimal stopping time τ∗ is given by

τ∗ = inf{t : θt = θ}

The solution to the optimal stopping problem of the firm has an intuitive “threshold” form:

A firm should update when the aggregate productivity θt crosses the threshold θ given by (21).
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This threshold will depend on a) the productivity of the tree that firm j has the option to plant

in the current epoch (ζ(iN,j)), b) the running maximum of θt evaluated at the time at which the

current epoch arrived (MτN ) and c) the constant Ξ that depends solely on parameters and hence

is constant across firms and epochs.

This optimal policy has three intuitive and desirable properties.

First, the nature of the optimal policy is such that no firm will find it optimal to plant a tree

immediately when the new epoch arrives, as long as12:

Ξ

ζ(0)
> 1 (22)

Intuitively, condition (22) guarantees that even the firm that has the option to plant the tree with

the highest productivity (ζ(0)) will find it optimal to wait for a while.

Second, the firms that have the option to plant a more “productive” tree will always go first,

since the threshold θ will be lower for them. This is intuitive: A firm which can profit more from

planting a tree has a higher opportunity cost of waiting and should always plant a tree first.

Third, and most importantly, there are going to be strong correlations between the optimal

investment decisions of the firms. To see this, it is most useful to consider the implications of the

optimal stopping rule (21) for the aggregate mass of companies (KN,t) that have already planted a

tree in the current epoch (N) by time t. To save some notation, we shall drop the subscript N in

KN,t and just write Kt. To obtain the dynamics of Kt, let the function ψ(Kt) be defined as:

ψ(Kt) =
Ξ

ζ(Kt)
(23)

Since ζ(Kt) is a decreasing function of Kt, the function ψ(Kt) has an inverse, that we shall denote

as φ(·):
φ(·) = ψ−1(·)

12To see why this condition is sufficient to guarantee that no firm will immediately plant a new tree once a new

epoch arrives, rewrite the optimal policy as:

τ∗ = inf t :
θt
θτN

=
θ

θτN

where θτN is the value of θt evaluated at the beginning of the current epoch (τN ). By (21)

θ

θτN
=

MτN

θτN

Ξ

ζ(iN,j)
> 1

since
MτN
θτN

≥ 1 and miniN,j Ξ
ζ(iN,j)

= Ξ
ζ(0)

> 1 by (22)
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Then we have the following Lemma:

Lemma 1 If firms follow the threshold policies of Proposition 1, then the evolution of Kt within

technological epoch N is given by

Kt =

½ 0 if Mt
MτN

< Ξ
ζ(0)

φ
³

Mt
MτN

´
otherwise

(24)

In other words for the determination of the equilibrium Kt in round N , one needs information

on Mt
MτN

alone13. Figure 1 gives a graphical illustration of the relation between Kt and Mt
MτN

.

An important implication of the above discussion is that investment in new trees will go through

“lumpy” cycles. As already discussed, there is going to be some time until the first company plants

a tree. Conditional on reaching that threshold, however, a number of other firms will also find it

optimal to invest, since their investment thresholds will be “close” to the investment threshold of

the first firm. Hence, the model implies two distinct regimes in terms of “planting” new trees at

the aggregate: In the first no firm finds it optimal to invest, while in the second regime a number

of companies proceed with investment in new trees in close distance to each other.

To complete the characterization of equilibrium we need to show that our conjecture for Ht and

wt are correct. We first show the following:

Proposition 2 If firms follow the threshold policies of Proposition 1, then

Ct

MC
t

=
θt
Mt

with Mt,M
C
t defined in (16) and (8). Therefore

Ht = e−ρtUC = e−ρt
µ

Ct

MC
t

¶−γ
= e−ρt

µ
θt
Mt

¶−γ
as conjectured in (19).

13This is intuitive: A company which has the option to plant a tree with productivity ζ(iN,j) will do so the first

time that θt
MτN

reaches the level ψ(iN,j) for the first time. An alternative way of saying this is that it will plant a

tree the first time that Mt
MτN

reaches the level ψ(iN,j). Hence the maximum level of θt (compared to its level at the

beginning of the cycle) will be a sufficient statistic for all the trees that have been planted in this epoch. Obviosuly,

the first tree will be planted the first time that Mt
MτN

reaches the level Ξ
ζ(0)

, and this explains why Kt = 0 as long as
Mt
MτN

< Ξ
ζ(0)

.
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Finally, we have the following:

Proposition 3 Let Ht be given by (19) and wt by (20). Then, an optimal plan for the represen-

tative consumer within each epoch is to set:

dlt = dKt

with dKt defined as in (24)

These two propositions show that a) given the optimal policies of the firms, the resulting

stochastic discount factor verifies the conjecture under which these policies were derived and b)

the conjectured adjustment costs will induce the appropriate labor services by the representative

consumer to attain the evolution of Kt given in (24).

The rest of the verification that Ht, wt and the resulting processes for Kt, lt, Ct constitute an

equilibrium in the sense of definition 1 is standard. The reader is referred to Basak [1999] and the

monograph of Karatzas and Shreve [1998] Chapter 4 for details.

3.2 Equilibrium Prices

The price of a firm in general equilibrium is given by (5). Equation (5) decomposes the price of

a firm in three components: 1) the value of assets in place, 2) The value of growth options in

the current technological epoch and 3) The value of growth options in all subsequent technological

epochs. The next proposition gives a closed form solution for each of these components:

Proposition 4 Let bγ1, bZ be given by

γ̂1 =

³
σ2

2 − µ
´
+

r³
σ2

2 − µ
´2
+ 2σ2(ρ+ λ

¡
1−A

¢
)

σ2bZ = − 1
σ2

2 γ1(γ1 − 1) + µγ1 −
£
ρ+ λ(1− Ā)

¤
and assume that:

γ̂1 > 1, bZ < 0
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Then, the price of firm j in technological epoch N is given by (5) where

PA
j,t = Z∗Xj,tθt

"
1 +

γ

γ∗1 − 1
µ
θt
Mt

¶γ+γ∗1−1
#

(25)

P o
N,j,t = Z∗ĀNθt

"
1

γ1 − 1
µ
θt
Mt

¶γ+γ1−1µ Mt

MτN

¶γ1−1 ³ e

Z∗
´
ψ(ij,N )

−γ1
#³
1− 1{χN,j=1}

´
P f
N,t = Z∗ĀNθt

(
λĀẐ

γ1 − 1

"µ
θt
Mt

¶γ+γ1−1
− γ1 − 1

γ̂1 − 1
µ
θt
Mt

¶γ+γ1−1
#³ e

Z∗
´µZ 1

0
ψ(i)−γ1di

¶)
The constants Z∗, γ∗1, γ1 are given in Proposition 1. Xj,t is given by (3), 1{χN,j=1} is the indi-

cator function used in equation (3) that takes the value 1 if firm j has planted a tree in the current

epoch and 0 otherwise and ψ(ij,N) is given by

ψ(ij,N ) =
e

Z∗
γ1

γ1 − 1
γ∗1 − 1

γ∗1 + γ − 1
1

ζ(ij,N)

There are several observations about the equilibrium pricing function derived in Proposition

4. Since the price itself is nonstationary, it will be easiest to analyze the price to earnings ratio

implied by this proposition, defined as:

PEN,j,t ≡ PN,j,t

Xj,tθt
=

PA
j,t

Xj,tθt
+

P o
N,j,t

Xj,tθt
+

P f
N,t

Xj,tθt
(26)

The P/E ratio of firm j is stationary and is comprised of three terms corresponding to the P/E

ratio of assets in place, growth options in the current epoch and growth options in all future epochs.

The P/E ratio of the assets in place is given by:

PA
j,t

Xj,tθt
= Z∗

"
1 +

γ

γ∗1 − 1
µ
θt
Mt

¶γ+γ∗1−1
#

and is common across all firms in the economy since it depends only on
³

θt
Mt

´
. This is the P/E

ratio that would prevail in an economy, where no firm would have the option to invest ever again.

Unsurprisingly, this expression is very similar to expressions obtained in Campbell and Cochrane

[1999] or Chan and Kogan [2002]: The PE ratio is an increasing function of the “habit ratio” (or

surplus) θt
Mt

. “Good times” are characterized by a value of
³

θt
Mt

´
close to 1, while “bad times” are

characterized by low values of
³

θt
Mt

´
.

The P/E ratio of the “current epoch” options is given by

P o
N,j,t

Xj,tθt
= Z∗

µ
ĀN

Xj,t

¶"
1

γ1 − 1
µ
θt
Mt

¶γ+γ1−1µ Mt

MτN

¶γ1−1 ³ e

Z∗
´
ψ(ij,N)

−γ1
#³
1− 1{χN,j=1}

´
(27)
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The current epoch option clearly differs across firms, since ψ(ij,N ) differs across firms. It is also

straightforward to see from the definition of ψ(ij,N ) that firms with a small index ij,N will have

higher “current epoch” growth options (provided of course that they haven’t already invested, in

which case this option is 0). Moreover, every current period option is affected by variations in three

separate components:
³
ĀN

Xj,t

´
,
³

θt
Mt

´
,and

³
Mt
MτN

´
. It should be noted that each of these components

is a stationary quantity, capturing different sources of variation. The first component
³
ĀN

Xj,t

´
is a

firm specific component that changes across epochs. To see why it is stationary it is easiest to

consider its reciprocal
³
Xj,t

ĀN

´
. Using (3) we get:

Xj,t

ĀN
=

X
n=−∞..N

A
n−N

ζ(ij,n)1{χn,j=1}

In economic terms Xj,t

ĀN is a geometrically weighted average of the productivity of the trees that

firm j has planted sofar. Since past draws of ij,n are given a geometrically declining weight,
Xj,t

ĀN

is stationary. A firm that hasn’t planted a tree in several of the past periods will have a relatively

large ĀN

Xj,t
and thus growth options will have a relatively larger weight in its price and its P/E ratio.

Just like assets in place, current growth options are influenced by variations in
³

θt
Mt

´
and are

procyclical: their value increases in good times and declines in “bad times”. This is intuitive:

Growth options will deliver their payoffs, when θt attains a sufficiently large threshold. Therefore,

increases in θt raise the likelihood that these options will be exercised. Similarly, declines in θt

diminish this likelihood and hence their value.

Finally, Mt
MτN

is an increasing process that starts at 1 at the beginning of the epoch and grows

(stochastically) until it is reset back to 1, once the new epoch arrives. Once Mt
MτN

reaches the critical

level Ξ
ζ(iN,j)

, firm j exercises its option.

The P/E ratio of future growth options is given by

P f
N,t

Xj,tθt
= Z∗

µ
ĀN

Xj,t

¶(
λĀẐ

γ1 − 1

"µ
θt
Mt

¶γ+γ1−1
− γ1 − 1

γ̂1 − 1
µ
θt
Mt

¶γ+γ1−1
#³ e

Z∗
´µZ 1

0
ψ(i)−γ1di

¶)

As might be expected, future growth options are influenced by two components: The first com-

ponent is
³
ĀN

Xj,t

´
which provides a measure of the relative importance of growth options compared

to assets in place. The second component is the term included inside curly brackets, is common

across firms and epochs, and is only (procyclicaly) influenced by
³

θt
Mt

´
.
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Of particular importance is the behavior of the P/E ratio of a firm around the time at which

a new tree is planted. It turns out that the P/E ratio will decline discretely, even though the (net

of adjustment cost) price will be continuous14. The intuition is clear. Current options decrease to

0, while assets in place increase. This makes the relative weight of growth options (current and

future) decline and brings the P/E ratio down.

Figure 2 illustrates the typical pattern of the P/E ratios of two firms j and j0 over an epoch.

To make the comparison easier, assume that the two firms have the same relative weight of assets

in place Xj,t

A
N =

Xj0,t
A
N at the beginning of the cycle. However, assume that firm j was more fortunate

than firm j0 and has drawn ij,N < ij0,N . Figure 2 shows that the P/E of firm j will be larger

as a result at the beginning of the epoch. Over time
³

Mt
MτN

´
increases and hence the current

growth option of both companies increases (in light of equation [27]) . At some point Mt
MτN

crosses

the critical threshold Ξ
ζ(iN,j)

and firm j decides to plant a tree. This makes its P/E ratio jump

downward. Firm j0 will continue to have a high P/E ratio which will continue to grow up to the

point where
³

Mt
MτN

´
crosses the level Ξ

ζ(iN,j0)
. Thereafter the P/E ratio of this firm jumps downward

too. Hence, the model produces a picture similar to “leapfrogging”: The companies with the highest

current growth options will exhibit the biggest runups and reversals in terms of their P/E ratios,

followed by the firms with the next highest current growth options etc.

The next section analyzes the implications of the model further and relates it to qualitative

features of the data. Thereafter, we address its quantitative implications.

4 Qualitative Implications of the Model

4.1 Medium Term Cycles in Consumption, Growth, Investment in New Trees

and P/E Ratios

We start by showing how the model can account for medium run “cycles” in consumption growth

rates, P/E ratios and investment15.

14To see this, examine equation (26). The first term will remain identical around the time of the investment. The

second term will become 0 and the third term will also decrease since Xj,t will increase (and hence ĀN

Xj,t
will decrease).

15There is a small and growing literature that discusses the presence of such features of the data. Blanchard

[1997] and Comin and Gertler [2003] discuss the presence of a medium run in aggregate macroeconomic series, while

Bansal and Yaron [2004], Parker and Julliard [2005] discuss the asset pricing implications of such lower frequency

24



The easiest way to see why consumption growth will exhibit cycles is to use equation (7) together

with Ct = Yt in order to obtain

log(Ct) = log(θt) + log

" X
n=−∞..N−1

A
n
F (Kn,τn) +A

N
F (KN,t)

#

We can then use Ito’s Lemma to obtain

d log(Ct) =

µ
µ− σ2

2

¶
dt+ σdBt +

F 0(KN,t)eF dKN,t (28)

where eF = X
n=−∞..N−1

A
n−N

F (Kn,τn) + F (KN,t)

It is now easy to decompose the growth rate of consumption in three components: a constant

drift (µ− σ2

2 ), a Brownian (unpredictable) increment σdBt and then a term that captures the effect

of investment in new trees F 0(KN,t)

F
dKN,t. It is clear that the first two components are driven by

the (random walk) properties of log(θt). The third term is the result of investment in new trees

and it will be responsible for the persistence of growth rates.

Actually, consumption growth in our model has regime switching features: there are going to

be stretches of low growth followed by stretches of high growth. Once a new epoch arrives, no

firm will plant a tree for a while and thus the third term on the right hand side of (28) will be 0.

However, after a certain point a number of firms will start planting trees in close proximity to each

other. This will lead to increases in the mass of firms that have planted a tree in the current epoch

(dKN,t) and thus high growth.

Figure 3 illustrates this feature of the model. We plot the qualitative behavior of:

gt = E [log(Ct+1)− log(Ct)] = E

µZ t+1

t
d log(Ct)

¶
=

µ
µ− σ2

2

¶
+E

µZ t+1

t

F 0(KN,t)eF dKN,t

¶
for two epochs of different length. To pick a “typical” path we set dBt = 0 throughout. In the

left panel, we assume that an epoch is interrupted by the arrival of a new epoch when Kt = 0.2,

while in the right panel the new epoch arrives whenKt = 0.8. These two panels show the rich growth

dynamics that can result from this model. Even though the exact shapes will differ depending on

assumptions about the shape of ζ(·), the costs of updating etc., the general shape will exhibit
components. In the next section we also present some new empirical evidence in the same direction.
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similar patters. Expected growth will peak as the first firms start to update their technologies.

Interestingly, as the technological cycle progresses, expected growth diminishes, since the most

productive trees have already been planted.

It is also interesting to note that expected consumption growth, the P/E ratio and investment

in new trees will share a common cycle. Figure 4 illustrates this aspect of the model. It repeats

the same exercise as Figure 3, but also plots the P/E ratio for the aggregate market, namely:

PEM
t =

R 1
0 PN,j,tdj

Yt

As can be seen, the P/E ratio follows a similar pattern as expected consumption growth. It starts

at a relatively low level at the beginning of an epoch as the current growth options (of all firms) are

“alive” but discounted. However, as time passes, θt grows and starts approaching the thresholds at

which firms will start “exercising” their growth options. At that point the P/E ratio peaks, since all

options are still “alive” and about to be exercised. As θt grows further, several firms start investing

and this transforms growth options into assets in place and leads to a decline in the P/E ratio.

Over time Kt approaches 1 and the P/E ratio reaches the lowest level over the entire epoch, only

to jump upward at the end of the period. The next proposition contains a precise mathematical

formulation of these effects:

Proposition 5 Let KN,t be given by (24) and fix an arbitrary
³

θt
Mt

´
. Then:

1. (Beginning of epoch) If KN,t = 0, PEM
t is strictly increasing in

³
Mt
MτN

´
2. (“Investment Booms” and P/E ratio peaks) There exists K∗ ≥ 0 such that, PEM

t attains a

maximum, i.e.
∂PEM

t

∂
³

Mt
MτN

´ = 0
3. (Mature Technologies and P/E ratio troughs) For Kt > K∗, PEM

t is a declining function of³
Mt
MτN

´
.

Note that
³

Mt
MτN

´
, the ratio of the current maximum of θt to its value at the beginning of the

epoch is a strictly increasing process that starts at 1 at the beginning of the epoch. In a sense,³
Mt
MτN

´
is a measure of how much time has elapsed since the beginning of the epoch. Values close to
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1 indicate that little time has passed, while values significantly larger than 1 indicate the opposite.

Hence, one can literally re-interpret the above proposition in terms of the time that has elapsed

since the beginning of the epoch.

4.2 The Time Series of Expected Returns over the Medium Term Cycle

In this section our aim is to show the implications of medium run cycles for expected returns. It

will be most useful to establish up-front a Lemma that will prove particularly useful for the analysis

that will follow.

Lemma 2 The volatilities of the three components of a company’s price are related by:
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This Lemma ranks the three components of a company’s valuation in terms of their volatilities.

Assets in place are the least volatile followed by future growth options and then current growth

options. As such, this Lemma provides a simple and intuitive way to determine the volatility of

any firm. To this end, let the relative weights of the three components be defined as
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It is now straightforward to determine the volatility of any given firm j as:

σj,t ≡ σθt
PN,j,t

∂PN,j,t

∂θt
= wA

j,tσ
A
j,t + wo

j,tσ
o
j,t + wf

j,tσ
f
t

Given that the (instantaneous) consumption CAPM holds, we also obtain the instantaneous ex-

pected excess return on any given stock as:

µj,t − r = γσσj,t (31)

These simple formulas suggest a particularly important set of implications for the “predictabil-

ity” of returns over the course of a typical epoch. In the first stages of an epoch, most current

period options have not been exercised. In accordance with (29) these growth options are the most

volatile valuation component and hence command high expected returns. As time passes and θt

grows, several firms approach the threshold at which they start to invest. Growth options increase
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in importance, and hence the (instantaneous) expected excess return of these firms becomes very

high. Once however these firms start to invest in new trees, growth options get transformed into

assets in place which (according to equation [29]) are the least risky valuation components. There-

fore, the expected return of these companies drops discretely, and their expected returns going

forward will be particularly low.

Even though we conducted this analysis at the level of an individual firm, it is clear that it

carries over to the aggregate level. Aggregation will preserve this pattern of high and then low

expected returns, because the investment decisions of firms will occur in close proximity as already

discussed. The only difference is that there will be no abrupt reversals in expected returns, but

instead aggregation will guarantee that expected (excess) returns decline gradually as more firms

decide to invest.

These observations conform well with empirical evidence that investment plans have the ability

to predict returns going forward (see Lamont [2000]). According to the model, periods with low

investment activity will be associated with high expected (excess) returns going forward and vice

versa. Moreover, a high P/E ratio at the aggregate is indication of both a high upcoming investment

activity and low expected returns - a fact that is consistent with the data. Also consistent with

empirical evidence is the prediction that firms with the most attractive growth options will be the

most likely to invest, will experience the most dramatic runups in their price prior to investment and

the most dramatic expected return reversals after investment (see Titman, Wei, and Xie [2004]).

16

4.3 Cross Sectional Implications of the Medium Term Cycle

4.3.1 The Size and the Value Premium
16We would like to note that there is an additional source of variation in expected returns, resulting from changes

in the habit level θt
Mt

. It is easy to show that increases in θt
Mt

will make the volatility (and thus the expected

return) of assets in place larger (as they do in the homogenous agents version of Chan and Kogan [2002]), whereas

the volatility of future growth options will become smaller. We chose to focus on variations that result from changes

in KN,t exclusively, as we feel that this predictability of returns over the “medium run” technological cycle is a result

that is distinct from the pre-existing literature.
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There is by now a well developed literature in finance that discusses patterns of expected returns in

the cross section. By far the most well studied stylized facts are the size and the value premium. The

size premium (Banz [1981], Fama and French [1992]) is an empirical regularity documenting that

small cap stocks have higher average returns than large cap stocks. Similarly, the value premium

is an empirical regularity documenting that stocks with high book to market value of equity tend

to have higher returns than low book to market stocks.

The cross section of expected returns in this paper is compatible with both of these predictions.

To see why there is a size premium, it will be easiest to start by first ignoring current period

growth options, i.e. taking two firms j and j0 that have already exercised their growth options

in the current epoch. Since future growth options are identical across all firms, any differences in

valuation between the two firms j and j0 will be driven by differences in the value of their assets

in place: If firm j has more assets in place this will also imply that the relative weight of assets in

place in the company’s total value is larger than for firm j0. In turn, this implies that the expected

(excess) return of company j will be lower, since the expected excess return of assets in place is

lower than for future growth options as we have already established.

If one introduces current period growth options , then the above reasoning ceases to be exact.

A high market valuation could be the indication of either a lot of assets in place or the presence

of very attractive current period growth options. To be concrete, assume that companies j and

j0 are in the highest size decile. However, company j could be in the high size decile because it

has attractive current period growth options, while company j0 could belong to the highest decile

because it has a lot of assets in place. Hence, company j should be expected to have a high expected

return, while company j0 a low expected return.

Therefore, even though sorting by size will typically uncover firms with a lot of assets in place

and low expected returns, the success of this sorting will depend on the relative importance of

current growth options over the medium term cycle: The strength of cross sectional predictability

will depend critically on whether a lot of firms have exercised their growth options or not. At the

beginning of a cycle a lot of firms will not have exercised their growth options and hence sorting by

size will produce groupings of companies with very dissimilar (expected) returns. Towards the end

of a technological cycle however, most growth options will have been exercised and thus sorting by

size will produce groups of companies with very similar characteristics.
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This conforms very well with empirical evidence suggesting that cross sectional predictability

relations almost disappeared from 1986-2001, only to resurface thereafter. If we accept that the

1990’s was a period of rapid technological growth, then the present model may help explain this

prolonged period of weak or no predictability at the cross section. In the next section we examine

quantitatively, if the model can help account for both a size premium over longer stretches of time

and a prolonged breakdown slightly before and during periods of rapid technological growth.

To understand why the model also accounts for a value premium, we start by defining the book

value of a company as:

BN,j,t =
X

n=−∞..N

wn1{χn,j=1}

where wn are the costs of planting a tree in epoch n and 1{χn,j=1} is the usual indicator that takes

the value 1 if a company has planted a tree in that epoch and 0 otherwise.

The following Lemma will prove very useful:

Lemma 3 Let θj,n be the value of θt at which firm j planted a tree in period n (assuming that it

did). Assume moreover that θt
Mt
= 1. Then:
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This Lemma expresses the difference between the market price of a company’s assets in place

and their book value. (The normalization by A
N
θt clearly does not affect the relative ordering,

since it is common across firms). The Lemma shows that this quantity is a weighted average of the

average productivity of the trees in a company. Ignoring current growth options, a firm with a high

market to book value of equity (M/B) will have more productive trees in place than a company

with a lower M/B. This will imply that companies with a higher M/B will tend to have planted

more productive trees in the past , which in term implies that a) these firms should have a higher

share of their valuation in the form of assets in place (since they own more valuable trees) and thus

a lower expected return and b) these firms should have better measures of operating performance

(Earnings to book). Both of these predictions are supported by the data. The former is supported

by Fama and French [1992] while the latter is supported by Fama and French [1995].

We conclude by noting however, that both the size premium and the value premium induce

similar orderings in our model. Alternatively put, they are not independent effects: In the simu-

lations of the model that follow in the next section we were able to obtain both effects separately,
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but not in combination. Therefore, we focus exclusively on the size effect in what follows and note

that similar results hold for the value premium.

4.3.2 Characteristics, Momentum, and Contrarian Profits

The previous section showed that sorting by size would produce an inverse ordering of expected

returns, if one were to ignore current period growth options. If current period growth options are

present, then any additional indication about a firm’s growth options will help uncover a separate

source of variation in expected returns in the cross section.

As an example, assume that there is a signal (like a firm’s industry) that reveals information

about a firm’s growth options. Then, sorting by both size and industry will allow for two indepen-

dent sources of variation in the cross section. Hence, finding that characteristics (such as industry)

matter is by no means per se evidence of mispricing.

Interestingly, past expected returns will reveal information about the growth options of a firm.

Consider for instance two firms j and j0 having the same market size. As already discussed in the

previous section, it could be that firm j has less assets in place than firm j0 but higher current

growth options (or vice versa). Size alone will not allow a clear prediction about which firm should

have higher expected returns. If one had information however on the average returns of the two

firms over the last few quarters, then one could infer which of the two firms has the highest growth

options by just examining which of the two firms had higher average returns in the past. This

suggests that momentum will be an independent effect in addition to size.

Similarly, one can predict that the firm which had high expected returns in the past is likely to

invest in the near future, and thus experience a reversal in its expected return over the long run.

Hence the model can explain both a momentum effect in the short run and a contrarian effect over

the long run as found in Bondt and Thaler [1985]. Moreover, it can explain why sorting firms by

capital expenditures will produce contrarian type effects as found in Titman, Wei, and Xie [2004].

5 Quantitative Analysis and Empirical Evidence

We calibrate the model so as to match three categories of data: a) the (unconditional) mean and

standard deviation of the P/E ratio, the Book to Market ratio, the equity premium and the riskless
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rate, b) the mean, standard deviation of first differences in log consumption , and c) the stationary

distribution of firm (log) size.

Then we present some evidence on the existence of medium run components in consumption

growth and the P/E ratio and examine the ability of the model to a) match these cycles, b) produce

jointly strong time series predictability in aggregate (excess) returns and moderate predictability

for consumption growth (as in the data) and c) produce cross sectional predictability similar to the

data.

We conclude by examining two applications that seem to provide particularly attractive man-

ifestations of a medium term cycle. First, we show how a medium run cycle an help account for

the disappearance of the usual predictability relationships between 1986 and 2001. And second,

we show how the model can account for the patterns found in Parker and Julliard [2005] who

demonstrate that computing correlations between returns and long run consumption growth can

help improve the fit of the consumption CAPM.

5.1 Parameter Choice and Unconditional Moments

We start by matching unconditional means and standard deviations of the P/E ratio, the Book to

Market ratio, the equity premium and the riskless rate.

Our choice of parameters is given in Table 1. The parameters µ, λ and A determine the

mean growth rate of (log) consumption. The parameter µ is the “baseline” growth rate, while

the parameter λ is the key parameter that controls the “frequency” of the medium run cycle. A

controls the “amplitude” of the medium term cycle. These three parameters are chosen, so as

to match as closely as possible the average rate of log consumption growth and some “medium

run” properties of consumption (discussed in the next subsection). σ is the only parameter that

controls the quadratic variation of (log) consumption in the continuous time limit, and is chosen

to match the standard deviation of log consumption17. ρ and γ have a first order influence on the

level of the real interest rates and the magnitude of the equity premium and are chosen so as to

17 In the continuous time limit, the quadratic variation of log consumption is driven solely by σ. However, in discrete

data there is going to be some extra volatility from the stochasticity of the “singular” increases in consumption

resulting from the investment in new trees. For simplicity, we approximated the yearly volatility of consumption

solely by the quadratic variation.
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reproduce as closely as possible both the level and the standard deviation of these two quantities.

The parameters ζ0, s in equation (18) and the cost of adjustment e will influence the speed at which

growth advances, once firms start to invest and -most importantly- the stationary distribution of

firm size. We choose them so as to produce a distribution of log (size) as close as possible to the

data.

Table 2 displays the unconditional moments implied by the model. To obtain these uncondi-

tional moments, we simulate 20 thousand years of data and drop the first 8 thousand to ensure that

the data are from the stationary distribution. As can be seen from Table 2 the model performs well

at reproducing the level of the equity premium, the level of the (aggregate) Book to Market ratio

and their volatilities, as well as the mean growth rate of log consumption. The model is slightly

less accurate at matching the mean of the P/E ratio, the level and the volatility of the real interest

rate, which are all somewhat higher than in the data.

5.2 Medium Run Cycles: Empirical Evidence and Quantitative Implications of

the Model

The key prediction of the model is the presence of a medium-long run cycle that is shared by

consumption growth, P/E ratios and investment activity. We start by first presenting empirical

evidence on the presence of such cycles and then compare the empirical evidence to the predictions

of the model.

A particularly attractive way to present evidence on serial dependence is the so-called peri-

odogram18: The periodogram is just a transformation of all the autocovariances of a stationary

process. Most importantly, it allows an immediate way to examine how much of the variation in

the data is explained by lower frequencies (medium-long term cycles) and how much is associated

with high frequencies (short term cycles). A periodogram which is downward sloping is evidence

of a persistent process. By contrast, a flat periodogram is evidence of white noise. The top panel

in Figure 5 presents the (smoothed log) periodogram of yearly first differences in the logarithm of

consumption between the end of world war I and today19.

As can be easily seen, the log periodogram peaks at a frequency between 0.1-0.12 suggesting

18See Hamilton [1994] or Brockwell and Davis [1991] for an introduction to periodograms.
19The data for consumption are from the website of Robert Shiller. In order to avoid measurement error with

pre-world war I consumption data, we kept only post-world war I data yielding 87 observations.
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the presence of a (stochastic) cycle of about 1/0.12 ≈ 8 to 1/0.1 = 10 years in consumption

growth. To establish the statistical significance of this finding we used the bootstrap: Under the

null hypothesis that consumption growth is white noise, one can bootstrap the first differences

in log consumption to obtain confidence intervals. The two dashed lines present these confidence

bounds which demonstrate that the peaks at the low frequencies are not the artefact of statistical

error, but are statistically significant.

To compare, we also plotted the output of our model. This is done in the bottom part of the

figure. We simulated paths of a length of 87 years and then computed their log periodogram along

with 5-95% confidence bands. As can be seen, the model performs well at the low frequencies, since

the periodogram of consumption growth exhibits a slight downward slope. The log periodogram of

the actual consumption process is well within the confidence bands implied by the model, except

for a few of the highest frequencies. This also indicates that the model does not produce too strong

a serial dependence, that would be at odds with the data.

To summarize, the two subfigures in figure 5 jointly suggest that a) there is a small degree of

persistence in consumption growth that makes its log periodogram have a slight downward slope,

b) the periodogram of the data peaks at a frequency between 0.1-0.12 suggesting the presence

of (stochastic) cycles that last between 8-l0 years and c) the calibrated model is successful at

capturing these deviations from the pure random walk hypothesis, by producing a log periodogram

very similar to the one found in the data.

To produce a formal statistical test, we also ran Bartlett’s test for white noise. This test pro-

duces progressive sums of the (unsmoothed) periodogram20. Under the white noise hypothesis, the

progressive sums of the periodogram should align on the 45 degree line. Figure 6 confirms formally

that consumption growth is not pure white noise, since the cumulative periodogram runs well above

the 45 degree line for frequencies between 0.08−0.2. This further suggests that consumption growth
has some serial dependence with (stochastic) cycles that last between 1/0.2 = 5 and 1/0.08 ≈ 12
years. These cycles are somewhat longer than typical business cycles that last between 1.5 and 8

years. The p-value of the test is 0.0376, hence below the 5% critical level.

We turn next to the comovement between consumption growth and the price to earnings ratio.

According to the model, there should be strong comovement between the two quantities over the

20The advantage of this test is that the periodogram need not be smoothed, and the confidence bands are uniform.
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medium run cycle (see Figure 4 for an illustration). Figure 7 presents some “first pass” evidence

to that effect. Using the band pass filter proposed by Baxter and King [1999] we first isolated

business cycle frequencies (2-8 years) for both quantities, plotted them against each other and also

computed their correlation. ln the bottom panel we repeated the same exercise over the medium

run cycle (we kept frequencies between 8-30 years). The correlation between the two series is 0.32

over business cycle frequencies, and it jumps to 0.46 for medium run cycles.

An alternative way to determine precisely the cycles at which the comovement occurs is given

in Figure 8. This figure presents the correlation between the (log) P/E ratio and consumption

growth at different frequencies. This notion of correlation is sometimes referred to as “coherency”

in the literature21. Schematically speaking, if two series are influenced by both short term and long

term cycles, the coherency allows us to determine to what extent these series are jointly determined

by long run cycles (low frequencies) or short cycles (high frequencies). As can be seen from the

figure, there are two peaks of the coherency: One at a frequency of about 0.12 − 0.15 and one at
a frequency of about 0.35. The reciprocals of these numbers suggest that the log P/E ratio and

consumption growth are most highly correlated over medium cycles that last about 8 years and

also over shorter cycles that last about 3− 4 years.
To assess the statistical significance of these spikes in coherency we performed a Monte Carlo

experiment. We first estimated an AR1 process for the log P/E ratio and then isolated the residuals

of this process and consumption growth. Subsequently, we simulated 1000 paths of a length of 87

years, as follows: We drew an initial value for the log P/E ratio from its empirical distribution.

Then we drew pairs of consumption growth and the innovation in the AR1 process for 87 years,

creating artificial paths for consumption growth and artificial AR1 processes for the log P/E ratio.

Repeating this exercise 1000 times we computed 5% and 95% confidence bands for the coherency

between the two series. In short, these confidence bands were created under the assumption that the

P/E ratio is at most contemporaneously correlated with consumption growth and has no predictive

ability for the latter. As can be seen, the coherency peaks around 0.12 and 0.35 are well outside

the confidence bands.

The finding that coherency is not constant (but instead has distinct peaks) has some independent

interest, since it is a fact that appears hard to match with models that drive all the variation in

21See Hamilton [1994] or Brockwell and Davis [1991]
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the P/E ratio from variations in risk aversion, while assuming unpredictable consumption growth.

One can show formally22 that in such models, the coherency should be constant.

A very practical implication of this argument is that consumption growth should be predictable

by the log P/E ratio and especially so over the longer run. Figure 9 presents evidence to this effect.

It presents results of regressions of T year ahead forecasts of consumption growth on the log P/E

ratio.

The top subplot presents the coefficients of this regression. The confidence intervals were

computed with a similar bootstrap procedure as for figure 8 (i.e. assuming no predictability). The

figure demonstrates that the coefficients are flat for the first 2-3 years, increase sharply after that,

remain relatively flat thereafter and then increase again between years 8-12. Once again, we find

the same pattern as in Figure 8: consumption growth becomes progressively more predictable over

horizons between 8 and 12 years.

To compare, the bottom panel plots the correlation coefficients between (log) P/E and con-

sumption growth in the subsequent T periods for the data and the model. As can be seen, both

the model and the data imply an inverse U pattern for these correlation coefficients. The pattern is

the same for both the data and the model, with the only exception that the correlation coefficients

for the model peak around 8 years and are stronger at shorter frequencies. However the order of

magnitudes are fairly comparable.

The intuition for this inverse U-shape picture in our model is the following: Suppose that we

are at the beginning of a cycle. Over a short interval of time it is unlikely that any firm will

choose to invest. In the short run consumption will behave as a random walk, since it is going to

be affected by movements in θt alone. Over a longer prediction horizon however, it becomes more

likely that θt will increase enough to induce some firms to invest: The variance introduced with

an increase in the prediction horizon will make it more likely that certain paths of θt will cross

the investment thresholds with high probability. Hence, over short horizons consumption growth

should be relatively unpredictable, becoming more predictable as the horizon lengthens.

Overall, we find evidence in the data that consumption growth is not a pure i.i.d process. More

importantly, a good fraction of the variation is accounted for by cycles with an average duration

between 8-12 years that appear to be shared by the P/E ratio. This is the notion of medium term

22Details of this calculation are available upon request.
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cycles that were described in the theoretical section of the paper.

5.3 Variations in Expected Returns in the Time Series

We turn next to the implications of the model for return predictability over the medium run. We

start by demonstrating how the growth options that arise over the medium run can generate sub-

stantial predictability in excess returns (especially for companies with substantial growth options)

and then move on to investigate whether these strong patterns survive at the aggregate.

Consider first the expected return for a specific segment of the market, namely firms with small

assets in place but large current growth options. Our interest in such firms is both theoretical and

empirical. From a theoretical standpoint, we are interested in measuring the expected return (and

its reversal) for a subset of companies for which the effects described in the model are strongest.

From an empirical point of view, we believe that certain market indices (like the Nasdaq in the

1990’s) consisted of stocks with these characteristics. Thus, it is interesting to investigate if the

model can reproduce (in expectation) the astounding returns of such indices.

In particular, we perform the following thought experiment: We take a firm with size equal to

the mean of the lowest size decile and assume that a new technological round arrives. We assume

further that this firm “draws” the option to plant the highest productivity tree in the current

epoch.We then compute its P/E ratio and its expected (instantaneous) return as a function of the

expected remaining time to plant its tree. We also give its P/E ratio and its expected return after

it has planted the tree23. The results are given in Table 3. The table shows the relative weights of

the three valuation components and their expected returns.

The expected return of the entire firm remains at a level close to 17% for practically all 8 years,

only to drop to about 10% after the firm invests. This very high expected return in the initial stage

is driven by the almost 20% expected returns of current growth options, which make up the bulk of

the valuation for this specific firm. We would also like to note that these numbers are unconditional

expected returns, not the expected returns conditional on the firm investing at a given time T . The

latter numbers are clearly going to be significantly larger as in Carlson, Fisher, and Giammarino

[2004a]. Interestingly, the numbers that we find are similar in magnitude to the numbers given in

23To be consistent with the thought experiment, we condition on the event that the epoch does not change before

the firm plants its tree.
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Cochrane [2005] on the expected returns to venture capital investments. (Cochrane [2005] reports

numbers around 25%)

It is noteworthy that expected returns rise slightly as the expected time to invest decreases,

since the current period growth options become a progressively more important component of the

price and thus both the P/E ratio and expected returns increase. Once the firm invests however,

what used to be growth options becomes assets in place and thus we obtain the reversal in expected

returns that is documented in the table.

The firm we considered sofar provides an isolated example of the model’s ability to generate

variations in expected returns over a medium term cycle. However, aggregation over all firms will

preserve the same pattern. As already discussed in section 4.2, an increasing P/E ratio (at the

aggregate) will be useful in predicting the relationship between assets in place and growth options

over the medium run cycle and hence help predict returns, especially over longer horizons.

Table 4 provides evidence to this effect. It shows the results of standard predictive regression

of cumulative (excess) returns for horizons of 1-7 years and compares the results to the data. Just

as in the data, we obtain a negative coefficient which is increasing in absolute value over time.

The intuition for this increase in predictability over longer horizons is identical to the one given in

section 5.2: The increase in the variance of the distribution of log(θt+T ) − log(θt) makes it more
likely that certain paths of θt will cross the investment thresholds of the various firms.

Quantitatively, the simulated point estimates are smaller than in the data. However, the coef-

ficients found in the data typically lie within a two standard deviation band of the simulated point

estimate. It is noteworthy, that the model can produce a non-negligible degree of predictability

without having to resort to any variations in risk aversion (relative risk aversion is always fixed at 7

for all the exercises performed). The only channel at work is the variation in risk over the medium

term cycle, associated with the emergence and eventual depletion of growth options.

5.4 Cross Sectional Variation and the Medium Run

In this section we explore the ability of the model to provide some new insights into cross sectional

patterns of expected returns. Next to exploring the ability of the model to describe well documented

patterns (like the size premium) we also focus on two specific applications, that the model is

particularly well suited for: a) the prolonged breakdown of the usual predictability relationships
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during the so-called “long boom” of the US economy (1986-2001) and b) the ability of the standard

consumption CAPM to perform better in the data, when one uses longer horizons for consumption

growth.

5.4.1 The Size Premium and Extended Breakdowns

By now there exist numerous models that can account for both a size and a value premium. The

present model can also account for such phenomena. An aspect of the model that is unique,

however, is its potential to provide insights into why these patterns seem to have disappeared in

the US economy from 1986-2001- a period that has been commonly referred to as the “long boom”-

. We focus only on the size premium in this section since both the value and the size premium

emanate from the same source in our paper. Alternatively put, if we sorted firms by book to market

the results would be qualitatively similar.

Table 5 compares the output of long simulations of the model to the data. In their seminal

paper Fama and French [1992] create portfolios by sorting stocks on size and then computing the

average returns of these portfolios. We repeated the same exercise with our model by simulating

a long path (20000 years) for 2000 companies to ensure stationarity and then sorting stocks into

12 size deciles for the last 500 years. To avoid simulation error we repeated this exercise 100 times

and averaged over all simulations.

From the data of Fama and French [1992], it is easily seen that the difference in log size between

the largest and smallest portfolio is about 3 times larger than that in our model and about 1.5

times larger if one ignores the extreme portfolios 1A and 10B. Similarly, the difference in returns

between the largest and the smallest portfolio in the data is about 6 times larger than for our model

and about 2.5 times larger if one ignores the extreme portfolios. The model can thus account for a

good fraction of the size premium and performs better if one ignores the extreme portfolios in the

data.

We next turn our attention to the predictability breakdowns implied by the model. To investi-

gate these, we repeated the same exercise as above, however we only kept observations commencing

with the beginning of an epoch and ending once 5% of the most productive firms have invested.

This selection captures the initial phases of a cycle and the first stages of an investment driven

boom. For most cycles, these observations span about 9-10 years on average, during which P/E is
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exceptionally high, much like the situation in the nineties. Table 5 shows that the size premium

implied by the model is perfectly reversed for this subset of simulated observations: Market capital-

ization in an era of rapid technological growth will be associated with growth options, and not just

assets in place. Of course, as options get exercised the size premium resurfaces, since size becomes

uniquely associated with substantial assets in place.

Therefore, even if there is a size premium over the long run, it is to be anticipated that it will

break down before and during the first stages of investment booms and stock market runups. Our

simulations suggest that these periods could easily span 10 years and potentially more.

5.4.2 The Long Run Performance of the Consumption CAPM

As a last application, we analyze the ability of the model to reproduce the findings in Parker and

Julliard [2005]. Parker and Julliard [2005] show that the consumption CAPM performs better

if one uses longer horizons of consumption growth rates. Figure 10 replicates figure 1 in Parker

and Julliard [2005] for our simulated dataset. In the top part of the figure, we first compute

the covariances between the contemporaneous consumption growth rate and the excess returns

of 25 size sorted portfolios for 500 years of simulated data. Subsequently we run a cross sectional

regression of the average excess returns on the covariances of these portfolios with contemporaneous

consumption growth. As Parker and Julliard [2005] we use quarterly returns. The top subfigure

plots the resulting predicted returns against the actual returns. As can be seen, the fit is far

from perfect24, despite the fact that the conditional consumption CAPM holds in our framework.

To obtain the bottom subfigure, we repeat the same procedure as for the top subfigure except

that we use the long-horizon (5-year) consumption growth rate instead of the contemporaneous

consumption growth rate. The fit of the CCAPM becomes significantly better, just as Parker and

Julliard [2005] document for actual data.

The reason is that correlation with long run consumption growth “reveals” more information

about the true conditional beta of each portfolio: Conditional betas in our framework vary because

they capture differences in the relative importance of growth options. In turn, the importance of

growth options is better revealed by examining the covariation of returns with the entire consump-

tion growth path in the epoch, not just the one-period consumption evolution.
24This has a similar “flavor” with the findings in Gomes, Kogan, and Zhang [2003].
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6 Conclusion

This paper is an attempt to understand the interactions between technological growth and asset

pricing. We present a model that derives jointly long lasting technological cycles and their impli-

cations for asset prices. The key insight of the model is that technological progress will lead to a

“life-cycle” for growth options. At the beginning of a cycle, growth options will emerge in the prices

of most companies. This will increase their P/E ratios and their expected returns. The investment

boom that will accompany the exploitation of growth opportunities will lead to a downturn in both

P/E ratios and expected returns.

Technological cycles can thus introduce predictability of expected returns both in the cross

section and at the aggregate. We demonstrate how most of the well established asset pricing

phenomena (PE predictability, the size and the value premium, momentum in the short run and

contrarian profits in the long run) can be addressed in a unified way in our model. Moreover,

we present some new empirical evidence that shows that the link between the macroeconomy and

financial valuation ratios appears to be quite strong over the medium run cycles that the model

analyzes. Moreover, our model presents both theory and empirical evidence that the long held

modeling assumption of consumption growth being i.i.d maybe a better description of its “short

run” behavior, but maybe a bad assumption for its behavior over longer horizons. Indeed, it

appears that the P/E ratio performs better as a predictor of growth over longer rather than shorter

horizons.

In conclusion, our model provides a theoretical microfoundation for the presence of “long run”

risks and their potential to provide a link between the macroeconomy and asset pricing over cycles

that are longer than the average business cycle.
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µ 0.010 γ 7 ζ(0) 1

σ 0.033 ρ 0.05 s 2

λ 0.050 Ā 1.55 e 32

Table 1: Parameters used for the calibration

Data Model

Mean of consumption growth 0.022 0.030

Volatility of consumption growth 0.033 0.033

Mean of 1-year zero coupon yield 0.018 0.029

Volatility of 1-year zero coupon yield 0.030 0.066

Mean of Equity Premium 0.042 0.036

Volatility of Equity Premium 0.177 0.208

Mean of Price to Earnings Ratio 22.480 33.417

Volatility of (log) Price to Earnings Ratio 0.280 0.335

Mean of Book to Market 0.668 0.707

Volatility of Book to Market 0.230 0.316

Table 2: Unconditional Moments of the model and the data. Data for consumption growth

are from the Website of Robert Shiller. Consumption growth refers to (yearly) differences in log

consumption. Both means and standard deviations are computed for the entire sample and for post

1918 data and then averaged to avoid issues with mismeasurement of consumption in pre World

War I data. The rest of the data are from Chan and Kogan [2002] except for the mean and the

volatility of the book to market, which is taken from Pontiff and Schall [1998]. The unconditional

moments for the model are computed from a Monte Carlo Simulation involving 20000 years of

data, dropping the initial 8000 to ensure that initial quantitites are drawn from their stationary

distribution.
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Mean time to Plant a tree 8 6 4 2 0 After

Relative weight of assets in place 0.052 0.047 0.043 0.039 0.036 0.962

Relative weight of current growth option 0.641 0.668 0.694 0.719 0.743 0.000

Relative weight of future growth options 0.307 0.285 0.263 0.242 0.221 0.038

Expected return of assets in place 0.090 0.094 0.098 0.100 0.100 0.100

Expected return of current growth options 0.199 0.199 0.199 0.199 0.199 0.000

Expected return of future growth options 0.075 0.075 0.074 0.073 0.073 0.073

Expected Return 0.156 0.159 0.162 0.165 0.168 0.099

Table 3: Pattern of expected returns for a firm in the lowest size decile having drawn the most

attractive growth option in the current epoch. The table gives the relative weight of the different

valuation components and their evolution as a function of the expected time to invest. We condition

on the epoch not changing until the firm invests. The table reports the total (not excess) return.
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P/E Predictability of Excess Returns

Data Model

Horizon(years) Coefficient R-square Coefficient R-square

1 -0.120 0.040 -0.041 0.010

(0.068) (0.012)

2 -0.300 0.100 -0.080 0.020

(0.111) (0.025)

3 -0.350 0.110 -0.108 0.029

(0.145) (0.034)

5 -0.640 0.230 -0.155 0.044

(0.193) (0.052)

7 -0.730 0.250 -0.186 0.054

(0.220) (0.057)

Table 4: Results of predictive Regressions. Excess returns in the aggregate stock market between

t and t+T for T = 1, 2, 3, 5, 7 are regressed on the P/E ratio at time t. A constant is included but

not reported. The data column is from Chan and Kogan [2002]. The simulations were performed by

drawing 100 time series of a length equal to the data and performing the same predictive regressions.

We report the means of these simulations next to the data. The numbers in parentheses are the

standard deviations of the estimates obtained in the simulations.
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Portfolios formed on Size (Stationary Distribution)

Deciles 1A 1B 2 3 4 5 6 7 8 9 10A 10B

Returns -Data 1.64 1.16 1.29 1.24 1.25 1.29 1.17 1.07 1.10 0.95 0.88 0.90

Returns -Simulated 0.70 0.69 0.68 0.67 0.66 0.64 0.63 0.62 0.61 0.60 0.60 0.59

Log Size - Data 1.98 3.18 3.63 4.10 4.50 4.89 5.30 5.73 6.24 6.82 7.39 8.44

Log Size - Simulated 3.34 3.80 4.07 4.31 4.56 4.83 5.10 5.39 5.69 6.01 6.29 6.60

Portfolios formed on Size (Breakdown Period)

Deciles 1 2 3 4 5 6 7 8 9 10

Returns -Data 1.22 0.95 1.00 0.96 1.13 1.12 1.26 1.18 1.21 1.18

Returns -Simulated 0.77 0.84 0.86 0.87 0.88 0.88 0.88 0.87 0.87 0.86

Table 5: Portfolios sorted by size - model and data
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place. The left figure plots the path of Mt
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as afunction of time, along with the times t1 and t2 at which

firms decide to plant their trees. The right figure plots the path of the P/E ratio for these two firms.
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Figure 3: Expected Growth rate in consumption as a function of the duration of an epoch. The top left

figure and the corresponding bottom left figure depict a scenario of a short epoch. The top right figure and

the corresponding bottom right figure depict a long epoch. The top figures depict expected consumption

growth as a function of time, while the bottom figures depict the respective paths for the mass of firms that

have planted a tree in the current round (KN,t) .
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Figure 4: Path of P/E ratio and the expected growth rate of consumption over a technological epoch.

The top panel depicts the P/E ratio and the expected growth rate of consumption, while the bottom panel

plots the respective path of KN,t.
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Figure 5: Log Periodogram of the consumption process for the data and the model. The top figure

presents the log periodogram for post- world war I yearly differences in log consumption. Confidence bands

are computed by bootstrapping the first differences in log consumption to produce 1000 artificial series with

a length of 87 years. The bottom figure presents the same exercise for the model: 3000 years of simulated

consumption growth were used to produce repeated series of a length of 87 years. The figure plots the

median of these simulations, along with 5% and 95% range intervals. It also shows the log periodogram for

the actual data. An equally weighted “nearest neighbor” kernel was used to perform the smoothing, equally

weighting the 7 nearest frequencies.
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Figure 6: Bartlett’s test for white noise based on the consumption cummulative periodogram. The test

rejects the white noise hypothesis with a p-value of 0.0376
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Figure 7: Consumption and the P/E ratio filtered at different frequencies. The top figure presents

filtered (log) consumption and the (log) P/E ratio keeping frequencies between 2-8 years (business cycle

frequencies), while the bottom figure retains frequencies between 8-30 years. All data are yearly. The P/E

ratio is evaluated at the beginning of the period. The correlation between the two series is 0.32 for the top

panel and 0.46 for the bottom panel. A Baxter King filter is used for both series.
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Figure 8: Coherency (Correlation at different frequencies) between (log) P/E and the differences in (log)

consumption. Confidence bands are computed using a Monte Carlo simulation of 5000 artificially created

series under the assumption that (log) consumption is a random walk, the (log)P/E ratio is an AR1 process,

and thus consumption growth is unpredictable.
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Figure 9: Long Horizon Predictability Regressions of cummulative consumption growth between t and

t+T on the (log) P/E ratio at time t− 1. The top figure presents results for the data. Confidence intervals
are computed by Monte Carlo simulations. We create artificial time series by bootstraping yearly differences

in log consumption and the residuals of an AR1 process fitted to the (log) P/E ratio. (For details see text).

The bottom figure compares the correlation coefficients for the same predictive regressions in the data and

the model.
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Figure 10: The consumption CAPM using 1-quarter consumption growth and 5-year consumption growth

rates to evaluate the covariation between consumption growth and excess returns.
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