Regulation of the Pharmaceutical Industry

Patricia Danzon

I. Introduction

Objectives of regulation of the pharmaceutical industry

- Regulation of safety, efficacy, quality, promotion
 - Benefits: better and more symmetric information about risks and benefits
 - Costs: adds to R&D costs and launch delay; effects on industry/market structure, competition
- Regulation of price, reimbursement, revenues etc.
 - social insurance programs seek to control moral hazard and limit market power created by patents
 - o Issues:
 - appropriate criteria/structure for regulating prices
 - high fixed costs, low marginal costs
 - appropriate global sharing of R&D costs

II. Background and Brief History of Pharmaceutical Regulation A: US

- 1938 Food, Drug and Cosmetics Act
 - Safety: Any firm seeking to market a new chemical entity (NCE) required to file a new drug application (NDA) to demonstrate that the drug was safe for use as suggested in proposed labeling
- 1962 Kefauver-Harris Amendments
 - Efficacy proof required, in randomized controlled trials
 - Safety: extended FDA regulation to cover clinical testing and manufacturing facilities
 - Removed the 180 day time limit within which FDA could reject an NDA
 - Promotion:
 - Restricts manufacturers' promotion to approved indications
 - Required that all promotional material include a summary of sideeffects and contraindications
- 1984 Hatch-Waxman Act: Patent term restoration and competition
- 1992 PADUFA: user fees to hire more reviewers
- 1997 FDA Modernization Act: relaxed restrictions on DTC
- B: EU
 - UK and some other EU countries added efficacy requirements similar to US
 - 1996 EMEA: centralized agency to review safety and efficacy
 - Price and reimbursement regulated separately by each country

III. Effects of Safety/Efficacy Regulation

A. Costs of Regulation (summary of earlier review articles)

- Most empirical work to 1995 focused on effects of 1962 Kefauver Amendments
- Increased costs of drug development: larger, longer trials, more uncertainty
 - R&D cost per approved new chemical entity (NCE): \$54m. in 1976 vs.
 \$802m. in 2000 (current dollars)
- Longer time from patent to NDA or marketing approval
 - Increased since 1962, especially in US (Wardell, 1973; Wardell and Lasagna, 1975)
 - Decreased lags for more innovative drugs suggests management has some control (possibly at higher cost) (Meltzer and Dranove, 1994)
- Decline in number of new drugs launched 1960s-70s
 - Regulation or exhaustion of technological possibilities?
 - Reversed in 1980s-1990s
- Increased industry concentration in 1960s and 1970s
 - weak firms eliminated in US and UK, attributed to tough efficacy requirements; less true in countries (France, Japan) with weaker efficacy regulation (Thomas)
 - \circ 1980s-90s Growth of biotech industry suggests no barriers to entry
 - More concentrated large pharma reflects M&A driven by patent expirations + gaps in pipeline, not regulatory costs

1980s-90s Regulatory Reforms Reduce Delay

- FDA priority review and fast track reduce review time
- PADUFA: user fees pay for additional reviewers
 - Accelerated approvals but with more post-launch safety problems (Olson)
 - More equal review times across firms (Olson)
- International harmonization: FDA, EMEA, Japan

High fixed R&D costs deter R&D for drugs with small potential market size

- Rare diseases
 - Orphan Drug Act: market exclusivity + more R&D credits
- LDC diseases
 - Need for push and pull subsidies for drugs with small/no market in high income countries e.g. malaria, TB etc.

B. Benefits of Safety/Efficacy Regulation

- Production and dissemination of safety and efficacy information is a public good

 may be underprovided by the market
- Regulation should reduce risk that harmful or useless drugs are marketed
- Market/legal alternatives to regulation:
 - Reputation evidence from generics markets suggests reputation works imperfectly

- o Safety: Tort liability provide some incentives for safety, but
 - imperfect deterrent if courts err and/or firms judgment proof
 - more costly than regulation?
 - FDA compliance as a liability defense?
- Efficacy: physicians/consumers may acquire efficacy information over time but
 - Large RCTs superior to uncontrolled, observational data
 - learning by experience may entail a large welfare loss: waste and health risks
- Inconsistent standards for nutriceuticals

IV. Patents

- Given high cost of R&D, patents are essential to induce investment
 - $\circ~$ Static efficiency loss if patents lead to suboptimal consumption, due to P >~ MC
 - mitigated by insurance in industrialized countries: consumers pay only modest co-payment at point of service
 - TRIPS requirements for patents for all WTO members by 2015 => concern that drugs will become even less affordable in LDCs
- Market segmentation and differential pricing can in theory make drugs more affordable in LDCs
 - R&D as a global joint cost => Ramsey pricing is optimal
 - Unregulated price discrimination may result in roughly appropriate (Ramsey) differentials but
 - Are price levels appropriate?
 - Incentives for free riding by large purchasers/in regulated markets (see below)
 - In practice, market segmentation and ability to price-discriminate is undermined by parallel trade and cross-national price referencing
 - Differential pricing within LDCs also needed
- Patents may lead to wasteful, rent-seeking R&D: racing or inter- and intra-firm spillovers (Henderson and Cockburn)
- Do substitutable 'me-too' products reflect excessive product differentiation and lead to higher prices or does competition between similar products stimulate price competition, hence benefit consumers

V. Regulation of Prices, Insurance Reimbursement, Profits etc.

- A. **Pharmaceutical industry is structurally competitive**: low concentration overall, no barriers to entry into R&D
 - Higher concentration in some therapeutic categories
 - But contestable: entry targets larger markets (Acemogliu and Lyn); market size and success probabilities are negatively correlated (Danzon, Nicholson and Pereira)

• Rational drug design facilitates imitative compound development

B. Demand is relatively inelastic due to

- Patients have imperfect information on efficacy =>
- Physician prescription required, but physicians may lack price information and/or be imperfect agents
- Insurance/third party payment: 70% in US, over 80% in most industrialized countries with universal drug coverage

C. Third party payers seek to limit prices they pay => price regulation in countries with social/national insurance schemes

- Moral hazard => optimal insurance contracts include some controls
- Ideal pharmaceutical insurance contract balances moral hazard control vs. risk reduction + incentives for R&D

D. Forms of price and reimbursement regulation

- Direct price regulation (Italy, France, Canada)
 - Criteria: prices of similar products in same country (internal referencing); foreign price of same product (external referencing)
- Reference price reimbursement (Germany, Netherlands, New Zealand)
 - Limits reimbursement, not price
 - \circ RP = max. reimbursement for all products in a group, based on generic or therapeutic substitutes
- Profit controls: rate of return on capital (UK)
- Drug budgets/revenue limits: by company (France); by physicians (Germany)
- Cost-effectiveness requirements (UK, Australia)

E. Evidence of Effects of Regulation

- Cross-national differentials in prices
 - Brands vs. generics
- Price regulation undermines generic competition
- Price regulation negatively associated with launch of new drugs (fewer drugs launched, longer delays)
- Distortions in location of production
- Location of R&D: tax-inducements, incubators, funding of basic research etc.
- Vaccines

F. Industry Profitability and ROI

- R&D and promotion are expensed, but are more appropriately treated as intangible investments with a multi-year payout
- Adjusted rates of return on book value of capital are lower than unadjusted
- Discounted cash flow for revenues over lifetime for a cohort of drugs (Grabowski and Vernon, 1990, 2003; OTA, 1994) show IRR similar to cost of capital or at most small excess returns

VI. Promotion and Advertising

- Anticompetitive: promotional expenditures lead to increased market power and higher prices (Walker, 1971)
- Beneficial: promotion provides information to physicians and consumers on availability and effects of products; facilitates entry; may encourage compliance
 - Rent-seeking versus information production (Hurwitz and Caves (1988)
- Direct to consumer advertising (DTC)
 - 1997 FDA relaxed requirements in US under First Amendment claims;
 FDA is required by law to consider risk/benefit trade-off, not costs;
 - DTC still banned in other countries, which do consider cost implications
 - Mixed evidence of effects of DTC in US: expanding market vs. stealing shares; inappropriate physician visits and drug use

VII. Regulation of Generics: US

- ANDA process for approval of bioequivalent generics
- Pharmacists authorized to substitute generic for brand unless physician writes "brand required"
- Pharmacist incentives to substitute cheap generics
- Generic companies compete on price
- Contrast regimes where generics are not certified as bioequivalent; pharmacist can
 only substitute if physician prescribes generically; pharmacist is paid a percent of
 the price => branded generics, small shares, relatively high prices.

VIII. Conclusions