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Abstract

Standard intuitions for optimal gerrymandering involve concentrating one�s

extreme opponents in �unwinable�districts (�throwing-away�) and spreading

one�s supporters evenly over �winnable�districts (�smoothing�). These intu-

itions are not robust and depend crucially on arbitrary modelling assumptions.

We characterize the solution to a problem in which a gerrymanderer observes a

noisy signal of voter preferences from a continuous distribution and creates N

districts of equal size to maximize the expected number of districts which she

wins. We show that �throwing-away�districts is not generally optimal, nor is

�smoothing.� The optimal solution involves creating a district which matches

extreme �Republicans�with extreme �Democrats,� then continuing to match

toward the center of the signal distribution. We show that the value to being

the gerrymanderer is increasing in the extremity of voter preferences, the qual-

ity of the signal, and the number of districts.
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1 Introduction

One of the more curious features of American democracy is that electoral bound-

aries are drawn by political parties themselves. In order to ensure a notion of equal

representation, the Constitution of the United States provides that �Representa-

tives and direct Taxes shall be apportioned among the several States which may be

included within this Union, according to their respective Numbers.�1 Since pop-

ulations change over time, the Constitution also provides a time frame according

to which representation shall be adjusted - �...within every subsequent Term of ten

Years, in such Manner as they shall by Law direct�- where the �they�are the several

states. In practice, this leaves the process of redistricting to state legislatures and

governors.

History has shown that political parties act in their own interests; redistricting

is no exception, and the advantages gained from it are large. From Massachusetts�s

Elbridge Gerry in 1812 (after whom the term �Gerrymander�was coined), to the

recent actions of Texas�s Tom DeLay, American politicians have long used the re-

districting process to achieve partisan political ends. Most recently, the much

publicized Republican redistricting in Texas in 2003 caused four Democratic Con-

gressman to lose their seats and would have been even more extreme but for the

Voting Rights Act, which e¤ectively protected nine Democratic incumbents. Other

particularly stark current examples include Florida, Michigan and Pennsylvania -

states which are evenly divided, but whose Congressional delegations collectively

comprise 39 Republicans and 20 Democrats. Democrats are also familiar with

the practice; though President Bush won Arkansas by more than 10 points last

November, the state�s Congressional delegation, bolstered by the Democratic state

legislature�s redistricting in 2001, contains three Democrats and one Republican.

Although gerrymandering using unequal district sizes or racial characteristics is

unlawful, partisan gerrymandering remains legal, though controversial. In Davis

v. Bandemer (1986), the Supreme Court declared partisan gerrymandering inimical

to norms of fair and equal representation; but the majority was unable enunciate a

workable test for where redistricting stops and gerrymandering begins. Nearly two

decades later, despite numerous attempts to �nd such a standard, four members

of the court (Chief Justice Rehnquist and Justices O�Connor, Scalia and Thomas)

1Article I, section 2, clause 3.
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found in Vieth v. Jubelirer (2004) (a 4-1-4 decision) that the test laid down in

Bandemer was not practicable, in that it gave no guidance to legislatures and lower

courts, and, absent such a test, partisan redistricting was not justiciable2.

In the wake of this decision and the controversial Texas redistricting in 2003,

there has been renewed interest in legislative reform to change the partisan nature

of redistricting. Currently, two states, Iowa (since 1980) and Arizona (since 2000),

include non-partisan commissions in their decennial redistricting processes, but only

Arizona completely excludes political bodies. More than twenty states have con-

sidered similar amendments in the past decade, though, and movements advocating

such changes seem to be gaining momentum. Bruce E. Cain, director of the In-

stitute of Governmental Studies at University of California at Berkeley, recently

commented that:

You cannot believe the number of people and organizations across the country

that are focusing on this redistricting issue... It seems like it�s poised to become,

for the reform community, the equivalent of McCain-Feingold3.

Most recently, Governor Arnold Schwarzenegger of California proposed that retired

judges take charge of the redistricting process. But despite the great impact of

gerrymandering on the American political system and the surge of recent interest

in reform, few authors have attempted to understand the basic incentives at work.

In this paper, we view the issue of redistricting through the lens of an economist

concerned with the endogenous formation of political institutions. In particular,

we frame the issue as a maximization problem by the gerrymander where the choice

variables are the allocations of voters to districts. In contrast, most previous analy-

ses model the problem as a trade-o¤ between �biasedness�- the degree to which an

evenly divided population would elect an uneven slate of legislators - and �sensitiv-

ity�- the responsiveness of the share of seats held by a party to the share of voters

supportive of that party (Owen and Grofman, 1988; Sherstyuk, 1998; Cox and Katz,

2002). In these models, the gerrymanderer optimally concentrates those least likely

to vote for her in districts which are �thrown away�, and spreads remaining voters

2�...the legacy of the plurality�s test is one long record of puzzlement and consternation.�, Scalia
J.

3Adam Nagourney, �States See Growing Campaign to Change Redistricting Laws,�New
York Times, February 7, 2005.
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evenly over the other districts, which are �smoothed.� A major limitation of these

models is that they are not micro-founded; the gerrymanderer chooses properties of

the redistricting plan, as a whole, rather than the placement of voters into districts.

Since there is no one-to-one mapping from these aggregate characteristics to indi-

vidual district pro�les, there is no guarantee that the solution from these models is

actually optimal.

Gilligan and Matsusaka (1999) take an alternative approach, instead analyzing

a micro-founded model in which individuals with known party a¢ liations vote for

those parties with probability one. Since one party wins a district comprising n+1

of its supporters and n opponents with certainty, the optimal strategy is to make as

many districts like this as possible. Indeed, if one party holds bare majority of the

population, then they win all districts! Though the assumptions of observability

and deterministic voting simplify the analysis greatly, they clearly do so at the

expense of realism.

Shotts (2002) considers the impact of majority-minority districting. He develops

a model with a continnum of voters and imposes a constraint he calls the �minimum

density constraint.� This requires the gerrymanderer to put a positive measure of

all voter types in each distict. This appears to be a reduced form way of modelling

the fact that the gerrymanderer observes a noisy signal of voter preferences. We

explicitly model the signal, and are thus more general. We note that the minimum

density constraint a priori rules out what we show is, in fact, the optimal strategy

- matching slices.

We analyze a model in which there is a continuum of voter preferences, and

where the gerrymanderer observes a noisy signal of these preferences. We show

that the optimal strategy involves creating districts by matching increasingly ex-

treme blocks of voters from opposite tails of the signal distribution. This �nding

contrasts with the bulk of the previous literature in two ways: First, we show that ex-

treme Democrats should be matched in a district with extreme Republicans, rather

than concentrated in a district which Republicans concede to be unwinnable and

�throw away.� Intuitively, extreme Democrats can be best neutralized by matching

them with a slightly larger mass of extreme Republicans. Second, we show that

it is better to put extreme Republicans and moderate Republicans in separate dis-

tricts. This contrasts with the �smoothing� intuition, which calls for the creation
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of identical pro�les among districts which the gerrymanderer expects to win. Intu-

itively, since district composition determines the median voter, smoothing districts

makes ine¢ cient use of extreme Republicans as right-of-the-median voters in many

districts, rather than having them be the median in some districts.

This analysis is a �rst step toward a more complete understanding of the phe-

nomenon of gerrymandering. There are important issues which this paper does not

address: most notably, we focus exclusively on partisan incentives, to the exclusion

of the motivations of incumbents (i.e. incumbent gerrymandering). We also ab-

stract from geographical considerations, such as the legal requirement of contiguity

(which, we will argue, may be surprisingly unimportant), as well a preference for

compactness or the recognition of communities of interest. Finally, the gerryman-

derer in our model does not account for the potential limitations of �race conscious�

redistricting. Of course, this does not mean that racial and partisan gerrymander-

ing are distinct phenomena. Given that race is a component of the signal of voter

preference observed by the gerrymanderer, there may be circumstances where they

are essentially the same practice. Ultimately this is an empirical question, which

depends on the distribution of voter preferences across voter characteristics. These

issues are further explored in Section 7.

The remainder of the paper is organized as follows: Section 2 details the legal and

institutional backdrop against which redistricting takes place. In Section 3 we walk

through some basic examples which illustrate the primary intuitions of the solution

to our more general model, which we present in Section 4 along with comparative

statics. Section 5 reports the result of a number of numerical examples of the model

in order to illustrate further the optimal strategy and its comparative statics. In

Section 6 we sketch a number of extensions to the basic model, including uncertain

voter turnout, incumbent advantages, and alternative partisan objective functions.

Finally, Section 7 contains some concluding remarks and suggests directions for

future research.
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2 Background: Legal Decisions and Political Realities4

Though the process of redistricting was politicized in America as early as 1740 (in

favor of the Quaker minority in the colony of Pennsylvania), the modern history of

gerrymandering begins with the landmark Supreme Court decision Baker v. Carr

(1962). Especially in the south, states had not redrawn Congressional districts after

each decennial census, as mandated by the U.S. Constitution. Since population

growth was much greater in urban areas, this inertia served to dilute the urban vote

- often poor and black - and enhance the political power of rural white voters who

traditionally supported the Democratic Party. After the 1960 census, the population

disparities between Congressional districts had become as great as 3 to 1 in Georgia

(and as extreme as 1000 to 1 for state legislature seats in some states). The

decision in Baker declared that challenges to such districting plans were justiciable,

and two years later the Court clari�ed its position on the standard for unlawful

redistricting plans, stating inWesberry v. Sanders that only Congressional districts

with populations �as nearly equal as possible� were acceptable under the Equal

Protection clause.5 Furthermore, Federal District courts were empowered, as part

of their remedial discretion, to draw district boundaries themselves should a state

prove either unable or unwilling to produce a satisfactory plan.

Consensus over the practical implications of the Court�s decisions solidi�ed over

the next 15 years. Though Federal District courts initially experimented with

strict upper bounds on the maximum population deviation across districts, by the

late 1970s states were subject to a more �exible set of criteria, in which concerns

such as the compactness of districts or the preservation of �communities of interest�

justi�ed small deviations in representation. As of 1980, though, population equality

across districts was the only constraint on redistricting. In fact, the 1980 round of

redistricting demonstrated that strict adherence to population equality gave states

great latitude to skew election results by other means. For instance, the California

redistricting plan, despite blatantly favoring Democrats, withstood court challenge

due to near population equality, while courts rejected the less partisan New Jersey

4This section details the legal and political backdrop against which gerrymandering occurs today.
Readers uninterested in or already familiar with this material may wish to skip directly to the
analysis in Section 3.

5See Westberry v. Sanders 376 US 1 (1964). The court applied a similar standard to districts
for statewide legislative bodies in Reynolds v. Sims 377 US 533 (1964) and for general purpose
local governments in Avery v. Midland County 390 US 474 (1968).
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plan due to its unacceptable maximum population deviation of 0.6984%.6 Perhaps

spurred on by the outcomes of the 1980 round of redistricting, the Court attempted

to expand the list of justiciable claims for redistricting plans to include both racial

and partisan motivations. These e¤orts have proved less lasting than those based

on population equality.

In the 1990�s, debates around gerrymandering shifting to the issue of �race con-

scious�redistricting. While it had long been clear that intentional dilution of the

voting strength of racial minorities violated the Equal Protection clause, it was less

clear that states could draw boundaries such that racial minorities could elect their

preferred candidates (Issacharo¤, Karlan and Pildes, 2002). In a number of cases,

culminating in Shaw v. Reno (1993), the Court found that redistricting plans would

be held to the same strict scrutiny with respect to race as other state actions. In

practice, this means that, once plainti¤s demonstrate that racial concerns were a

�predominant factor� in the design of a districting plan, the plan is illegal unless

the state can justify the use of race and show that such factors were considered only

when necessary. This places a heavy burden on the states. Some Federal courts

initially interpreted these decisions as requiring states to ensure minority represen-

tation through the creation of minority-majority districts, but the Supreme Court

declared that this practice would violate Section 2 of the Voting Rights Act. In

more recent cases, the Court continues to downplay the importance of racial consid-

erations; for instance, litigation surrounding the 1991 North Carolina redistricting

ended when the Court ruled, in Easley v. Cromartie (2001) that partisan concerns,

not racial concerns, �predominated� in the construction of the heavily black and

democratic 12th district, and thus the plan was legal.

The history of attempts to ban partisan gerrymandering have proved less suc-

cessful still. In Davis v. Bandemer, the Supreme Court attempted to limit the

impact of partisan concerns in redistricting processes by stating that such claims

were, in theory, justiciable (though they did not decide the merits). Though the

years following this decision saw many attempts to de�ne the level and shape of

such a standard, there was little agreement, and no claim of partisan gerrymander-

ing ever succeeded. In Vieth v. Jubelirer, four member of the Court found that such
6See Karcher v. Daggett (1983). In gerrymandering jargon, the �population deviation�of each

district is the di¤erence between the actual district population and the ideal district population,
expressed in terms of percent of the ideal population. The �maximum population deviation� is
the di¤erence between the greatest and lowest population deviations.
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attempts were doomed. While Bandemer is still good law, the future justiciability

of partisan gerrymandering claims seems far from assured.

The current reality of political redistricting re�ects the past forty years of case

history. States now use increasingly powerful computers to aid in the creation of

districts, and, accordingly, Baker�s �as nearly equal as possible�population require-

ment is extremely strict. A Pennsylvania redistricting plan was struck down in

2002 for having one district with 19 more people than another without justi�cation!

On the other hand, the law does allow for some slight deviations, provided there is

adequate justi�cation. In Iowa, for instance, Congressional districts must comprise

whole counties; the current maximum population deviation of the Iowa redistricting

plan is 131 people, but the legislature rejected an earlier plan with a 483-person

deviation. Such cases are not common, though. The current Texas districting

plan is more representative and has, to integer rounding, exactly equal population

in each district.

In addition to the equal population requirement, districts must be contiguous.

This requirement �rst appears in the Apportionment Act of 1840, though it was

standard long before then. While technology has tightened the population equality

constraint, computers have e¤ectively loosened the contiguity requirement, as legis-

lators can now draw districts more �nely than ever before. In the 1970s, districting

plans were laborious to create and di¢ cult to change, as each required hours of

drawing on large �oor-maps using dry-erase markers; now lawmakers use Census

TIGERLine �les to create and analyze many alternative districting schemes both

quickly and accurately. Contiguity has been stretched to the limit in such recent

cases. Florida�s 19th, 22nd, and 23rd districts, shown in Figure 1 (in the Appen-

dix), are one such case. The 22nd comprises a coastal strip not more than several

hundred meters wide in some places but ninety miles long, while tentacles from the

22nd and 23rd intertwine to divide the voters of West Palm Beach and Fort Laud-

erdale. Even more striking is the shape of the Illinois 4th (shown in Figure 2),

drawn to include large Hispanic neighborhoods in the North and South of Chicago

but not much in between. Each of these districts is, in some places, no more than

one city block wide, and such necks are often narrower than 50 meters.

Digital tools have also aided the rise of a partisan practice known as �kidnap-

ping,� in which the home of an incumbent of one party is included in a di¤erent
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(and typically far-o¤) district using a long narrow connecting strip. This maneu-

ver deprives the candidate of much of her incumbency advantage and may pit her

against another incumbent to lower further her chances of reëlection. Four demo-

cratic Congressmen from Texas lost their seats through such tactics in the 2004.

Because of the obvious spacial aspect of kidnapping, we do not consider the practice

in our analysis.

Each state has its own procedure for redrawing district boundaries. In most

states, redistricting plans are standard laws, proposed by the members of the leg-

islature and subject to approval by the legislatures and the governor. Arizona

and Iowa delegate redistricting to independent commissions, though in Iowa leg-

islators must still approve the plan and may edit proposed schemes after several

have been rejected. In 2001, for instance, the legislature rejected the �rst proposed

plan along partisan lines because Republicans thought the plan was not favorable

enough.7 Arizona and Iowa also instruct their redistricting commissions to make

districts compact, respect the boundaries of existing �communities of interest,�and

use geographic features and existing political boundaries to delineate districts �to

the extent practicable.� Finally, Arizona also mandates that �competitive districts

should be favored where to do so would create no signi�cant detriment� to other

objectives.8 No other states have explicitly de�ned redistricting goals along these

lines.

There are three key messages to understand from the backdrop against which

gerrymandering takes place. First, contiguity may well not be a binding constraint

because of the �ne lines which gerrymanderers use to create districts. Second,

other spatial/geographic concerns such as compactness and communities of inter-

est have found little legal traction. As such, they are really not constraints on

gerrymanderers. Third, the Court has consistently considered partisan and racial

gerrymandering to be analytically distinct - Cromartie even going so far as to allow

racial gerrymandering if it is not deemed the predominant motive. The �rst two

of these points suggest that spatial/geographical considerations are not �rst-order

concerns. Accordingly, our model omits them. The third rests on the premise that

signals of voting propensity and race are su¢ ciently uncorrelated that an optimal

gerrymandering strategy does not con�ate the two issues. This is a point to which

7�Senate Rejects Districts,�Des Moines Telegraph Herald, May 3, 2001.
8See Arizona Proposition 106, and 1981 Iowa Acts, 2nd Extraordinary Session, Ch. 1.
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we return later in the paper.

3 Some Simple Examples

In order to illustrate the intuition behind the theory in this paper, we now provide

some very simple examples that capture the basic features of the more general model

in Section 4.

3.1 Example 1

Consider the problem faced by a gerrymanderer in a state in which a population

of voters have single-peaked preferences over a one-dimensional policy space. We

assume that each voter has bliss point �, and that, across the population, � is

distributed uniformly on [�1; 1]. These assumptions imply that, in a two party

election, each voter supports the candidate located closest to her on the ideological

spectrum. To begin, we assume that the gerrymanderer can directly observe � for

each voter. We assume that all candidates - the right-wing �Republican�candidate

and the left-wing �Democrats� - locate at 0, and so the percent of votes captured

by the Republican candidate in any election is simply the proportion of voters to

the right of 0.

The gerrymanderer - suppose she is a Republican - must break up the population

into equal-sized districts in which di¤erent elections take place with the goal of

maximizing the expected number of seats won by her party. Since we abstract from

geographic concerns here, the gerrymanderer can match together any pieces of the

population into a district. Suppose, for simplicity, that the gerrymanderer must

form 2 districts, so that each district must comprise mass 12 of voters. Since all voters

for whom � � 0 support the Republican candidate with certainty, Republicans win
all districts containing 14 or more mass of such voters.

9 From Gilligan and Matsusaka

(1999), the optimal gerrymander makes exactly half of the voters in each district

have preferences � � 0; in this basic setup, Republicans win each district with

certainty. It does not matter which right-wing voters go into each district.

9For the sake of simplicity, we resolve all �ties� in this example in favor of the Republican
candidate. Voters with � = 0 support the right-wing candidate, and if the candidates have equal
vote shares the Republican wins.
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3.2 Example 2

We now add some noise to the preferences in example 1. Suppose that, after can-

didates are positioned at 0, an aggregate preference shock A a¤ects the population

so that preferences are now single-peaked about �̂ = � � A. The gerrymanderer

observes only � and not A or �̂: Suppose that A is distributed uniformly on [�1; 1].
While voters for whom � > 0 now vote for the right-wing candidate in expectation,

only those for whom � = 1 support the Republican candidate with certainty; a voter

with � = 0:5, for instance, only prefers the right-wing candidate if A < 0:5, which

happens 75% of the time.

In this example we can make a sharper prediction about the form of the optimal

gerrymander. Half of the voters in each district should have � > 0, but it now

matters which of these voters go into which district. The optimal gerrymander

groups all extreme voters for whom � 2 [0:5; 1] into one district (denoted as District
1) and more moderate right-wingers with � 2 [0; 0:5] into District 2. These blocks
of right-wing voters are then grouped with any mass of voters for whom � < 0;

since the preference of the median voter in each district (�1 = 0:5 in District 1 and

�2 = 0 in District 2) is already determined, the composition of the left-wing voters

does not matter. Republican candidates now win District 1 with probability 0:75

and District 2 with probability 0:5. Any other distribution of right-wing voters

between the two districts (with 1
4 mass to each) would dilute the power of the

extreme right-wing voters by wasting some in District 2, since that median voter

would still have � = 0 while the preferences of the median voter of District 1 would

fall. Only by concentrating the most extreme right-wing voters together can the

gerrymanderer make the most e¤ective use of her supporters.

3.3 Example 3

Finally, suppose (in addition to the setup in the second example) that individual

preferences are measured with noise by the political parties. That is, let the ger-

rymanderer only observe s, a signal of preferences, instead of � itself. Across the

population, let s be distributed uniformly on [�1; 1], and let � j s be distributed
uniformly on [s� 0:5; s+ 0:5], with an independent draw of � for each voter with
a given signal s. Suppose the gerrymanderer creates districts as above (grouping
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voters for whom s 2 [0:5; 1] into District 1 and s 2 [0; 0:5] into District 2), and, fur-
thermore, groups the most extreme left-wing voters into District 1 and the others

in District 2. Because the measurement of preferences is noisy, the median voter

in District 1 falls to �1 = 0; the Republicans gain no advantage over proportional

representation. Intuitively, the Republicans are �cutting it too close�in District 1.

Although District 1 contains the most extreme right-wing voters, there are only 1
4

mass of them, and so the most left-wing voter with a right-wing signal is the median

voter. Since some of those right-wing voters end up with more moderate preferences

than their signal suggested, the median voter in the district is a moderate.

Instead, consider a gerrymander which groups all voters with s 2 [p; 1] into Dis-
trict 1 and s 2 [0; p] into District 2. Because of the intuition developed in the second
example, this districting scheme still keeps the most extreme right-wing voters to-

gether. Now, though, the Republicans have more than just a bare majority of sup-

porters in District 1, reducing the problem caused by preference mis-measurement

above.

To complete this optimal districting, the gerrymanderer must allocate the left-

wing voters. Her problem here is exactly opposite that faced with the right-wing

voters: she must decide how best to neutralize the voting power of the extreme

left-wingers. The key to this problem is that, since the majority of District 2 voters

are left-wingers (assuming p > 1
2), �2 is far more sensitive to the allocation of the

these voters than �1. Thus, the optimal gerrymanderer should concentrate those

least likely to vote for the Republican candidate into District 1, where they do not

a¤ect the median voter.

Combining these insights, consider a districting plan such that voters for whom

s 2 [�1;�1 + p] [ [p; 1] make up District 1 and the rest are placed in District 2.
The particular distributional assumptions made above imply that

�1 = p+
p
1� 2p� 1

2
and �2 = p� 1

2
:

The optimal gerrymander sets p� = 3
8 ; Republican candidates win 1:125 seats in

expectation. By including more right-wingers in District 1, �1 becomes less sensitive

to the mis-measurement of preferences, and thus increases quite a bit, while �2,

which depended less on the precision of the signal, does not decrease by as much.
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Furthermore, the right-wing voters of District 1 determine that �1 =
q

1
4 �

1
4 , and

so the inclusion of the most extreme left-wingers has no e¤ect. If, for instance, the

gerrymanderer had included these least favorable voters into District 2 and placed

voters with s 2 [�1 + p;�1 + 2p] into District 1, �2 would fall while �1 would not
change.

These three simple examples illustrate how key features of an optimal partisan

gerrymander di¤er from the standard �throwing away�and �smoothing�intuitions.

For a Republican gerrymanderer, it is not best to �smooth�extreme and moderate

right-wing voters across many districts; rather, one should concentrate the most

extreme right-wingers into a single district in order to not waste them all as right-

of-median voters. Second, it is not e¢ cient to concentrate those least likely to vote

for one�s candidate into a district that is �thrown away�; instead, these extreme

left-wingers voters are best countered by matching them with a greater number of

extreme right-wingers.

We now turn to our model, which provides a more general characterization of

the optimal partisan gerrymander, but the intuitions brought out in our examples

are still prominent. Indeed, under certain regularity conditions, the optimal dis-

tricting scheme has exactly the same form as in the �nal example above, matching

increasingly extreme slices of voters from opposite sides of the signal distribution

for the population.

4 The General Model

4.1 Overview

There are two parties, D and R, which can be interpreted as the Democratic Party

and the Republican Party. One of these parties (for simplicity we assume it to be R)

is the gerrymanderer and creates district pro�les. There is a continuum of voters,

each of whom is characterized by a policy preference parameter. The gerrymanderer

does not observe this parameter but, instead, receives a noisy signal of it. Also,

she observes the posterior distribution of policy preference parameters conditional

on the signal. We will sometimes refer to the marginal distribution of the signal

as the �signal distribution�. Thus, her problem is to create N voting districts by
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allocating voters from the signal distribution. Her objective is to maximize the

expected number of districts won. We determine the probability that each party

wins a district by the median voter in that district. The only constraints we place

on the gerrymanderer are that: (i) each voter must be allocated to one and only one

district; and (ii) all districts must contain an identical mass of voters.

4.2 Statement of the Problem

There is a continuum of voters who di¤er in their political preference. We assume

that each voter has single-peaked preferences about a bliss point � 2 R which varies
across the population. These preferences are not observed by the gerrymanderer,

who instead receives a noisy signal, s 2 R. Let the joint distribution of � and s be
given by F (�; s) on support R2. Let player R be the gerrymanderer. Let R have

a Bayesian posterior G (� j s) for the distribution of preferences given an observed
signal. We refer to this distribution as the �conditional preference� distribution.

We assume that both F and G are absolutely continuous. De�ne the marginal

distribution of s as:

H(s) =

Z
F (�; s) d�

Since there are a continuum of voters we can interpret H not only as character-

izing a single draw from the population of voters, but also the mass of voters in the

population. We refer to H as the �signal distribution�. R allocates mass from this

distribution in order to form districts. Let H have (continuous) probability mass

function h(s). Without loss of generality, let the median of s in the population

equal 0.

Since preferences are single-peaked, voters choose the candidate closest to them

on the ideological spectrum. Furthermore, we assume that each candidate posi-

tions herself at the median of the signal distribution for the population, which is

0 by assumption. Thus, all voters to the right support the Republican candidate,

while those to the left support the Democrat. As a reduced form representation

of electoral uncertainty, we assume that, in each election after the candidates are

positioned, there is an aggregate shock decreasing all preferences by A. Thus, if the

median voter in district n has preference �n, she votes for the Republican candidate

if and only if A � �n, which occurs with probability B (�n), where B (�) denotes the
c.d.f of A. We assume that A can take any value in R with positive probability, so
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that B is strictly increasing. One can also think of A as an �electoral breakpoint�

such that voters positioned above (to the right) of the realization of the breakpoint

vote for the Republican candidate, while those on the left vote democratic. Im-

portantly, once the breakpoint is determined, all uncertainty is resolved and the

position of voters relative to A determines for whom they vote with certainty. The

uncertainty about whom a particular voter will vote for comes from the fact that A

is stochastic.

Since we assume that all candidates locate at the population median, we nec-

essarily imply that there is nothing �local� about an election. Though perhaps

counter-intuitive, research suggests that this may not be far from the truth. An-

solabehere, Snyder and Stewart (2001) argue that, while district-to-district com-

petition may exert some in�uence on the candidate platforms, the e¤ect is �minor

compared to the weight of the national parties.� Allowing for state-to-state dif-

ferences would surely leave even less variation in local platforms. Similarly, Lee,

Moretti and Butler (2004) demonstrate that exogenous shifts in electoral preferences

do not a¤ect the menu of candidates o¤ered to voters, perhaps because politicians

have no way to credibly commit to campaign promises. We discuss the e¤ects of

certain departures from this assumption in Section 6.

R divides the population into N equal-sized districts to maximize the expected

number of seats won in the election. Let  n (s) denote the mass of voters from the

population placed in district n: Formally, R solves the program

max
f n(s)gNn=1

(
1

N

NX
n=1

B (�n)

)
(1)

s:t:

Z 1

�1
 n (s) ds =

1

N
;8n; s

NX
n=1

 n (s) = h(s)

0 �  n (s) � h (s) ;8n; s

where

�n = �̂ s.t.
Z 1

�1
G
�
�̂ j s

�
 n (s) ds � �n

�
�̂
�
=

1

2N
: (2)
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It will be useful to de�ne the following for notational purposes:

n (�) =
@�n (�)

@�
: (3)

Note that, given a district pro�le  n (s), equation (2) determines �n with certainty.

Though R could not identify any single voter as the median voter in a district, there

is nothing stochastic about the preference parameter of the median voter.10

In order to analyze the problem it is necessary to place some structure on the

conditional distribution of preferences. The �rst restriction we require is that the

signal be informative in the following sense.

Condition 1 (Informative Signal Property) Let @G(�js)@s = z (� j s). Then

z (� j s0)
z (� j s) <

z
�
�0 j s0

�
z
�
�0 j s

� ;8s0 > s; �0 > �

This property is similar to the Monotonic Likelihood Ratio Property due to

Karlin and Rubin (1956) (see also Milgrom, 1981). In fact, if a higher signal sim-

ply shifts the mean of the conditional preference distribution then this property is

equivalent to MLRP. When this is the case, the condition essentially states that

higher and higher signals (more right-wing) are more and more likely to come from

voters who have underlying preferences which are further to the right. Many com-

mon distributions satisfy it, including: the normal, exponential, uniform, chi-square,

Poisson, binomial, non-central t and non-central F. If a higher signal also changes

the shape of the conditional distribution then this property, like MLRP, becomes

less intuitive. It does, in general, imply First Order Stochastic Dominance11, and

as such rules out cases where observing a higher signal makes both the probability of

the voter being extreme left-wing and the probability of being extreme right-wing

increase.

The second condition we require is unimodality.
10This model structure is isomorphic to the inclusion of further levels of uncertainty be-

tween signals and preferences. For instance, suppose that the gerrymanderer believed
that, with 50% probability, preferences had a conditional distribution G1 (� j s), and other-
wise they were conditionally distributed as G2 (� j s). Equation (2) would then becomeR1
�1

1
2
[G1 (�n j s) +G2 (�n j s)] n (s) ds = 1

2N
, which is isomorphic to our original problem if

instead G (� j s) = 1
2
[G1 (�n j s) +G2 (�n j s)].

11As MLRP always does.
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Condition 2 (Central Unimodality) g (� j s) is a unimodal distribution where
the mode lies at the median.

Also note that, without loss of generality, we can �re-scale� s such that s =

max� g (� j s). Though many distributions that satisfy Condition 1 are unimodal,

some are not, and we rule these out. Furthermore, Condition 1 implies that the

mode of g (� j s) must lie below the mode of g (� j s0) if s < s0. We can thus

�re-label� the signals such that the mode of g (� j s) lies at s. The two proper-

ties in Condition 2, taken together, intuitively imply that, conditional on signal s,

preferences are distributed �near�s and not elsewhere.

4.3 Solution

We characterize the optimal Gerrymandering strategy in four steps. These steps

describe how to �chop-up� the H distribution optimally. This is a complicated

problem due to the size of the space over which the optimization takes place. Lemma

1, below, shows that we can, without loss of generality, dramatically simplify this

problem by restricting attention to a much smaller space. (The Appendix contains

all proofs).

4.3.1 Step 1: Slices and Parfaits

Lemma 1 Suppose Condition 1 holds. Then voters with the same signal can appear
in two di¤erent districts only if the median voter in those two districts is identical.

That is, for n 6= m and s 6= s0,  n (s) > 0 and  m (s) > 0 and  n (s
0) > 0 and

 m (s) > 0 =) �n = �m.

The �rst step demonstrates that one can restrict the search for the optimal

gerrymander from the space of all functions to just vertical slices and �parfaits�

of the signal distribution h. Furthermore, parfaits must themselves combine to

form vertical slices, and so the vertical slices are the primary building blocks for

the optimal strategy.12 Figure 3, below, shows an example of a districting scheme.

12These vertical slices can actually be split many di¤erent ways between the two districts so that
both the median � and the density of district preferences  (�) at the median remain the same.
One such way to split these vertical slices between the two districts, perhaps the simplest way, is a
�parfait,�an equal split of h (s) for all s in the districts. Since all such splits are equivalent in their
implications for the value function, we can, without loss of generality, consider only this simplest
split.

17



Districts 1 through 3 are each formed by the union of an upper and a lower slice,

while districts 4 and 5 are �parfaits.� Formally, a parfait refers to allocating mass

from H to a number of districts such that those districts have the same median.

(In step three we will show that, in fact, parfaits are not optimal, therefore leaving

slices as the optimal strategy.)

1 12 23 3

4

51 12 23 3

4

51 12 23 3

4

5

Figure 3: Slices and Parfaits

The intuition behind this result is very similar to that in our second example

in Section 3 above. Since the gerrymanderer cares only about the medians of

the districts, it is ine¢ cient to spread voters with the same signal over multiple

districts. In that case, extreme right-wing voters become right-of-median voters

in many districts, while the actual medians remain low. Instead, it is better to

concentrate voters of similar signals together in districts so as to maximize the

power of their votes.

4.3.2 Step 2: The �Monotonicity� of Slices

Lemma 2 Suppose Condition 1 holds and consider two districts, m and n, such

that �n < �m. Consider any two voter types, s01; s
0
2 2  n, in district n. Then

district m can include no intermediate voter type s 2 [s01; s02], so that s =2  m.
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Lemma 2 shows that, in the optimal gerrymander, the voters in higher-median

districts must lie outside - that is, have more extreme preferences - those in lower-

median districts. The intuitions here are very similar to those discussed above.

First, the same logic behind Lemma 1 - that extreme right-wing voters should be

concentrated to maximize their voting strength - implies that the optimal districting

scheme should place an unbroken mass of voters with higher signals into the higher-

median district rather that alternate smaller slices into all districts. Second, the

�extreme matching� logic from our third example in Section 3 implies that higher

district medians are least sensitive to the inclusion of extreme left-wing voters in the

district. Intuitively, once a district comprises more than half diehard Republicans,

why not �ll the rest of the district with extreme Democrats who cannot a¤ect the

electoral outcome.

4.3.3 Step 3: No Parfaits

Lemma 3 Suppose that Conditions 1 and 2 hold. If m 6= n, then �m 6= �n.

This penultimate step rules out �parfaits,�as de�ned above. Parfaits appeared

stable above because the split equated both the medians and the sensitivity of the

median to changes across the two districts. But such an arrangement is a hairline

case. One can reallocate mass between two such districts to maintain the equality

of medians but make one district more sensitive to change than the other. Then

a pro�table deviation exists which lowers the less sensitive median by some but

increases the other by more. Hence, parfaits cannot be optimal.

Once again, the driving intuition in this case in that of concentrating extreme

voters together to maximize their electoral power. In a way, �parfaits� are the

least e¢ cient use of extreme voters, and so it cannot be surprising that they are not

optimal. Thus, the optimal gerrymander must contain only vertical slices of the

signal distribution h that do not violate the ordering restriction from Lemma 2.

4.3.4 Step 4: No Intermediate Slices

Lemma 4 Suppose Conditions 1 holds and consider three districts m,n, and p such
that �m > �n > �p. Now �x h(s) and N: Then for a su¢ ciently precise signal

there does not exist a voter type s� 2  m such that s0 > sm > s00 where s0 2  n and
s00 2  p.
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This �nal step expands Lemma 2 by showing that voters in a higher-median

district cannot lie within the set of all voters in lower-median districts. That

is, by ruling out cases like that in Figure 4, it shows that optimal districts must

comprise either a single slice or two slices matching mass from opposite tails of the

distribution. The intuition is very similar to that of Lemma 2, that lower medians

(such as those in Districts 2 and 3 in Figure 4) are more positively a¤ected by the

inclusion of moderate instead of extreme left-wing voters. On the other hand, the

higher medians (such as that of District 1) are hardly lowered by the substitution

of extreme left-wingers. In order for these arguments to hold, though, the signal

distribution must have high enough quality. If it does not then intermediate slices

are possible.

11 23 1 11 23 1

Figure 4: An example of a strategy ruled out by Lemma 4.

With these preparatory steps in place we can now provide a complete character-

ization of the optimal strategy for the gerrymanderer.

Proposition 1 Suppose that Conditions 1 and 2 hold, and that the signal distribu-
tion is of su¢ ciently high quality (as de�ned in Lemma 4). Consider a districting

plan with N districts labelled such that �m > �n if m < n. This plan is optimal

if and only it can be characterized by �breakpoints� fuigN�1i=1 and fligN�1i=1 (ordered
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such that u1 > u2 > : : : > uN�1 > lN�1 � lN�2 � : : : l1) such that

 1 =

(
h (s) if s < l1 or s > u1

0 otherwise
;

 n =

(
h (s) if ln�1 < s < ln or un�1 > s > un

0 otherwise
for 1 < n < N;

and  N =

(
h (s) if s > lN�1 or s < uN�1

0 otherwise
:

Figure 5 is an example of a potential optimal strategy. District 1 comprises

a slice of extreme Republicans and a slice of extreme Democrats, and this slicing

proceeds toward the center of the signal distribution. The slices from the right tail

of the signal distribution contain more mass than the matched slice from the left

tail, lest Republicans �cut it too close�in accounting for the noisy measurement of

preferences. This follows the intuition developed in the third example in Section 3.

1 12 23 345
4

1 12 23 345
4

Figure 5: An example of the optimal strategy
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4.4 Comparison with Received Literature

Previous work has considered two types of models which are both special cases of

our model. The approach most similar to ours is that of Gilligan and Matsusaka

(1999), in which voters always vote for a given party and their preferences are

known with certainty to the gerrymanderer. Our model simpli�es to this case (as

shown in the �rst example in Section 3) if the conditional preference distribution

limits to a point-mass at the true preference (so that preferences are observable)

and if the breakpoint distribution B (�) is a point mass (so that voters are either
Democrats or Republicans). As such, our model is more general and captures an

important intuition - that more noise leads the gerrymanderer to create a larger

bu¤er. Furthermore, our model has a continuum of preferences, and therefore is

instructive not only as to the optimal number of Republicans and Democrats in a

district but also which types of Republicans and Democrats should be combined.

The second approach to modelling gerrymandering - one perhaps more popular

than that of Gilligan and Matsusaka - is a binary signal model with noise. In such

a model (e.g. Owen and Grofman (1988)), the optimal strategy involves �throwing-

away� some districts and �smoothing� others. Owen and Grofman refer to this

as a �bipartisan gerrymander,�since there are Democratic districts (those �thrown

away�) and Republican districts (the others). For instance if 60% of the population

have signal r and 40% signal d, then the optimal strategy involves creating a certain

number of districts which contain only those with signal d, and spreading the r

voters uniformly over the remaining districts. This result is also a special case of

our model, with additional assumptions, as shown in Proposition 2.

Proposition 2 Suppose s 2 fd; rg and that Conditions 1 and 2 hold. Suppose

further that B (�) is unimodal, with mode greater than d and less than r. Then the
optimal gerrymander involves creating some districts with all voters of type d, and

others with a constant proportion of r and d, and possibly one �odd district�with a

non-zero but less-than-half proportion of r (from integer rounding problems). When

N !1, the optimal solution is a pure �bipartisan gerrymander.�

Thus our model nests the solution of �bipartisan gerrymandering,�but the con-

clusions of such a model are very sensitive to several extreme assumptions. Fur-

thermore, the intuitions which this special case highlights are very misleading. For
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instance, suppose that there are three signals: r; d and i (independents). As Propo-

sition 1 shows, the optimal strategy matches increasingly extreme segments from

the right and left tails (in this case Republicans and Democrats) into the same dis-

tricts. The district which Republicans have the lowest chance of winning is not that

which contains many Democrats, but rather one which contains many Independents.

That is, these least Republican districts contain voters from the middle of the signal

distribution, not the extreme left tail. It is also clear that �smoothing� is not a

robust intuition. It is true only in the special case of a binary signal because there

is no heterogeneity among potential Republican voters.

4.5 Comparative Statics

In this subsection we consider how the value to being the gerrymanderer responds

to changes in the underlying distribution of voter preferences and signals. We also

consider how this value changes as the number of districts to be created changes.

Our �rst comparative static shows that more precise signals are always better

for the gerrymanderer.

De�nition 1 Consider two conditional preference distributions g and g0: g provides
a More Precise signal than g0 if there exists a conditional distribution c(s0 j s) such
that Z

g(� j s0)c(s0 j s)ds0 = g (� j s) :

Proposition 3 The expected number of districts won by the gerrymanderer is in-
creasing in the precision of the signal.

This result shows that the gerrymanderer wins more districts in expectation as

the signal received becomes more precise. Intuitively, as the gerrymanderer receives

a better signal, the need for a large �bu¤er�of voters in a district declines. Instead,

she can construct districts of a given median with a smaller proportion of voters from

the right hand tail, leaving more right-wingers for other districts. Mathematically,

the gerrymanderer could always lower the quality of the signal, while the reverse

operation is not possible. Thus, it cannot be that a lower quality signal is better.

Our second comparative static result shows that the gerrymanderer does better

as the distribution of voters becomes more spread out.
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Proposition 4 Consider two joint distributions F (�; s) and F̂ (�; s), with marginal
distributions of � given by F (�) and F̂ (�), such that F̂ (�) is a symmetric spread

of F (�): Then the expected number of districts won by the gerrymanderer is higher

for F̂ than for F .

Intuitively, our model assumes that all signals have the same variance of prefer-

ences. But, if the breakpoint is more likely to be near the center of the preference

distribution, then there is less uncertainty as to the voting patterns of extreme vot-

ers. For instance, suppose the breakpoint is normally distributed. If a voter has

either � = �0:5 or � = 0:5, she will vote Republican either 31% or 69% of the time,

quite a bit of uncertainty; but if a voter has either � = 1:5 or � = 2:5, she will vote

Republican either 93% or 99% of the time. Extreme voters are thus more valuable

to the gerrymanderer. Since an increase in the variance of the voter preference

distribution increases the share of extreme voters in the population, the expected

number of seats won increases.

The �nal comparative static concerns the number of districts.

Proposition 5 Suppose that the number of districts increases by an integer mul-
tiple (that is doubles or triples). Then expected percentage of districts won by the

gerrymanderer strictly increases.

In previous analyses in this literature, proportional increases in the number of

districts has little import; if twice the number of districts are required, the existing

districts are split into equal parts, and so the voter pro�les of the districts do not

change. Our model implies that such parfaits are ine¢ cient. Instead, the gerry-

manderer can do better by slicing within previous districts, grouping the most and

least Republican voters from an old district into one new district and giving the all

less extreme voters to the other.

5 Numerical Examples

In order to illustrate the characterization of the optimal gerrymandering strategy

and its comparative statics, we report the results of a number of numerical examples

in this section. The examples all assume that there are �ve districts and that the

gerrymanderer is Republican. In these examples we assume that the joint distri-

bution of preferences and signals, F (�; s) is multivariate normal with parameters
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�� = �s = 0 and covariance matrix � with:

� =

 
�2� ����s

����s �2s

!

. This implies that both the signal distribution and the conditional preference

distribution are themselves normal. Note that this assumption satis�es Conditions

1 and 2. In this base case we assume a distribution of F (�; s) such that � s
N(0; 5); � = 0:5. Furthermore, we assume that �s = ��� so that G (� j s) �
N
�
s; �2�js = �2� (1� �)

�
. In all examples, we let B s N(0; 1) and set N = 5. Note

that these assumptions imply that, nominally, half the voters are Republicans and

half are Democrats - without gerrymandering, each party would win 2:5 seats, in

expectation.

Table 1: Baseline Example

District
1 2 3 4 5

Upper Slice 0.62 0.73 0.91 1 N/A

Lower Slice 0.38 0.27 0.09 0 N/A

Prob (win) 87.5% 74.8% 65.7% 41.7% 13.7%

Table 1 highlights a number of features of the optimal strategy. First, the

highest median district (district 1) consists of 62% from a slice from the right tail

of the distribution and 38% from a slice from the left tail. These upper slices get

progressively larger for the lower median districts. While district four comprises a

whole slice, districts 1 through 3 are formed by matching slices from the right and

left tails. (District 5 consists of a whole slice containing those voters remaining

after removing the �rst four districts from the signal distribution, and so the fraction

in the upper and lower slice is not relevant). Second, note that the probability of

winning district 1 is very high - 87.5%. This means that those in the left-most part of

the distribution have very little chance of gaining representation. Third, no districts

are �thrown away�; the gerrymanderer has more than a 13% chance of winning even

the district least favorable to her. If she had �thrown-away�the district - that is,

put those with the lowest signal into it - then, in this example, she would only win

it 1.4% of the time. Finally, the number of districts won in expectation in this case

is 2.8, compared with a non-gerrymandered equal representation benchmark of 2.5.
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Hence, in this case the ability to be the gerrymanderer leads to a 13% increase in

the expected number of districts won.

Table 2 illustrates how a change in the spread of the conditional preference

distribution a¤ects the gerrymanderer.

Table 2: Signal Coarseness

District / Probability Won
Signal Expected Districts Won 1 2 3 4 5

�2�js = 0:5 3.4612 97.4% 86.9% 74.3% 56.6% 30.9%

�2�js = 2:5 2.8343 87.5% 74.8% 65.7% 41.7% 13.7%

�2�js = 4:5 2.5349 68.2% 61.9% 55.7% 41.8% 25.9%

In accordance with our comparative static results, the gerrymanderer does worse

as the quality of her signal deteriorates. This is re�ected in a lower probability of

winning each district, and hence a lower overall value to being the gerrymanderer.

For instance, note that when the signal is very coarse, �2�js = 4:5; the gerryman-

derer wins only 2.54 districts in expectation - barely more than the 2.50 won under

proportional representation. Also, in the �2�js = 0:5 case the gerrymanderer has

a 31% chance of winning district 5 - if she �threw it away� that would be just

0.2%. Finally, although the expected districts won, and hence the value function, is

monotonic in �2�js (as we have shown analytically), the probability of winning each

district is not monotonic. Intuitively, as the signal becomes more informative the

gerrymanderer can cut the districts �ner, but the probability of winning the votes

of those with the lowest signals decreases. These two e¤ects work in opposite direc-

tions, which leads to the potential non-monotonicity of the probability of winning

districts with �low�medians (here districts 4 and 5).

Table 3 shows how a change in the spread of the voter preferences a¤ects the

gerrymanderer.
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Table 3: Spread of Voter Preferences

District / Probability Won
Signal Expected Districts Won 1 2 3 4 5

�2� = 3 2.5528 71.0% 62.3% 55.6% 41.2% 25.1%

�2� = 5 2.8343 87.5% 74.8% 65.7% 41.7% 13.7%

�2� = 25 3.7802 100% 97.1% 90.6% 73.9% 16.4%

As voter preferences become more spread out, the gerrymanderer does better

as our comparative static results showed. There is a monotonic increase in the

probability of winning districts 1-4 as voter preferences become more spread out,

since fewer extreme voters are necessary to provide a solid margin of victory (in

expectation). A similar non-monotonicity as discussed above is at work here with

the probability of winning district 5.

Table 4 reports how changes in the mean a¤ect gerrymandering. A natural

interpretation of a change in the mean is that it is a change in the number of

nominal Republicans/Democrats. With the mean at zero there are 50% nominal

Republicans. As the mean increases the share of nominal Republicans increases

and vice versa.

Table 4: Nominal Republicans

District / Probability Won
% Repub. E[Win] �Value� 1 2 3 4 5

30% 2.0433 0.5790 49.4% 47.0% 40.7% 27.8% 10.2%

40% 2.4362 0.4837 87.0% 73.0% 52.3% 25.1% 6.2%

50% 2.8343 0.3343 87.5% 74.8% 65.7% 41.7% 13.7%

60% 3.2427 0.1951 87.8% 76.1% 67.3% 58.6% 34.5%

70% 3.6656 0.1199 90.2% 79.6% 71.7% 65.0% 59.1%

Note that as the proportion of nominal Republicans increases, both the expected

number of seats won and the value to being the gerrymanderer increase. This value

represents the di¤erence in expected seats won compared to proportional represen-

tation.
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6 Extensions

In this section, we brie�y discuss the implications of some extensions to the basic

model.

6.1 Majority Power and Risk Aversion

Our analysis considers a gerrymanderer whose payo¤ function is equal to the ex-

pected number of districts won. This is likely a good approximation for Congres-

sional districting, where the uncertainty over the eventual party balance in the House

of Representatives makes each district in a given state equally important.13 But

in state legislature districts, other objective functions may be important. For in-

stance, a party might derive great bene�t from remaining in the majority, in which

case the gerrymanderer�s value function would include a positive discontinuity at

winning a majority of the districts. The marginal bene�t to the gerrymanderer

from each seat won might be diminishing as she wins more seats, it which case the

objective function would become concave. The next proposition shows that, for

any objective function whose argument is the percent of seats won in an election,

our characterization still holds.

Proposition 6 Suppose that the gerrymanderer designs districts to maximize

E

"
V

 
1

N

NX
n=1

dn

!#
;

where dn = 1 if the Republicans win district n and 0 otherwise and V is any strictly

increasing function. Then Proposition 1 still characterizes the optimal partisan

gerrymander.

The impact of a change in the value function on the optimal redistricting plan

will, in most cases, change the size of the upper and lower slices for many districts.

It will not, however, change the form of the optimal partisan gerrymander, in which

districts comprise increasing extreme slices from opposite tails of the signal distrib-

ution. Since district composition only a¤ects the probabilities of various outcomes,
13One notable exception to this equality is the election of the president. Should the electoral

college fail to produce a majority winner (as was the case in 1800, 1824, and 1876), the election
would be thrown into the House of Representatives, where each state delegation receives a single
vote.
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the marginal bene�t of increasing the probability of victory in any district (holding

the composition of the other districts �xed) is a constant. Thus, Proposition 1

holds in this more general case just as in the simpler case discussed above where the

objective function is simply the expected number of seats won.

Other changes in the optimal districting scheme depend on the balance of voters

in the state and the shape of the value function. For instance, suppose the ob-

jective function were linear but for a positive discontinuity at winning a majority

of the seats. Under normal circumstances, where the gerrymanderer possesses a

commanding popular majority, state redistricters would be e¤ectively risk-averse.

As compared to the base case, the optimal plan would win fewer districts with

greater certainty by including more Republicans in the right tail slice of the district

to ensure remaining in the majority. But if the gerrymander faces a hostile popula-

tion (perhaps due to the iniquities of gerrymanders past), the party would become

risk-loving.

Another deviation from the value function analyzed above is for the gerryman-

derer to be risk-averse, in the sense that they have a have a concave von Neumann-

Morgenstern expected utility function. The clear implication of this is that the

optimal strategy would be altered so that there was a larger �bu¤er� in districts

which the gerrymanderer expects to win. A Republican gerrymanderer would put

relatively more voters from the right tail of the signal distribution into the high me-

dian districts. This would raise the median of such districts, and lower the median

of the low median districts. This altered strategy lowers both the expected number

of districts won the variance of that total.

6.2 Voter Turnout

In our model we have implicitly assumed that everyone votes; obviously, in a system

with non-compulsory voting, voter turnout is a real and important issue. Our

results are unchanged if, for each type of voter, the turnout rate (which may vary

across voter types) is independent of district composition. Furthermore, if turnout

is statistically independent of the signal though not constant within voter classes, our

results are unchanged. Our results are strengthened if moderate voters of a given

nominal party a¢ liation are more likely to vote when matched with more extreme

voters of the same party. In this case it is even more important to match extreme
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Republicans with extreme Democrats, lest moderate Democrats turnout in great

numbers. Endogenous voter turnout based on the nuances of district composition

requires a model with additional structure.

6.3 Incumbent E¤ects

Another empirical regularity of Congressional races is the seemingly large electoral

advantage enjoyed by incumbents - fewer than 3% of incumbents are defeated in

the typical election cycle. There are three possible causes for this edge. First,

an incumbent may simply re�ect the preferences of her constituents. In this case,

incumbency is simply a proxy for match quality between a Representative and her

district, and one can say that incumbency, per se, has no e¤ect on the conclusions of

this model. Second, the incumbent may be more well known to her constituents in

a variety of ways, and thus more easily elected; a (Republican) gerrymanderer would

respond to this type of incumbent advantage by maintaining Republican incumbent

districts as constant as possible, while matching Democratic incumbents to new

and unfamiliar (though not necessarily di¤erent, from a signal pro�le perspective)

districts. Indeed, such tactics were a key part of the Republican gerrymander of

Texas in 2003. This e¤ect is primarily a geographic concern, though, and is thus

somewhat orthogonal to the predictions of our model.

A third source of advantage for an incumbent may be, broadly speaking, her

resumé of Congressional experience and the resulting low quality of opponents,

an edge which would follow her no matter the geographic speci�cs of her district.

Ansolabehere, Snyder, and Stewart (2000) use the decennial redrawing of district

boundaries to estimate that this third channel accounts for one-third to one-half

of the incumbency advantage, on average, though there is surely much individual

heterogeneity in the magnitude of the e¤ect. The conclusions of our model would

change in the presence of large incumbent e¤ects of this third type, which would,

in e¤ect, make the distribution of the electoral breakpoint B district-speci�c. For

instance, suppose that a particular Democratic incumbent was universally well liked

and assured of election regardless of the composition of her district. It would then

be optimal for a Republican gerrymanderer to �throw away�her district by including

in it the most extreme democrats.
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6.4 Endogenous Candidate Positioning

Endogenous location of politicians may also cause the distribution of electoral break-

points to di¤er across districts. Intuitively, one would expect the B distribution to

shift to the right in districts with more right-wing voters, as the Democratic can-

didates in such districts would be more conservative. The shifting breakpoint

distribution would dampen the e¤ect on the value function of increasing the size of

the right-wing slice in a given district - but, so long as this e¤ect were not larger

than the direct e¤ect of such a change, the optimal strategy would have the same

characteristics.

Once candidates di¤er, the value function for the gerrymander might also change.

This would serve to o¤set the e¤ect of endogenous location because, though a De-

mocrat might have a greater chance of election, she would be a more conservative

democrat. In fact, in the limit of both cases where the gerrymander cares only

about the positioning of the elected candidate and where both elected candidates

converge to the district median voter (à la Hotelling (1929)), the value function

would remain the same, as would the optimal strategy. Such a model has the fur-

ther implication that, as gerrymandering becomes more pronounced (perhaps due to

technological advances in recent years), Representatives to the House would become

more extreme relative to Senators, who represent the median voters of each state.

We empirically investigate this hypothesis in other work.

7 Conclusion

In this paper, we show that existing models of partisan gerrymandering make sim-

plifying assumptions which have drastic implications for the conclusions which they

draw. We analyze a substantially more general model with a continuum of voter

preferences and noisy signals of those preferences. The model nests major mod-

els in the literature as special cases. The optimal strategy in our model creates

districts which match extreme Republicans and extreme Democrats, rather than

�throwing away�districts and �smoothing� over others. This characterization of

the optimal partisan gerrymander is robust to a number of extensions, including

alternative partisan objective functions, stochastic voter turnout, and endogenous

candidate positioning.

The primary import of our paper is to suggest that existing models of partisan
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gerrymandering, and the intuitions behind them, are rather misleading. These

intuitions are not simply academic speculations but rather are important in the

world and give rise to conventional wisdoms about partisan gerrymandering which

are inaccurate. For instance, traditional models imply that groups who have very

di¤erent preferences from the gerrymanderer do not fare so badly - that is, although

gerrymandering makes them worse o¤ than proportional representation, they are

assured of a lower bound of representation due to the gerrymanderer�s �throwing

away�some districts. Our model has very di¤erent implications. Instead, because

of the �matching slices�strategy, they are combined into districts with a larger group

of voters who have extremely di¤erent preferences from them, and so they have very

little representation as a result of gerrymandering. Thus, our model suggests that

the negative consequences of partisan gerrymandering for minority representation

in government may be far worse than currently thought.

A natural question which follows from this analysis is to ask who are the voters

in the opposite tail of the distribution to the gerrymanderers. We consider the

empirical linkage between partisan and racial gerrymandering in related work. To

illustrate this connection, suppose that the gerrymanderer is a Republican and that

African-Americans are highly represented in the far left tail of the signal distribution

(i.e. they have characteristics which make them very likely to vote for Democrats).

In this case, under the optimal gerrymander, African-Americans would be placed in

districts such that they receive very little representation. Data from the 2000 U.S.

census and the 2000 presidential election suggests that African-Americans do indeed

constitute the far left tail, and so an implementation of the optimal strategy, as

characterized in this paper, would be severely disadvantageous to that population.

The unmistakable implication of these facts is that partisan gerrymandering and

racial gerrymandering are basically synonymous in e¤ect. Since the 1960s, however,

the Court has adopted a test based on intent, rather than e¤ect.

A further implication of our analysis is that gerrymandering can be very valuable,

and indeed is more valuable today than ever before. Technological advances have

allowed gerrymanderers to gain better information about voters - in our model,

a less coarse signal distribution in the sense of Blackwell - and draw boundaries

with a �ner pen. One would therefore expect parties to use an increasingly large

amount of resources in order to become the gerrymanderer. Since the practice

itself is probably lowers social welfare, spending resources on it merely exacerbates
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the social loss associated with gerrymandering. This implies that the welfare loss

from gerrymandering is linked to such technologies, and has grown over time. In

combination with the increasingly prevalent districting strategy of �kidnapping�- a

practice also made easier with technology - we have little doubt that the problems

of partisan gerrymandering are far worse today than at any time since Baker.

There are two clear directions for future work. The �rst involves empirical

investigations of gerrymandering in the light of the theory developed here. The

structure provided by our characterization of the optimal gerrymandering strategy

is important for such empirical work. Previous empirical work on gerrymander-

ing (see, for instance, Gelman and King (1990, 1994)) assumes a non-microfounded

structural model which may give inaccurate estimates of the degree of gerryman-

dering. The second set of open issues involves the regulation of gerrymandering.

Enriching the model to capture spatial considerations would make it possible to

analyze the impact of constraints such as compactness. Although there is a body

of work which attempts to deal with spatial considerations, the underlying models

of gerrymandering which they employ are, as we have discussed, insu¢ ciently rich

to capture the core intuitions of the optimal strategy.

Ultimately, the e¤ect of gerrymandering is an empirical question. As our model

highlights, the impact of it depends on the particulars of the signal and preference

distribution. However, one thing which this paper demonstrates is that empiri-

cal investigations alone can be misleading. Without understanding the optimal

strategy for a gerrymanderer, one cannot properly assess the impact of partisan

gerrymandering.
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8 Appendix

Proof of Lemma 1. The proof is by contradiction. The maximization problem

can be described by the Lagrangian

L =
NX
n=1

B (�n)�
NX
n=1

�n

�Z 1

�1
G (� j s) n (s) ds�

1

N

�
; (4)

in addition to the boundary constraints. Suppose there exists a type of voter s with

non-zero mass in each of two districts n and m and that �n 6= �m. In this case,

it must be that the marginal value of that type of voter is equalized across district,

which would imply that

b (�n)
@�n

@ n (s)
� b (�m)

@�m
@ m (s)

= 0: (5)

Implicitly di¤erentiating (2), which determines the medians, yields

0 =

Z 1

�1
g (�n j s) n (s) ds@�n +G (�n j s) @ m (s)

@�n
@ n (s)

= � G (�n j s)R1
�1 g (�n j s) n (s) ds

= �G (�n j s)
n (�n)

: (6)

Equation (5) now implies that

b (�n)

n (�n)
G (�n j s) =

b (�m)

m (�m)
G (�m j s) =)

G (�n j s)
G (�m j s)

=
b (�m) n (�n)

b (�n) m (�m)
. (7)

Suppose now that there is another type of voters s0 with positive mass in districts n

and m. Without loss of generality, suppose that s < s0. This equation must hold

for each point. Taking ratios of these equations yields that

G (�n j s)
G (�m j s)

=
G (�n j s0)
G (�m j s0)

=) G (�n j s0)
G (�n j s)

=
G (�m j s0)
G (�m j s)

: (8)

Condition 1 implies that

G
�
�0 j s0

�
G
�
�0 j s

� < G (� j s0)
G (� j s) ;8s

0 > s; �0 > �;

though, and since �n 6= �m, the equality in 8 violates Condition 1 - a contradiction.
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Proof of Lemma 2. Again, the maximization problem can be described by the

Lagrangian in (4). Consider districts n and m, and suppose that �n < �m. The

bene�t of removing people of type s from district m and adding them to district n

is

�mn (s) =
@�n

@ n (s)
� @�m
@ m (s)

=
b (�m)

m (�m)
G (�m j s)�

b (�n)

n (�n)
G (�n j s) :

While this need not be positive for all s in district n, it must be, 8s 2  m

and s0 2  n, that �mn (s
0) > �mn (s). Note that �0mn (s) > 0 is equivalent to

z(�mjs)
z(�njs)

< b(�n)m(�m)
b(�m)n(�n)

, and since the left-hand side is monotonically increasing in

s from Condition 1, �mn (s) is quasi-concave. If s01; s
0
2 2  n, then, for any point

s 2 [s01; s02], �mn (s) > min[�mn (s1) ; �mn (s2)]. Thus s =2  m.

Proof of Lemma 3. Suppose, by way of contradiction, that there exist districtsm

and n such that �m = �n. Without loss of generality, suppose that the entire state

consists of only districtsm and n. By Lemma 1, if �m = �n then m (�m) = n (�n).

By Lemmas 1 and 2, those voters in districts m and n must make up one or two

complete vertical slices of f (s). By the continuity of G (� j s) and the density of the
two aforementioned slices, there must exist four voter types s1 < s2 < �m < s3 < s4

such that G (�m j s1) � G (�m j s2) = G (�m j s3) � G (�m j s4) and  n (s1) > 0,

 n (s4) > 0,  m (s2) > 0, and  m (s3) > 0. Furthermore, one can �nd such

a quartet of voter types such that G (�m j s3) > 0:5 and G (�m j s2) < 0:5. In

words, one district contains some of the inner type of voters, while the other district

contains some of the more extreme types of voters relative to the district medians.

Now consider a perturbation in which an equal �number�of voters of types s1 and

s4 are transferred to district m from district n, and similarly voters of type s2 and

s3 are transferred from district m to n. By construction, both �m and �n remain

unchanged, as does the value function; but n (�) and m (�) have changed. By

de�nition,
@n (�n)

@ (s)
= g (� j s) ;
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and so the derivative of n (�n) for perturbations of this type is

@n (�n) =
@n (�n)

@ (s2)
� @n (�n)

@ (s1)
+
@n (�n)

@ (s3)
� @n (�n)

@ (s4)

= g (�n j s2)� g (�n j s1) + g (�n j s3)� g (�n j s4) :

But, by Condition 2, the modes of the lower signals lie below �n. Thus, we know

that g (�n j s2) > g (�n j s1), and similarly that g (�n j s3) > g (�n j s4), and so
@n (�n) > 0. By likewise reasoning, @m (�m) > 0. After performing such a

perturbation the new districting arrangement now violates Lemma 1 since �m = �n

while n (�) 6= m (�). This new arrangement is not optimal, but the value function

is unchanged from the old districting plan, and so the old plan cannot be optimal

either - a contradiction.

Proof of Lemma 4. Suppose, by way of contradiction, that such a case existed.

Without loss of generality, from Lemma 2, we can assume that districts n and

p comprise one whole slice. It also must be that s� < s0 for all s0 2  n and

than s� > s00 for all s00 2  p. Denote �sn = sup fs 2  ng, �sp = sup
�
s 2  p

	
,

sn = inf fs 2  ng, and sp = inf
�
s 2  p

	
. Of course, �sn > sn > sm > �sp > sp.

The Lagrangian from equation 4 implies that, if s 2  j , then

�ajG
�
�j j s

�
� �j � max

i
�aiG (�i j s)� �i

where ai =
b(�i)
i(�i)

. These ai coe¢ cients represent the sensitivity of the median of

district i to changes. For each district i, denote these expressions by �i. Since it

must be, by Lemma 2, that lims!1 �m (s) > lims!1 �n (s), we know that �m < �n.

By a similar argument, it must be that �n < �p. We also know that

�n (�sn) � �m (�sn) and �m (s
�) � �n (s

�) ,

which implies that

am � an
G (�n j s�)�G (�n j �sn)
G (�m j s�)�G (�m j �sn)

: (9)

(9) states that district m must not be too sensitive compared to district n. Were

this so, a pro�table deviation would exist by shifting district n down to include s�
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and giving voters of type �sn to district m. Similar arguments imply that

am � ap
G
�
�p j sp

�
�G

�
�p j s�

�
G
�
�m j sp

�
�G (�m j s�)

; (10)

which has the interpretation that district m must be sensitive enough relative to

district p so that shifting district p up to include s� is not pro�table. Note that

the right-hand side of the inequality in (10) is greater than 1 by the unimodality of

G (� j s) and by the fact that �p 2
�
sp; s

��. Of course, (9) and (10) can only hold
simultaneously if the right-hand side of (9) is greater than or equal to the right-hand

side of (10). This requires

ap
an
=
b
�
�p
�
n (�n)

b (�n) p
�
�p
� � G (�n j s�)�G (�n j �sn)

G
�
�p j sp

�
�G

�
�p j s�

�G ��m j sp��G (�m j s�)
G (�m j s�)�G (�m j �sn)

: (11)

Now consider what happens to this ratio as we increase the precision of the signal

(which can be thought of here as shrinking the conditional preference distribution

G into the median). Since district n contains voters closer in signal to the median

of district m, the ratio
G(�mjsp)�G(�mjs�)
G(�mjs�)�G(�mj�sn)

will shrink, going to 0 in the limit. On

the other hand, both G (�n j s�)�G (�n j �sn) and G
�
�p j sp

�
�G

�
�p j s�

�
rise to 1,

since sp < �p < s� < �n < �sn. Thus, the right-hand side of (11) shrinks to 0 as the

precision of the signal increases. Note, however, that the ratio ap
an
is bounded away

from 0, since n(�n)

p(�p)
will limit to 1 (by the de�nition of  (�)) and

b(�p)
b(�n)

is bounded

away from 0 since the medians �n and �p are bounded and the c.d.f. B is strictly

increasing. Thus, for su¢ ciently high signal quality, the inequality in (11) cannot

hold - a contradiction.

Proof of Proposition 1. Apply Lemmas 1-4.

Proof of Proposition 2. Suppose not. The choice variable for each district

can be summarized by  n, the proportion of R in the district. Then there exist

two districts m and n such that  m 6=  n and  i > 0 for i = fm;ng. Without

loss of generality, let �m > �n. By Condition 1, G (� j r) �rst order stochastically
dominates G (� j d), and so  m >  n.

In order that there be no pro�table deviations, it must that @�n
@ n

= @�m
@ m

. But,
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in general,

@2�

@ 2i
=

@�i
@ i

 (�)2

8><>:
[[g (� j d)� g (� j r)] b (�) + [G (� j d)�G (� j r)] b0 (�)]

� [ i (g (� j r)� g (� j d)) + g (� j d)]
�b (�) [G (� j d)�G (� j r)] [0 (�) + g (� j r)� g (� j d)]

9>=>; ;

which is positive when � < 0 and negative when � > 0. Since � > 0()  > 0:5,

the concavity of � implies that one could never have  m >  n � 0:5, since then
@�n
@ n

> @�m
@ m

, and so R could do better by increasing n and decreasing m. It also

implies that there cannot be 0:5 >  m �  n, since then
@�n
@ n

< @�m
@ m

and the

opposite deviation would improve R�s representation. Thus, there can only be one

�odd district�with 0 <  < 0:5, and all districts with  > 0:5 must have equal

proportions of r and d.

Suppose that N !1. Note that there can only be one �odd district.� Let the
mass of voters in this district have Lebesgue measure � . Since each district must

have an equal mass of voters, � = 1=N . Clearly, limN!1 � = 0.

Proof of Proposition 3. First note that signal precision provides a partial

ordering on conditional preference distribution. Now, if the signal contains no

information then the expected number of seats won by the gerrymanderer is the

population share. If the signal is perfectly precise such that s = � it is possible

(see Proposition 1) to create districts such that only the lowest median district has

a median equal to the population median, while all other lie above. Hence the

gerrymanderer wins more seats in expectation with a perfect signal. Now consider

any two conditional preference distributions g and g0 such that g provides a more

precise signal than g0: The gerrymanderer must win at least as many seats in

expectation under g than g0 since the value function has the Blackwell Property.

That is, she could construct a distribution c such that from g she could generate g0.

Proof of Proposition 4. Fix the optimal districting plan under F (�; s) and

consider the construction of the highest median district (wlog district 1) with median

�1 given by
R
s2 1

G(�1 j s)h(s)ds = 1
2N , comprising an upper and lower slice. Let

the upper slice contain w1 share of the voters in the district. Suppose that, under

F̂ (�; s), the gerrymanderer sets �̂1 = �1: This can be achieved with at least as small

an upper slice ŵ1 � w1, since the Republican voters (who make up more than half
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of the district) are at least as likely to vote Republican as before. If ŵ1 < w1, then

note that all other districts 2; :::; N have a higher medians even if we set ŵn = wn

for all n, that is without re-optimizing their construction. If ŵ1 = w1, then repeat

this procedure until �nding a district n� such that ŵn� < wn� . By assumption that

F̂ has greater symmetric spread than F , this must be true for at least one district.

Hence the value function under F̂ (�; s) is higher than under F (�; s). This reasoning

must hold for any such pair of distributions.

Proof of Proposition 5. Consider an increase from N districts to mN , where m

is an integer. By replication, the gerrymanderer could do at least as well with mN

districts as with N - but this replication involves creating parfaits. From Lemma 3

this is a suboptimal strategy. Hence the value function under the optimal strategy

must be higher. This completes the proof.

Proof of Proposition 6. Fix the districting scheme and consider the marginal

bene�t from a small deviation x, which would be

@E [V ]

@x
= b (�n) (Ki � Li)

@�n
@x

;

where K is the expected value if the Republican candidate wins in district n and L is

that value if the Democrat wins in district n. Note that this is identical to the value

derived from equation (5) but for the term (Ki � Li), which is �xed for all deviations
from a districting plan. Thus, the �sensitivities�faigNi=1 are now di¤erently scaled,
but the constant does not a¤ect any proofs. Propositions 1 through 5 hold.
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9 Figures

Figure 1: Florida 16th to 23rd Congressional Districts
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