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Estimating the Returns to College Quality with Multiple 
Proxies for Quality

Abstract

Existing studies of the effects of college quality on earnings typically rely on a single 

proxy variable for college quality.  This study questions the wisdom of this approach 

given that a single proxy likely measures college quality with substantial error.  We begin 

by considering the parameter of interest and its relation to the parameter estimated in the 

literature; this analysis reveals the potential for substantial bias.  We then consider three 

econometric approaches to the problem that involve the use of multiple proxies for 

college quality: combining the multiple proxies via factor analysis, using the additional 

proxies as instruments, and a GMM estimator derived from a structural measurement 

error model that generalizes the classical measurement error model.  Our estimates 

suggest that the existing literature understates the wage effects of college quality.



I. Introduction

A growing literature in economics estimates the labor market effects of the quality of the college 

an individual attends.  The literature proceeds by estimating the parameters of linear “education 

production functions” with an outcome of interest (such as wages) on the left hand side and some 

measure of college quality (such as the average Scholastic Aptitude Test (SAT) score of the 

entering class) on the right hand side, usually along with a wealth of covariates designed to take 

account of non-random selection of students into schools of differing qualities.  A related 

literature performs similar analyses to investigate the effects of primary and secondary school 

quality.  This paper reconsiders the standard education production function literature in a context 

where multiple measures of college quality are available. 

 We motivate our analysis in Section II by carefully considering the parameters of interest 

in studies of college quality and the link between these parameters and the estimates in much of 

the existing literature.  The fundamental issue is that most papers in the existing literature include 

only a single measure of college quality, which they interpret as a proxy for a latent one-

dimensional “college quality” variable.  To the extent that the proxy variable measures college 

quality with error, we expect bias toward zero.  Additional bias of unknown direction may arise 

if we allow the scale of the proxy variable to differ from that of latent college quality.  As a 

result of these issues, existing estimates of the effect of college quality may exhibit substantial 

biases.

 In light of these concerns, our paper considers different ways of using multiple proxies to 

do better at estimating the impact of college quality than the current literature.  After introducing 

the data and, in particular, our multiple proxies for college quality, in Section III, in Section IV 

we explicitly model the problem of multiple proxies and derive a measurement error model that 

allows the variance of each proxy to differ from the variance of unobserved college quality.  In 

Section V, we present four different sets of estimates.  First, for comparison purposes, we present 
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OLS estimates similar to those in the rest of the literature. Second, we combine the information 

in the proxies using factor analytic methods to produce a college quality index that we then 

include in the outcome equation.  Third, we adopt the standard solution to classical measurement 

error and use instrumental variables methods, with the additional proxies serving as instruments.  

Finally, we derive a GMM estimator that identifies, subject to a required normalization, the 

structural parameters of our more general measurement error model, and we argue for the 

superiority of this approach on econometric grounds.  Section VI reports the results of some 

sensitivity analyses and Section VII summarizes our contributions and highlights our main 

finding, which is that the existing literature appears to understate the wage effect of college 

quality.

II. The Parameter of Interest and the Literature 

Consider in somewhat more formal terms the education production function, defined as: 

1( ,..., , )kY f q q X ,

where Y denotes an outcome of interest, such as wages, 1,..., kq q  denote various college level 

inputs (which we also refer to as measures or dimensions of college quality), such as the average 

SAT score of the entering class, expenditures per student and so on, and X denotes other factors 

affecting earnings and college quality choice.

 Based on this version of the production function, we can define various parameters of 

interest; in particular, we can define derivatives with respect to various college level inputs.

Consider input k and the usual linear approximation to the production function, so that the 

parameters of interest become derivatives of the linear conditional expectation function.  A 
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natural parameter of interest is the partial derivative with respect to one dimension of quality, 

holding the other dimensions (and the X) constant.1  In notation,

1
1

( | ,..., , )K

k

E Y q q XP
q

,

where 1P  denotes “parameter 1.”  This parameter is of particular interest to policymakers and 

college administrators making choices regarding which dimensions to focus on when cutting (to 

minimize the damage) or adding (to maximize the improvement) to a college budget.  Monks 

(2000) estimates 1P  using data from the National Longitudinal Survey of Youth (NLSY – the 

same data we employ in this study).  Zhang (2005) estimates 1P  for state university systems 

using the Baccalaureate and Beyond data.  Long (2004) estimates this parameter with a very 

large number of school characteristics in his study of secondary school quality. 

 The literature on college quality (but not that on primary and secondary school quality) 

often implicitly adopts the simplifying assumption of a “one factor” model, in which quality has 

a single dimension.  In this case, the production function simplifies to 

*( , )Y f Q X ,

where the variable *Q  is a single factor that we refer to as “college quality.”  The “*” indicates 

that the variable is latent.  The assumption that *Q  is a scalar is a strong one, as schools may 

have multiple dimensions, with, for instance, Chicago excelling at liberal arts training and MIT 

excelling at technical training.

 The partial derivative with respect to college quality represents the obvious parameter of 

interest in the one factor model.  In terms of our notation, 

*

2 *

( | , )E Y Q XP
Q

.

1 We follow the existing college quality literature which treats the slope coefficient on quality as the same across 
individuals.  In a world of heterogeneous slope coefficients, the standard production function regression estimates, 
under some additional assumptions, what Wooldridge (2002a) calls the Average Partial Effect. 
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This parameter indicates the effect of an increase in (latent) college quality on the outcome of 

interest, holding X constant.  The one factor model has the virtue of both conceptual simplicity 

and ease of interpretation in cases where budgetary allocations within a college are not the 

primary policy issue of interest.   

 Empirically, aside from Monks (2000), Fitzgerald (2000), Zhang (2005), and our own 

papers – Daniel, Black and Smith (1995, 1997), Black, Daniel and Smith (2005), and Black and 

Smith (2004) – most of the literature adopts the following strategy.  A single college quality 

measure jq  is chosen – often some measure of selectivity in admissions – and included in 

outcome equations along with covariates.  Most studies assume what Heckman and Robb (1985) 

term “selection on observables,” in the hope that the inclusion of a sufficiently rich X, including 

at least some measure of individual “ability” (usually a test score), controls for the non-random 

matching of students and colleges.  Some more recent studies adopt alternative identification 

schemes that attempt to take account of selection on unobservables.  These include the Behrman, 

Rosenzweig and Taubman (1996) study, which uses data on twins, and the Brewer, Eide and 

Ehrenberg (1999) study, which uses a parametric polychotomous selection model with variables 

related to net college costs as exclusion restrictions.  Dale and Krueger (2002) represents an 

intermediate case, because of their access to data on which colleges students applied to and 

which colleges accepted them, variables not normally observed in studies of this type. 

 In this paper, we assume selection on observables and focus instead on the issue of how 

to interpret the parameter estimated in most of the literature; this issue arises regardless of the 

chosen econometric identification strategy.  We can interpret this parameter in three ways, none 

of which is very satisfactory.  First, we can interpret the existing literature as estimating 3P ,

defined as 

3
( | , )k

k

E Y q XP
q

.
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In other words, 3P  denotes the partial derivative of the conditional expectation function with 

respect to one dimension of quality, holding X but not the other dimensions of quality constant, a 

parameter that lacks both a clear economic interpretation and any obvious policy relevance.  We 

cannot interpret the literature as estimating 1P  because, as we show in Table 1, the various 

dimensions of quality have non-trivial positive correlations with one another.  As a result, we 

expect that 3 1P P .  Put differently, when the different dimensions of college quality have 

positive correlations, including only one dimension means that its coefficient incorporates some 

of the effects of the other dimensions. (This point holds more generally, and indicates that 

studies that seek to estimate 1P  require data on all of the relevant inputs to the production 

function in order to avoid confusing the effects of omitted inputs with those of included inputs).  

Because 1P  has a clear interpretation while 3P  does not, the necessity of interpreting the existing 

studies as estimating the latter renders their estimates problematic. 

  Second, we can interpret the existing studies as estimating 2P , using the single quality 

measure kq  as a proxy for the latent quality *Q .  This is indeed how most authors in the existing 

literature interpret what they are doing.  For example, Dale and Krueger (2002) treat quality as 

synonymous with selectivity and interpret the coefficients on their average SAT score variable 

(or on the Barron’s magazine quality category dummies that they employ in a separate 

specification) as estimates of the effect of both quality and selectivity.2  Other studies talk 

primarily about selectivity, prestige or competitiveness but clearly intend these as synonyms for 

quality.  Recent papers in this group include Chevalier and Conlon (2003), Fox (1993), Hoxby 

(1998), and Loury and Garman (1995). 

2 The Barron’s college quality categories, which are also used in Brewer, Eide and Ehrenberg (1999), and related 
categorizations such as the prestige categories in Chevalier and Conlon (2003), raise interesting issues when 
considered as proxies.  Such categorical measures implicitly combine information from multiple measures of college 
quality (albeit in a less formal way than methods we consider here), which should reduce the amount of 
measurement error they embody. At the same time, these measures throw out all the variation within categories, 
which works in the opposite direction. 
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 The second interpretation of the existing literature also raises important conceptual 

issues.  Using only a single proxy variable means that the obtained estimates likely understate the 

parameter of interest because the proxy variable measures the latent variable with error.  The 

extent of the bias toward zero depends on the extent of measurement error in the proxy variable.

Additional biases of unknown direction arise when the proxy variable and the latent variable do 

not share the same scale.  We discuss these scaling issues in more detail below.  

 The third interpretation treats the observed quality measures as inputs into the production 

of latent quality, rather than as proxies for quality, and then makes some strong assumptions.  To 

begin, assume that all universities and colleges face the same prices and that the underlying 

college quality production function is homogeneous of degree r in the inputs.  Universities pick 

different levels of quality because of difference in endowments, and, in the case of public 

universities, because of political constraints.  Because the production function is homogeneous of 

degree r in the inputs and all universities face the same prices, we know that for 0 inputs

differ only by the scale of production or 

* *
1 1( ,..., ) ( ,..., )r r r

K KQ q q Q q q .

In this framework, should a researcher enter multiple inputs into the wage equation, the inputs 

should be perfectly collinear.  Indeed, in this framework we need only one input to capture 

perfectly the production of quality.  Under these assumptions, the usual approach in the literature 

estimates the returns to the latent quality variable. 

 The very strong, and implausible, assumptions of homogeneity of the production function 

and common prices derail this approach in our view.  We know of no evidence in favor of the 

homogeneity of this particular production function.   It also seems clear that input prices differ 

among colleges.  For example, in the case of student ability, colleges in locations with a large 

population of highly educated parents and/or with more amenities will face a lower cost of 

student ability.   Finally, this approach requires input measures without error.  If, for example, 
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the average SAT score measures student ability with substantial error, as the large sums spent on 

admissions offices suggest, then the need for the approaches examined in this paper returns, 

although the coefficient estimates we obtain have a somewhat different interpretation under these 

assumptions. 

 In sum, the existing estimates in the literature present important interpretational 

difficulties.  In our view, they likely represent biased estimates, perhaps substantially biased 

estimates, of 2P , the usual implicit or explicit parameter of interest in these studies.3

III. Data Description

Our data come from three sources.  Our primary data source is the National Longitudinal Survey 

of Youth (NLSY), a panel data set based on surveys of a sample of men and women who were 

14-21 years old on January 1, 1979.  Respondents were first interviewed in 1979 and were re-

interviewed annually from 1979 to 1994 and biannually since 1994.  Because we are interested 

only in the post-college earnings of these respondents, we use earnings data from 1989.  We 

chose 1989 because, given the subsequent attrition in the NLSY, it maximizes our sample size.  

We limit our sample to men who have attended post-secondary schools for whom we have 

measures of quality, which is roughly the set of four-year comprehensive colleges and 

universities.4 We focus on men to avoid having to deal with labor force participation issues, 

which are not our primary concern in this paper.  See Black and Smith (2004) for more details 

about the construction of the sample. 

                                                
3 See McClellan and Staiger (1999) for a related discussion in the context of measuring hospital quality. 
4 In the course of our earlier work – Daniel, Black, and Smith (1995, 1997) – we compared estimates constructed 
using all NLSY men and estimates constructed using a sub-sample of those who attended college, where the latter is 
broader than the sample we employ here because it included individuals who attended colleges for which we do not 
have quality measures.  The substantive results did not differ very much.  Despite this, we prefer to err on the side of 
caution and exclude individuals who either did not attend college or attended a college for which we do not have 
quality measures in order to avoid having the estimated relationship driven by observations from outside our 
population of primary interest. 
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 The NLSY suits our purpose well for several reasons.  First, the timing means that we 

have information on wages for a relatively recent cohort of college graduates that is old enough 

that the vast majority of those who will attend college have already done so.  Furthermore, those 

who will attend graduate school have largely completed doing so as well.  Second, the NLSY 

confidential files provide information on individual colleges attended, which allows us to match 

up information on specific colleges from external sources.  Third, the NLSY allows us to 

construct a compelling “ability” measure using the Armed Services Vocational Aptitude Battery 

(ASVAB), which was administered to over 90 percent of the sample.5 Fourth, the NLSY is rich 

enough in other covariates to make the assumption that conditioning on observable 

characteristics alone solves the problem of non-random sorting into colleges of varying qualities 

plausible.  These covariates include detailed information on family background, home 

environment and high school characteristics.

 Our sources for college characteristics are the Department of Education’s Integrated Post-

secondary Education Data System (IPEDS) for 1992 and the US News and World Report’s

Directory of Colleges and Universities (1991).  We only included information for four-year 

colleges; roughly one half of the men in the NLSY data with some post-secondary education 

attended a four-year college.6

 We focus on five measures of quality: faculty-student ratio, the rejection rate among 

those who applied for admission, the freshman retention rate, the mean SAT score of the entering 

class, and mean faculty salaries.7  We focus on these measures for two reasons.  First, many of 

them have been used in previous studies as measures of quality.  Second, the response rates for 

these measures are relatively high, which is important because we limit our sample to individuals 
                                                
5 Neal and Johnson (1996) describe the test in detail and discuss the issues of interpretation surrounding it. 
6 Although the timing of these college quality measures differs somewhat from the timing of college attendance for 
most of our sample, these measures have a very high serial correlation, so that only a small amount of measurement 
error likely results from the timing difference. 
7 The first four measures are from the US News and World Report’s Directory of Colleges and Universities and the 
last is from the IPEDS data.  For schools that report an average ACT score rather than an average SAT score, we 
impute an SAT score.  We redefine the raw college characteristics so that larger values correspond to obvious 
notions of quality; for example, we recode the “acceptance rate” as a “rejection rate” and use the latter.   
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whose colleges reported all five measures.  The top panel of Table 1 displays the summary 

statistics for these measures and the bottom panel displays their correlations.  The correlations 

range from a maximum of 0.70 to a minimum of just 0.31.   

 If each of the quality variables perfectly measured college quality, the correlations would 

always be one, which they clearly are not.  Thus, we must interpret these variables as proxies for 

college quality, which makes sense.  We do not think that a college actually improves if it simply 

chooses to reject more applicants and does nothing else; instead, in equilibrium the rejection rate 

provides an indicator for college quality.

 Proxy variables are a staple of econometric models; see Wooldridge (2003) and 

Wooldridge (2002b) for textbook treatments and Bollinger (2003) for further discussion.  We 

refer to the difference between one of our proxy variables and latent college quality as 

“measurement error.”8    If our proxy variables embody classical measurement error, then every 

pair among them should have the same covariance (equal to the unknown variance of the latent 

college quality variable).  The data strongly reject this restriction, which indicates that we require 

a more general measurement error model.  The next section outlines such a model. 

IV. Econometric Model

The relatively low correlations among the various measures of quality suggest that they contain 

much measurement error.  To focus our discussion, consider the following model of wage 

determination: 

*ln( )ij i i ij ijw X S Q ,     (1) 

where ln( )ijw  is the natural logarithm of the wage rate of the i th person attending the j th

college, iX  is a vector of covariates, iS  is the number of years of schooling, *
ijQ  is the latent 

                                                
8 These variables may not only measure latent college quality with error but also may measure the quantity to which 
directly correspond with some error, due to data collection or definition problems and to gaming of these measures 
by the colleges involved.  We do not treat this type of measurement error separately here. 
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quality variable defined in Section III for college j, ij is an error term assumed to be 

uncorrelated with the regressors, and ( , , )  are parameters to be estimated.9

 The inclusion of years of completed schooling is controversial.  As Black and Smith 

(2004) discuss in some detail, there is a strong correlation between years of college completed 

and the quality of the institution attended.  To the extent that attending a high-quality university 

increases the number of years of schooling, the model given in equation (1) will understate the 

returns to attending a high-quality school.  To keep our results comparable with the previous 

literature, however, we will condition on completed years of schooling in this study. 

 For both schooling and college quality to be plausibly exogenous, we need to condition 

on a rich set of covariates.  Our specification of iX  includes quadratics in the first two principal 

components of the age-adjusted ASVAB scores as suggested by Cawley, Heckman, and Vytlacil 

(2001), a black indicator, an Hispanic indicator, a quartic in age, and region of birth dummies.10

We also include variables measuring home characteristics (whether at age 14 the respondent’s 

household subscribed to a magazine, whether it subscribed to a newspaper, and whether the 

respondent had a library card), parental characteristics (the years of schooling of each parent, 

whether the parents were living together in 1979, whether the mother was alive in 1979, whether 

the father was alive in 1979, and parental occupations in 1978), and high school characteristics 

(size of the high school, number of books in the library, fraction of the student body that is 

economically disadvantaged, and mean teacher salary).   Rather than dropping observations with 
                                                
9 We examined alternative specifications in which college quality entered non-linearly, but found little evidence of 
departures from linearity.  Because it is not the main point of our paper, and because we appear to lack the sample 
size to precisely estimate a model with non-linear quality effects, we focus on the linear specification in our 
empirical work.  
10 There is some concern that the ASVAB scores, which were administered to the NLSY sample members around 
the same calendar time, and thus at different ages and at different points in their schooling, may measure in part 
differences in either years of schooling or college quality.  Using the age-adjusted scores helps to address this issue 
but does not completely solve it.  Hansen, Heckman and Mullen (2004) and Cascio and Lewis (2005) find modest 
effects of schooling on test scores.  In the former case, the evidence is strongest for those in the lower quantiles of 
the latent ability distribution; in the latter, it is strongest for blacks.  Both of these groups comprise only a small 
fraction of our sample of individuals attending four year colleges.  Black and Smith (2004) examined the differential 
in ASVAB scores between NLSY respondents in the first and fourth quartiles of the college quality distribution as a 
function of their age at the time of taking the test and found no relationship.  Overall, we do not think that this 
potential problem constitutes much of a real problem for our analysis. 
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missing values on one or more of the home, parental and high school characteristics due to item 

non-response, we recode the missing values to zero and add indicators for missing values.   

 Unfortunately, we do not measure college quality directly but rather must rely on noisy 

proxies, defined as

*
kj k j kjq Q u ,     (2) 

where 0k  is a scale coefficient and kju  is measurement error that we assume is uncorrelated 

with both *
jQ  and iX .11  Our model (modestly) generalizes the classical measurement error 

model, which requires *
kj j kjq Q u .  In particular, the inclusion of the scale coefficients allows 

the covariances of the various proxies, kjq , to differ.12

 Rather than work directly with equation (1), it is convenient to consider a simple 

transformation that allows us to ignore the other covariates in equation (1).  Let ln( )ijw  denote 

the residual from the regression of ln( )ijw  on iX  and iS  and let ikjq  denote the residuals from 

similar regressions of ikjq  on iX  and iS  . We refer to ln( )ijw , and ikjq  as “Yulized residuals” in 

honor of Yule’s (1907) discovery of this decomposition.13  Using the Yulized residuals, we have 

ln( )ij ikj ijw q .     (3) 

Ordinary Least Squares (OLS) or Instrumental Variables (IV) estimation of equation (3) will 

provide the same estimates of  as OLS or IV estimation of equation (1).  Equation (3), 

however, provides some insights into the measurement problems.  When the covariates explain a 

substantial portion of the total variation in *
ijQ  (by assumption they explain none of variation in 

kju ), then noise necessarily makes up a larger proportion of the Yulized residuals and the 

                                                
11 Our problem is similar to the problems addressed in the MIMIC (Multiple Indicators MultIple Causes) and 
LISREL frameworks; see, e.g., Jöreskog and Goldberger (1975) and Bollen (1989). 
12 In the regression context, we may also allow the proxies to be of the form *

k k k kq Q u  without any 

added complexity; the parameter k , however, is not identified. 
13 We thank Terra McKinnish for the reference to Yule’s work.  See also the discussion of “double residual 
regression” in Goldberger (1991). 



12

resulting estimates must be attenuated more than when iX  accounts for less of the variation in 

*
ijQ .  As the OLS estimate of  equals cov(ln( ), )/ var( )ij ikj ikjw q q , the more of the variation in 

*
ijQ  that the covariates remove, the larger the noise-to-signal ratio and the greater the attenuation 

bias in the estimate of .  While this point has been recognized when dealing with panel data 

and fixed-effect or first-differenced estimation – see, e.g., Griliches and Hasuman (1986) and 

Bound and Krueger (1991) – it may not be fully appreciated in a cross-sectional context.

Because we condition on a rich set of covariates and because, as we have shown, the various 

measures of college quality are only modestly correlated, we must be concerned about severe 

attenuation in estimates that rely on a single proxy.  This same concern applies to most of the 

other college quality studies in the literature. 

V. Estimates 

A. OLS Estimates 

In column (1) of Table 2, we report estimates from a model that includes all five proxies for 

college quality.  None of the five coefficient estimates differ significantly from zero at 

conventional levels, despite that fact that we use one-tailed tests (both here and throughout the 

tables) given the nature of our null hypothesis. Given equations (2) and (3), however, this is 

hardly surprising.  Identification of the parameters on the college quality measures rests on 

components that are orthogonal to the other quality measures.  If the single factor model is 

correct, the Yulized residuals of the quality measures (which now condition on the other quality 

measures in each case, as well as on X and S) will asymptotically only contain the measurement 

error.  Thus, in the context of the single factor model, including multiple proxies makes little 

sense.

 In columns (2) through (6), we report estimates from regressions that include each one of 

the proxy variables in turn.  When entering the equation alone, the estimated coefficient for each 
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of the measures exceeds – usually substantially – the corresponding coefficient when the 

variables enter jointly.  To provide the reader with a notion of the economic magnitude of the 

coefficients, in brackets we present the impact on log wages of moving from the 25th to the 75th

percentile of each quality measure.  When entered alone, three of the five coefficients are 

statistically significant. Moreover, the statistically significant estimates are economically 

meaningful: moving from the 25th to the 75th increases wages from over 4.3 to over 6.3 percent.  

To give a sense of what this means, in the five-variable factor model presented in the next 

section, this means moving from Wright State University (in Ohio) to the University of Iowa. 

 In the context of our model, however, these estimates may be quite attenuated.  As is well 

known, classical measurement error generally attenuates the coefficient estimates.  As our 

discussion of the Yulized residuals demonstrates, estimation of a model that includes a rich set of 

covariates exacerbates the attenuation bias, because the covariates explain a portion of *
ijQ  but 

none of the error term ikju , and so increase the noise-to-signal ratio.  This effect has empirical 

relevance in our context; when we regress each quality measure on iX  and iS , we account for 18 

percent of the variation in the faculty-student ratio, 24 percent of the variation in the rejection 

rate, 29 percent of the variation the freshman retention rate, and 25 percent of the variation in 

average SAT scores and average faculty salaries.  Of course, we cannot solve this problem by 

simply dropping variables from the model, because only a rich covariate set makes our “selection 

on observables” identification strategy plausible. 

 Given the modest correlations among the quality measure in Table 1, removing a 

substantial fraction of the systematic variation may lead to a lot of attenuation.  To see why, we 

note that under our form of nonclassical measurement error 

1

2 *

var( )
ˆplim 1

var( )
jkiOLS

k k ji

u

Q
,     (4) 
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where ikju  and *
ijQ  are the Yulized residuals from the regression of ikjq  on ( , )i iX S  and

2 *var( )/ var( )ikj k iju Q  is the noise-to-signal ratio.  Now suppose that for the average SAT scores 

and freshman retention rates we have that 1k  so that the measurement error is classical, and 

suppose that *var( ) 1ijQ .  If we assume both measures have the same var( )jkiu , the correlation 

of 0.702 implies that the OLS estimate is only 0.702 of the correct magnitude if *
ijQ  is orthogonal 

to the other covariates ( iX  and iS ) in the model.  If the other covariates reduce the variation in 

the average SAT score by 25 percent (and all of the reduction comes from the signal), then the 

parameter estimate is only about 0.602 of the correct magnitude.  The additional attenuation bias 

from the covariates increases when the covariates explain more of the systematic component of 

college quality. 

 Equation (4) is also useful to see the fundamental identification problem faced when 

using proxy variables.  Even in the absence of measurement error, so that var( ) 0jkiu , the OLS 

estimate will be biased unless 1k .  In the presence of measurement error, we cannot 

determine whether the estimates are biased upward or downward.  For instance, when 1k ,

the estimates may be biased upward despite the attenuation bias that results from the 

measurement error. 

 We believe that the failure to model this scale factor may be of first-order importance.  

For instance, few would dispute that the average SAT score of the entering class would be 

correlated with the quality of a college or university.  Indeed, many authors use this as their sole 

measure of college quality.  It is another matter, however, to assert without corroborating 

evidence that this measure varies on the same scale as college quality.14

                                                
14 Bollinger (2003) notes the fundamental nonidentification problem when there is a single proxy and derives 
bounds the coefficient / .
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B. Factor Analysis Estimates

Intuitively, we should be able to combine the various measures of college quality to obtain a 

more reliable measure of *Q .  More formally, suppose that across all colleges, 0*
jE( Q ) , a 

harmless normalization that keeps the notation simple.  Let 1 Kq ( q ,...,q )  be a K-vector of 

noisy signals of the quality of each college, such that for a college with quality *
jQ , the value of 

each signal is *
kj k j kjq Q u  with 2 2( ) 0, ( ) ,kj kj kE q E u ( ) 0kj khE u u j h ,

( ) 0kj ljE u u k l , and *( ) 0j kjE Q u .15  We construct a measure of college quality by taking a 

linear combination of the signals.  Define 
1

ˆ
K

k k
k

Q q , where there is no need for an intercept 

term because the expected value of *
jQ  is normalized to zero.  We select the k  to minimize the 

expected squared distance between Q̂  and *Q , or 

1

* 2

,...,
ˆmin ( )

K

E Q Q .      (5) 

The necessary conditions for minimization are 

* * 2

1
var( ) var( ) 0 {1,2,..., }

K

k k l l k k
l

Q Q k K ,   (6) 

or

1
1 0 {1,2,..., },

K

l l k k k
l

r l K     (7) 

where
k
r  is the noise-to-signal ratio 

2

2 *var( )
k

k Q
.  Evaluating equation (7) at 1k  and k l

implies that  

1
1 1l l

l

r
r

.     (8) 

Thus, we may rewrite equation (7) as 
                                                
15 Lubotsky and Wittenberg (2004) extend the factor analysis framework to the case of correlated measurement error 
among the proxy variables and derive a lower bound on the parameter of interest in that context.  
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1 1 1
1 1 1

1

1 0
K

l
l

r r  .    (9) 

Solving for 1  we obtain 

1 1
1 1

1
1

1

1
K

l
l

r

r
.     (10) 

The remaining k  have similar formulae.  Thus, k  decreases in the variance of the idiosyncratic 

error ku , so that signals that more accurately reflect the latent college quality receive more 

weight in the forecast.  

 Readers familiar with the psychometrics literature may recognize this model as a 

transformation of Spearman’s (1904) factor model; see Harman (1976) for a good discussion of 

the historical development of this model.  To implement the model, we simply specify the 

signals to be used in the factor analysis.16  In the spirit of Carniero, Hansen, and Heckman 

(2003), we also looked for a second factor.  We found a second factor only in the case of the 

five-variable model; in that case, we tried including the second factor in the regression model 

and could not reject the null of a zero coefficient.  Thus, we report only results based on first 

factors in all cases.  The implied college quality rankings based on the first factors accord with a 

priori notions of quality; for example, Stanford, Harvard, MIT, Yale and Penn comprise the top 

five schools attended by respondents in our sample based on the five-variable model.  The first 

factors obtained using different combinations of variables correlate strongly with one another, as 

expected.  For the two-variable factors, the correlations range from 0.53 to 0.90, while for the 

three- and four-variable models the correlations range between 0.73 and 0.98 and 0.96 and 0.99, 

respectively. 

                                                
16 We estimated the factor loadings using both the sample of schools attended by individuals in our analysis sample 
and the sample of all schools attended by anyone in the NLSY data.  The factor loadings differed little between the 
two samples; the estimates in Table 2 are based on the first set of factor loadings. 
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 After obtaining the factor loadings, we estimate equation (1) with OLS, with the quality 

index included as the quality measure.  In Table 3, we provide factor analysis estimates from a 

variety of two-, three-, four-, and five-signal models.  Generally, the estimates are increasing in 

magnitude – as measured by the impact of moving from the 25th to the 75th percentile of the 

factor – when we increase number of signals used, as is expected when the signals contain 

measurement error.  For example, the estimates with two proxies range from 0.30 to 0.63, those 

with three from 0.47 to 0.61, those with four from 0.50 to 0.61 and the estimate using all five 

proxies equals 0.49.  The estimates nearly always exceed four of the five simple OLS estimates 

presented in Table 2, as they should given that this procedure uses additional information to 

obtain a better proxy for *Q .17

 The factor analysis approach is simple to implement and makes it easy to construct a 

quality index for use in ranking colleges.  At the same time, the factor analysis estimates remain 

attenuated relative to the true value because the use of multiple signals lowers but does not 

eliminate the resulting measurement error.18  Thus, we now turn to an alternative in the form of 

instrumental variables. 

C. Instrumental Variables Estimates 

Economists have long recognized that instrumental variables estimation may eliminate the bias 

associated with estimates obtained using variables with classical measurement error.  See 

Griliches (1986) for a review of the early literature, and see Bound, Brown, and Mathiowetz 

(2001) for a more recent review of the literature.  Black, Berger, and Scott (2000), Kane, Rouse, 

and Staiger (1999), and Frazis and Loewenstein (2003) all document that standard IV estimation 

may be upwardly biased in the presence of nonclassical measurement error. 
                                                
17 The estimated standard errors in Table 3 do not reflect a correction for the estimation of the factor loadings. 
18 Factor analysis provides an unbiased estimate of the underlying latent variable even when only two variables are 
used to construct the factor.  Adding additional variables to the factor analysis reduces the variance of the resulting 
estimate of the latent variable, meaning that, on average, it contains less measurement error.  This in turn reduces 
attenuation bias in the estimated regression coefficient in the outcome equation. 
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 With our slightly more general form of measurement error, standard IV estimation also 

will not provide point identification.  To see why, we note that the IV estimator with a single 

instrument is 

1

1

ln( )
ˆ

N

kji ij
IV i

N

kji lji
i

q w

q q
 ,     (11) 

where i  indexes observations and ( , )l kq q  are two of the quality measures.  Taking the 

probability limit of the IV estimator we obtain 

*

*

( )
ˆplim = = .

( )
IV k

k l l

Var Q
Var Q

    (12) 

The inclusion of more instruments does not remedy the inconsistency.  Hence, the parameter of 

interest is only identified up to a positive constant.  Of course, even if we assume there is no 

measurement error, so that 2 2 2
1 2 ... 0n , standard OLS only identifies the parameter 

of interest up to a positive constant as well.  The difference, however, is that moving from, say, 

the 25th percentile of the (non-noisy) measure to the 75th percentile moves one from the 25th

percentile of quality to the 75th percentile of quality; with measurement error, that property 

disappears, and the resulting estimates become substantially less interpretable. 

 With that caveat, in Table 3 we present IV estimates where we use one quality measure in 

the “structural equation” and the remaining four measures as instruments.  Each of the estimates 

is statistically significant, and much larger than the corresponding OLS estimate.  The IV 

estimates, which range from 0.77 to 0.93 for the effect of moving from the 25th percentile of 

quality to the 75th percentile, also substantially exceed the factor analysis estimates.   

 Asymptotically, the OLS and IV estimates differ by the term 

1

2 *

var( )
1

var( )
ki

k i

u
Q

,
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which is strictly increasing in the noise-to-signal ratio.  Using this observation, we estimate that 

the faculty-student ratio is the noisiest measure of school quality and the freshman retention rate 

is the least noisy measure.  Given that the IV estimator identifies the parameter of interest only 

up to scale, we now turn our attention to a final estimator, which does identify the parameter of 

interest, subject only to a modest normalization.19

D. Method of Moments Estimates with a Convenient Normalization 

When we have two quality measures, we are unable to identify the general measurement error 

model presented in Section IV from the covariance matrix of the data.  To see why, consider the 

covariance matrix of the data given by 

*

*

*

*

2 2 2

2 2 2

2

2

var(ln( )) ,

var( ) , 1,2,..., ;

cov(ln( ), ) , 1,2,..., ;

cov( , ) , , 1,2,..., , .

Q

k k kQ

k k Q

k l k l Q

w

q k K

w q k K

q q k l K k l

    (13) 

The number of equations in this system is 
1

1

2 1
K

l

K l , where K is again the number of 

quality measures.  The number of unique parameters the system contains is (3 2 )K .

 Consider the case with 2K .  In this case we have six equations and seven parameters, 

so that the system is underidentified.  We do not, of course, ever observe *Q , which suggests 

normalizing *
2

Q̂
 to one.  Doing so reduces the number of parameters to six, so that the three 

“off-diagonal” elements of the covariance matrix now suffice to identify 1 2( , , ) .  It is easy to 

show that: 

                                                
19 We could combine the factor analysis and IV approaches by constructing the index with some of the proxies and 
then instrumenting it using the remaining ones.  This approach does not, however, solve the problems associated 
with using either of the methods separately. 



20
1/2

1 1 2
1 1/2

2

1/2

2 1 2
2 1/2

1

1/2

1 2
1/2

1 2

ˆcov(ln( ), )cov( , )
,

ˆcov(ln( ), )

ˆcov(ln( ), )cov( , )
,

ˆcov(ln( ), )

ˆ ˆcov(ln( ), )cov(ln( ), )
.

cov( , ))

w q q q

w q

w q q q

w q

w q w q

q q

     (14) 

In the factor analysis estimator, the covariances between the individual proxy variables and the 

wage play a role only indirectly via the correlation between the quality index and the wage, 

whereas the GMM estimator makes use of these covariances directly. 

 Now consider K > 2.  We might hope that additional proxies would allow us to identify 

the entire system without a normalization, but this turns out not to be possible.  To see why, 

consider the off-diagonal equations 

*

*

2

2

cov(ln( ), ) , 1,2,..., ;

cov( , ) , , 1,2,..., , .

k k Q

k l k l Q

w q k K

q q k l K k l
   (15) 

By way of contradiction, suppose that *
2
ˆˆ ˆ ˆ( , , )
Q

 represents a unique solution to the system.  The 

vector *
2
ˆ

ˆ ˆ
ˆ( , , )
Q
c

c c
, for an arbitrary 0c  also solves the system.  Hence, the solution is not 

unique, which contradicts the hypothesis.  Of course, this result is hardly surprising; we have no 

data on *Q  so we are unable to identify its moments. 

 When we normalize the variance of  *Q  to one, the system becomes over-identified for 

2K  and we can use optimally weighted GMM to estimate the system; see Wooldridge 

(2002b) for a discussion.  The GMM estimator avoids both the inconsistency associated with the 

factor analysis estimator and the strong assumptions about the scales of the proxy variables 

required to justify the IV estimator; for this reason, we strongly prefer it on econometric grounds.  

At the same time, we note that, unlike the factor analysis approach, it does not provide a handy 

quality ranking of colleges as a byproduct. 
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 Using the five covariances with the wage measure and the 10 covariances of the college 

quality proxies, we estimate 0.043 , with a standard error of  0.0164.  Thus, as shown in 

Table 4, an increase of 1.34 standard deviations in college quality, which would roughly 

correspond to a movement from the 25th to the 75th percentile if college quality were normally 

distributed, would result in an increase of about 0.056 in log wages. 

 Our GMM estimate of 0.056 exceeds four of the five OLS estimates in Table 2.  In 

particular it exceeds the estimate obtained using the average SAT score variable, which is the 

most common variable used in the literature, by over 20 percent.  This suggests that the existing 

literature understates the labor market effects of college quality.  The GMM estimate is similar to 

many of the estimates from the factor analysis, and smaller than that obtained using IV methods.  

This latter finding suggests that scale issues play a role here, and serve to partially undo the 

attenuation bias resulting from the measurement error. 

 Table 4 also displays the implied noise-to-signal ratios for each of the college quality 

measures.  The least noisy proxy for college quality is average SAT, which supports the frequent 

use of this variable in the literature.  The next least noisy is the freshman retention rate, followed 

by average faculty salaries, the rejection rate, and the faculty-student ratio, where the last two are 

noisy indeed. 

VI. Sensitivity Analyses 

We performed three sensitivity analyses on our estimates.  First, because of the sensitivity of 

standard GMM to the estimation of the covariance matrix documented by Altonji and Segal 

(1996), we calculated the equally weighted minimum distance estimator.  This estimator yields 

an estimate of 0.042 , which differs from the optimally weighted GMM estimate by only 

0.01.
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Second, we calculated the GMM estimate using all possible observations to calculate 

each moment condition, rather than using the subset of observations with valid values for all of 

the variables used in constructing the estimate.  The benefit from this procedure comes from not 

throwing out information, the downside is that the variables are likely not missing at random, 

which is what is required for this procedure to produce consistent estimates.  Compared to the 

sample of 887 observations with valid values for all of the variables, the number of observations 

used ranges from 911 for SAT scores and wages to 1593 for faculty salaries and wages, where 

the 911 and 1593 do not fully overlap.  This wide variation in the observations utilized in each 

case provides plenty of scope for selection issues to arise.  As a result, we do not put too much 

weight on the resulting estimate of 0.036 , but it does suggest the value of filling in the data 

to create a large sample with valid values for all of the variables.   

Finally, we calculated the GMM estimate using 1998 wages rather than 1989 wages.  

This reduces the sample size to 707, and yields an estimate of 0.038 .20

VII. Conclusions 

Our analysis shows that much of the existing literature likely underestimates the labor market 

effects of college quality as a result of using a single quality variable as a proxy for the true, 

unobserved college quality.  Our GMM estimator, which builds on a generalization of the 

classical measurement error model and makes use of information on four additional proxies for 

college quality, suggests that existing estimates understate the effect of college quality by around 

20 percent.  This is not a huge effect but it is not a trivial one either; given the easy availability of 

additional proxies there is little excuse not to use them.21

                                                
20 The OLS, factor analysis, and IV estimates using the 1998 data also resemble their counterparts from the 1989 
data. 
21 Our analysis suggests that the quality variables commonly used in the primary and secondary school literature, 
such as class size (often measured at the school or district level and so with substantial error), teacher experience 
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Table 1: Means and Correlations Between Quality Variables, 
NLSY Men 1989 

 Mean Standard 
Deviation

Minimum 
value

Maximum 
value

Faculty-student ratio 0.0663 0.0264 0.02 0.25 
Rejection rate 0.255 0.165 0 0.82 
Freshman retention rate 0.750 0.123 0.24 0.98 
Mean SAT score/100 9.36 1.44 5.50 13.75 
Mean faculty salaries 
/1,000,000

0.0550 0.0107 0.0236 0.0958 

N = 887 

 Faculty-
student

ratio

Rejection
rate

Freshman 
retention 

rate

Mean
SAT score 

Mean
faculty
salaries

Faculty-student ratio 1.000 --- --- --- --- 
Rejection rate 0.313 1.000 --- --- --- 
Freshman retention rate 0.342 0.478 1.000 --- --- 
Mean SAT score 0.397 0.535 0.702 1.000 --- 
Mean faculty salaries 0.396 0.449 0.613 0.674 1.000 

Notes:  Authors’ calculations, NLSY data, US News and World Report’s Directory of Colleges and Universities, and IPEDS data.  College 
quality measure is for last college attended as of 1989.  
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Table 2:  Impact Estimates from Regressions with Each Quality 
Variable Individually and with All Quality Variables 

NLSY Men 1989

(1) (2) (3) (4) (5) (6) 

Faculty-student ratio 0.475 
(0.6193)
[0.009]

0.962
(0.5945)
[0.018]

--- --- --- --- 

Rejection rate 0.020 
(0.1208)
[0.004]

--- 0.157 
(0.1123)
[0.028]

--- --- --- 

Freshman retention rate 0.310 
(0.2188)
[0.050]

--- --- 0.395
(0.1619)
[0.063]

--- --- 

Mean SAT score/100 0.001 
(0.0161)
[0.002]

--- --- --- 0.025
(0.0120)
[0.046]

---

Mean faculty salaries 
/1,000,000

0.725
(2.213)
[0.010]

--- --- --- --- 3.22
(1.849)
[0.047]

N 887 887 887 887 887 887 

Notes:  Authors’ calculations using NLSY data, US News and World Report’s Directory of Colleges and Universities, and IPEDS data.  College 
quality measure is for last college attended as of 1989.  The regressions also include years of schooling, quadratics in the first two principal 
components of the age-adjusted AFQT scores, a black indicator, a Hispanic indicator, a quartic in age, and region of birth dummies.  We also 
include controls for home characteristics (whether at age 14 the household subscribed to a magazine, whether it subscribed to a newspaper, and 
whether the respondent had a library card), parental characteristics (education of the parents, whether their parents were living together in 1979, 
whether the mother was alive in 1979, whether the father was alive in 1979, and parental occupations in 1978), and high school characteristics 
(size of high school, number of books in the school library, fraction of student body that was economically disadvantaged, and mean teachers’ 
salaries).   To avoid losing sample due to missing values resulting from item non-response, we recoded the home, parental, and high school 
characteristics missing values to zero and then added indicator variables that equal one if the corresponding data element is missing.  The 
dependent variable is the natural log of the respondent’s wage, defined as earnings in 1988 (the year prior to the 1989 survey) divided by hours in 
1988.   The values in brackets indicate the return from moving from the 25th percentile of the quality measure to the 75th percentile.  Huber-White 
standard errors appear in parentheses.  Bold type indicates significance at the five-percent level in a one-tailed test.   
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Table 3:  Estimates from Regressions Including College Quality 
Indices Constructed using Factor Analysis 

NLSY Men 1989

Panel A: Two measure models
    
Factor combines faculty-
student ratio and rejection 
rate

0.060
(0.0323)
[ 0.030 ] 

Factor combines rejection rate 
and mean SAT scores 

0.050
(0.0255)
[0.045]

   

Factor combines faculty-
student ratio and freshman 
retention files 

0.080
(0.0331)
[0.042]

Factor combines rejection rate 
and mean faculty salaries 

0.054
(0.0303)
[0.045]

   

Factor combines faculty-
student ratio and mean SAT 
scores

0.061
(0.0278)
[0.037]

Factor combines freshman 
retention rates and mean SAT 
scores

0.056
(0.0225)
[0.063]

   

Factor combines faculty-
student ratio and mean 
faculty salaries 

0.060
(0.0289)
[0.038]

Factor combines freshman 
retention rates and mean 
faculty salaries 

0.062
(0.0264)
[0.060]

   

Factor combines rejection 
rate and freshman retention 
rates

0.064
(0.0287)
[0.052]

Factor combines mean SAT 
scores and mean faculty 
salaries

0.049
(0.0238)
[0.053]
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Table 3 (Continued)

Panel B: Three measure models
   

Factor combines faculty-
student ratio, rejection rate, 
and freshman retention rate 

0.059
(0.0244)
[0.057]

Factor combines rejection rate, 
freshman retention rate, and mean 
SAT score 

0.048
(0.0202)
[0.059]

Factor combines faculty-
student ratio, rejection rate, 
and mean SAT score 

0.046
(0.0212)
[0.047]

Factor combines rejection rate, 
freshman retention rate, and mean 
faculty salaries 

0.055
(0.0234)
[0.060]

Factor combines faculty-
student ratio, rejection rate, 
and mean faculty salaries 

0.048
(0.0241)
[0.049]

Factor combines freshman 
retention rate, mean SAT score, 
and mean faculty salaries 

0.050
(0.0208)
[0.061]

Panel C: Four measure models

Factor combines faculty-
student ratio, rejection rate, 
freshman retention rate, and 
mean SAT scores 

0.049
(0.0203)
[0.059]

Factor combines faculty-student 
ratio, freshman retention rate, 
mean SAT scores, and mean 
faculty salaries 

0.051
(0.0209)
[0.061]

Factor combines faculty-
student ratio, rejection rate, 
freshman retention rate, and 
mean faculty salaries 

0.055
(0.0233)
[0.060]

Factor combines rejection rate, 
freshman retention rate, mean 
SAT scores, and mean faculty 
salaries 

0.049
(0.0208)
[0.057]

Factor combines faculty-
student ratio, rejection rate, 
mean SAT scores, and mean 
faculty salaries 

0.046
(0.0211)
[0.050]

Panel D: Five measure model

Factor combines faculty-
student ratio, rejection rated, 
freshman retention rate, mean 
SAT scores, and mean faculty 
salaries 

0.042
(0.0170)
[0.049]

Notes:  Authors’ calculations using NLSY data, US News and World Report’s Directory of Colleges and Universities, and IPEDS data.  College 
quality measure is for last college attended as of 1989.  The regressions also include years of schooling, quadratics in the first two principal 
components of the age-adjusted AFQT scores, a black indicator, a Hispanic indicator, a quartic in age, and region of birth dummies.  We also 
include controls for home characteristics (whether at age 14 the household subscribed to a magazine, whether it subscribed to a newspaper, and 
whether the respondent had a library card), parental characteristics (education of the parents, whether their parents were living together in 1979, 
whether the mother was alive in 1979, whether the father was alive in 1979, and parental occupations in 1978), and high school characteristics 
(size of high school, number of books in the school library, fraction of student body that was economically disadvantaged, and mean teachers’ 
salaries).   To avoid losing sample due to missing values resulting from item non-response, we recoded the home, parental, and high school 
characteristics missing values to zero and then added indicator variables that equal one if the corresponding data element is missing.  The 
dependent variable is the natural log of the respondent’s wage, defined as earnings in 1988 (the year prior to the 1989 survey) divided by hours in 
1988.   The values in brackets indicate the return from moving from the 25th percentile of the quality measure to the 75th percentile.  Huber-White 
standard errors appear in parentheses.  Bold type indicates significance at the five-percent level in a one-tailed test.  There are 887 observations in 
each regression.   We construct each college quality index using factor analysis. 
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Table 4: IV Estimates of the Effect of College Quality 
NLSY Men 1989 

(1) (2) (3) (4) (5) 

Faculty-student ratio 4.07
(1.942)
[0.077]

--- --- --- --- 

Rejection rate --- 0.512
(0.2134)
[0.092]

--- --- --- 

Freshman retention rate --- --- 0.483
(0.2281)
[ 0.077] 

--- --- 

Mean SAT score/100 --- --- --- 0.045
(0.0185)
[0.083]

---

Mean faculty salaries 
/1,000,000

--- --- --- --- 6.46
(2.666)
[0.093]

Corresponding OLS 
estimate of quality 
measure 

0.962
(0.5945)

0.157
(0.1123)

0.395
(0.1619)

0.025
(0.0120)

3.22
(1.849)

Partial F-statistic 
instruments from first-
stage regression {p-value} 

22.5
{0.000}

55.4
{0.000}

231.8
{0.000}

246.3
{0.000}

134.7
{0.000}

N 887 887 887 887 887 

Notes:  Authors’ calculations using NLSY data, US News and World Report’s Directory of Colleges and Universities, and IPEDS data.  College 
quality measure is for last college attended as of 1989.  The regressions also include years of schooling, quadratics in the first two principal 
components of the age-adjusted AFQT scores, a black indicator, a Hispanic indicator, a quartic in age, and region of birth dummies.  We also 
include controls for home characteristics (whether at age 14 the household subscribed to a magazine, whether it subscribed to a newspaper, and 
whether the respondent had a library card), parental characteristics (education of the parents, whether their parents were living together in 1979, 
whether the mother was alive in 1979, whether the father was alive in 1979, and parental occupations in 1978), and high school characteristics 
(size of high school, number of books in the school library, fraction of student body that was economically disadvantaged, and mean teachers’ 
salaries).   To avoid losing sample due to missing values resulting from item non-response, we recoded the home, parental, and high school 
characteristics missing values to zero and then added indicator variables that equal one if the corresponding data element is missing.  The 
dependent variable is the natural log of the respondent’s wage, defined as earnings in 1988 (the year prior to the 1989 survey) divided by hours in 
1988.   The values in brackets indicate the return from moving from the 25th percentile of the quality measure to the 75th percentile.  Huber-White 
standard errors appear in parentheses.  Bold type indicates significance at the five-percent level in a one-tailed test.  
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Table 5: GMM Estimates of the Effect of College Quality
and Noise-to-Signal Ratios for the College Quality Measures 

NLSY Men 1989 

Estimates 

0.043
(0.0164)
[0.056]

Noise-to-signal ratio for faculty-student ratio 5.83 
Noise-to-signal ratio for rejection rate 2.30 
Noise-to-signal ratio for freshman retention rate 0.798 
Noise-to-signal ratio for mean SAT score 0.383 
Noise-to-signal ratio for mean faculty salaries 0.955 

N 887

Notes:  Authors’ calculations using NLSY data, US News and World Report’s Directory of Colleges and Universities, and IPEDS data.  College 
quality measure is for last college attended as of 1989.  The regressions also include years of schooling, quadratics in the first two principal 
components of the age-adjusted AFQT scores, a black indicator, a Hispanic indicator, a quartic in age, and region of birth dummies.  We also 
include controls for home characteristics (whether at age 14 the household subscribed to a magazine, whether it subscribed to a newspaper, and 
whether the respondent had a library card), parental characteristics (education of the parents, whether their parents were living together in 1979, 
whether the mother was alive in 1979, whether the father was alive in 1979, and parental occupations in 1978), and high school characteristics 
(size of high school, number of books in the school library, fraction of student body that was economically disadvantaged, and mean teachers’ 
salaries).   To avoid losing sample due to missing values resulting from item non-response, we recoded the home, parental, and high school 
characteristics missing values to zero and then added indicator variables that equal one if the corresponding data element is missing.  The 
dependent variable is the natural log of the respondent’s wage, defined as earnings in 1988 (the year prior to the 1989 survey) divided by hours in 
1988.   The values in brackets indicate the return from moving from the 25th percentile of the quality measure to the 75th percentile.  Huber-White 
standard errors appear in parentheses.  Bold type indicates significance at the five-percent level in a one-tailed test.  
.


