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Abstract

We examine the individual, contextual, and institutional determinants of faculty patenting
behavior in a panel dataset spanning the careers of 3,884 academic life scientists. Using a
combination of discrete time hazard rate models and fixed effects logistic models, we find
that that patenting events are preceded by a flurry of publications, even holding constant
time-invariant scientific talent and the latent patentability of a scientist’s research. Moreover,
the magnitude of the effect of this flurry is influenced by context — such as the presence of
coauthors who patent and the patent stock of the scientist’s university. Whereas previous
research emphasized that academic patenters are more accomplished on average than their
non-patenting counterparts, our findings suggest that patenting behavior is also a function of
scientific opportunities. This finding has important implications for the public policy debate
surrounding academic patenting.
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1 Introduction

In the past few decades, universities and other public-sector research organizations have

become more proactive in their efforts to commercialize scientific discoveries (e.g., Jaffe and

Lerner, 2001; Jensen and Thursby, 2001; Thursby and Thursby, 2002). This change has

spawned a growing academic literature on university technology transfer, one stream of

which has assessed trends in university patenting and the spillover of university science into

the private sector (Jaffe, 1989; Mansfield, 1995; Henderson et al., 1998). Underlying the

well documented upswing in university patenting has been a sharp increase in the number

of individual academic scientists who are listed as inventors on patents. In this paper, we

examine the individual, contextual, and institutional determinants of academic patenting for

a panel dataset of 3,884 academic life scientists.

Past research on this topic has emphasized three inter-related aspects of faculty patent-

ing behavior. First, academic patenters are disproportionately recruited from the ranks of

elite scientists and institutions (Zucker and Darby, 1998; Azoulay and Sampat, 2005). Sec-

ond, there are important differences in the propensity to patent across fields, and in the

motivations underlying patenting activity, most notably between the life and physical sci-

ences/engineering (Owen-Smith and Powell, 2001). Finally, institutional context exerts a

strong influence on the propensity to patent, either in the form of well-funded technology

licensing offices, or through the presence of prominent peers who themselves are engaged in

this activity (Di Gregorio and Shane, 2003). Most of this evidence, however, stems from

analyses of survey data or from qualitative accounts. While consistent with these previous

findings, the results in this paper qualify them in some important respects. Our study also

generates a novel set of results, underscoring the benefits of fine-grained longitudinal data

at the researcher level of analysis.

The paper’s findings include the following. First, we estimate pronounced life-cycle effects

on the propensity to patent, with mid-career academics being much more likely to patent

than younger and older faculty members. Second, we uncover a very strong gender effect,

with female faculty members being 67% less likely to patent than their male counterparts.

This result is interesting in light of the accreting evidence that, although women have made
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significant inroads in gaining faculty positions in the life sciences, female academic scientists

are severely under-represented in commercial activity (Ding et al., 2005). Third, we establish

a relationship between the latent patentability of a faculty’s research and his/her propensity

to patent. While latent patentability is often thought to be unobservable, we compute a

patentability score for each scientist in our sample by using keywords in the publications of

scientists that have already applied for patent rights as a benchmark for patentable research,

and then comparing the research of each scientist in our dataset to this benchmark. Although

there is noise in this proxy, it nevertheless predicts quite strongly the likelihood of a patenting

event.

Fourth, we document that patenting is often accompanied by a flurry of publication

activity in the year preceding the patent application, even after accounting for the lagged

stock of publications (in hazard rate models) or controlling for scientist fixed effects. This

result highlights the fact that academic patenting, rather than merely reflecting the influence

of time-invariant demographic factors, also responds to variation in scientific opportunities.

Holding life-time scientific achievement constant, we find that surges of scientific productiv-

ity, not steady performance, is most likely to be associated with a patent. Moreover, the

magnitude of the effect of this flurry decreases with the presence of a patenting coauthor, or

with the intensity of patenting activity in the scientist’s university. These findings suggest

that institutional and contextual factors may partially substitute for scientific opportunities

in determining individual rates of patenting.

Lastly, independent of any specific finding, the general analysis herein is relevant to the

broader question of the impact of patenting on the development of academic science. Surveys

of university faculty have found rampant concern that patenting is skewing research agendas

toward commercial priorities, causing delay in the public dissemination of research findings,

and crowding out effort devoted to the pursuit of fundamental knowledge (Blumenthal et

al., 1996; Campbell et al. 2002; Krimsky, 2003). Insofar as our results relate to this issue,

the finding that patenting follows a flurry of publications suggests to us that the crowd-

out hypothesis is unlikely to hold true.1 Although we cannot adjudicate between opposing

1However, if scientific trajectories associated with patents exhaust themselves more quickly than those
remaining free of associations with the world of commerce, then intertemporal substitution of “basic,”
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claims regarding the effect of patenting on individual-level or university-level outcomes in the

present study, one can construe our results as providing the “first stage” of an econometric

analysis of the effect of academic patenting on the rate and direction of scientific progress,

an evaluation we are pursuing in other research (Azoulay et al., 2005).

The rest of the paper proceeds as follows. In the next section, we situate our contribution

in the large and growing literature on academic patenting, and highlight what we regard as

outstanding issues that can only be resolved with researcher-level longitudinal data of the

kind we analyze. Section 3 describes data sources and the construction of the sample,

presents descriptive statistics, and discusses our econometric approach. Section 4 reports

our results. Section 5 concludes.

2 Who Patents?

In recent times, the region of overlap between the spheres of academic science and commercial

markets has experienced significant growth. The expanding interface between these two do-

mains raises myriad questions, ranging from the amount of near-term economic value created

by the spillovers of university research, to the emergence of select universities as engines of

entrepreneurial activity, to the influence of opportunities to commercialize scientific research

on the traditional incentive systems that have governed academic science. Researchers have

engaged a variety of these questions, and advancement in our understanding is occurring

along many fronts.

Spurred in part by accessible data, many studies have assessed the role of universities

as direct sources of commercial innovations, primarily considering the quality and quantity

of their innovative outputs. For instance, Henderson et al. (1998) examine the relative

importance of university patents, finding that there has been a secular decline in the positive

quality gap separating university patents from those assigned to for-profit firms. Mowery

et al. (2001) have investigated the consequence of the policy changes brought about by the

Bayh-Dole Act. They challenge the conventional wisdom that Bayh Dole has accelerated

fundamental knowledge by “applied,” patentable output could still be consistent with the patterns we observe
in the data.
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universities’ production of patents, showing that the legislation was not a primary factor

in explaining the uptick in patenting at three prominent universities. At the level of the

university, Thursby and Thursby (2002) find that university administrators have become

more proactive in pursuing patents and licensing opportunities. Di Gregorio and Shane

(2003) explore cross-university differences in the formation of start up companies, discovering

that intellectual eminence is a central factor distinguishing the universities that spawn start

up companies.

The majority of the archival work that has looked at the commercial outputs of not-

for-profit organizations has treated the university as the level of analysis. Because the

preponderance of the empirical studies have been performed at the university level (notable

exceptions include Murray, 2002; Argawal and Henderson, 2002; and Stephan et al. 2004),

less is known about the factors that underlie individual scientists’ participation in patenting.

In this article, we analyze the probability of patenting in a large, longitudinal sample of

university faculty in the biomedical area. Our analysis is guided by an interest in four issues.

First, how does the proclivity to patent vary with scientists’ experience in the profession?

Second, what is the relationship between scientific productivity (measured as papers pro-

duced) and patenting? Third, are there significant differences across research areas within

scientific disciplines in terms of the apparent “patentability” of the work, and is there any

evidence to suggest that scientists may be altering their research to move toward patentable

research? Fourth, to what extent is the propensity to patent sensitive to the work context

of the individual scientist, particularly the level of commercial orientation of a scientist’s

university and his or her coauthors?

Treating each of these in turn, we first ask, how does the propensity to patent change

over the scientific career? Economists and sociologists alike have a long-standing interest

in career dynamics in academic science, in part because incentives in science vary over the

professional lifecycle. Two elements of the institutionalized incentive system in science are

generally thought to be tenure invariant: the tying of peer recognition to priority in research

discovery, and the intrinsic satisfaction garnered from solving vexing problems. However,

monetary incentives in science do depend on the career stage, and it is well known that
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the wage-tenure profile in academic science is not steep (Stephan, 1996). Given the shallow

slope of salary increases, Levin and Stephan (1991) suggest that levels of investment in

research should vary over the career lifecycle. In particular, senior scientists with tenured

appointments may reallocate some of their effort to consulting and other extra-university

income generating opportunities. Therefore, if widely held assumptions about changing

incentives over the career hold, we should observe that the rate of patenting accelerates in

the post-tenure interval.

A countervailing possibility is implied by a growing body of ethnographic research that

portrays the increasing acceptance of patenting as a legitimate activity in academic science

(Etzkowitz, 1998). If the pendulum has swung to the point that patenting is perceived to

contribute to scientists’ reputation and influence, we would expect to observe that, viewing

successive cohorts of scientists, patenting occurs with increasing frequency in the early career

stage. Consistent with this perspective, Owen-Smith and Powell (2001) describe interviews

with scientists that have come to view patents as reaffirmations of the originality of their

work and as contributing to their scientific visibility. Recent interview-based accounts thus

raise the possibility of a significant shift in the norms and reward system in science, with

implications for lifecycle effects in patenting.

Next, we seek to identify the relationship between scientists’ productivity and the like-

lihood that they patent. Gradually accreting evidence suggests that the scientists with

the most stellar academic credentials are also the most likely to be involved in commercial

endeavors. In particular, Zucker et al. (1998) describe the importance of the geographic

location of star scientists in the emergence of the biotechnology industry. They argue that

the direct participation of leading academic scientists in early stage biotechnology companies

was so important that the locations of the stars served as geographical constraints on the

development of the industry. Stuart and Ding (2005) directly analyze the probability that

academic scientists either found or join scientific advisory boards of biotechnology firms.

They find that standard measures of human capital strongly associate with the participation

of scientists in entrepreneurial initiatives.
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The existing literature provides reason to expect that patenting is concentrated among the

group of eminent scientists. Yet, beyond the general association between research output

and the likelihood of engaging in market-related activities, identifying more precisely the

relationship between the production of papers and patents holds the promise to adjudicate

among the competing mechanisms that might generate the relationship. In particular, if the

magnitude of the stock of scientists’ research output predicts the onset of patenting, it may

be that faculty members’ scientific reputations are important considerations in the decision

to patent. The reason for this could be that the prominence of the inventor on a patented

technology may influence the university’s ability to capitalize on the intellectual property

by affecting the probability that potential licensees become aware of and interested in the

technology.

Consider instead the implication of a positive relationship between the flow, but not

the stock, of scientists’ research output and the probability that a patent is issued. If the

flow of output is the determining factor, we would suggest that technological “opportunity”

looms large in the transition to patenting. A flurry of scientific output—a high flow of

publications—occurs when a scientist unearths a productive domain of research. If patenting

is a byproduct of a surge in productivity, we think it reasonable to conclude that a patent

is often an opportunistic response to the uncovering of a promising research area.

The third issue we consider is how the specific areas of expertise of academic scientists

affect the likelihood of patenting. Obviously, there exists heterogeneity across scientists

in the potential commercial value of the research they produce. If one needs to account

for such differences, it is tempting to argue that the analyst can accommodate them by

incorporating scientist fixed effects in the analysis. We believe, however, that this represents

just a partial solution given the volume and the diversity of research projects that scientists

participate in throughout their careers. We therefore attempt to develop a direct measure of

the “patentability” of scientific research. The intuition behind the measure is that knowledge

of the research foci of academic scientists who have already patented can be used to identify

the domains of science in which research is patentable. With such a measure in hand, we

ask two questions. First, does the latent patentability of scientists’ research in fact affect the
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probability of patenting? Second, is it the patentability of the stock or the flow of research

outputs that most consequentially influences the propensity to patent?

Fourth, we explore two elements of scientists’ work contexts. While it is well established

that propensities to patent vary substantially across universities, we do not have a clear

sense for the influence of organizational characteristics on the patenting rates of otherwise

similar scientists within different universities. Numerous studies suggest that the decision

to engage in commercial activity of all sorts is strongly influenced by factors ranging from

the norms and culture of an institution vis-à-vis commercial activity, to the quality of the

university’s technology transfer office (Thursby and Thursby 2002; Owen-Smith and Powell,

2001). Two prevalent considerations are thus the (potentially endogenous) role of a smooth

functioning technology transfer office in encouraging faculty to disclose possibly patentable

research findings, and more generally, a pro-commercialization “entrepreneurial culture” at

a university. In our analysis, we ask whether university-level variables influence the patent

rate net of controls for a variety of observable individual-level characteristics.

A related question concerns the influence of especially proximate colleagues on the patent

proclivities of individual scientists. There are a set of reasons to expect that scientists who

work closely with commercially-inclined peers will be more likely themselves to pursue com-

mercial applications of their scientific research. Stuart and Ding (2005) argue that there are

two mechanisms through which colleagues affect the probability that a particular scientist

engages in commercial activities. First, peers exert attitudinal influences, in particular shap-

ing the degree to which a given scientist is likely to embrace patenting as both a legitimate

undertaking for an academic scientist and as a potential contributor to his or her professional

standing. Second, peers convey information that may lower the cost of patenting, such as

contacts in the technology transfer office and advice about how to minimize the amount of

time consumed in patenting. We thus look for what might be labeled as “peer effects” on the

transition to patenting. Specifically, we examine whether scientists who have coauthorship

links with patent holders, and those who coauthor with researchers employed in the private

sector, are more likely themselves to patent.
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A necessary caveat pertains to the thorny issue of causality. Many of our independent

variables, such as publications or latent patentability, could be considered outcomes of in-

terest. Moreover, it would be incorrect to interpret our findings as providing evidence, inter

alia, that publications and patents are complements, or that latent patentability “causes”

patent applications. Rather, we have identified correlates of patenting. The conditional

correlations we estimate can still be useful insofar as they help narrow the range of plausible

theories regarding the effect of academic patenting on scientific productivity. In addition,

since our most interesting results pertain to what are in fact lagged dependent variables, the

study highlights the need to use correct econometric methodologies to recover causal effects.

This is pursued in a companion paper (Azoulay et al., 2005).

3 Data, Sample Characteristics, and Econometric Ap-

proach

We examine the determinants of faculty patenting behavior in a panel dataset of academic

life scientists employed at universities and non-profit research institutes. This area was

chosen because the biomedical fields have accounted for the preponderance of university

patenting and licensing activity (Mowery et al., 2001). While we have not selected scientists

because they have patented, we have sampled from scientific disciplines that we know to

have significantly contributed to a vibrant area of technological development. We began by

drawing 12,000 doctoral degree recipients from UMI Proquest Digital Dissertations, which

lists Ph.D. recipients from more than one thousand universities. In forming the sample, we

randomly selected individuals, but only those with Ph.D.s in scientific disciplines that have

informed commercial biotechnology.2 This assures a random sample of Ph.D.s in areas in

which academic research may have significant, short-term commercial value.

2To identify the scientific disciplines that have been most important to biotechnology, we coded the
educational backgrounds of the Ph.D.-holding, university-employed scientific advisory board members of all
publicly traded biotechnology firms. The source of information on scientific advisors’ degrees was the IPO
prospectuses of the 533 U.S.-based biotechnology firms have filed with the U.S. Securities and Exchange
Committee. We then stratified the random draw from UMI to correspond to the disciplines and Ph.D.
years of firms’ scientific advisors. For example, 22 percent of biotechnology company scientific advisors hold
biochemistry Ph.D.s; we drew a corresponding proportion of biochemists into our sample. Table 1 lists the
top 15 disciplines from which scientists in our sample are selected.
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Next, we obtained scientists’ publication records from the ISI’s Web of Science database.

Because the Web of Science includes authors’ affiliations, we were able to identify Ph.D.

graduates who pursued careers outside of academe. After removing individuals that (i)

had no publications in any post-graduate year, (ii) published exclusively under corporate

affiliations, or (iii) exited academe early in their careers,3 we were left with 3,884 scientists,

all of whom we know to have been employed at research institutions. Each scientist is

observed from the year after he or she earned a Ph.D. until 1999, unless the individual

exited academia.4 The final panel contains 59,069 person-year observations between 1967

and 1999.

3.1 Variables

The patents of the academic scientists in our data were assembled from the NBER patent

database (Hall, Jaffe, and Trajtenberg, 2001). To identify academic patenters, we matched

the scientists in our dataset to the list of inventors in the NBER patent database. Matches

were done on the basis of last names and initials, and we used information on assignee

(university) and geographic region to eliminate false matches. For each scientist in our

data, we generated two dependent variables: time of transition to first patent and a dummy

variable indicating whether the researcher applied for at least one patent in a given year.

Research Output and Latent Patentability. We create three measures of scientists’

research output. From the Web of Science we computed annual paper publication counts for

each scientist. We count all papers on which a scientist is listed as an author (in other words,

we treat sole authored and coauthored papers as equivalents). While this seems a good proxy

for the rate of a given scientist’s output, we would also like to measure the content of this

output. We do this in two different ways. First, we use the affiliation data available from Web

of Science to identify all instances in which a scientist wrote a paper that was coauthored

with one or more individuals in a corporate research and development lab. We assume that

3Ph.D.s with academic affiliations lasting less than five years dropped from the dataset to exclude post-
doctoral fellows that later moved to jobs in industry.

4We assume a researcher has exited academia when he or she fails to publish for five consecutive years, or
in fewer instances, when the scientist begins to publish almost exclusively under a corporate affiliation. In
either case, we censor observation in the year in which a scientist last publishes under a university affiliation.
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papers coauthored with researchers in industry are more likely to be of an applied nature,

and thus we consider the rate of publication of papers with coauthors in industry as an

indicator of the degree to which scientists are engaging in commercially-oriented research.

Second, it would be desirable to directly account for differences among scientists in the

inherent “patentability” of their research. To construct such a measure, we have used the

title words in scientists’ publications to identify the areas in which they have conducted

research, and then applied weights to theses areas based on an (endogenous to the sample)

measure of the extent to which other scientists working in these areas have patented their

discoveries. Intuitively, we use the publications of scientists that have already applied for

patent rights as the benchmark for patentable research, and then compared the research of

each scientist in our dataset to this benchmark to generate a research patentability score for

each scientist-year. Specifically, the research patentability score for scientist i in year t is

defined as:

PATENTABILITYit =
J∑

j=1

wij,t−1
nijt∑
w niwt

where j = 1, . . . , J indexes each of the scientific keywords appearing in the titles of the

journal articles published by scientist i in year t,5 nijt is the number of times each of the

keywords j has appeared in scientist i’s articles published in year t, and wijt is a weight

for each keyword that measures the frequency with which word j is used in the titles of

articles published by scientists who have entered the patenting regime in year t or earlier,

relative to those who have not entered the patenting regime as of year t (the calculation of

wijt is detailed in the data appendix). Intuitively, the inherent patentability of a scientist’s

research can change because of a change in the direction of the research of that scientist, or

because other patenters’ research increasingly comes to resemble that of the scientist. The

former effect is captured by the ratio
nijt∑
w niwt

, the latter by the weights wij,t−1. Because the

benchmark in year t − 1 is used to weight title words in year t, year-to-year changes in the

research patentability score will only reflect actions of the scientist (through their choices of

title keywords), rather than contemporaneous changes in the benchmark.

5We relied on title words in journal articles instead of journal- or author-assigned keywords because the
Web of Science database did not begin to include keyword descriptors until 1992. However, the titles of
biomedical research papers typically indicate the research area and the methodology used in the paper. We
find high overlap between title words and keywords in the papers for which both are available.
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Finally, to capture the idea that the inherent patentability of past research might influence

current propensity to patent, we compute a depreciated stock of the research patentability

score using a perpetual inventory model. Through the impact of the depreciation rate δ, this

formulation captures the fact that the recent substantive research orientation of a scientist’s

research should influence current behavior more strongly than scientific trajectories that

unfolded in the more distant past:

STOCK RPit = (1− δ)STOCK RPi,t−1 + FLOW RPit =
t∑

τ=0

(1− δ)t−τ · FLOW RPiτ

Following a number of studies of the determinants of scientists’ productivity, we were

also able to construct many control variables to account for individual and institutional

attributes that may influence rates of publication and patenting. To account for life cycle

effects (Stephan, 1996), we include the number of years since a scientist earned his or her

Ph.D. An extensive literature in the sociology of science has documented gender differences

in productivity (e.g., Long and Fox, 1995), but little is known about the relationship between

gender and patenting. To assess this, we examined scientists first names to construct a “sci-

entist is female” dummy variable. Because the time involved in publishing scientific research

varies across fields, the regressions include a full set of dummies for researchers’ dissertation

subject areas. Some of the regressions control for time invariant quality differences among

researchers through the inclusion of scientist fixed effects. In specifications without fixed

effects, we enter a dichotomous measure of the quality of a scientists’ Ph.D.-degree granting

institution—a dummy variable indicating whether or not a scientists’ doctoral program was

ranked in the top 20. Specifically, we collected Gourman Report rankings for all institutions

in our dataset. Gourman ranking are available at the field level and were issued for the

first time in 1980. Because biochemistry is the modal discipline in our dataset, we used

universities’ rankings in that field. We assigned universities their original rating for all years

prior to 1980 (and updated them every other year for the subsequent period).

We also include a number of employer-level variables that may influence scientists’ patent-

ing. These covariates are updated each year and when scientists change employers. First,

given the existing evidence that prominent universities are more likely to be involved in

commercial activities, we include a quality rank dummy variable analogous to the one con-
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structed for Ph.D.-grating institutions. Second, we used the AUTM surveys to create a

technology transfer office (TTO) dummy variable, which is set to one in all years in which

a scientist’s employing university has an active TTO. Third, a university’s stock of patents

is entered in the model, among other things to further control for institutional differences in

support for patenting. We include an analogous patent stock measure for scientists’ doctoral

training universities.

Finally, we include variables that capture the patenting proclivities of our scientists’

coauthors. We measure both the number of collaborators and whether coauthors have applied

for patents, but we are able to do so only for coauthors that are also members of our sample.

Since the set of scientists analyzed here are drawn randomly from the population, this

limitation should not introduce any bias, although it the resulting count is clearly a noisy

proxy for the underlying concept.

3.2 Descriptive Statistics

Among the 3,884 researchers in our sample, 758 (20%) hold one or more patents. In Fig-

ure 1, we plot the distribution of patents for the patenting researchers in our sample. The

histogram illustrates a rapid drop off after one—most patenters are listed on 1 or 2 patents

throughout their career, and very few scientists in our data receive more than 10 patents.

Figure 2 displays the distribution of scientists’ total publication count, broken out by their

patenting status. Consistent with the notion that patenting is concentrated among the group

of academically productive scientists, the distribution for the patenter subsample is much

less skewed than that of the non-patenter subsample (Figure 2).

Table 2 presents the summary descriptive statistics for variables used in our analysis.

Table 3 reports, by scientists’ patenting status, the mean research and employer character-

istics measured at five career stages. This table shows that researchers who have sought

and received patent rights for their discoveries are more productive at each career stage:

they publish almost twice as many research papers as those who have not yet entered the

patenting regime. Likewise, the intrinsic patentability of their research appears higher at

each career stage. At all career stages, scientists who have applied for patent rights are closer
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to commercial research than their non-patenting counterparts, as indicated by the fact that

they have collaborated more often with researchers in the private sector. Finally, patenters

are more likely to work in settings where a technology transfer office exists and patenting

activity is intensive, and they are more likely to have coauthors in our sample that have

themselves patented.

Figure 3 displays the distribution of patenting events over time. Although we observe an

uptick in the years following Bayh-Dole, it is also clear that patenting activity was taking

place even before the adoption of the Act. This is consistent with the findings of Mowery et al.

(2001). Finally, Figure 4 displays, for the first decade of scientists careers, the unconditional

hazard of first patent application against experience (as measured by years since graduation)

for three distinct cohorts of scientists: those who received their PhD between 1967 and 1975,

those who earned their degree between 1976 and 1985, and those who matriculated between

1986 and 1990. For each of these cohorts, the hazard of patenting is increasing over the life

cycle. However, of particular interest is the slope increase that appears during the first years

in the profession of the most recent cohort.6 The increase in slope is consistent with the view

that patenting is increasingly perceived to be a legitimate scientific output in the academic

life sciences.

3.3 Econometric Considerations

Estimating the determinants of faculty patenting behavior requires a procedure that accom-

modates the discrete nature of the event. Since our interest lies in analyzing the dynamics

associated with the onset of patenting in scientific careers, we employ discrete-time haz-

ard rate models (Cox 1972, Myers, Hankey and Mantel 1973, Allison 1982). The use of

discrete-time models (as opposed to continuous-time models such as the Cox) is motivated

by the fact that our failure time variable displays multiple events within each time pe-

riod. For a researcher i during experience interval t, let the discrete time hazard rate be

6The decline in the unconditional hazard for the third cohort after the fifth year of experience is caused by
the gradual censoring of the patent data. Specifically, the NBER patent database contains data on patents
issued until 1999. Because our measure of patenting is dated to the time of application of a patent eventually
issued, the final years of our data contain fewer patenting events because we do not observe patents that
were applied for prior to 1999, but did not issue until after this year.
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pit = Pr[Ti = t|Ti ≥ t,Xit], where Ti is the time at which research i experiences an event

and Xit a vector of covariates. We use a logistic regression function to link the hazard rate

with time and the explanatory covariates:

Ln[
pit

1− pit

] = αt + β
′
Xit

where αt is a set of experience interval dummies. In practice, we estimate a simple logit of

the decision to apply for a patent, where the observations corresponding to years subsequent

to the first event have been dropped from the estimation sample.

These models essentially rely on between-scientist covariate variation to identify the de-

terminants of the first transition to patenting. A complementary approach is to consider

how within-scientist changes in covariates influence the propensity to patent. We do so by

estimating so-called “fixed-effects” logit models by conditional maximum likelihood (Cham-

berlain, 1984). In contrast to our implementation of the standard logits, this approach

analyzes the careers of patenting scientists in their entirety, rather than just until the year

of first patent application. In other words, we treat patenting as a repeatable event in the

fixed-effects logit regressions. There is, however, a countervailing cost in the fixed-effects

approach, in that it drops all observations corresponding to scientists who never patent.7

We believe that, together, the discrete-time hazard models and the fixed effects logit models

provide a comprehensive picture of the academic patenting phenomenon.

4 Results

We begin by presenting results from the discrete-time hazard rate (unconditional logit)

regressions. The results can be found in Tables 4a, b and c. Model (1) includes the variables

often thought to be associated with academic patenting, but without the paper count and the

patentability variables. All models control for (unreported) Ph.D subject areas and calendar

year dummies. The results are consistent with the findings of previous researchers, and

confirm the patterns that were already apparent in the descriptive statistics. We find strong

7Conditional maximum likelihood estimation requires some variation in the dependent variable to con-
dition out the individual scientist effects. Because scientists that have never patented have no variation on
the outcome variable, they must be dropped from the analysis.
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evidence of a gender effect, with female faculty being 67% less likely to patent than their male

counterparts, ceteris paribus. We find evidence that controling for the number of coauthors,

scientists with at least one patenting coauthor are more likely to patent. We caution readers

against interpreting this correlation as evidence of patenting peer effects, as it could merely

reflect assortative matching among scientists along some other dimension correlated with

patenting. We also find a strong influence of coauthorship with corporate researchers on the

likelihood of first patent application. At the mean of the other covariates, having coauthored

with researchers in industry increases the predicted probability of patenting by 74%.

In contrast to the individual-level covariates, the impact of employer-related variables is

mixed. We fail to find an effect of the presence of a technology licensing office (although this

could be due to the fact that this organizational innovation diffused quite rapidly among

Tier-1 universities following Bayh-Dole). However, we do find an effect for the patent stock

of the university, as well as for the intensity of patenting at the university where the scientist

earned his/her doctorate in the five years preceding the award of the degree.8

Model (2) adds two variables to the specification: a scientist’s count of publications in

year t − 1, and a cumulative stock of publications up to year t − 2. Only the flow variable

is significant, suggesting that patenting is accompanied by a flurry of scientific activity. At

the mean of the data, each additional research publication increases the researcher’s odds of

entering the patenting regime during the next year by 6%; a one standard deviation increase

(2.7) in the flow of research publications leads to a 14% increase in the likelihood of patenting

relative to baseline. In Models (3) and (4), we explore further the timing of this flurry by

using more flexible specifications for the distributed lag of publications. In Model (3), we

include the flow of publications in year t−2 and the stock up to year t−3. In Model (4), we

include the flow of publications in year t− 3 and the stock up to year t− 4. In both cases,

only the coefficient for the one-year lagged variable is significant; in other words, Model (2)

appears to capture accurately the timing of the publication flurry associated with patenting.

8In contrast to the trends displayed on Figure 4, the hazard of patenting appears to be monotonically
decreasing in experience. However, this trend is an artifact of our decision to limit the analysis to the first
transition to patenting. Because we drop scientists from the data once they have patented, we would expect
to observe negative duration dependence as only those scientists that have not yet patented prior to an
experience interval remain in the risk set. In other words, the scientists that remain in the risk set to inform
the coefficient estimates for the later experience intervals are for the most part non-patenters.
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This conditional correlation strikes us as being an important finding, for it can help distin-

guish between competing interpretations of the association between scientific productivity

and involvement with the world of commerce. In the first interpretation, commercializa-

tion activities correspond to attempts by academics to monetize established reputations and

professional status. In the second interpretation, publications and patents are co-occuring

outputs that encode the same set of scientific insights; patents, just like publications, re-

flect genuine shocks to scientific opportunities. We see the correlation between the onset of

patenting and the lagged flow, but not the stock — of publications as much more consistent

with the latter interpretation.9

Using the specification in Model (2) as a benchmark, Table 4b examines the influence of

the latent patentability of the scientist’s research on his/her propensity to enter the patenting

regime. We proceed with the analysis parallel to the approach taken in Table 4a. Model (5)

adds the flow of our research patentability score in year t−1 (i.e., based on our endogenous-to-

the-sample measure, the extent to which the papers a scientist has published in the previous

year are substantively similar to the work previously published by patenting scientists) and

the corresponding cumulative stock up to year t− 2. Here again, we find that only the flow

influences the likelihood of patenting. At the mean of the data, increasing the patentability

score by one standard deviation increases the likelihood of first patent application by 14%.

Moreover, as can be seen in Models (6) through (8), the conclusion is not altered when using

a more flexible way to model the distributed lag of the latent patentability score. Just as in

the case of publications, the onset of patenting appears simultaneous with a change in the

content of a scientist’s research in a direction that makes it more similar to that of scientists

who have already applied for patent rights. But because it is the flow, and not the stock

of this measure that seems to matter, the evidence is more consistent with the idea that

a patent application reflects the seizing of opportunities along a novel research trajectory,

rather than a deliberate, well-planned change of research agenda in response to changes in

the formal and informal incentives faced by academic scientists.

9This interpretation is also consistent with Murray and Stern’s (2005) analysis of paper-patent pairs, but
it suggests that this phenomenon is not confined to the single journal whose articles they analyze.
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Using Model (5) as a benchmark, Table 4c examines a variety of interactions between

known determinants of patenting behavior and the flurry of publications observed in Ta-

ble 4a. Model (9) interacts the flurry with five dummies corresponding to different levels of

experience. Although the patterns are not very pronounced, it appears that the magnitude

of the publication flurry required to shift a scientist into the patenting regime varies over

the life cycle and follows an inverted U-shape. In particular, it is during the first five to

eight years of the experience clock that the effect of the flurry is most pronounced. For life

scientists, this typically corresponds to their first job as established, independent investiga-

tors. The decrease observed in subsequent years is consistent with human capital vintage

effects that have been frequently mentioned (though not often estimated) in the economics

of science literature. Models (10) through (13) interact the flurry with different institutional

and contextual measures. We find that the magnitude of the flurry is smaller for scientists

working in “patent-intensive” universities (Model 10), for scientists working in universities

where other scientists have founded companies or sit on corporate advisory boards, and for

scientists who have coauthors who themselves patent. In other words, the evidence suggests

that the magnitude of the opportunity necessary to shift an individual into the patenting

regime is larger in academic environments in which the costs of patenting are higher, either

because of bureaucratic hurdles, or a lack of cultural support for involvement in commercial

activity.

Taken together, these results do not invalidate the view that social influences operating

in graduate school, in the scientist’s current university, or through his “invisible college” of

collaborators influence commercial activities among academics. To the contrary, the direct

effects of proxies for these attributes were found to positively influence the likelihood of

patenting in our random sample of researchers. But we also find that individual rates of

patenting respond to scientific opportunities, and that patenting coincides with a genuine

change in the content of the research published by scientists.

The results presented above suffer from two limitations. First, they only pertain to the

decision to apply for the first patent. For a sizable proportion of scientists, patenting is

a repeated event, and the determinants of patenting could differ in that group. Moreover,
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one might object that our result regarding the flurry of publications contemporaneous with

patenting assumes that the lagged stock of publications adequately captures differences in

talent among scientists. It would be desirable to subject this set of results to a more stringent

test. For these reasons, Tables 5a, 5b and 5c replicate the analyses presented in tables 4a, 4b

and 4c using fixed-effects logit models. In these models, patenting is treated as a repeated

event, and there are as many observations in the estimation sample as there are person-

years for patenting scientists. We also drop the stock variables from the specifications, since

they move too slowly to be separately identified from the individual effects. Table 5a shows

that the impact of the one-year lagged count of publications remains even after accounting

for time-invariant talent differences among scientists through fixed individual effects, and

that the inclusion of additional lags do not modify the result. We interpret this finding as

sugesting that within-scientist changes in scientific opportunities influence their likelihood

of patenting.

Similarly, Table 5b highlights the role of changes in the latent patentability of a scientist’s

research that appear to correlate with patenting events, although the statistical significance

of these results is weaker than in the corresponding “cross-sectional” hazard rate models.

In Model (8), we partition the one-year lag of the patentability measure in three separate

dummy variables corresponding to 0, above 0 but below the 75th percentile, and above the

75th percentile. Using this more flexible specification, Model (8) implies a statistically sig-

nificant influence of changes in latent research patentability on individual rates of patenting.

Finally, Table 5c replicates the specifications in Table 4c. While we cannot replicate the

results pertaining to the life cycle, the other results are qualitatively similar, in that they in-

dicate that an environment conducive to patenting and scientific opportunities are substitute

inputs in the decision to patent among “serial patenters.”

5 Discussion and Conclusion

The policy debate regarding interactions between industry and academia in general, and aca-

demic patenting in particular, has often taken for granted the idea that patenting represents

a fundamental departure from the norms of the “Republic of Science.” According to this
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view, academic researchers toil in relative obscurity by producing fundamental knowledge

up until the time they receive tenure; subsequently, they may monetize their reputation by

involving themselves in commercial pursuits. Patents, though not necessarily remunerative

in and of themselves, provide academic researchers with visibility and status in the world of

commerce, for example by enabling them to sit on corporate advisory boards (Stuart and

Ding, 2005).

The findings in this paper challenge the standard account. First and foremost, our

results suggest that patents and publications correspond to two types of output that have

more in common than previously believed. Certainly, the positive relationship between

patent applications and the flow, but not the stock, of publications suggest that patents

and papers encode similar pieces of knowledge, a fact exploited by Murray and Stern (2005)

in their investigation of the anti-commons hypothesis. Second, our results suggest that the

academic incentive system is evolving in ways that accommodate deviations from traditional

scientific norms of openness. Many patenting events in our data take place in the early

years of scientists’ careers, and the slope of the patent-experience curve has become steeper

with more recent cohorts of scientists. This finding dovetails with qualitative accounts that

emphasize that patents are becoming de rigueur on academic vitas in many institutions, and

are even considered legitimate forms of research output in promotion decisions.

If the present paper investigates the antecedents of academic patenting, much work re-

mains to be done on the effects of this now-prevalent practice on the rate of scientific progress.

Does applied research (as embodied in patents) crowd out the fundamental pursuit of knowl-

edge (as measured by publications)? Answering this question is difficult, because patenting

is a choice variable for scientists, and the outcome of a decision that could easily reflect

expectations of future scientific productivity. Our paper provides an important input into

this analysis by presenting the results of a selection equation whose estimation is necessary

to recover causal effects of patenting on scientific output (Azoulay, Ding, and Stuart 2005).

But our results also alert us to the possibility that substantive content of post-patent publi-

cations might be different from these scientists’ pre-patent output, leading naturally to the

study of the effect of patenting on the direction of scientific progress. Our measure of latent
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patentability, whose construction is an important contribution of this paper, can be used on

the left-hand side of a regression equation to investigate this important question.

We find the magnitude of the gender effect intriguing. What explains the differential

attainment of male and female scientists in the realm of patenting, and why is the pattern so

much more pronounced than that known to exist for publications? It is well documented that

the biological sciences are among the few scientific fields in which women have gained equal

representation in graduate school, and they have made significant advances in obtaining

faculty positions. Yet, there is anything but equality in rates of participation in patenting.

One potential, although perhaps second-order, explanation is suggested by apparent gender

differences in the content of scientific research: in supplemental explorations, we have found

that, holding year and experience constant, the latent patentability of female scientists’

research is considerably lower than the corresponding values for male researchers.

Finally, our findings suggest that social contagion might be an important mechanism

through which the practice of academic patenting diffuses among the population of life sci-

entists. The result that scientists whose coauthors patent are more likely to patent themselves

is consistent with genuine “peer effects,” but it is also consistent with assortative matching

of coauthors along some other dimension correlated with patenting — such as scientific pro-

ductivity. Distinguishing between these competing hypotheses remains a valuable goal for

future research.
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Table 1 
Top 15 Scientific Disciplines in the Sample 

UMI Subject  
Code UMI Subject Description Frequency 

487; 303 Biochemistry 861 (22.2%) 

306 Biology, General 568 (14.6%) 

410 Biology, Microbiology 469 (12.1%) 

419 Health Sciences, Pharmacology 240 (6.2%) 

490 Chemistry, Organic 213 (5.5%) 

786 Biophysics, General 211 (5.4%) 

369 Biology, Genetics 191 (4.9%) 

433 Biology, Animal Physiology 171 (4.4%) 

982 Health Sciences, Immunology 167 (4.3%) 

307 Biology, Molecular 102 (2.6%) 

301 Bacteriology 63 (1.6%) 

287 Biology, Anatomy 54 (1.4%) 

571 Health Sciences, Pathology 52 (1.3%) 

349 Psychology, psychobiology 37 (1.0%) 

572 Health Sciences, Pharmacy 34 (0.9%) 

Legend: Table 1 reports the top 15 disciplines from which our sample was 
drawn. These disciplines have spawned the most of biotechnology firm 
founders, scientific advisors and executives. The table also reports the number 
and the proportion of scientists of our sample in each scientific discipline 
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Table 2  
Descriptive Statistics 

Mean Std. Dev. Min. Max. 

Time-varying (59,069 person-year observations) 

Experience 10.22 7.127 1 32 
Patent flow dummy 0.039 0.194 0 1 
Patent regime dummy 0.125 0.330 0 1 
Publications flow 1.677 2.667 0 100 
Publications stock 16.48 27.68 0 645 
Research patentability flow 0.084 0.108 0 5.185 
Research patentability stock 0.460 0.417 0 5.659 
Collaboration tie with company scientists 0.263 0.441 0 1 
Average number of identified coauthors per paper 0.131 0.248 0 10 
Identified coauthors have patents 0.200 0.400 0 1 
Employer graduate school in top 20 0.232 0.422 0 1 
Employer has TTO 0.489 0.500 0 1 
Employer patent stock (in hundred) 0.717 1.450 0 22 
Employer entrepreneurial faculty count 8.634 22.89 0 199 
Calendar year 1986 7.741 1968 1999 

Time-invariant (3,884 observations) 

Female 0.211 0.408 0 1 
Ph.D. univ. grad. school in top 20 0.308 0.462 0 1 
Ph.D. univ. 5-yr patent stock (in hundred) 19.02 40.89 0 566 
Ph.D. univ. entrepreneurial faculty count 2.294 8.304 0 182 

 
 
.  
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Table 3 
Mean Research and Employer Characteristics at Five Career Stages,  

by Patent Application Status 

 Experience = 5 Experience = 10  Experience = 15 Experience = 20 Experience = 25

Has at least one patent application Yes No Yes No Yes No Yes No Yes No

Research publications stock 9.610 4.456 23.082 12.485 39.579 22.003 55.917 32.843 77.679 41.747
Research patentability stock 0.342 0.244 0.613 0.491 0.856 0.662 1.021 0.788 1.103 0.833
Count of collaboration ties with company  
scientists 0.968 0.206 2.282 0.697 3.562 1.280 4.838 2.168 7.540 2.562
Identified coauthors have patents 0.197 0.081 0.367 0.176 0.525 0.265 0.611 0.337 0.636 0.396
Employer grad. school rank in top20 0.261 0.266 0.261 0.220 0.249 0.196 0.195 0.182 0.187 0.170
Employer has TTO 0.463 0.383 0.576 0.482 0.698 0.586 0.735 0.682 0.829 0.727
Employer Patent stock (in 100) 0.738 0.537 1.072 0.650 1.223 0.741 1.279 1.089 1.571 1.212
Employer entrepreneurial faculty count 7.110 6.260 11.815 8.683 14.983 10.736 14.723 12.905 16.652 12.251
Observations 218 3612 330 2286 354 1503 339 978 187 454

Legend: Table 3 reports the mean research and employer characteristics measured at five different stages in scientists’ career: the 5th, 10th, 15th, 20th 
and 25th year after the scientist was granted a Ph.D. Within each career stage, the table is further broken out by whether a scientist has ever applied 
for a patent right.
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Table 4a 
Discrete-Time Hazard Models of Probability of Patenting 

 (1) (2) (3) (4)
0.852 0.959 0.989 0.983Experience [1, 4] 

(0.225) ** (0.245) ** (0.247) ** (0.252) ** 
0.759 0.771 0.717 0.656Experience [5, 8] 

(0.212)** (0.232) ** (0.234) ** (0.234) ** 
0.699 0.693 0.643 0.590Experience [9, 15] 

(0.198) ** (0.216) ** (0.217) ** (0.217) ** 
0.591 0.587 0.558 0.530Experience [16, 22] 

(0.195) ** (0.202) ** (0.202) ** (0.202) ** 
-1.138 -1.117 -1.107 -1.104Female 

(0.137) ** (0.138) ** (0.138) ** (0.138) ** 
0.566 0.431 0.407 0.400Collaboration tie with company scientistst-1 (0.093) ** (0.095) ** (0.094) ** (0.094) ** 
0.346 0.341 0.357 0.368Average number of identified coauthors per paper t-1 (0.122) ** (0.124) ** (0.126) ** (0.125) ** 
0.513 0.381 0.361 0.352Identified Coauthors have patent t-1 (0.096) ** (0.102) ** (0.101) ** (0.101) ** 
-0.037 -0.048 -0.052 -0.053Ph.D. University Grad School in Top 20  
(0.086) (0.086) (0.086) (0.086) 
0.002 0.002 0.002 0.002Ph.D. University 5-year Patent Stock 

(0.001)† (0.001) (0.001) (0.001) 
0.003 0.004 0.004 0.004Ph.D. University Entrepreneurial Faculty Count 
(0.006) (0.005) (0.006) (0.006) 
-0.023 -0.040 -0.039 -0.039Employer Grad School in Top 20 
(0.103) (0.104) (0.104) (0.104) 
0.116 0.101 0.099 0.096Employer has a TTOt-1 (0.092) (0.093) (0.093) (0.094) 
0.055 0.054 0.054 0.054Employer Patent Stockt-1 (0.031) † (0.033) † (0.033) † (0.033) 
-0.001 -0.001 -0.001 -0.001Employer Entrepreneurial Faculty Countt-1 (0.002) (0.002) (0.002) (0.002) 

 -0.0005   Research Publication Stockt-2  (0.003)   
  -0.002  Research Publication Stockt-3   (0.003)  
   -0.004Research Publication Stockt-4    (0.003) 
 0.060 0.056 0.052Research Publication Flowt-1  (0.019) ** (0.018) ** (0.018) ** 
  0.009 -0.001Research Publication Flowt-2   (0.022) (0.024) 
   0.029Research Publication Flowt-3    (0.021) 

-9.038 -8.926 -8.781 -8.721Constant 
(1.022) ** (1.028) ** (1.029) ** (1.030) ** 

Number of observations 52,466 52,466 52,466 52,466
Number of researchers 3,884 3,884 3,884 3,884
Number of first patenting events 758 758 758 758
Log-likelihood -3743.28 -3714.59 -3710.51 -3709.07
Wald Chi2 385.86 411.35 428.23 433.61 
Model d.f. 48 51 53 55 
Pseudo-R2 0.06 0.06 0.06 0.06 
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Table 4b 
Discrete-Time Hazard Models of Probability of Patenting 

 (5) (6) (7) (8)
0.939 0.982 1.014 0.906Experience [1, 4] (0.247)** (0.248) ** (0.254) ** (0.247) **

0.737 0.709 0.696 0.727Experience [5, 8] (0.232) ** (0.235) ** (0.238) ** (0.233) **

0.656 0.629 0.617 0.644Experience [9, 15] (0.215) ** (0.216) ** (0.217) ** (0.216) **

0.571 0.556 0.549 0.556Experience [16, 22] (0.202) ** (0.202) ** (0.202) ** (0.202) **

-1.102 -1.094 -1.092 -1.104Female (0.138) ** (0.138) ** (0.138) ** (0.138) **

0.419 0.402 0.397 0.429Collaboration tie with company scientistst-1 (0.095) ** (0.094) ** (0.094) ** (0.096) **

0.325 0.334 0.343 0.321Average number of identified coauthors per paper t-1 (0.126) ** (0.126) ** (0.126) ** (0.124) **

0.359 0.350 0.345 0.350Identified Coauthors have patent t-1 (0.102) ** (0.102) ** (0.102) ** (0.102) **

-0.046 -0.049 -0.050 -0.052Ph.D. University Grad School in Top 20  (0.087) (0.087) (0.087) (0.087)
0.002 0.002 0.002 0.002Ph.D. University 5-year Patent Stock (0.001) (0.001) (0.001) (0.001)
0.004 0.004 0.004 0.005Ph.D. University Entrepreneurial Faculty Count (0.006) (0.006) (0.006) (0.005)
-0.043 -0.041 -0.040 -0.047Employer Grad School in Top 20 (0.104) (0.104) (0.104) (0.104)
0.102 0.100 0.100 0.097Employer has a TTOt-1 (0.094) (0.094) (0.094) (0.094)
0.058 0.058 0.057 0.056Employer Patent Stockt-1 (0.033)† (0.033)† (0.033)† (0.033)†

-0.001 -0.001 -0.001 -0.001Employer Entrepreneurial Faculty Countt-1 (0.002) (0.002) (0.002) (0.002)
-0.001 -0.001 -0.002 -0.002Research Publication Stockt-2 (0.003) (0.003) (0.003) (0.003)
0.057 0.057 0.058 0.069Research Publication Flowt-1 (0.017) ** (0.017) ** (0.017)** (0.018) **

-0.034  0.054Research Patentability Stockt-2 (0.137)  (0.130)
-0.037  Research Patentability Stockt-3 (0.148)  

-0.044 Research Patentability Stockt-4 (0.157) 
1.692 1.623 1.608 Research Patentability Flowt-1 (0.463) ** (0.469) ** (0.472)** 

-0.567 -0.540 Research Patentability Flowt-2 (0.487) (0.483) 
-0.217 Research Patentability Flowt-3 (0.498) 

 0.439Intermediate Research Patentability Flowt-1   (0.098) **

 0.523High Research Patentability Flowt-1  (0.111) **

-8.930 -8.768 -8.710 -9.228Constant (1.028) ** (1.030) ** (1.032) ** (1.029) **

Number of observations 52064 52064 52064 52466
Number of researchers 3884 3884 3884 3884
Number of first patenting events 758 758 758 758
Log-likelihood -3676.44 -3672.88 -3672.33 -3705.48
Wald Chi2 429.96 440.88 442.14 439.91
Model d.f. 53 55 57 53
Pseudo-R2 0.06 0.07 0.07 0.07
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Table 4c 
Discrete-Time Hazard Models of Probability of Patenting 

 (9) (10) (11) (12) (13) 
0.845 0.928 0.942 0.956 1.023Experience [1, 4] (0.261)** (0.246) ** (0.245) ** (0.248) ** (0.250) ** 
0.607 0.744 0.757 0.772 0.825Experience [5, 8] (0.234) ** (0.233) ** (0.232) ** (0.235) ** (0.236) ** 
0.581 0.652 0.663 0.680 0.721Experience [9, 15] (0.222) ** (0.215) ** (0.215) ** (0.217) ** (0.218) ** 
0.586 0.548 0.567 0.577 0.592Experience [16, 22] (0.211) ** (0.200) ** (0.200) ** (0.202) ** (0.201) ** 
-1.113 -1.128 -1.123 -1.104 -1.116Female (0.140) ** (0.140) ** (0.140) ** (0.138) ** (0.139) ** 
0.385 0.402 0.414 0.423 0.393Collaboration tie with company scientistst-1 (0.096) ** (0.095) ** (0.095) ** (0.095) ** (0.095) ** 
0.354 0.339 0.329 0.326 0.311Average number of identified coauthors per paper t-1 (0.124) ** (0.123) ** (0.124) ** (0.124) ** (0.127) * 
0.316 0.324 0.341 0.343 0.566Identified Coauthors Have Patents t-1 (0.102) ** (0.102) ** (0.101) ** (0.101) ** (0.125) ** 
-0.061 -0.062 -0.057 -0.056 -0.064Ph.D. University Grad School in Top 20  (0.086) (0.087) (0.087) (0.087) (0.087) 
0.002 0.002 0.002 0.002 0.002Ph.D. University 5-year Patent Stock (0.001) (0.001) (0.001) (0.001) (0.001) 
0.005 0.004 0.004 0.005 0.005Ph.D. University Entrepreneurial Faculty Count (0.005) (0.005) (0.006) (0.005) (0.005) 
-0.038 -0.024 -0.041 -0.040 -0.034Employer Grad School in Top 20 (0.103) (0.103) (0.104) (0.103) (0.103) 
0.086 0.093 0.087 0.182 0.091Employer has a TTOt-1 (0.094) (0.093) (0.094) (0.113) (0.094) 
0.060 0.083 0.058 0.057 0.058Employer Patent Stockt-1 (0.033) † (0.031) ** (0.032) † (0.032) † (0.033)† 
-0.001 -0.001 0.002 -0.001 -0.001Employer Entrepreneurial Faculty Countt-1 (0.002) (0.002) (0.002) (0.002) (0.002) 
0.002 -0.001 -0.001 -0.001 0.002Research Publication Stockt-2 (0.003) (0.003) (0.003) (0.003) (0.003) 

0.099 0.089 0.095 0.118Research Publication Flowt-1  (0.023) ** (0.021) ** (0.031) ** (0.029) ** 
0.003 0.008 0.029 0.039 -0.035Research Patentability Stockt-2 (0.130) (0.130) (0.128) (0.128) (0.135) 
0.402 0.410 0.422 0.426 0.386Intermediate Research Patentability Flowt-1  (0.102) ** (0.099) ** (0.099) ** (0.099) ** (0.102) ** 
0.495 0.503 0.513 0.514 0.484High Research Patentability Flowt-1 (0.114) ** (0.112) ** (0.111) ** (0.112) ** (0.113) ** 
0.109     

Publication Flowt-1× Experience [1,4] 
(0.078)     
0.123     

Publication Flowt-1× Experience [5,8] 
(0.024) **     
0.077     

Publication Flowt-1× Experience [9,15] 
(0.023) **     
0.024     

Publication Flowt-1× Experience [16,22] 
(0.027)     
0.017     

Publication Flowt-1× Experience [23,29] 
(0.023)     



 30

 (9) (10) (11) (12) (13) 
 -0.017  Publication Flowt-1 

× Employer Patent Stockt-1  (0.006) **    
  -0.001   Publication Flowt-1 

× Employer Entrepreneurial Facultyt-1   (0.001)†   
   -0.042  Publication Flowt-1 

× Employer has a TTOt-1    (0.032)  
    -0.091 Publication Flowt-1 

× Identified Coauthors have patent t-1     (0.031)** 
-9.186 -9.266 -9.271 -9.297 -9.358 Constant 

(1.030) ** (1.028) ** (1.028) ** (1.029)** (1.029)** 
Number of observations 52,466 52,466 52,466 52,466 52,466 
Number of researchers 3,884 3,884 3,884 3,884 3,884 
Number of first patenting events 758 758 758 758 758 
Log-likelihood -3,698.68 -3,699.65 -3,702.58 -3,703.64 -3,697.71 
Wald Chi2 471.48 467.55 449.16 449.56 454.25 
Model d.f. 57 54 54 54 54 
Pseudo-R2 0.07 0.07 0.07 0.07 0.07 
 
Notes: 
(1) For all researchers in the sample, only observations on or before the year of the first patenting event or censoring 
have been used, i.e., for all researchers that have patented, the observations after the year of their first patent 
application were not used in the analysis. 
(2) Models (5)-(7) use a restricted sample, in which 402 person-year observations in the unrestricted sample were 
excluded from the analysis. These 402 observations account for the top 1% of the research patentability flow measure. 
(3) All models control for Ph.D. subject areas and calendar year dummies. 
(4) Experience [23, 29] is the base category. 
(5) A dummy variable indicating whether the researcher has zero publication in year t-1 is included in models (2)-(7), 
though not reported in the table; a dummy variable indicating whether the researcher has zero publication in year t-2 is 
included in models (3), (4), (6) and (7), though not reported in the table; a dummy variable indicating whether the 
researcher has zero publication in year t-3 is included in models (4) and (7), though not reported in the table. 
(6) Robust standard errors in parentheses, clustered by scientist. 
(7) † significant at 10%; * significant at 5%; ** significant at 1%.  
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Table 5a 
Fixed-Effects Logit Models of Probability of Patenting 

 (1) (2) (3) (4)
0.293 0.291 0.319 0.338 

Experience [1, 4] 
(0.318) (0.318) (0.318) (0.322) 
0.652 0.594 0.574 0.575 

Experience [5, 8] 
(0.268)* (0.268) * (0.268) * (0.268) * 

0.692 0.635 0.617 0.617 
Experience [9, 15] 

(0.202) ** (0.202) ** (0.203) ** (0.203)** 

0.534 0.496 0.487 0.487 
Experience [16, 22] 

(0.132) ** (0.133) ** (0.133) ** (0.133) ** 

0.388 0.328 0.313 0.309 
Collaboration tie with company scientistst-1 (0.096) ** (0.097) ** (0.098) ** (0.098) ** 

0.367 0.339 0.345 0.350 
Average number of identified coauthors per paper t-1 (0.148) ** (0.151) ** (0.151) ** (0.152) ** 

-0.025 -0.059 -0.066 -0.069 
Identified Coauthors Have Patentst-1 (0.100) (0.101) (0.101) (0.101) 

0.066 0.083 0.083 0.084 
Employer Grad School in Top 20 

(0.144) (0.144) (0.145) (0.145) 

0.098 0.097 0.097 0.096 
Employer has a TTOt-1 (0.094) (0.094) (0.094) (0.094) 

-0.010 -0.011 -0.012 -0.012 
Employer Patent Stockt-1 (0.031) (0.031) (0.031) (0.031) 

0.005 0.005 0.006 0.006 
Employer Entrepreneurial Faculty Countt-1 (0.002) ** (0.002) ** (0.002) ** (0.002) ** 

 0.027 0.026 0.025 
Research Publication Flowt-1  (0.011) ** (0.012) ** (0.012) ** 

  -0.002 -0.003 
Research Publication Flowt-2   (0.012) (0.013) 

   0.003 
Research Publication Flowt-3    (0.013) 

Number of observations 14,507 14,507 14,507 14,507 
Number of researchers 758 758 758 758 
Log-likelihood -3,932.78 -3,924.24 -3,922.65 -3,922.56 
Wald Chi2 805.64 822.72 825.89 826.08 
Model d.f. 20 22 24 26 
Pseudo-R2 0.09 0.09 0.10 0.10 
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Table 5b 
Fixed-Effects Logit Models of Probability of Patenting 

 (5) (6) (7) (8)
0.249 0.246 0.247 0.283 

Experience [1, 4] (0.319) (0.319) (0.320) (0.318) 

0.540 0.536 0.536 0.596 
Experience [5, 8] (0.269) * (0.269) * (0.269) * (0.268) * 

0.593 0.592 0.592 0.633 
Experience [9, 15] (0.203)** (0.203) ** (0.203) ** (0.202) ** 

0.482 0.482 0.482 0.494 
Experience [16, 22] (0.133) ** (0.133) ** (0.133) ** (0.133) ** 

0.319 0.322 0.322 0.336 
Collaboration tie with company scientistst-1 (0.098) ** (0.098) ** (0.098) ** (0.097) ** 

0.332 0.325 0.325 0.336 
Average number of identified coauthors per paper t-1 (0.151) * (0.151) * (0.151) * (0.150) * 

-0.063 -0.061 -0.061 -0.072 
Identified Coauthors Have Patentst-1 (0.101) (0.101) (0.102) (0.101) 

0.082 0.083 0.083 0.092 
Employer Grad School in Top 20 (0.146) (0.146) (0.146) (0.144) 

0.089 0.087 0.087 0.097 
Employer has a TTOt-1 (0.095) (0.095) (0.095) (0.094) 

-0.011 -0.011 -0.011 -0.011 
Employer Patent Stockt-1 (0.031) (0.031) (0.031) (0.031) 

0.005 0.005 0.005 0.005 
Employer Entrepreneurial Faculty Countt-1 (0.002) ** (0.002) ** (0.002) ** (0.002) ** 

0.026 0.026 0.026 0.033 
Research Publication Flowt-1 (0.011) * (0.011) * (0.011) * (0.011) ** 

0.735 0.737 0.737  
Research Patentability Flowt-1 (0.383)† (0.383)† (0.383)†  

 -0.389 -0.389  
Research Patentability Flowt-2  (0.371) (0.371)  

  0.011  
Research Patentability Flowt-3   (0.304)  

   0.173 
Intermediate Research Patentability Flowt-1     (0.080) * 

   0.252 
High Research Patentability Flowt-1    (0.083) ** 

Number of observations 14,332 14,332 14,332 14,507 
Number of researchers 755 755 755 758 
Log-likelihood -3,881.96 -3,881.39 -3,881.39 -3,922.42 
Wald Chi2 816.11 817.24 817.24 826.36 
Model df 23 24 25 23 
Pseudo-R2 0.10 0.10 0.10 0.10 
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Table 5c 
Fixed-Effects Logit Models of Probability of Patenting 

 (9) (10) (11) (12) (13)
0.208 0.279 0.289 0.281 0.283Experience [1, 4] (0.336) (0.318) (0.318) (0.318) (0.318) 
0.645 0.592 0.594 0.592 0.574Experience [5, 8] (0.289)* (0.268) * (0.268) * (0.268) * (0.268) * 
0.664 0.628 0.627 0.628 0.612Experience [9, 15] (0.225) ** (0.202) ** (0.203) ** (0.202) ** (0.202)** 
0.671 0.495 0.501 0.491 0.486Experience [16, 22] (0.161) ** (0.133) ** (0.133) ** (0.133) ** (0.133) ** 
0.332 0.333 0.328 0.334 0.311Collaboration tie with company scientistst-1 (0.098) ** (0.097) ** (0.097) ** (0.097) ** (0.097) ** 
0.302 0.331 0.337 0.334 0.303Average number of identified coauthors per paper t-1 (0.154) * (0.150) * (0.150) * (0.150) * (0.152) * 
-0.042 -0.067 -0.065 -0.067 0.148Identified Coauthors Have Patentst-1 (0.102) (0.101) (0.101) (0.101) (0.123) 
0.090 0.082 0.081 0.089 0.078Employer Grad School in Top 20 (0.145) (0.145) (0.145) (0.145) (0.145) 
0.099 0.090 0.092 0.150 0.093Employer has a TTOt-1 (0.094) (0.094) (0.094) (0.110) (0.094) 
-0.007 0.030 -0.007 -0.010 -0.010Employer Patent Stockt-1 (0.031) (0.035) (0.031) (0.031) (0.031) 
0.006 0.006 0.008 0.005 0.005Employer Entrepreneurial Faculty Countt-1 (0.002) ** (0.002) ** (0.002) ** (0.002) ** (0.002) ** 

0.046 0.047 0.046 0.071Research Publication Flowt-1  (0.012) ** (0.012) ** (0.017) ** (0.016) ** 
0.157 0.172 0.172 0.171 0.160Intermediate Research Patentability Flowt-1  (0.080)† (0.080) * (0.080) * (0.080) * (0.080) * 
0.240 0.252 0.254 0.252 0.241High Research Patentability Flowt-1 (0.083) ** (0.083) ** (0.083) ** (0.083) ** (0.083) ** 
0.111  Publication Flowt-1× Experience [1,4] 

(0.030) **     
0.034  Publication Flowt-1× Experience [5,8] 
(0.023)     
0.042  Publication Flowt-1× Experience [9,15] 

(0.016) **     
0.005  Publication Flowt-1× Experience [16,22] 
(0.014)     
0.050  Publication Flowt-1× Experience [23,29] 

(0.018) **     
-0.011  Publication Flowt-1 

× Employer Patent Stockt-1  (0.005) *    
-0.001  Publication Flowt-1 

× Employer Entrepreneurial Facultyt-1   (0.000) *   
-0.016 Publication Flowt-1 

× Employer has a TTOt-1    (0.018)  
 -0.055Publication Flowt-1 

× Identified Coauthors have patent t-1     (0.018) ** 
Number of observations 14,507 14,507 14,507 14,507 14,507
Number of researchers 758 758 758 758 758
Log-likelihood -3,915.25 -3,919.65 -3,919.74 -3,922.01 -3,917.53
Wald Chi2 840.71 831.90 831.71 827.19 836.14
Model d.f. 27 24 24 24 24
Pseudo-R2 0.10 0.10 0.10 0.10 0.10
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Notes: 
(1) Models (5)-(7) use a restricted sample, in which 175 person-year observations in the unrestricted sample were excluded 
from the analysis. These 175 observations account for the top 1% of the research patentability flow measure. 
(2) All models control for period dummies 1975-76, 1977-79, 1980-82, 1983-85, 1986-88, 1989-91, 1992-94, 1995-97, 1998-99; 
base category is 1967-74. 
(3) Experience [23, 29] is the base category. 
(4) A dummy variable indicating whether the researcher has zero publication in year t-1 is included in models (2)-(7), though 
not reported in the table; a dummy variable indicating whether the researcher has zero publication in year t-2 is included in 
models (3), (4), (6) and (7), though not reported in the table; a dummy variable indicating whether the researcher has zero 
publication in year t-3 is included in models (4) and (7), though not reported in the table. 
(5) † significant at 10%; * significant at 5%; ** significant at 1%. 
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Figure 1: Distribution of Patent Count for Patenting 
Scientists 
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Figure 2: Distribution of Publication Count for 
Patenting and Non-Patenting Scientists 
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Figure 3: Distribution of Patenting Events over Time 
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Figure 4: Unconditional Hazard of First Patent Application, 
by Ph.D. Cohort 
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Data Appendix: Keyword Patentability Weights

wijt, the patentability weight for each keyword j and scientist i in year t is defined as:

wijt =

∑
s∈Ip

t −{i}
msjt∑
k mskt∑

s∈Inp
t −{i}msjt

where msjt denotes the number of times keyword j has appeared in articles published up to year t
by scientist s, Ip

t is the subset of scientists in our sample that have already applied for one or more
patents as of year t, and Inp

t is the subset of scientists in our sample that have not yet applied for
any patent as of year t.

To create the numerator of wijt, we first create a row-normalized matrix with each scientist in
the patenting regime listed in a row and each of the keywords used to describe their papers up to
year t listed in a column. The sjth cell in the matrix, [msjt/

∑
k mskt], corresponds to the proportion

of title keywords for scientist s that corresponds to keyword j. We then take the column sums from
this matrix, i.e., we sum the contributions of individual patenting scientists for keyword j. Turning
next to the denominator, we proceed in a similar manner, except that the articles considered only
belong to the set of scientists who have not applied for patents as of year t. The numerator is then
deflated by the frequency of use for j by non-patenters (in the rare case of keywords exclusively
used by patenters, we substitute the number 1 for the frequency).

The weights wijt are large for keywords that have appeared with disproportionate frequency as
descriptors of papers written by scientists already in the patenting regime, relative to scientists not
yet in the patenting regime.

Two things should be noted about the construction of these weights. First, wijt = 0 for all
keywords that have never appeared in the titles of papers written by scientists that have patented
before t. Second, the articles written by scientist i him/herself do not contribute at all to the
weights wijt. Therefore, no scientist can directly influence year-to-year changes in these weights.

The final step for each scientist i in the dataset is to produce a list of the keywords in the
individual’s papers published in year t, calculate the proportion of the total represented by each
keyword j, applied the appropriate keyword weight wij,t−1, and sum over keywords to produce a
composite score. The resulting variable increases in the degree to which keywords in the titles of
a focal scientist’s papers have appeared relatively more frequently in the titles of other academics
who have applied for patents. This score is entered in the regressions to control for the research
patentability of scientists’ areas of specialization.
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