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Abstract

We examine the influence of university-employed scientists’ transitions to patenting on the rate
of publication and of obtaining NIH grants in a panel dataset spanning the careers of 4,270
academic life scientists. Using inverse probability of treatment weights (IPTW) to account for
the dynamics of self-selection into patenting, we find that patenting has a positive effect on the
rate of publication of journal articles, and a much smaller — though still positive — effect on
NIH grant awards. We also find that patenters may be shifting their research focus to questions
of commercial interest, as evidenced by a positive effect of patenting in regressions of the rate
of publication of papers that are coauthored with researchers in industry. We conclude that
the often-voiced concern that patenting in academe has a nefarious effect of on public research
output is, at least in its simplest form, misplaced.
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1 Introduction

In the past few decades, universities and other public-sector research organizations have

become more proactive in their efforts to commercialize scientific discoveries (e.g., Jaffe

and Lerner, 2001; Jensen and Thursby, 2001; Thursby and Thursby, 2002; Di Gregorio

and Shane, 2003). This change has spawned a growing academic literature on university

technology transfer, one stream of which has assessed trends in university patenting and the

spillover of university science into the private sector (Jaffe, 1989; Mansfield, 1995; Zucker and

Darby 1998; Henderson et al., 1998). Underlying the well documented upswing in university

patenting has been a sharp increase in the number of individual academic scientists who

are listed as inventors on patents. In this paper, we examine the consequence of academic

patenting on the rate and direction of scientific progress, as embodied in the public research

output of individual academic scientists. We seek to determine, at the level of the individual

scientist, whether the activities of patenting and of producing the conventional scholarly

outputs-journal articles and (federal) research grants-are substitutes or complements.

This question is important and, we believe, unresolved. On one hand, surveys of academic

scientists have found that patenting skews scientists’ research agendas toward commercial

priorities, causes delay in the public dissemination of research findings, and crowds out effort

devoted to producing public research (Blumenthal, 1996; Campbell et al. 2002; Krimsky,

2003). In stark terms, this research has portrayed a tradeoff between patenting and the

values and behaviors that traditionally have been thought to be conducive to the progress

of academic science. On the other hand, a few studies have econometrically assessed the

scientist-level relationship between patenting and publishing, and they have reached a dif-

ferent conclusion. Agrawal and Henderson (2002) estimated fixed effects regressions of the

effect of patenting in a 15-year panel of 236 scientists in two MIT departments. They found

that patenting did not affect publishing. Markiewicz and DiMinin (2004) constructed a

sample of 166 academic patenters, the members of which were matched by university (em-

ployer) and field of research to an equivalent number of non-patenting scientists. In a fixed

effects specification, they found a statistically positive effect of researchers’ patent stocks

1



on their publication counts. In a third study, Stephan et al. (2004) exploited the Survey

of Doctorate recipients and used instrumental variables to estimate the cross-sectional rela-

tionship between patenting and publishing; they found that patenting and publishing relate

positively.

Our findings concur with — and significantly extend — this latter set of results. Across

many specifications, with and without scientist fixed effects and with careful adjustment

for selection into patenting, we find that both the flow and the stock of scientists’ patents

are positively related to subsequent publication rates. The effect on the number of grants

from the National Institutes of Health (NIH) is weaker, but not negative. Our results

thus refute the loose pronouncements of the deleterious effects of academic patenting that

pepper the literature on the commercialization of university science. However, we present

tentative evidence that patenting may induce something of a shift in the content of scientists’

research: we find that the rate of publication of papers that are coauthored with researchers

in firms is higher for faculty holding patents. Furthermore, we present incidental analyses

that unambiguously establish that the most accomplished scientists are more likely to patent.

Thus, if patenting does in fact skew the research agendas of the best and brightest researchers

away from questions of basic scientific importance, it is possible (but far from certain) that

the commercial endeavors of university scientists could eventually detract from the pace of

scientific progress.

Our paper makes two primary contributions, in addition to presenting findings pertinent

to an ongoing policy debate and to an area of economic importance in which systematic

evidence is scarce. First, we have assembled a comprehensive, longitudinal dataset: it is

a prospective, 4,270-person random sample drawn from the population of life scientists in

academia between 1967 and 1999. For the individuals in the sample, we have reconstituted

entire career histories, including patent, publication and NIH grant information, as well as

many employer-level variables. We believe that this is the most inclusive dataset available

for assessing the relationship between patenting and public research productivity among

academic scientists.
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Second, we use a novel methodology to disentangle correlation from causality in the

assessment of the effect of patenting. As we will show, patent holders differ from other

researchers on many observable characteristics (see also Stephan et al. 2004). More ac-

complished researchers are much more likely to patent, and controlling for the stock of past

publications, scientists with a recent good run are also more likely to patent. This evi-

dence calls into question the ability of traditional fixed effect specifications to consistently

estimate causal effects, since patenters and non-patenters do not appear to follow similar

trends in publication rates before the initiation of patenting. Moreover, academic scientists

almost surely differ in the intrinsic patentability of their research, and this too makes it

difficult to obtain valid estimates of the effect of patenting on public research output. We

use Inverse Probability of Treatment Weighted (IPTW) estimation (Robins, 1997; Hernán

et al., 2001) to account for the self-selection of researchers into patenting, and to adjust

for inter-individual differences in the patentability of scientific research. This methodology,

which generalizes the propensity score to settings in which treatment is staggered over time,

accounts for selection into patenting on the basis of observable characteristics, including (in

our case) lagged productivity and the latent patentability of a scientists’ research trajectory.

While this approach naturally cannot rule out selection based on unobservable factors, we

were able to generate an extensive list of covariates to model the probability of selection into

patenting.

In addition to these two primary contributions, the paper indirectly relates to the lit-

erature on the tension between applied and basic research (Rosenberg, 1990; Cohen and

Levinthal, 1989; Henderson and Cockburn, 1994; Cockburn, Henderson and Stern, 1999).

This group of studies has sought to understand why for-profit firms fund basic research,

and has generally concluded that basic and applied research are complements, although the

mechanisms responsible for this relationship have yet to be crisply identified (see Stern 2004).

This work bears an obvious similarity to our effort to assess the nature of the relationship

between basic and commercial scientific projects conducted by individual scientists.

The rest of the paper proceeds as follows. In the next Section, we provide an overview of

the controversies surrounding the academic patenting. Section 3 presents our econometric
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methodology. Section 4 describes the construction of the sample and data sources, presents

descriptive statistics, and reports our econometric results. Section 5 concludes.

2 Basic and Commercializable Research: Substitutes

or Complements?

Recent studies of university technology transfer have documented a precipitous increase in

commercial outputs, which is borne out in statistics on three related activities: patenting

(Henderson et al., 1998; Mowery et. al, 2001), license agreements with private sector firms

(Jensen and Thursby, 2001), and the formation of university-originated startup companies

(Di Gregorio and Shane, 2003). This shift toward commercializing university research has

generated much controversy, particularly concerning the impact of intellectual property rights

on the advancement of science. In the next section, we consider some of the legitimate

arguments on both sides of the debate.

Substitutes. Critics of the rapid growth of commercial activity have voiced concern that

patenting and licensing scientific discoveries may interfere with the traditional functions

of research universities, most notably the production and dissemination of basic research.

The shift toward commercialization has been claimed to have three primary, deleterious

byproducts: increased secrecy, diversion of scientists’ time, and distortion in the selection of

areas of scientific inquiry.

Scientists contemplating patent-protecting research discoveries are thought to be more

secretive, which may delay public dissemination of their research findings and deter open

information exchange in the scientific community. In a survey of academic life scientists,

Campbell et al. (2002) reported that more than 20 percent of those questioned admitted

withholding information about their research from colleagues to protect potential commercial

interests. In addition, three-fourths of those surveyed believed that data withholding was

reducing open communication in science and slowing the rate of scientific advance in their

fields. In an earlier survey, Blumenthal et al. (1996a; 1996b) also found that university
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faculty with funding from industry were considerably more likely to refrain from work-related

communications with colleagues. Moreover, Thursby and Thursby (2002) report that private

sector sponsors of university research often require scientists to accede to delay-of-publication

clauses. If patent-holding scientists attract more industry funding for their research, they also

will be frequently bound by delay-of-publication clauses. Thus, in commercially active areas

or research, muted communication may decelerate awareness of new scientific opportunities,

and individual researchers may delay or forego publications to safeguard the value of private

intellectual property rights.

A second concern is that patenting and the other activities associated with commercial-

izing science can consume significant amounts of time, thus diverting scientists’ attention

away from their research. The tasks of disclosing inventions and fleshing out patent applica-

tions require at least a modest investment of effort, but assisting companies in the process

of assimilating the inventions they license can be quite time consuming. In addition, Stuart

and Ding (2003) show that, after holding constant scientists’ productivity, prestige, and the

commercial relevance of their research, faculty members listed as inventors on patents were

considerably more likely to found companies and to join scientific advisory boards. Thus,

although patenting may not cause a shift in the allocation of scientists’ time, it may signal

a scientist’s intention to divert effort from basic to applied research and technology transfer.

Insofar as patenters hail from the group of very productive scientists, their decisions to ded-

icate time to commercial activities may deplete the ranks of talented researchers allocating

full-time attention to the questions of basic science.1

The occupational incentive system in academic science may reinforce the decisions of the

most experienced, accomplished researchers to allocate time to commercial pursuits. It is

well document that, post-tenure, most scientists face relatively flat wage-experience profiles

1Significant inequality in scientists’ productivity has been widely documented. In a classic paper, Lotka
(1926) showed that the most productive 6% of publishing physicists produced 50% of the papers in the
journals he examined. An extensive literature in the sociology of science presents further evidence of the
skewed distribution of productivity (e.g., Merton, 1973; de Solla Price, 1986). Thus, it is conceivable that
changes in the allocation of effort of a relatively small group of elite scientists could have a significant effect
on the collective advancement of science. Moreover, the highly skewed distribution of scientific productivity
underscores the importance of making the right comparisons in assessing the effect of patenting on publishing.
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(Stephan, 1996). Moreover, life cycle human capital models also suggest changes in the

allocation of effort over scientific careers: the present (pecuniary) value of a publication is

likely to decline in scientist age (Levin and Stephan, 1991). The fact that academic patenters

are known to be drawn predominantly from the ranks of tenured faculty is certainly consistent

with this view. To the extent that patenting and commercialization activities can better be

contracted upon than basic scientific pursuits, theories of optimal incentive contracting in

the presence of career concerns also predict that commercial activities will substitute for

academic output (Gibbons and Murphy, 1992).

The third concern is that the encroachment of commercial interests into universities will

induce scientists to select research projects on the basis of their perceived marketability

in the private-sector, rather than for their intrinsic scientific merit. Among critics of the

increasing dependence of universities on private-sector funding, this is a frequently assumed

and vigorously lamented consequence. To our knowledge, however, reliable evidence of a

shift in research priorities is scant. The most systematic data come from Blumenthal et al.

(1986). They surveyed academic life scientists, asking whether respondents had considered

commercial potential when choosing research projects. 30 percent of life science faculty with

industry funding replied affirmatively, compared to just 7 percent of faculty without private

sector funding.

Complements. Although many researchers perceive a tradeoff between accomplishing uni-

versities’ traditional missions and faculty patenting, others have hypothesized that patenting

may assist scientists in producing public research outputs. Certainly, there is a natural anal-

ogy to the complementarities observed between applied and basic research in other settings.

Rosenberg (1998), for example, documented that innovations born out of contact with com-

mercial enterprises in the quintessentially applied field of chemical engineering ushered a new

era of basic chemical discoveries. The possibility of such scope economies also exist at the

individual level.

One possibility is that scientists who patent also are more likely to develop close rela-

tionships with researchers in companies, and that these contacts become sources of ideas for
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new research projects of scientific importance. The notion that connections with researchers

in industry serve as fruitful sources for unearthing interesting research questions emerges in

Agrawal and Henderson’s (2002) interviews with MIT scientists. Likewise, Mansfield (1995)

finds that many of the ideas that work on the contributions of academic research to indus-

trial innovation also finds that applied work . It is also consistent with evolutionary theories

of technological and scientific progress in which major advances are understood to repre-

sent insightful combinations of disparate pieces of knowledge (e.g., Hull, 1988; Cohen and

Levinthal, 1990). Because scientists with industrial connections are privy to more diverse

bits of information, they may be better positioned to identify important areas of scientific

inquiry.

Another possible complementary between basic and commercial research is that many

seminal scientific achievements have been made possible only by technological advances in

instrumentation. For instance, much of our knowledge of how diseases operate has come from

understandings gained from DNA and protein sequencers and synthesizers. In the biomedical

fields and other areas or science, technological and scientific advances are therefore interde-

pendent: new understandings are often beholden to progress in instrumentation. If patenting

scientists are more likely to be in a position to negotiate access to state-of-the-art equipment

in corporate laboratories (Owen-Smith and Powell, 2001), or if they are more likely to have

developed the technical expertise to understand and modify research equipment, there is

another potential, complementary relationship between basic and applied research.

Having reviewed the arguments and evidence on both sides of the debate about the

consequences of patenting in academic science, we now discuss the econometric approach we

use to estimate the relationship between patenting and public research output.

3 Econometric Considerations

Estimating the causal effect of academic patenting on research output must confront a basic

selectivity problem: researchers choose whether, when, and how much to patent. As a result,

traditional econometric techniques, which assume that exposure to “treatment” occurs ran-
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domly, cannot recover causal effects. Past researchers have used two types of methodological

approaches to deal with this selection problem: instrumental variables techniques and fixed

effects estimation. Using a random cross-section of academic scientists, Stephan et al. (2004)

implement the first of these approaches, but the instruments they use — characteristics of

the scientist’s university and characteristics of a peer group of scientists — are unlikely to be

legitimately excluded from their second stage. Markiewicz and DiMinin (2004) use a fixed

effect specification in panel dataset of matched patenting and non-patenting researchers. In

so doing, they purge their estimates from any influence of unobserved heterogeneity that is

constant over time. However, it is well-known that for differences in differences estimation

to be valid, it must be the case that the average outcome for the treated and control groups

would have followed parallel paths over time in the absence of treatment. This assumption

is implausible if pretreatment characteristics that are thought to be associated with the dy-

namics of the outcome variable are unbalanced between treatment and control units. Below,

we provide strong evidence that selection into patenting is influenced by transitory shocks

to recent publications. In this respect, estimating the causal effect of academic patenting on

research output presents similar challenges to that of estimating the effect of a job-training

program on wages. The two main differences are that (1) a recent flurry of publications

positively influences subsequent patenting, a phenomenon we name “Ashenfelter’s hump”;

and (2) treatments are staggered over time, so that there is no clear “before” and “after”

period for non-patenter controls.

To overcome these challenges, we make use of a novel approach that has recently gained

acceptance in biostatistics: Inverse Probability of Treatment Weighted (IPTW) estimation

(Hernán et al., 2001). These estimators are akin to propensity-score matching techniques

(Rosenbaum and Rubin, 1983; Dehejia and Wahba, 2002) in that they make the (untestable)

assumption that selection into treatment is based on variables that are observable to the

econometrician, but extend it to the case of time-varying treatments. In particular, IPTW

estimation allow one to recover average treatment effects even in the presence of time-varying

confounders, i.e., time-varying variables that (1) are correlated with future values of the

dependent variable; (2) predict selection into treatment; and (3) are themselves predicted
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by past treatment history. As we will show below, this applies to the case of academic

patenting, since publication rates are strongly auto-correlated, the probability of patenting

increases after a recent flurry of publications, and past patenting history influences future

publication rates.

Implementing IPTW estimation is relatively straightforward. Let yit denote the outcome

of interest (e.g., publications), TREATit denote treatment (e.g., TREATit = 1 if researcher i

applies for at least one patent in year t, 0 otherwise), Xit denote a set of exogenous, possibly

time-varying covariates, and εit denotes the model’s residual. The canonical model to be

estimated is:

yit = β0 + β1Xit + β2TREATit + εit (1)

In the presence of time-varying confounders Zit, the estimate β̂2 is a biased estimate

of the causal effect of treatment, even if the Zit’s are a subset of the observed covariates

Xit included as regressors. Under the assumption that the determinants of selection into

treatment can be accurately captured by observable factors, then the bias can be removed

by weighting the regression by:

wit =
1

t∏
k=0

Prob(TREATik = Tik| ˜TREAT i,k−1, Z̃i,k−1, X̃ik)

where X̃ik stands for the whole history of variable vector X up to time k. Each factor in the

denominator is the probability that the researcher received her own observed treatment at

time k, conditional on past treatment history and her past history of “prognosis factors” for

treatment, whether time-varying or fixed over time. Therefore, wit represents the conditional

probability that an individual followed, possibly contrary to the fact, his or her own history

of treatment up to time t. Thus, Robins et al. (2000) refer to these weighted estimators

as IPTW estimators. Suppose that all relevant time-varying confounders are observed and

included in Zit. Then, weighting by wit effectively creates a pseudo-population in which Zit
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no longer predicts selection into treatment and the causal association between treatment and

outcome is the same as in the original population.2

The probabilities Prob(TREATik = Tik| ˜TREAT i,k−1, Z̃i,k−1, X̃ik) may vary greatly be-

tween subjects when time-varying confounders are strongly associated with treatment. This

variability can result in extremely large outlying values for wi. These outliers will contribute

heavily to the pseudo-population, and the resulting IPTW estimator will have a very large

variance. This problem can be alleviated by replacing wit by a “stabilized” weight swit:

swit =
t∏

k=0

Prob(TREATik = Tik| ˜TREAT i,k−1, X̃ik)

Prob(TREATik = Tik| ˜TREAT i,k−1, Z̃i,k−1, X̃ik)

Although this modification does not influence the consistency of IPTW estimators, it

does increase their efficiency (Robins, 1997). Despite its simplicity and intuitiveness, IPTW

estimation also presents some significant drawbacks. First and foremost, the assumption of

no unobserved confounding is a strong one. Past research in the program evaluation literature

has shown that techniques assume selection on observables perform well (in the sense of

replicating an experimental benchmark) when (1) researchers use a rich list of covariates

to model the probability of treatment; (2) units are drawn from similar labor markets,

and (3) outcomes are measured in the same way for both treatment and control groups

(Dehejia and Waba, 2002; Smith and Todd, 2001). All of these conditions would appear to

be met in our setting and data, but this should not lead researchers to believe that IPTW

estimation represents a universal solution for endogeneity problems. A second limitation

is that IPTW estimates are just identified: the assumption of no unobserved determinants

of selection into treatment cannot be tested; neither can misspecification of the selection

equation used to estimate the weights. Third, the causal effect estimated by IPTW models

is the population average treatment effect (ATE). In social science applications, however,

the effect of treatment on the treated might be more policy-relevant.3

2Because time-varying confounders mediate the effect of treatment on outcome and are affected by past
treatment, adjusting for these factors by simply adding them as variables on the right-hand side of (1)
would not appropriately adjust for the confounding. For example, including a lagged dependent variable
as a regressor would lead to an underestimate of the magnitude of the patenting effect, since this modeling
approach effectively holds the lagged dependent variable constant.

3One might worry about performing statistical inference using “second stage” IPTW estimates, since the
weights that are used as input in the outcome equation are themselves estimated. In contrast to two-step
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Finally, IPTW estimation cannot easily be used in the context of fixed-effect specifica-

tions. To see why, rewrite the residual in (1) as εit = γi+δt+ηit, where γi are fixed effects for

each individuals, and δt are a set of calendar year effects. Thus, the model to be estimated

is:

yit = β0 + β1Xit + β2TREATit + γi + δt + ηit (2)

The specification above is the classic difference-in-differences framework whereby changes

in outcomes for treated units are compared with changes in outcomes for control units.

Depending on the set of observations used to estimate the model, these controls can be either

individuals that never experience treatment, or individuals that have not yet experienced

treatment but will in the future, or both. Because the weights used in IPTW estimation

are time-varying, a difficulty arises when estimating versions of (2) with a limited dependent

variable, such as a count or a binary outcome. In the linear case, while it is not possible to

difference out the incidental parameter γi, one can estimate the least square dummy variable

version of the model. Although this does not yield consistent estimates for the fixed effects,

it allows one to recover consistent slope parameters for the coefficients on X and TREAT. In

the non-linear case, time-varying weights preclude the conditioning out of the fixed effects in

the cases of the logit, poisson, and negative binomial models often used by applied researchers

(Chamberlain, 1984; Hausman et al., 1984). As a result, we present two sets of estimates. In

the first set, fixed unit effects are ignored, and IPTW estimates implicitly compare the levels

of the outcome variables for patenters and non-patenters, conditional on observables. The

second set of results, which we favor, combines the difference-in-differences framework with

IPTW estimation, but this exercise cannot be performed whenever the dependent variable

of interest is a count (such as the number of coauthored articles with industry researchers)

or exhibits a large mass point at 0 (such as the dollar amount of NIH grants).

Censoring and exit. Although we focused the first part of the discussion on the problem of

non-random selection into patenting, a second problem arises because some subjects might

selection correction methods (Heckman, 1979), Robins (1999) has shown that the standard errors obtained
in this case are conservative.
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exit the sample for endogenous reasons. For instance, scientists might leave academia because

of low scientific productivity, or because they receive attractive offers to join commercial

firms. Even if treatment was randomly allocated across units, this type of informative

censoring could jeopardize the validity of the statistical estimates. We deal with this problem

by treating censoring as just another time-varying treatment. As Robins et al. (2000)

note, from this point of view, adjusting for censoring is only to say that our interest lies

in estimating the causal effect of TREAT on y if, contrary to the fact, all subjects had

remained in the sample rather than having followed their censoring history. We model the

exit decision as a function of constant and time-varying observable factors, and compute

weights corresponding to the probability of exit given these observables:

sw∗

it =
t∏

k=0

Prob(EXITik = 0| ˜TREAT i,k−1, Xik)

Prob(EXITik = 0| ˜TREAT i,k−1, Z̃i,k−1, Xik)

sw∗

it is the inverse of the ratio of a scientist’s probability of remaining uncensored up to year t

divided by that probability calculated as if there had been no time-dependent determinants

of censoring except past treatment history and X. Robins (1999) shows that consistent

estimates for β2 can be obtained by combining the weight corresponding to the inverse

probability of treatment swit and the weight corresponding to the inverse probability of exit

sw∗

it. The denominator of the final weight, sw∗

it × swit, is the probability that a subject

would have followed his own treatment and censoring history up to year t, conditional on

observables. As a result, we refer to Inverse Probability of Treatment and Censoring Weights

(IPTCW) in the rest of the paper.

Estimation of the weights. The procedure followed to compute the weights depends on

the way in which treatment is defined. According to a first definition, treatment is a flow :

TREATit = 1 whenever researcher i gets at least one patent in year t, and 0 otherwise.

This formulation implies that treatment does not necessarily have a lasting impact on the

individual. In contrast, the regime formulation defines TREATit = 1 for all years subsequent

to the first patent application. Defining treatment this way implies a one-time shift on the

outcome of interest, with subsequent treatment episodes having no effect on the dependent

variable.
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In the flow formulation the weights are computed by estimating pooled cross-sectional

logit specifications on the whole dataset. To compute the denominator of swit, one estimates:

logitprob(TREAT = 1) = α0 + α1TREATi,t−1 + Φ(Z̃i,t−1, α2) + α3Xit + δt (3)

where Φ(Z̃i,t−1, α2) corresponds to a parametric function of past values for time-varying

confounders, Xit includes both time-varying and fixed over time characteristics of individuals

in the sample (such as years of experience, gender, prestige of current employer, etc.), and δt

represents calender year effects. In practice, we specify Φ as a linear function of publications

in years t − 1 and t − 2, the stock of publications up to year t − 3, and the number of past

collaborations with industrial firms. Let T1 denote the set of years in which scientist i gets

at least a patent and T2 the set of years during which i gets no patents. The estimate of

the denominator of swit is
∏

t∈T1

p̂it

∏
t∈T2

(1 − p̂it). The numerator of swit stems from an almost

identical specification, except that one omits the term Φ(Z̃i,t−1, α2) in the logit equation.

This approach needs to be slightly modified when treatment is modeled as a regime shift

rather than as a flow, because the probability of getting treatment remains constant and

equal to 1 once a scientist enters the treatment regime. As a result, it is only necessary to fit

the model on a subset of the data, that of scientist-year observations before the first patent,

along with the observations corresponding to the first patenting year for the scientists who

get at least one patent over the sample period. In this risk set, TREATi,t−1 is uniformly 0,

and we estimate

logitprob(TREAT = 1) = α0 + Φ(Z̃i,t−1, α2) + α3Xit + δt (4)

to compute the denominator of swit, and

logitprob(TREAT = 1) = α0 + α3Xit + δt (5)

to compute the numerator of swit. Our estimate of the denominator of swit for scientist

i in year t is
t∏

k=0

1 − p̂ik if scientist i did not apply for at least one patent by year t, and

t−1∏
k=0

(1− p̂ik)× p̂it if scientist i applied for his first patent in year t. Estimation of sw∗

it proceeds

in the same fashion.
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Relationship of IPTCW estimation with propensity-score matching methods.

Rosenbaum and Rubin (1983) refer to Prob(TREATi = 1|X, Z) as the propensity score, and

show how to use this probability to estimate treatment effects when selection into treatment

depends only on observables. Recently, Heckman et al. (1997) have combined the propensity

score with difference-in-differences to estimate the causal effect of undergoing a job training

program. Abrade (2003) proposes a semiparametric difference-in-differences estimate that

weights observations by the inverse probability of (own) treatment. Although the goals

of these earlier papers resembles ours, we follow a slightly different approach because the

structure of our data differs significantly from the typical program evaluation setup. Labor

econometricians generally study programs for which a “before” and “after” period can be

unambiguously delineated for both treated and untreated units. In contrast, in our setting

and many others, selection into treatment can occur at different times and/or in several

disjoint episodes.4 Matching on the propensity score is difficult in these cases. Intuitively,

an untreated individual might be a good control for a treated subject in one period (in the

sense that the difference in their propensity scores is close to 0) and a bad control for the

same treated subject in another period. In contrast, IPTCW estimation readily generalizes

to the case of treatments that are staggered over time.

4 Data and Sample Characteristics

We examine the association between patenting and publishing in a panel dataset of academic

life scientists employed at universities and non-profit research institutes. This area was

chosen because the biomedical fields have accounted for the preponderance of university

patenting and licensing activity (Mowery et al., 2001). While we have not selected scientists

because they have patented, we have sampled from scientific disciplines that we know to

have significantly contributed to a vibrant area of technological development. We began by

drawing 12,000 doctoral degree recipients from UMI Proquest Digital Dissertations, which

4Similar challenges arise when estimating the effect of exporting activity on the productivity of manufac-
turing firms, or when using variation in the timing of state laws to identify the effect of various policies on
firm or individual behaviors (Clerides et al., 1998; Bernard and Jensen, 1999; Bernard and Mulligatawny,
1999; Autos et al., 2004).
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lists Ph.D. recipients from more than one thousand universities. In forming the sample, we

randomly selected individuals, but only those with Ph.D.s in scientific disciplines that have

informed commercial biotechnology.5 This assures a random sample of Ph.D.s in areas in

which academic research may have significant, short-term commercial value.

Next, we obtained scientists’ publication records from the ISI’s Web of Science database.

Because the Web of Science includes authors’ affiliations, we were able to identify Ph.D.

graduates who pursued careers outside of academe. After removing individuals that (i)

had no publications in any post-graduate year, (ii) published exclusively under corporate

affiliations, or (iii) exited academe early in their careers,6 we were left with 4,270 scientists,

all of whom we know to have been employed at research institutions. Each scientist is

observed from the year after he or she earned a Ph.D. until 1999, unless the individual

exited academia.7 The final panel contains 64,483 person-year observations between 1967

and 1999.

4.1 Variables

We examine three measures of scientists’ research output. First, from the Web of Science we

computed annual paper publication counts for each scientist. We count all papers on which

a scientist is listed as an author (in other words, we treat sole authored and coauthored

papers as equivalents). Second, from the National Institutes of Health’s CGAF database,

we obtained the annual number of grants awarded to each scientist. Third, we used the

affiliation data available from Web of Science to identify all instances in which a scientist

5To identify the scientific disciplines that have been most important to biotechnology, we coded the
educational backgrounds of the Ph.D.-holding, university-employed scientific advisory board members of all
publicly traded biotechnology firms. The source of information on scientific advisors’ degrees was the IPO
prospectuses of the 533 U.S.-based biotechnology firms have filed with the U.S. Securities and Exchange
Committee. We then stratified the random draw from UMI to correspond to the disciplines and Ph.D.
years of firms’ scientific advisors. For example, 22 percent of biotechnology company scientific advisors hold
biochemistry Ph.D.s; we drew a corresponding proportion of biochemists into our sample. Table 1 lists the
top 15 disciplines from which scientists in our sample are selected.

6Ph.D.s with academic affiliations lasting less than five years dropped from the dataset to exclude post-
doctoral fellows that later moved to jobs in industry.

7We assume a researcher has exited academia when he or she fails to publish for five consecutive years, or
in fewer instances, when the scientist begins to publish almost exclusively under a corporate affiliation. In
either case, we censor observation in the year in which a scientist last publishes under a university affiliation.
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wrote a paper that was coauthored with one or more individuals in a corporate research and

development lab. We assume that papers coauthored with researchers in industry are more

likely to be of an applied nature, and thus we consider the rate of publication of papers

with coauthors in industry as an indicator of the degree to which scientists are engaging in

commercially-oriented research.

The patents of the academic scientists in our data were assembled from the NBER patent

database (Hall, Jaffe, and Trajtenberg, 2001). To identify academic patenters, we matched

the scientists in our dataset to the list of inventors in the NBER patent database. Matches

were done on the basis of last names and initials, and we used information on assignee

(university) and geographic region to eliminate false matches. For each scientist in our

data, we generated flow and stock measures of patent applications, as well as corresponding

dummy variables.

Following a number of studies of the determinants of scientists’ productivity, we were also

able to construct a rich set of control variables to account for individual and institutional

attributes that may influence rates of publication and patenting. To account for life cycle

effects (Stephan, 1996), we include the number of years since a scientist earned his or her

Ph.D. An extensive literature in the sociology of science has documented gender differences

in productivity (e.g., Long and Fox, 1995), so we include a “scientist is female” dummy

variable. Because the time involved in publishing scientific research varies across fields, the

regressions include a full set of dummies for researchers’ dissertation subject areas. Some

of the regressions control for quality differences among researchers through the inclusion of

scientist fixed effects. In specifications without fixed effects, we enter a dichotomous measure

of the quality of a scientists’ Ph.D.-degree granting institution—a dummy variable indicating

whether or not a scientists’ doctoral program was ranked in the top 20. Specifically, we

collected Gourman Report rankings for all institutions in our dataset. Gourman ranking are

available at the field level and were issued for the first time in 1980. Because biochemistry is

the modal discipline in our dataset, we used universities’ rankings in that field. We assigned

universities their original rating for all years prior to 1980 (and updated them every other

year for the subsequent period).
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We also include a number of employer-level variables that may influence scientists’ pro-

ductivity and probability of patenting. These covariates are updated each year and when

scientists change employers. First, we include a quality rank dummy variable analogous to

the one constructed for Ph.D.-grating institutions. There are a variety of reasons why sci-

entists at prominent universities are likely to be more productive, including the availability

of more resources and easy access to high quality colleagues. Second, we used the AUTM

surveys to create a technology transfer office (TTO) dummy variable, which is set to one in

all years in which a scientist’s employing university has an active TTO. Third, a university’s

stock of patents is entered in the model, among other things to further control for institu-

tional differences in support for patenting. Similar quality rank and patent stock measures

were constructed for scientists’ doctoral training universities.

In the regressions for selection into patenting used to construct the inverse probability of

treatment weights, it would obviously be desirable to account for differences among scientists

in the inherent “patentability” of their research. To construct such a measure, we have used

the title words in scientists’ publications to identify the areas in which they have conducted

research, and then applied weights to theses areas based on an (endogenous to the sample)

measure of the extent to which other scientists working in these areas have patented their

discoveries. Intuitively, we use the publications of scientists that have already applied for

patent rights as the benchmark for patentable research, and then compared the research of

each scientist in our dataset to this benchmark to generate a research patentability score

for each person-year. Specifically, the research patentability score for scientist i in year t is

defined as:

PATENTABILITYit =
J∑

j=1

wjt

nijt∑
j nijt

(6)

where j = 1, , J indexes each of the scientific keywords appearing in the titles of the journal

articles published by scientist i up to year t,8 nijt is the number of times each of the keywords

8We relied on title words in journal articles instead of journal- or author-assigned keywords because the
Web of Science database did not begin to include keyword descriptors until 1992. However, the titles of
biomedical research papers typically indicate the research area and the methodology used in the paper. We
find high overlap between title words and keywords in the papers for which both are available.
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j has appeared in scientist i’s articles published by year t, and wjt is a weight for each

keyword that measures the relative frequency with which word j is used in the titles of

articles published by scientists who have entered the patenting regime in year t or earlier

(the calculation of wjt is detailed in the data appendix).

4.2 Descriptive Statistics

Among the 4,270 researchers in our sample, 814 (19%) hold one or more patents. In Figure

1, we plot the distribution of patents for the patenting researchers in our sample. Most of the

patenters are listed on 1 or 2 patents throughout their career, and very few scientists in our

data receive more than 10. Figure 2 displays the distribution of scientists’ total publication

count, broken out by their patenting status. The distribution for the patenter subsample is

much less skewed than that of the non-patenter subsample.

Table 2 presents the summary descriptive statistics for variables used in our analysis.

Table 3 reports, by scientists’ patenting status, the mean research and employer characteris-

tics measured at five career stages. Researchers who have sought and received patent rights

for their discoveries appear more productive at each of these five stages: they publish al-

most twice as many research papers as those who have not yet entered the patenting regime.

Except in the first period (the 5th year subsequent to the year of Ph.D. degree), patenters

appear to have more NIH grant support. The difference between the two groups in the grant

measure is relatively small compared to that in the research publication count, though the

gap widens as experience increases. At all career stages, scientists who have applied for

patent rights appear closer to commercial research than their non-patenting counterparts, as

indicated by the fact that they have collaborated more often with researchers in the private

sector. Finally, patenters are more likely to work in settings where a technology transfer

office exists and patenting activity is intensive.
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4.3 Results

We begin by presenting results pertaining to the probability of obtaining a patent (flow

formulation) or of becoming a patenter (regime formulation). We also perform a similar

exercise for the probability of exit from academia. The results are displayed in Tables 4

and 5. It is important to note that the list of independent variables and the risk set differ

significantly across the flow and regime models. In the former, all scientist-year observations

are included, and the list of independent variables include a lag structure for patenting in

order to address the possibility of structural state dependence. In the latter, the observations

corresponding to years subsequent to the year of the first patent application are not part of

the risk set; consequently, no lag structure for the dependent variable can be part of the set

of right-hand side variables.

The econometric analysis confirms that time-varying confounders are important determi-

nants of patenting activity for these scientists. First, controlling for the stock of publications

up to year t − 2, the probability of patenting in year t is significantly increasing in the flow

of publications in year t − 1: at the mean of the data, a standard deviation increase in

the flow of lagged publications increases the probability of patenting by 14.4% for the flow

specification (column 1) and by 17.8% for the regime specification (column 3). While no

effect of past grants was detected, we also find that previous ties to industry in the form of

coauthorships, and the stock of patents for the scientist’s university increase the likelihood

of patenting activities. Similarly, scientists working in areas of science that are inherently

more amenable to patenting are, unsurprisingly, more likely to patent. At the mean of the

data, a standard deviation increase in patentability increases the probability of patenting

from 0.013 to 0.027 (column 1 – flow specification) and from 0.042 ro 0.142 (column 3 –

regime specification). In light of these results, the shortcomings of some commonly used

identification strategies become clearer. First, instrumental variables based on the charac-

teristics of the employer are probably invalid, as the matching of scientists with employers

appears to take into account patenting and traditional research activities. Second, selection

into “treatment” is influenced by transitory shocks to outcome variables of interest, such as
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publications. While scientist fixed effects purge econometric estimates from selection bias

stemming from immutable characteristics, they will fail to account for the dynamics of the

selection process.

Table 5 displays the results corresponding to the models of the probability of exit from

academia. A priori, one might imagine that academic scientists leave academia because

they do not achieve success according to the most commonly used metrics of academic

productivity: grants and publications.9 One might also conjecture that very productive

academics are more likely to be poached by the private sector, leading to a premature exit

from the academic ranks. We find support only for the former story. Even controlling for

the stock of past grants and publications, a dry spell in academic productivity significantly

increases the likelihood of exit. The stock of patents or research patentability has no such

effect.

Tables 6 through 9 present results pertaining to the effect of patenting on research output.

We begin by reporting the results of pooled cross-sectional specifications in Table 6, which

is divided in 5 panels corresponding to different dependent variables: the count of research

publications (Table 6.1, negative binomial model), the log of count of research publications

(Table 6.2, linear model), the count of NIH grants (Table 6.3, negative binomial model), the

count of publications coauthored with industry scientists (Table 6.4, zero-inflated negative

binomial model), and the proportion of publications coauthored with industry scientists

(Table 6.5, two-sided tobit model). Each panel is further subdivided into three sets of

results, corresponding to three definitions of the patenting variable: flow (Models 1 and 2),

regime (Models 3 and 4), and stock (Models 5 and 6). Finally, in each of these sets, the

first column corresponds to the estimates of a “naive” cross-section, while the second column

reports IPTCW estimates. Table 6.1 produces two robust results: (a) patenting, however

defined, is positively associated with publishing; and (b) the magnitude of this effect is

much lower once we account for self-selection into patenting. However, the magnitudes of

our estimates is implausibly high, even in the IPTCW specifications. This is most easily

9In the life sciences, grants play an especially large role, as academics do not draw a fixed salary from
the university, but are expected to pay themselves from grants.
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seen in Table 6.2, since the coefficients are directly interpretable in terms of elasticities: The

elasticity of publication with respect to patenting is .219 for the flow specification and .234

for the regime specification. It is important to bear in mind that IPTCW estimates address

selection on observables. Since the specifications of Table 6 perform a comparison in levels,

these estimates are contaminated by unobserved heterogeneity; namely, “better” scientists

(in a time-invariant sense of the word) are both more likely to patent and publish heavily.

To the extent that such variation in quality is not captured by observable covariates, our

estimates will remain biased and inconsistent.

The results in Table 6.3 indicate that the results above do not carry to the grant mea-

sure of output. In particular, the weighted estimates imply that patenting researchers are

not significantly more successful at getting grants from the NIH than are non-patenting re-

searchers. This is interesting, because the hurdle that needs to be cleared to get a grant

from the NIH is much higher than that required to publish a scientific article. Indeed, in our

sample, only about 20% of scientists secure one NIH grant during their career. Of course,

patenting activities could be associated with easier access to research grants and contracts

from industry, which we do not observe. Table 6.3 and 6.4 indicate that patenting researchers

coauthor much more with corporate scientists than their non-patenting counterparts. The

results hold even when one controls for selection into patenting.

Tables 7.1 through 7.4 report fixed effects estimates. These tables compare the change in

research output that results from patenting activities. When the patenting effect is defined

as a regime shift, this is similar to the classic “difference in differences” specification often

used by labor and public economists. In each of these tables, we estimate the model on two

distinct samples: the full sample, and the sample of scientists who eventually patent. This

is important insofar as year effects and the patenting treatment effects are not separately

identified in these models. The full sample estimates provide a comparison of the change

in output for scientists who enter the patenting regime, relative to the change in output

experienced by non-patenters and scientists who have not patented yet, but will in the

future. Restricting the sample means that only these eventual patenters are “controls.” The

estimates produced by the fixed effects approach are of smaller magnitude than the cross-
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sectional estimates, though still large and statistically significant. The estimates using only

“eventual patenters” as controls are about 1/3 smaller than those obtained with the full

sample. This makes sense to the extent that researchers who patent are “more alike” than

are patenting and non-patenting researchers.

One informal test of the validity of the “difference in differences” strategy is to examine

the time-series evolution of the treatment effect. In Table 8 we interact the patenting regime

dummy with a set of year effects. Columns (1) through (5) perform this exercise for the

cross-section. Columns (6) through (10) perform it for the fixed-effects specifications. The

cross-sectional estimates indicate that patenters and non-patenters have higher output even

before the year of first patent application. This result also holds within scientist: the effect

of patenting on productivity is already apparent a full two years before the year of first

patent application (Models 7 and 10). This confirms our earlier suspicion that patenters and

non-patenters do not follow similar output trends either before or after the patenting event.

Table 9 presents estimates that combines IPTCW weights with fixed effects. Intuitively,

these specifications compare the changes in output of patenters with that of “comparable”

non-patenters — subject to the assumption of selection on observables. To ease the com-

parison between the different econometric approaches, we display the “naive” fixed effect

estimates side-by-side with the IPTCW estimates. As explained above, this exercise can

only be performed when the dependent variable is the log of publications, since weighted

fixed effect models cannot be consistently estimated in the case of limited dependent vari-

ables (such as a count, a proportion, or a dichotomous variable). The magnitudes of the

patenting effect are halved by the use of the selection weights, but the estimates remain

statistically and economically significant. For instance, Model (4) implies that entering the

patenting regime is associated with a 8.7% increase in the numbers of papers published.

While still sizable, this effect is of a more reasonable magnitude than those obtained in

previous specifications.
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5 Discussion and Conclusion

Our findings persuasively establish that the most prolific scientists in terms of the standard

measures of professional achievement are the most likely to patent. We also find, contrary

to the common perception in the literature, that academic scientists that patent are actu-

ally somewhat more productive than otherwise equivalent scientists that are not listed as

inventors on patents. Thus, the evidence definitively rejects the first-order assertion that

the increase in patenting in academe has come at the cost of diverting researchers’ time,

interest, and attention from their traditional focus on standard scientific research. However,

there are a number of other avenues, all outside the scope of this analysis, through which

patenting in academic science could yet have a significant—and possibly deleterious—effect

on the advancement of scientific knowledge. These alternative paths of influence include

“anti-commons” effects, the impact of senior researchers’ patenting on the career trajecto-

ries of scientists in training, and the incentive that the option of patenting provides to change

the focus of research. As a result, beyond the first-order effect of a scientist’s decision to

patent on his or her individual productivity, our conclusions must remain tempered.

Regarding the third of these possibilities, although the evidence we have presented that

patenting may induce scientists to shift their research focus to more applied projects is

admittedly assailable, the very strong effect of the research patentability covariate on the

likelihood that scientists patent demonstrates considerable variation across scientific areas

in amenability to patenting. Thus, it appears that scientists can choose research projects

on the basis of ease of patenting. Insofar as scientists perceive the chance for significant

remuneration from patenting, either from their entitlement to a share of royalties on patent

licenses or from increased options for consulting or advisory board memberships, one would

expect that the presence of the option to patent will in fact lead scientists to choose research

topics that differ from what they would have chosen if the option were unavailable.

Although we have found that patenting does not detract from the patenter’s research

productivity, the question of the consequences of the patenter’s action on the output of

colleagues is outside of the scope of this paper’s analysis. It would be reasonable to specu-
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late that social learning about the process of patenting would lead to local contagion (e.g.,

within university department) in the decision to patent. Moreover, relative to non-patenters,

patenting scientists self-report a greater tendency to withhold information about their re-

search projects. As patenting within a department or research area continues to grow, is

there a point at which a negative effect on the collective output sets in, either because re-

searchers are deterred or blocked by intellectual property rights held by others, or because

concerns about intellectual property rights diminish open communications among scientists?

Finally, it is possible that the most significant effect of faculty patenting manifests in

the career choices of the graduate students and post-doctoral fellows that work in the lab-

oratories of patenters. For instance, patenters may have much thicker and more diverse

relationships with researchers in firms than non-patenting scientists, which may in turn

facilitate apprentice scientists’ job searches in the private sector. Therefore, patenters may

(perhaps unintentionally) encourage their students to select private-sector careers above aca-

demic posts. Conversely, if patenters enlist the help of scientists-in-training in the research

streams that lead to patents, and if these projects are different in character from the research

topics that intrigue non-patenters, it is is possible that apprentices training under patenters

may be less appealing to academic departments searching for new faculty. In short, the most

significant impact of patenting on public research output may well lie in the consequence of

the behavior for non-patenting and soon-to-be scientists.
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Figure 1: Distribution of Patent Count for Patenting Scientists 
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Figure 2: Distribution of Publication Count for Patenting and Non-

patenting Scientists 
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Table 1 

Top 15 Scientific Disciplines in the Sample 

UMI Subject  

Code UMI Subject Description Frequency 

487; 303 Biochemistry 972 (22.8%) 

306 Biology, General 611 (14.3%) 

410 Biology, Microbiology 513 (12.0%) 

419 Health Sciences, Pharmacology 248 (5.8%) 

490 Chemistry, Organic 233 (5.5%) 

786 Biophysics, General 231 (5.4%) 

369 Biology, Genetics 221 (5.2%) 

982 Health Sciences, Immunology 186 (4.4%) 

433 Biology, Animal Physiology 185 (4.1%) 

307 Biology, Molecular 114 (2.7%) 

301 Bacteriology 67 (1.6%) 

287 Biology, Anatomy 60 (1.4%) 

571 Health Sciences, Pathology 53 (1.2%) 

542 Engineering, Chemical 34 (0.8%) 

572 Health Sciences, Pharmacy 34 (0.8%) 

Legend: Table 1 reports the top 15 disciplines from which our sample was 
drawn. These disciplines have spawned the most of biotechnology firm 
founders, scientific advisors and executives. The table also reports the number 

and the proportion of scientists of our sample in each scientific discipline 
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Table 2  

Descriptive Statistics 

Mean Std. Dev. Min. Max. 

Time-varying (64,483 person-year observations) 

Patent flow dummy 0.039 0.193 0 1 

Patent regime dummy 0.123 0.329 0 1 

Patent stock 0.512 2.835 0 105 

Count of research publications 1.687 2.764 0 103 

Log of count of research publications 0.701 0.703 0 4.64 

Count of NIH Grants 0.269 0.635 0 16 

Count of res. pub. with company scientists 0.136 0.578 0 26 

Research patentability score 10.411 9.385 0 57.785 

Experience 10.227 7.158 1 32 

Employer graduate school in top 20 0.234 0.423 0 1 

Employer has TTO 0.487 0.500 0 1 

Employer patent stock (in hundred) 0.733 1.492 0 21.89 

Calendar year 1986 7.770 1968 1999 

Time-invariant (4,270 observations) 

Female 0.214 0.410 0 1 

Ph.D. univ. grad. school in top 20 0.310 0.462 0 1 

Ph.D. univ. 5-yr patent stock (in hundred) 0.205 0.442 0 6.11 

 

.  
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Table 3 

Mean Research and Employer Characteristics at Five Career Stages,  

by Patent Application Status 

 Experience = 5  Experience = 10  Experience = 15 Experience = 20 Experience = 25 

Ever applied for patents Yes No Yes No Yes No Yes No Yes No 

Count of research publications 2.403 1.180  3.028 1.728  3.709 1.973 4.011 2.141 3.873 2.069 

Count of NIH Grants 0.157 0.164  0.367 0.345  0.449 0.413 0.511 0.441 0.454 0.341 

Count of res. pub. with firm  scientists 0.305 0.059  0.339 0.112  0.480 0.153 0.464 0.216 0.415 0.172 

Research Patentability 11.759 6.046  15.398 11.369  20.123 15.919 25.015 20.953 28.313 24.035 

Employer grad. school rank in top20 0.254 0.266  0.251 0.220  0.241 0.198 0.190 0.191 0.171 0.191 

Employer has TTO 0.449 0.386  0.565 0.476  0.690 0.581 0.728 0.674 0.820 0.716 

Employer Patent stock (in 100) 0.708 0.566  1.051 0.645  1.215 0.740 1.254 1.097 1.523 1.266 

Observations 236 3,937  354 2,479  381 1,641 364 1,065 205 507 

Legend: Table 3 reports the mean research and employer characteristics measured at five different stages in scientists’ career: the 5th, 10th, 15th, 

20th and 25th year after the scientist was granted a Ph.D. Within each career stage, the table is further broken out by whether a scientist has ever 
applied for a patent right.
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Table 4 

Probability of Patenting
 Model 1 Model 2  Model 3 Model 4 

Dependent Variable Patent flow dummy  Patent regime dummy 

 Denominator Numerator  Denominator Numerator 

Experience = [5, 8] 0.006 0.374  -0.448 0.008 

 (0.087) (0.080)***  (0.115)*** (0.105) 

Experience = [9, 15] -0.252 0.484  -1.004 0.011 

 (0.113)** (0.095)***  (0.143)*** (0.109) 

Experience = [16, 22] -0.680 0.419  -1.550 0.009 

 (0.150)*** (0.119)***  (0.195)*** (0.128) 

Experience = [23, 35] -1.252 0.019  -2.326 -0.567 

 (0.191)*** (0.152)  (0.283)*** (0.201)*** 

Female -1.203 -1.266  -1.068 -1.162 

 (0.147)*** (0.152)***  (0.135)*** (0.132)*** 

Patent flow (t-1) 1.103 1.254    

 (0.067)*** (0.072)***    

Patent stock (t-2)  0.162 0.182    

 (0.025)*** (0.025)***    

Research patentability (t-1) 0.079   0.142  

 (0.008)***   (0.010)***  

Research publications flow (t-1) 0.051   0.071  

 (0.010)***   (0.013)***  

Research publications stock (t-2) -0.000   -0.007  

 (0.001)   (0.003)**  

0.489   0.256  Has collaborated with firm researchers (t-1)

(0.079)***   (0.096)***  

0.033   0.078  Employer patent stock (t-1) (in hundred) 

(0.020)   (0.027)***  

0.085 0.088  0.150 0.140 PhD univ. patent 5-yr stock > 17 (75th 

percentile) (0.077) (0.079)  (0.087)* (0.083)* 

Constant -8.314 -8.234  -8.567 -8.244 

 (1.003)*** (0.997)***  (1.138)*** (0.998)*** 

Observations 64483 64483  57335 57335 

Num. of researchers 4270 4270  4270 4270 

Log-likelihood -7845.52 -8185.10  -3856.43 -4099.48 

Wald Chi2 2138.54 1477.98  636.00 256.44 

Model degrees of freedom 46 41  44 39 

Peudo R-square 0.26 0.22  0.10 0.04 

Notes: 
(1) Models 3 and 4 exclude observations after a researcher’s year of first patent application. 

(2) All models control for PhD subject and year effects. 
(3) Experience = [1, 4] is the base category. 
(4) Robust standard errors in parentheses, clustered around individual researchers. . 

(5) * significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 5  

Probability of Exiting Academia 

 Model 1-Denominator Model 2-Numerator 

Experience = [9, 15] -0.324 -0.551 

 (0.059)*** (0.055)*** 
Experience = [16, 22] -0.387 -0.747 

 (0.084)*** (0.073)*** 
Experience = [23, 30] -0.176 -0.565 

 (0.113) (0.096)*** 
Female 0.145 0.261 

 (0.056)*** (0.055)*** 
Patent stock (t-1) -0.037 -0.058 

 (0.013)*** (0.014)*** 
Research patentability -0.007  

 (0.005)  
Research publications flow (t-1) -0.172  

 (0.020)***  
Research publications flow (t-2) -0.122  

 (0.019)***  
Research publications stock (t-3) -0.007  

 (0.003)***  
NIH grants flow dummy (t-1) -1.198  

 (0.129)***  
NIH grants flow dummy (t-2) -0.321  

 (0.127)**  
NIH grants stock dummy (t-3) 0.105  

 (0.063)*  
Has collaborated with firm researchers (t-1) 0.012  

 (0.008)  
Employer grad. school in top 20 (t) 0.066  

 (0.061)  
Employer has TTO (t) 0.123  

 (0.052)**  
0.037  Employer patent stock (t-1) (in hundred) 

(0.016)**  
PhD  univ. grad. school rank in top 20 -0.146 -0.210 

 (0.053)*** (0.052)*** 
0.024 0.023 PhD univ. patent 5-yr stock  > 17 (75th

percentile) (0.059) (0.058) 
Constant -3.069 -3.414 

 (0.274)*** (0.272)*** 

Observations 47321 47321 

Num. of researchers 4179 4179 
Log-likelihood -8482.97 -8921.67 

Wald Chi2 803.51 382.90 
Model degrees of freedom 51 40 

Pseudo R-square 0.07 0.02 

Notes: 
(1) We treat a researcher as having exited academia when he or she stops publishing research for five consecutive years 

or is observed to have published predominantly under corporate affiliations. In either case, the year when the researcher 

is last observed as publishing under an academic institution is recorded as his or her last year in academia. A researcher 
is at risk of exiting academia for the 30 years subsequent to the grant of his or her Ph.D. degree.

  

(2) All models control for PhD subject and year effects. 

(3) Experience = [5, 8] is the base category; observations for experience = [1, 4] were excluded as exit status is 
completely determined for the period due to our data collection method.  

(4) Robust standard errors in parentheses, clustered around individual researchers. 

(5) * significant at 10%; ** significant at 5%; *** significant at 1% 
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Table 6.1 

Negative Binomial Regression of Count of Research Publications 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Type of patent effect        Patent Flow        Patent Regime       Patent Stock 

 Pooled  
Cross-section

 
IPTCW 

Pooled  
Cross-section

 
IPTCW 

Pooled  
Cross-section

 
IPTCW 

Experience = [5, 8] 0.395 0.346 0.371 0.337 0.390 0.344 

 (0.019)*** (0.019)*** (0.019)*** (0.019)*** (0.019)*** (0.019)*** 

Experience = [9, 15] 0.711 0.629 0.665 0.592 0.697 0.623 

 (0.029)*** (0.029)*** (0.030)*** (0.030)*** (0.030)*** (0.030)*** 

Experience = [16, 22] 0.886 0.765 0.805 0.692 0.851 0.752 

 (0.049)*** (0.048)*** (0.050)*** (0.048)*** (0.050)*** (0.048)*** 

Experience = [23, 35] 0.841 0.658 0.752 0.560 0.782 0.631 

 (0.069)*** (0.070)*** (0.069)*** (0.070)*** (0.070)*** (0.070)*** 

Female -0.207 -0.243 -0.163 -0.222 -0.204 -0.241 

 (0.055)*** (0.050)*** (0.055)*** (0.049)*** (0.055)*** (0.050)*** 

Employer grad school in top20 (t) 0.049 0.049 0.063 0.067 0.055 0.047 

 (0.044) (0.041) (0.044) (0.044) (0.044) (0.041) 

Employer has TTO (t) 0.163 0.159 0.152 0.155 0.154 0.157 

 (0.036)*** (0.035)*** (0.036)*** (0.034)*** (0.036)*** (0.035)*** 

0.031 0.015 0.028 0.020 0.029 0.015 Employer patent stock (t) (in 

hundred) (0.012)*** (0.011) (0.013)** (0.012) (0.012)** (0.011) 

PhD univ. grad school in top 20 0.053 0.089 0.059 0.079 0.052 0.089 

 (0.041) (0.039)** (0.041) (0.039)** (0.041) (0.039)** 

0.033 0.032 0.028 0.008 0.042 0.036 PhD univ. 5-yr patent stock (in 

hundred) (0.051) (0.053) (0.051) (0.053) (0.051) (0.053) 

Patent flow dummy (t) 0.733 0.433     

 (0.049)*** (0.053)***     

Patent regime dummy (t)   0.608 0.438   

   (0.047)*** (0.054)***   

Patent stock (t)     0.059 0.041 

     (0.009)*** (0.011)*** 

Constant -0.927 -0.944 -0.938 -0.942 -0.928 -0.943 

 (0.108)*** (0.107)*** (0.108)*** (0.107)*** (0.108)*** (0.107)*** 

Observations 64483 63193 64483 63198 64483 63193 

Num. of researchers 4270 4268 4270 4269 4270 4268 

Log likelihood -109930.46 -99963.58 -109584.56 -100184.04 -109969.71 -99956.98 

Wald Chi2 2472.08 1725.06 2381.23 1620.46 2086.37 1565.30 

Change in d.f. 47 47 47 47 47 47 

p>Chi2 0.00 0.00 0.00 0.00 0.00 0.00 

Notes: 
(1) Models 2 , 4 and 6 use Inverse Probability of Treatment and Censoring Weights (IPTCW), which is the product of (a) 

Inverse Probability of Treatment Weights (IPTW) derived from the logit regression of treatment (i.e., the researcher 
applying for one or more patents in a given year for Models 2 and 6, and the researcher entering patenting regime for 

Model 4) on variables that may confound the patenting effect, and (b) Inverse Probability of Censoring Weights (IPCW) 
derived from the logit regression of censoring (i.e., the researcher exiting academia in a given year). 

(2) Models 2, 4 and 6 exclude observations with extremely large (top 1%) and small (bottom 1%) weights. 
(3) All models control for PhD subject and year effects 

(4) Experience = [1, 4] is the base category for the experience dummies. 
(5) Robust standard errors in parentheses; clustered around researchers. 

(6) * significant at 10%; ** significant at 5%; *** significant at 1%. 
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Table 6.2 

Regression of Log of Count of Research Publications 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Type of patent effect        Patent Flow        Patent Regime       Patent Stock 

 Pooled  
Cross-section

 
IPTCW 

Pooled  
Cross-section

 
IPTCW 

Pooled  
Cross-section

 
IPTCW 

Experience = [5, 8] 0.184 0.164 0.174 0.159 0.185 0.164 

 (0.008)*** (0.008)*** (0.008)*** (0.008)*** (0.008)*** (0.008)*** 

Experience = [9, 15] 0.335 0.288 0.311 0.269 0.333 0.286 

 (0.013)*** (0.013)*** (0.013)*** (0.013)*** (0.013)*** (0.013)*** 

Experience = [16, 22] 0.407 0.332 0.367 0.295 0.397 0.326 

 (0.022)*** (0.022)*** (0.022)*** (0.021)*** (0.022)*** (0.022)*** 

Experience = [23, 35] 0.383 0.276 0.333 0.225 0.352 0.262 

 (0.035)*** (0.034)*** (0.035)*** (0.034)*** (0.035)*** (0.034)*** 

Female -0.111 -0.122 -0.094 -0.110 -0.112 -0.121 

 (0.019)*** (0.017)*** (0.019)*** (0.017)*** (0.019)*** (0.017)*** 

Employer grad school in top20 (t) 0.020 0.017 0.024 0.019 0.019 0.016 

 (0.019) (0.018) (0.019) (0.018) (0.019) (0.018) 

Employer has TTO (t) 0.086 0.080 0.081 0.080 0.085 0.079 

 (0.015)*** (0.014)*** (0.015)*** (0.014)*** (0.015)*** (0.014)*** 

0.018 0.010 0.016 0.010 0.017 0.009 Employer patent stock (t) (in 

hundred) (0.006)*** (0.005)* (0.007)** (0.005)* (0.006)*** (0.005)* 

PhD univ. grad school in top 20 0.038 0.052 0.040 0.052 0.039 0.053 

 (0.018)** (0.017)*** (0.018)** (0.017)*** (0.018)** (0.017)*** 

-0.002 -0.008 -0.002 -0.015 -0.000 -0.007 PhD univ. 5-yr patent stock (in 

hundred) (0.023) (0.022) (0.022) (0.022) (0.023) (0.023) 

Patent flow dummy (t) 0.445 0.219     

 (0.036)*** (0.031)***     

Patent regime dummy (t)   0.353 0.234   

   (0.028)*** (0.030)***   

Patent stock (t)     0.031 0.021 

     (0.006)*** (0.005)*** 

Constant 0.217 0.209 0.214 0.209 0.217 0.209 

 (0.019)*** (0.019)*** (0.019)*** (0.019)*** (0.019)*** (0.019)*** 

Observations 64483 63193 64483 63198 64483 63193 

Num. of researchers 4270 4268 4270 4269 4270 4268 

F-statistics 58.04 44.87 58.48 43.70 57.15 43.70 

Model degrees of freedom 47 47 47 47 47 47 

Adjusted R2 0.11 0.08 0.12 0.08 0.11 0.08 

Notes: 
(1) Models 2 , 4 and 6 use Inverse Probability of Treatment and Censoring Weights (IPTCW), which is the product of (a) 
Inverse Probability of Treatment Weights (IPTW) derived from the logit regression of treatment (i.e., the researcher 

applying for one or more patents in a given year for Models 2 and 6, and the researcher entering patenting regime for 
Model 4) on variables that may confound the patenting effect, and (b) Inverse Probability of Censoring Weights (IPCW) 

derived from the logit regression of censoring (i.e., the researcher exiting academia in a given year). 
(2) Models 2, 4 and 6 exclude observations with extremely large (top 1%) and small (bottom 1%) weights. 

(3) All models control for PhD subject and year effects 
(4) Experience = [1, 4] is the base category for the experience dummies. 

(5) Robust standard errors in parentheses; clustered around researchers. 
(6) * significant at 10%; ** significant at 5%; *** significant at 1%. 
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Table 6.3 

Negative Binomial Regression of Count of NIH Grants 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Type of patent effect        Patent Flow        Patent Regime       Patent Stock 

 Pooled  
Cross-section

 
IPTCW 

Pooled  
Cross-section

 
IPTCW 

Pooled  
Cross-section

 
IPTCW 

Experience = [5, 8] 1.606 1.553 1.603 1.548 1.608 1.554 

 (0.050)*** (0.050)*** (0.050)*** (0.050)*** (0.049)*** (0.050)*** 

Experience = [9, 15] 2.138 2.036 2.131 2.023 2.143 2.037 

 (0.065)*** (0.066)*** (0.066)*** (0.067)*** (0.065)*** (0.066)*** 

Experience = [16, 22] 2.376 2.190 2.363 2.147 2.384 2.193 

 (0.086)*** (0.090)*** (0.086)*** (0.090)*** (0.086)*** (0.090)*** 

Experience = [23, 35] 2.226 1.912 2.211 1.831 2.237 1.913 

 (0.128)*** (0.135)*** (0.128)*** (0.137)*** (0.128)*** (0.135)*** 

Female -0.291 -0.397 -0.281 -0.398 -0.302 -0.399 

 (0.090)*** (0.088)*** (0.091)*** (0.088)*** (0.090)*** (0.088)*** 

Employer grad school in top20 (t) 0.052 0.029 0.055 0.038 0.053 0.029 

 (0.069) (0.072) (0.069) (0.073) (0.069) (0.072) 

Employer has TTO (t) 0.325 0.367 0.323 0.373 0.326 0.368 

 (0.055)*** (0.057)*** (0.055)*** (0.056)*** (0.055)*** (0.057)*** 

0.048 0.029 0.047 0.025 0.049 0.028 Employer patent stock (t) (in 

hundred) (0.017)*** (0.018) (0.017)*** (0.018) (0.017)*** (0.018) 

PhD univ. grad school in top 20 0.246 0.271 0.246 0.282 0.246 0.271 

 (0.064)*** (0.068)*** (0.065)*** (0.068)*** (0.065)*** (0.068)*** 

0.131 0.180 0.131 0.149 0.131 0.180 PhD univ. 5-yr patent stock (in 

hundred) (0.089) (0.099)* (0.089) (0.099) (0.089) (0.099)* 

Patent flow dummy (t) 0.147 0.106     

 (0.075)* (0.099)     

Patent regime dummy (t)   0.129 0.156   

   (0.074)* (0.110)   

Patent stock (t)     -0.006 0.001 

     (0.008) (0.011) 

Constant -4.226 -4.222 -4.228 -4.237 -4.226 -4.223 

 (0.275)*** (0.275)*** (0.275)*** (0.276)*** (0.275)*** (0.275)*** 

Observations 64483 63193 64483 63198 64483 63193 

Num. of researchers 4270 4268 4270 4269 4270 4268 

Log likelihood -38283.95 -32850.64 -38276.98 -33120.91 -38288.53 -32852.29 

Wald Chi2 2032.50 1732.81 2031.99 1734.00 2028.54 1733.83 

Model degrees of freedom 47 47 47 47 47 47 

p>Chi2 0.00 0.00 0.00 0.00 0.00 0.00 

Notes: 
(1) Models 2 , 4 and 6 use Inverse Probability of Treatment and Censoring Weights (IPTCW), which is the product of (a) 
Inverse Probability of Treatment Weights (IPTW) derived from the logit regression of treatment (i.e., the researcher 

applying for one or more patents in a given year for Models 2 and 6, and the researcher entering patenting regime for 
Model 4) on variables that may confound the patenting effect, and (b) Inverse Probability of Censoring Weights (IPCW) 

derived from the logit regression of censoring (i.e., the researcher exiting academia in a given year). 
(2) Models 2, 4 and 6 exclude observations with extremely large (top 1%) and small (bottom 1%) weights. 

(3) All models control for PhD subject and year effects 
(4) Experience = [1, 4] is the base category for the experience dummies. 

(5) Robust standard errors in parentheses; clustered around researchers. 
(6) * significant at 10%; ** significant at 5%; *** significant at 1%. 
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Table 6.4 

Zero Inflated Negative Binomial Regression of Count of Research 

Publications in Collaboration with Company Researchers 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Type of patent effect        Patent Flow        Patent Regime       Patent Stock 

 Pooled  
Cross-section

 
IPTCW 

Pooled  
Cross-section

 
IPTCW 

Pooled  
Cross-section

 
IPTCW 

Count model       

Experience = [5, 8] 0.301 0.191 0.241 0.188 0.143 0.111 

 (0.213) (0.214) (0.207) (0.185) (0.138) (0.280) 

Experience = [9, 15] 0.863 0.768 0.754 0.717 0.518 0.648 

 (0.255)*** (0.221)*** (0.242)*** (0.189)*** (0.180)*** (0.316)** 

Experience = [16, 22] 1.103 1.056 0.963 0.969 0.633 0.886 

 (0.333)*** (0.272)*** (0.305)*** (0.223)*** (0.226)*** (0.401)** 

Experience = [23, 35] 1.134 1.041 0.951 0.894 0.598 0.794 

 (0.368)*** (0.304)*** (0.340)*** (0.266)*** (0.252)** (0.446)* 

Female -0.085 -0.062 0.004 -0.070 -0.083 -0.077 

 (0.187) (0.189) (0.194) (0.174) (0.195) (0.182) 

Employer grad school in top20 (t) 0.103 0.115 0.152 0.218 0.062 0.097 

 (0.118) (0.113) (0.115) (0.121)* (0.121) (0.117) 

Employer has TTO (t) -0.115 -0.160 -0.135 -0.213 0.016 -0.101 

 (0.126) (0.130) (0.129) (0.134) (0.122) (0.185) 

-0.048 -0.054 -0.056 -0.058 -0.047 -0.058 Employer patent stock (t) (in 
hundred) (0.030) (0.034) (0.028)* (0.034)* (0.023)** (0.031)* 

PhD univ. grad school in top 20 -0.082 -0.036 -0.104 -0.115 -0.109 -0.037 

 (0.124) (0.114) (0.125) (0.111) (0.113) (0.156) 

0.013 -0.000 0.037 0.006 0.248 0.126 PhD univ. 5-yr patent stock (in 
hundred) (0.299) (0.260) (0.319) (0.262) (0.183) (0.571) 

Patent flow dummy (t) 0.616 0.278     

 (0.208)*** (0.189)     

Patent regime dummy (t)   0.602 0.515   

   (0.158)*** (0.136)***   

Patent stock (t)     0.034 0.005 

     (0.012)*** (0.010) 

Constant -1.972 -1.964 -1.936 -1.973 -1.742 -1.893 

 (0.462)*** (0.548)*** (0.414)*** (0.474)*** (0.253)*** (0.420)*** 

    Continued in next page 
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Table 6.4  
Zero Inflated Negative Binomial Regression of Count of Research 

Publications in Collaboration with Company Researchers (Continued) 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Type of patent effect         Patent Flow         Patent Regime        Patent Stock 
 Pooled  

Cross-section
 
IPTCW 

Pooled  
Cross-section

 
IPTCW 

Pooled  
Cross-section

 
IPTCW 

Logit model (Y=0)       

Experience = [5, 8] -0.392 -0.455 -0.385 -0.411 -0.488 -0.536 
 (0.256) (0.238)* (0.247) (0.229)* (0.194)** (0.353) 

Experience = [9, 15] -0.056 -0.025 -0.056 0.018 -0.415 -0.157 
 (0.414) (0.356) (0.365) (0.316) (0.240)* (0.415) 

Experience = [16, 22] 0.028 0.154 0.067 0.265 -0.529 -0.074 
 (0.612) (0.525) (0.521) (0.451) (0.333) (0.592) 

Experience = [23, 35] 0.394 0.620 0.413 0.689 -0.241 0.240 
 (0.798) (0.719) (0.691) (0.632) (0.372) (0.698) 

Female 0.339 0.398 0.309 0.287 0.142 0.306 
 (0.234) (0.243) (0.242) (0.246) (0.215) (0.235) 

Employer grad school in top20 (t) 0.313 0.363 0.350 0.498 0.133 0.310 
 (0.245) (0.249) (0.230) (0.275)* (0.177) (0.208) 

Employer has TTO (t) -0.519 -0.578 -0.498 -0.625 -0.244 -0.452 
 (0.254)** (0.253)** (0.231)** (0.254)** (0.159) (0.240)* 

-0.242 -0.260 -0.245 -0.293 -0.167 -0.260 Employer patent stock (t) (in 
hundred) (0.099)** (0.080)*** (0.0998)** (0.094)*** (0.083)** (0.094)*** 

PhD univ. grad school in top 20 0.170 0.197 0.103 0.097 0.094 0.172 
 (0.273) (0.260) (0.248) (0.212) (0.156) (0.306) 

-0.369 -0.468 -0.268 -0.304 0.195 -0.054 PhD univ. 5-yr patent stock (in 
hundred) (1.476) (1.526) (1.312) (1.233) (0.232) (1.598) 

Patent flow dummy (t) -1.631 -0.867     

 (0.352)*** (0.285)***     
Patent regime dummy (t)   -1.050 -0.692   

   (0.229)*** (0.212)***   
Patent stock (t)     -1.282 -0.542 

     (0.658)* (0.849) 
Constant 2.204 2.263 2.224 2.133 2.442 2.339 

 (0.484)*** (0.595)*** (0.439)*** (0.547)*** (0.264)*** (0.388)*** 

Observations 64483 63193 64483 63198 64483 63193 

Num. of observations = 0 58964 58067 58964 57921 58964 58067 

Num. of researchers 4270 4268 4270 4269 4270 4268 
Log likelihood -23000.33 -19578.99 -22843.70 -19636.95 -22836.89 -19567.19 

Wald Chi2 120.50 129.57 128.59 157.59 78.98 97.46 
Model degrees of freedom 23 23 23 23 23 23 

p>Chi2 0.00 0.00 0.00 0.00 0.00 0.00 

Notes: 

(1) Models 2 , 4 and 6 use Inverse Probability of Treatment and Censoring Weights (IPTCW), which is the product of (a) Inverse 

Probability of Treatment Weights (IPTW) derived from the logit regression of treatment (i.e., the researcher applying for one or more 
patents in a given year for Models 2 and 6, and the researcher entering patenting regime for Model 4) on variables that may confound the 

patenting effect, and (b) Inverse Probability of Censoring Weights (IPCW) derived from the logit regression of censoring (i.e., the 

researcher exiting academia in a given year). 
(2) Models 2, 4 and 6 exclude observations with extremely large (top 1%) and small (bottom 1%) weights. 

(3)
 
All models control for PhD subject period effects (periods are coded as 1968-1975, 1976-1980, 1981-1985, 1986-1990, 1991-1995, 1996-

2000; the first period is the base category). 
(4) Experience = [1, 4] is the base category for the experience dummies. 

(5) Robust standard errors in parentheses; clustered around researchers. 

(6) * significant at 10%; ** significant at 5%; *** significant at 1%. 
(7) Vuong test was conducted for models 1, 3 and 5, and are positive and significant at 0.01. Vuong statistics can not be computed in 

models 2, 4 and 6 due to the inclusion of weights. However, we believe that given the proportion of zero observations in the dataset, 

the applicability of the inflated model is not likely to be influenced by the inclusion of weights. 
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Table 6.5 
Two-sided Tobit Regression of Proportion of  

Research Publications with Company Researchers 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Type of patent effect        Patent Flow        Patent Regime       Patent Stock 
 Pooled  

Cross-section
 
IPTCW 

Pooled  
Cross-section

 
IPTCW 

Pooled  
Cross-section

 
IPTCW 

Experience = [5, 8] 0.300 0.309 0.275 0.291 0.305 0.311 
 (0.040)*** (0.048)*** (0.041)*** (0.048)*** (0.040)*** (0.048)*** 

Experience = [9, 15] 0.467 0.492 0.415 0.444 0.467 0.492 
 (0.051)*** (0.061)*** (0.052)*** (0.061)*** (0.051)*** (0.061)*** 

Experience = [16, 22] 0.546 0.597 0.465 0.508 0.533 0.595 
 (0.064)*** (0.078)*** (0.066)*** (0.077)*** (0.064)*** (0.078)*** 

Experience = [23, 35] 0.459 0.434 0.358 0.314 0.412 0.418 
 (0.084)*** (0.106)*** (0.086)*** (0.102)*** (0.086)*** (0.107)*** 

Female -0.158 -0.187 -0.114 -0.142 -0.167 -0.192 
 (0.055)*** (0.062)*** (0.055)** (0.062)** (0.055)*** (0.062)*** 

Employer grad school in top20 (t) -0.016 -0.026 -0.002 -0.001 -0.019 -0.028 
 (0.050) (0.058) (0.050) (0.058) (0.050) (0.058) 

Employer has TTO (t) 0.096 0.126 0.083 0.113 0.095 0.127 
 (0.045)** (0.053)** (0.046)* (0.052)** (0.045)** (0.053)** 

0.014 0.021 0.010 0.018 0.012 0.020 Employer patent stock (t) (in 
hundred) (0.010) (0.013) (0.010) (0.013) (0.010) (0.013) 

PhD univ. grad school in top 20 -0.103 -0.111 -0.099 -0.117 -0.103 -0.111 
 (0.049)** (0.056)** (0.048)** (0.055)** (0.048)** (0.056)** 

0.058 0.065 0.057 0.044 0.064 0.069 PhD univ. 5-yr patent stock (in 
hundred) (0.059) (0.079) (0.059) (0.074) (0.060) (0.078) 

Patent flow dummy (t) 0.679 0.471     
 (0.060)*** (0.070)***     

Patent regime dummy (t)   0.569 0.520   
   (0.049)*** (0.063)***   

Patent stock (t)     0.035 0.022 
     (0.007)*** (0.007)*** 

Constant -3.069 -3.606 -3.059 -3.569 -3.056 -3.602 
 (0.126)*** (0.146)*** (0.126)*** (0.145)*** (0.126)*** (0.146)*** 

Num. of observations 64483 63193 64483 63198 64483 63193 

Num. of uncensored observations 4049 3700 4049 3851 4049 3700 
Num. of left censored obs 58964 58067 58964 57921 58964 58067 

Num. of right censored obs 1470 1426 1470 1426 1470 1426 
Num. of researchers 4270 4268 4270 4269 4270 4268 

Log likelihood -20194.97 -17886.91 -20094.69 -17900.34 -20234.23 -17901.36 
Wald Chi2 688.37 545.48 722.49 581.85 565.16 526.75 

Model degrees of freedom 23 23 23 23 23 23 
p>Chi2 0.00 0.00 0.00 0.00 0.00 0.00 

Notes: 
(1) Models 2 , 4 and 6 use Inverse Probability of Treatment and Censoring Weights (IPTCW), which is the product of (a) 

Inverse Probability of Treatment Weights (IPTW) derived from the logit regression of treatment (i.e., the researcher 
applying for one or more patents in a given year for Models 2 and 6, and the researcher entering patenting regime for Model 

4) on variables that may confound the patenting effect, and (b) Inverse Probability of Censoring Weights (IPCW) derived 
from the logit regression of censoring (i.e., the researcher exiting academia in a given year). 

(2) Models 2, 4 and 6 exclude observations with extremely large (top 1%) and small (bottom 1%) weights. 
(3) All models control for PhD subject period effects (periods are coded as 1968-1975, 1976-1980, 1981-1985, 1986-1990, 1991-

1995, 1996-2000; the first period is the base category). 
(4) Experience = [1, 4] is the base category for the experience dummies. 

(5) Robust standard errors in parentheses; clustered around researchers. 
(6) * significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 7.1 

Fixed Effects Negative Binomial Regression of  

Count of Research Publications 

Notes:  

(1) Models 4-6 contains only researchers who have applied for one or more patents at some point in his or her career. 
(2) All models control for year effects. 

(3) * significant at 10%; ** significant at 5%; *** significant at 1%. 

 Model 1 Model 2 Model 3  Model 4 Model 5 Model 6 

 All researchers  Patenters Only 

Experience = [5, 8] 0.300 0.296 0.296  0.343 0.330 0.331 

 (0.016)*** (0.016)*** (0.016)***  (0.030)*** (0.030)*** (0.030)***

Experience = [9, 15] 0.351 0.344 0.344  0.409 0.391 0.392 

 (0.023)*** (0.023)*** (0.023)***  (0.040)*** (0.041)*** (0.041)***

Experience = [16, 22] 0.217 0.207 0.206  0.280 0.257 0.258 

 (0.035)*** (0.035)*** (0.035)***  (0.060)*** (0.060)*** (0.060)***

Experience = [23, 35] -0.047 -0.056 -0.057  -0.035 -0.055 -0.054 

 (0.049) (0.049) (0.049)  (0.081) (0.082) (0.082) 

-0.009 -0.007 -0.007  -0.014 -0.011 -0.011 Employer grad. school in 
top20 (t) (0.019) (0.019) (0.019)  (0.031) (0.031) (0.031) 

Employer has TTO (t) 0.007 0.006 0.007  -0.015 -0.016 -0.017 

 (0.014) (0.014) (0.014)  (0.023) (0.023) (0.023) 

0.030 0.029 0.029  -0.012 -0.011 -0.011 Employer patent stock (t) 
 90 (75th percentile) (0.014)** (0.014)** (0.014)**  (0.023) (0.023) (0.023) 

Patent flow dummy (t) 0.125    0.100   

 (0.018)***    (0.018)***   

Patent regime dummy (t)  0.157    0.108  

  (0.018)***    (0.022)***  

Patent stock = 1 (t)   0.150    0.110 

   (0.021)***    (0.024)***

Patent stock = 2 (t)   0.152    0.101 

   (0.028)***    (0.031)***

Patent stock > 2 (t)   0.173    0.104 

   (0.024)***    (0.032)***

Constant -0.184 -0.188 -0.188  -0.315 -0.309 -0.309 

 (0.076)** (0.076)** (0.076)**  (0.165)* (0.165)* (0.165)* 

Observations 63225 63225 63225  15456 15456 15456 

Number of researchers 4106 4106 4106  803 803 803 

Log likelihood -81847.27 -81829.47 -81828.95  -24588.04 -24590.72 -24590.67 

Wald Chi2 4294.84 4325.67 4326.98  1917.23 1907.24 1907.37 

Model degrees of freedom 37 37 39  37 37 39 

p>Chi2 0.00 0.00 0.00  0.00 0.00 0.00 
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Table 7.2 

Fixed Effects Regression of Log of Count of Research Publications 

Notes:  
(1) Models 4-6 contains only researchers who have applied for one or more patents at some point in his or her career. 

(2) All models control for year effects. 
(3) Robust standard errors in parentheses, clustered around researchers. 

(4) * significant at 10%; ** significant at 5%; *** significant at 1%. 

 Model 1 Model 2 Model 3  Model 4 Model 5 Model 6 

 All researchers  Patenters Only 

Experience = [5, 8] 0.098 0.097 0.098  0.155 0.151 0.151 

 (0.009)*** (0.009)*** (0.009)***  (0.020)*** (0.020)*** (0.020)***

Experience = [9, 15] 0.091 0.089 0.090  0.156 0.150 0.150 

 (0.015)*** (0.015)*** (0.015)***  (0.033)*** (0.033)*** (0.033)***

Experience = [16, 22] -0.029 -0.031 -0.031  0.014 0.007 0.007 

 (0.022) (0.022) (0.022)  (0.046) (0.046) (0.046) 

Experience = [23, 35] -0.218 -0.218 -0.218  -0.250 -0.256 -0.256 

 (0.030)*** (0.030)*** (0.030)***  (0.059)*** (0.059)*** (0.059)***

-0.008 -0.007 -0.008  -0.004 -0.003 -0.004 Employer grad. school in 
top20 (t) (0.018) (0.018) (0.018)  (0.036) (0.037) (0.036) 

Employer has TTO (t) 0.013 0.012 0.012  -0.005 -0.005 -0.005 

 (0.011) (0.011) (0.011)  (0.024) (0.024) (0.024) 

0.035 0.034 0.034  0.006 0.006 0.007 Employer patent stock (t) 
 90 (75th percentile) (0.013)*** (0.013)*** (0.013)***  (0.024) (0.025) (0.025) 

Patent flow dummy (t) 0.106    0.076   

 (0.016)***    (0.015)***   

Patent regime dummy (t)  0.136    0.052  

  (0.019)***    (0.021)**  

Patent stock = 1 (t)   0.113    0.049 

   (0.020)***    (0.021)** 

Patent stock = 2 (t)   0.132    0.052 

   (0.029)***    (0.031)* 

Patent stock > 2 (t)   0.183    0.079 

   (0.031)***    (0.036)** 

Constant 0.103 0.108 0.109  0.139 0.144 0.147 

 (0.027)*** (0.027)*** (0.026)***  (0.062)** (0.062)** (0.062)** 

Observations 64483 64483 64483  15586 15586 15586 

Number of researchers 4270 4270 4270  814 814 814 

F statistics 48.07 48.24 45.90  20.39 16.70 19.12 

Model degrees of freedom 36 36 38  36 36 38 

Adjusted R2 0.45 0.45 0.45  0.52 0.52 0.52 
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Table 7.3 

Fixed Effects Negative Binomial Regression of  

Count of NIH Grants 

Notes:  

(1) Models 4-6 contains only researchers who have applied for one or more patents at some point in his or her career. 
(2) All models control for year effects. 

(3) * significant at 10%; ** significant at 5%; *** significant at 1%. 

 Model 1 Model 2 Model 3  Model 4 Model 5 Model 6 

 All researchers  Patenters 

Experience = [5, 8] 1.390 1.386 1.390  1.398 1.393 1.401 

 (0.045)*** (0.045)*** (0.045)***  (0.082)*** (0.082)*** (0.082)***

Experience = [9, 15] 1.542 1.537 1.544  1.587 1.578 1.591 

 (0.057)*** (0.057)*** (0.057)***  (0.101)*** (0.102)*** (0.102)***

Experience = [16, 22] 1.404 1.397 1.403  1.486 1.474 1.483 

 (0.079)*** (0.079)*** (0.079)***  (0.138)*** (0.139)*** (0.139)***

Experience = [23, 35] 1.021 1.013 1.020  1.231 1.216 1.227 

 (0.106)*** (0.106)*** (0.106)***  (0.184)*** (0.184)*** (0.184)***

-0.023 -0.019 -0.017  0.028 0.028 0.027 Employer grad. school in 
top20 (t) (0.038) (0.038) (0.038)  (0.068) (0.068) (0.068) 

Employer has TTO (t) 0.002 0.004 0.007  -0.047 -0.045 -0.034 

 (0.028) (0.028) (0.028)  (0.050) (0.050) (0.050) 

-0.001 -0.002 -0.002  -0.028 -0.029 -0.028 Employer patent stock (t) 
90 (75th percentile) (0.027) (0.027) (0.027)  (0.046) (0.046) (0.046) 

Patent flow dummy (t) 0.094    0.059   

 (0.039)**    (0.040)   

Patent regime dummy (t)  0.142    0.048  

  (0.036)***    (0.046)  

Patent stock = 1 (t)   0.054    0.008 

   (0.043)    (0.049) 

Patent stock = 2 (t)   0.188    0.131 

   (0.057)***    (0.065)** 

Patent stock > 2 (t)   0.304    0.220 

   (0.052)***    (0.069)***

Constant 13.159 12.906 12.920  12.967 12.981 13.489 

 (61.767) (51.585) (53.208)  (97.579) (96.936) (112.434) 

Observations 26956 26956 26956  8034 8034 8034 

Number of researchers 1364 1364 1364  380 380 380 

Log likelihood -19514.13 -19509.30 -19499.09  -6059.83 -6060.37 -6053.90 

Wald Chi2 2222.77 2231.33 2250.09  713.49 712.60 724.99 

Model degrees of freedom 37 37 39  37 37 39 

p>Chi2 0.00 0.00 0.00  0.00 0.00 0.00 
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Table 7.4 

Fixed Effects Negative Binomial Regression of Count of Research 

Publications in Collaboration with Company Researchers 

Notes:  
(1) Models 4-6 contains only researchers who have applied for one or more patents at some point in his or her career. 

(2) All models control for 5 period dummies:1968-1975, 1976-1980, 1981-1985, 1986-1990, 1991-1995, 1996-1999, among 
them period 1968-1975 is the base group). 

(3) * significant at 10%; ** significant at 5%; *** significant at 1%.

 Model 1 Model 2 Model 3  Model 4 Model 5 Model 6 

 All Researchers  Patenters Only 

Experience = [5, 8] 0.210 0.203 0.206  0.177 0.148 0.164 

 (0.052)*** (0.052)*** (0.052)***  (0.090)** (0.091) (0.092)* 

Experience = [9, 15] 0.272 0.262 0.268  0.264 0.225 0.249 

 (0.064)*** (0.064)*** (0.064)***  (0.105)** (0.106)** (0.107)** 

Experience = [16, 22] 0.279 0.264 0.273  0.208 0.156 0.189 

 (0.090)*** (0.090)*** (0.090)***  (0.140) (0.141) (0.143) 

Experience = [23, 35] 0.266 0.247 0.257  0.238 0.181 0.215 

 (0.117)** (0.117)** (0.118)**  (0.179) (0.181) (0.182) 

1.573 1.572 1.572  1.367 1.364 1.363 Log of count of research 
publications (t)  (0.026)*** (0.026)*** (0.026)***  (0.041)*** (0.041)*** (0.041)***

-0.136 -0.135 -0.141  -0.126 -0.128 -0.142 Employer grad. school in 
top20 (t) (0.066)** (0.066)** (0.066)**  (0.101) (0.101) (0.102) 

Employer has TTO (t) 0.004 -0.001 -0.002  0.045 0.041 0.034 

 (0.044) (0.044) (0.044)  (0.066) (0.066) (0.066) 

0.013 0.010 0.012  -0.055 -0.061 -0.058 Employer patent stock (t) 
 90 (75th percentile) (0.044) (0.044) (0.044)  (0.063) (0.063) (0.063) 

Patent flow dummy (t) 0.051    0.050   

 (0.041)    (0.043)   

Patent regime dummy (t)  0.113    0.144  

  (0.050)**    (0.061)**  

Patent stock = 1 (t)   0.144    0.168 

   (0.056)**    (0.064)***

Patent stock = 2 (t)   0.104    0.101 

   (0.077)    (0.087) 

Patent stock > 2 (t)   0.043    0.044 

   (0.067)    (0.086) 

Constant 10.051 10.178 9.585  -2.017 -1.975 -2.035 

 (112.921) (110.323) (86.634)  (0.330)*** (0.333)*** (0.325)***

Observations 32426 32426 32426  11173 11173 11173 

Number of researchers 1706 1706 1706  538 538 538 

Log likelihood -11868.93 -11867.18 -11865.96  -5188.42 -5186.27 -5184.81 

Wald Chi2 4860.14 4860.94 4860.67  1736.91 1738.99 1736.71 

Model degrees of freedom 14 14 16  14 14 16 

p>Chi2 0.00 0.00 0.00  0.00 0.00 0.00 
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Table 8.1  

Dynamic Effect of Patenting on Research Publications 

Count of Research Papers  

Pooled Cross-section Negative Binomial Model Fixed Effects Negative Binomial Model Time around 1st 

patent Application  (1)   (2)  (3)  (4)  (5)   (6)   (7)  (8)  (9)  (10) 

2 years before  0.437   0.437  0.102   0.096 

  (0.049)***   (0.049)***  (0.035)***   (0.035)***

1 years before 0.507 0.516   0.516 0.156 0.171   0.165 

 (0.046)*** (0.047)***   (0.047)*** (0.032)*** (0.033)***   (0.033)***

Year of 1st patent 0.602 0.611 0.590 0.590 0.611 0.206 0.222 0.182 0.177 0.215 

 (0.047)*** (0.048)*** (0.047)*** (0.047)*** (0.048)*** (0.031)*** (0.032)*** (0.031)*** (0.031)*** (0.032)***

1 year or more after 0.621 0.629    0.181 0.198    

 (0.049)*** (0.050)***    (0.019)*** (0.020)***    

1 year after   0.584 0.584 0.603   0.182 0.177 0.215 

   (0.046)*** (0.046)*** (0.047)***   (0.031)*** (0.031)*** (0.032)***

2 years or more after   0.614     0.147   

   (0.050)***     (0.019)***   

2 years after    0.576 0.595    0.186 0.225 

    (0.046)*** (0.048)***    (0.032)*** (0.032)***

3 years after     0.627 0.644    0.212 0.252 

    (0.049)*** (0.050)***    (0.032)*** (0.033)***

4 years after     0.603 0.621    0.171 0.211 

    (0.055)*** (0.056)***    (0.034)*** (0.035)***

5 years or more after    0.620 0.638    0.107 0.153 

    (0.058)*** (0.058)***    (0.022)*** (0.024)***

Log-likelihood -109512.55 -109464.89 -109584.24 -109583.77 -109464.23 -81810.24 -81806.15 -81820.61 -81813.00 -81799.13 

Wald Chi-square  2410.53 2430.35 2391.97 2408.62 2445.70 4369.45 4378.30 4347.66 4367.26 4395.63 

Model d.f. 49 50 49 52 54 39 40 39 42 44 

        Continued in next page 
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Table 8.1  

Dynamic Effect of Patenting on Research Publications (Continued) 

Log of Count of Research Papers  

Pooled Cross-section Regression Fixed Effects Regression Time around 1st 

patent Application  (11)   (12)  (13)  (14)  (15)   (16)  (17)  (18)  (19)  (20) 

2 years before  0.213   0.213  0.078   0.077 

  (0.026)***   (0.026)***  (0.024)***   (0.024)***

1 years before 0.257 0.261   0.261 0.103 0.116   0.114 

 (0.026)*** (0.026)***   (0.026)*** (0.024)*** (0.026)***   (0.025)***

Year of 1st patent 0.297 0.301 0.292 0.292 0.301 0.142 0.154 0.125 0.124 0.153 

 (0.027)*** (0.027)*** (0.027)*** (0.027)*** (0.027)*** (0.025)*** (0.026)*** (0.023)*** (0.023)*** (0.026)***

1 year or more after 0.365 0.368    0.155 0.169    

 (0.030)*** (0.030)***    (0.022)*** (0.023)***    

1 year after   0.319 0.319 0.327   0.143 0.141 0.170 

   (0.028)*** (0.028)*** (0.028)***   (0.023)*** (0.023)*** (0.025)***

2 years or more after   0.366     0.136   

   (0.032)***     (0.021)***   

2 years after    0.324 0.331    0.146 0.175 

    (0.029)*** (0.029)***    (0.025)*** (0.027)***

3 years after     0.355 0.362    0.170 0.199 

    (0.032)*** (0.032)***    (0.026)*** (0.028)***

4 years after     0.332 0.339    0.143 0.173 

    (0.033)*** (0.034)***    (0.028)*** (0.030)***

5 years or more after    0.380 0.387    0.122 0.156 

    (0.037)*** (0.037)***    (0.026)*** (0.028)***

F-statistics 56.45 55.51 56.42 53.28 51.53 46.23 45.28 46.19 42.84 41.11 
Model d.f.  49 50 49 52 54 38 39 38 41 43 

Adjusted R2 0.12 0.12 0.12 0.12 0.12 0.45 0.45 0.45 0.45 0.45 

Notes:  

(1) Number of observations in models 1-5 and 11-20 = 64,483; number of observations in models 6-10 = 63,225. 
(2) Number of researchers in models 1-5 and 11-20 = 4,270; number of researchers in models 6-10 = 4106. 

(3) All models control for calendar years, experience category dummies, employer prestige, employer TTO dummy and employer patent stock. 
(4) Models 1-5 and 11-20 report robust standard errors, clustered around researchers. 

(5) * significant at 10%; ** significant at 5%; *** significant at 1%. 
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Table 8.2 

Dynamic Effect of Patenting on Count of NIH Grants 

Pooled Cross-section Negative Binomial Model  Fixed Effects Negative Binomial Model Time around 1st 

patent Application   (1)   (2)   (3)   (4)   (5)   (6)   (7)   (8)   (9)   (10) 

2 years before  0.252   0.252   0.105   0.112 

  (0.077)***   (0.077)***   (0.069)   (0.069) 

1 years before 0.233 0.237   0.237  0.091 0.106   0.114 

 (0.074)*** (0.076)***   (0.076)***  (0.067) (0.068)   (0.068)* 

Year of 1st patent 0.241 0.246 0.237 0.236 0.246  0.128 0.143 0.116 0.121 0.152 

 (0.077)*** (0.078)*** (0.075)*** (0.075)*** (0.078)***  (0.065)* (0.066)** (0.065)* (0.065)* (0.066)** 

1 year or more after 0.122 0.126     0.160 0.178    

 (0.078) (0.079)     (0.040)*** (0.042)***    

1 year after   0.201 0.200 0.209    0.095 0.100 0.132 

   (0.079)** (0.079)** (0.081)***    (0.066) (0.066) (0.068)** 

2 years or more after   0.109      0.157   

   (0.081)      (0.040)***   

2 years after    0.230 0.238     0.149 0.181 

    (0.075)*** (0.077)***     (0.065)** (0.066)***

3 years after     0.170 0.178     0.107 0.140 

    (0.078)** (0.079)**     (0.067) (0.069)** 

4 years after     0.139 0.147     0.130 0.164 

    (0.080)* (0.081)*     (0.071)* (0.073)** 

5 years or more after    0.076 0.085     0.192 0.231 

    (0.097) (0.098)     (0.048)*** (0.051)***

Log-likelihood -38271.26 -38266.29 -38275.10 -38272.62 -38271.26  -19500.87 -19499.74 -19501.31 -19500.25 -19497.95 

Wald Chi-square  2048.66 2050.14 2051.70 2078.30 2048.66  2246.17 2247.87 2245.41 2246.80 2250.46 

Model d.f. 49 50 49 52 49  39 40 39 42 44 

           
Notes:  
(1) Number of observations in models 1-5 = 64,483; number of observations in models 6-10 =26,956. 

(2) Number of researchers in models 1-5 = 4,270; number of researchers in models 6-10 = 1,364. 
(3) All models control for calendar years, experience category dummies, employer prestige, employer TTO dummy and employer patent stock. 

(4) Models 1-5 report robust standard errors, clustered around researchers. 
(5) * significant at 10%; ** significant at 5%; *** significant at 1%. 
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Table 8.3 

Dynamic Effect of Patenting on Count of Research Publications 

Written in Collaboration with Company Scientists 

Pooled Cross-section Negative Binomial Model Fixed Effects Negative Binomial Model Time around 1st 
patent Application   (1)   (2)   (3)   (4)   (5)   (6)   (7)  (8)   (9)   (10) 

2 years before  0.270   0.270  0.111   0.105 

  (0.117)**   (0.117)**  (0.095)   (0.095) 

1 years before 0.323 0.330   0.330 0.170 0.194   0.188 

 (0.103)*** (0.104)***   (0.104)*** (0.083)** (0.086)**   (0.086)** 

Year of 1st patent 0.443 0.450 0.434 0.434 0.450 0.215 0.239 0.172 0.171 0.232 

 (0.098)*** (0.099)*** (0.097)*** (0.097)*** (0.099)*** (0.081)*** (0.084)*** (0.079)** (0.079)** (0.084)***

1 year or more after 0.280 0.287    0.140 0.166    

 (0.079)*** (0.080)***    (0.057)** (0.061)***    

1 year after   0.407 0.407 0.423   0.189 0.187 0.249 

   (0.102)*** (0.102)*** (0.104)***   (0.078)** (0.079)** (0.084)***

2 years or more after   0.255     0.073   

   (0.081)***     (0.055)   

2 years after    0.268 0.283    0.110 0.173 

    (0.102)*** (0.103)***    (0.080) (0.085)** 

3 years after     0.339 0.355    0.091 0.154 

    (0.100)*** (0.102)***    (0.078) (0.084)* 

4 years after     0.257 0.273    0.011 0.078 

    (0.110)** (0.112)**    (0.086) (0.091) 

5 years or more after    0.240 0.257    0.065 0.139 

    (0.092)*** (0.094)***    (0.064) (0.073)* 

Log-likelihood -19389.92 -19387.29 -19393.41 -19392.96 -19389.92 -11863.50 -11862.84 -11864.35 -11863.80 -11861.29 

Wald Chi-square  4436.65 4447.44 4433.65 4448.06 4436.65 4865.51 4864.92 4863.44 4864.33 4866.02 
Model d.f. 26 27 26 29 26 16 17 16 19 21 

Notes:  
(1) Number of observations in models 1-5 = 64,483; number of observations in models 6-10 =32,426. 

(2) Number of researchers in models 1-5 = 4,270; number of researchers in models 6-10 = 1,706. 
(3) All models control for calendar years, experience category dummies, employer prestige, employer TTO dummy and employer patent stock. 

(4) Models 1-5 report robust standard errors, clustered around researchers. 
(5) * significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 9 

Regression of Log of Count of Research Publications 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Type of patent effect Patent Flow Patent Regime          Patent Stock 

 Fixed Effects Fixed Effects 
with IPTCW 

Fixed Effects Fixed Effects 
with IPTCW 

Fixed Effects  Fixed Effects 
with IPTCW

Experience = [5, 8] 0.098 0.091 0.097 0.095 0.099 0.092 

 (0.009)*** (0.009)*** (0.009)*** (0.009)*** (0.009)*** (0.009)***

Experience = [9, 15] 0.090 0.079 0.089 0.084 0.091 0.079 

 (0.015)*** (0.015)*** (0.015)*** (0.015)*** (0.015)*** (0.015)***

Experience = [16, 22] -0.029 -0.052 -0.031 -0.042 -0.030 -0.052 

 (0.022) (0.023)** (0.022) (0.022)* (0.022) (0.023)** 

Experience = [23, 35] -0.218 -0.242 -0.217 -0.229 -0.221 -0.243 

 (0.030)*** (0.032)*** (0.030)*** (0.032)*** (0.030)*** (0.032)***

-0.020 -0.021 -0.019 -0.022 -0.019 -0.021 Employer grad school in 
top20 (t) (0.018) (0.018) (0.018) (0.018) (0.018) (0.018) 

Employer has TTO (t) 0.015 0.020 0.014 0.018 0.015 0.020 

 (0.011) (0.012)* (0.011) (0.011) (0.011) (0.012)* 

0.018 0.017 0.018 0.018 0.018 0.017 Employer patent stock (t) 
(in hundred) (0.005)*** (0.005)*** (0.005)*** (0.005)*** (0.005)*** (0.005)***

Patent flow dummy (t) 0.106 0.051     

 (0.016)*** (0.019)***     

Patent regime dummy (t)   0.135 0.087   

   (0.019)*** (0.020)***   

Patent Stock (t)     0.004 0.006 

     (0.003)* (0.003)* 

Constant 0.105 0.046 0.110 0.056 0.104 0.047 

 (0.027)*** (0.027)* (0.026)*** (0.027)** (0.027)*** (0.027)* 

Observations 64483 63193 64483 63198 64483 63193 

Num. of researchers 4270 4268 4270 4269 4270 4268 

F-statistics 48.57 46.80 48.66 46.56 47.95 46.83 

Model degrees of freedom 36 36 36 36 36 36 

Adjusted R2 0.45 0.41 0.45 0.41 0.45 0.41 

Notes: 

(1) Models 2, 4 and 6 use Inverse Probability of Treatment and Censoring Weights (IPTCW), which is the product 
of (a) Inverse Probability of Treatment Weights (IPTW) derived from the logit regression of treatment (i.e., the 

researcher applying for one or more patents in a given year for Models 2 and 4 and the researcher entering 
patenting regime for Model 4) on variables that may confound the patenting effect, and (b) Inverse Probability of 

Censoring Weights (IPCW) derived from the logit regression of censoring (i.e., the researcher exiting academia in a 
given year). 

(2) Models 2 and 4 exclude observations with extremely large (top 1%) and small (bottom 1%) weights. 
(3) All models control for year effects. 

(4) Experience = [1, 4] is the base category for the experience dummies. 
(5) Robust standard errors in parentheses, clustered around researchers 

(6) * significant at 10%; ** significant at 5%; *** significant at 1%. 



Data Appendix

Research patentability score. wjt, the patentability weight for each keyword j in year t is defined as:

wjt =

∑
i∈I′

mijt∑
j

mijt∑
i∈I

′′

∑
j mijt

where mijt denotes the number of times each of the keywords j has appeared in scientist i’s articles published

between t − 5 and t, i = 1, . . . , I
′

in the numerator indexes the subset of scientists in our sample that have
already applied for one or more patents, and i = 1, . . . , I

′′

in the denominator indexes the subset of scientists
in our sample that have not yet applied for any patent. Note that wjt = 0 for all keywords that have never
appeared in the titles of papers written by scientists that have patented before t.

To compute the research patentability score, we first created a row normalized matrix for year t, with
each scientist in the patenting regime listed in a row and each of the keywords used to describe their papers
listed in a column. The ijth cell in the matrix, [mijt/

∑
j mijt], is defined to be the proportion of commercial

scientist i’s total research output that is devoted to keyword j. We then take the column sums from this
matrix, which form a vector of weights corresponding to keywords that are large to the extent that a keyword
j frequently has been used to describe articles written by scientists who had entered the patenting regime
before t.

Next, we collected all papers published by the scientists in our dataset who had not applied for patents
by year t and computed the frequency that each keyword j appeared in the titles of their papers, a process
captured in the denominator. The raw weight for keyword j — captured by the numerator — was deflated
by the frequency of use for j by non-patenters. These deflated weights wjt are large for keywords that
have appeared with disproportionate frequency as descriptors of papers written by scientists already in the
patenting regime.

Finally, for each individual i in the dataset, we produced a list of the keywords in the individual’s papers
published in all time periods before t, calculated the proportion of the total represented by each keyword j,
applied the appropriate keyword weight wjt, and summed over keywords to produce a composite score. The
resulting variable increases in the degree to which keywords in the titles of a focal scientist’s papers have
appeared frequently in the titles of academic scientists who have applied for patents. This score is entered
in the regressions to control for the research patentability of scientists’ areas of specialization.
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